Επίσης, γίνεται αναφορά σε µεθόδους πεπερασµένων στοιχείων και νευρονικών δικτύων.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Επίσης, γίνεται αναφορά σε µεθόδους πεπερασµένων στοιχείων και νευρονικών δικτύων."

Transcript

1 Πανεπιστήµιο Κύπρου Το µάθηµα περιλαµβάνει Αριθµητικές και Υπολογιστικές Μεθόδους για Μηχανικούς, µε έµφαση στις µεθόδους: αριθµητικής ολοκλήρωσης/παραγώγισης, αριθµητικών πράξεων µητρώων, λύσεων µητρώων και ανεύρεσης ιδιοτιµών, αριθµητικής επίλυσης διαφορικών εξισώσεων, στατιστικής και γραφικών αναλύσεων. Επίσης, γίνεται αναφορά σε µεθόδους πεπερασµένων στοιχείων και νευρονικών δικτύων. Τα θέµατα διδάσκονται µε έµφαση σε παραδείγµατα και εφαρµογές από τους κλάδους Πολιτικής Μηχανικής και Μηχανικής Περιβάλλοντος, και µε σηµαντική χρήση λογισµικών (MATLAB, MS-Excel, Neural Networks). Το µάθηµα θα περιλαµβάνει αγγλική ορολογία και βιβλιογραφία. Βιβλίο Άλλες Αναφορές Λογισµικό Καθηγητής Singiresu S. Rao, Applied Numerical Methods for Engineers and Scientists, Prentice Hall, ISBN X. Σηµειώσεις καθηγητή Matlab, MS-Excel Δρ. Συµεών Χριστοδούλου Τηλ.: Ώρες Γραφείου Τρίτη, 10:00πµ 12:00µµ, ή µε ραντεβού Παρασκευή, 10:00πµ 12:00µµ, ή µε ραντεβού Ιστοσελίδα Μαθήµατος 30/1/2006 Σελίδα E 1 από 6E

2 Πανεπιστήµιο Κύπρου Αξιολόγηση και Βαθµολόγηση Η αξιολόγηση του µαθήµατος θα βασιστεί στην συµµετοχή στην τάξη, σε ασκήσεις που θα δίδονται για επίλυση, ενδιάµεσες προόδους (ενδιάµεσα διαγωνίσµατα) και την τελική εξέταση. Ο αριθµός των ενδιάµεσων προόδων θα εξαρτηθεί από την πρόοδο των φοιτητών στο µάθηµα και τις επιδόσεις τους στις ασκήσεις. Μέθοδος αξιολόγησης Συντελεστής Συµµετοχή 10 % Ασκήσεις 20 % Ενδιάµεσες εξετάσεις 30 % Τελική εξέταση 40 % Κανονισµοί Καθυστερηµένες ασκήσεις δεν θα γίνονται δεκτές για βαθµολόγηση, εκτός από εξαιρετικές περιπτώσεις και πάντα µε εκ των προτέρων συνεννόηση µε τον διδάσκοντα. Η αντιγραφή απαγορεύεται αυστηρά και σε περίπτωση µη συµµόρφωσης οι συνέπειες στην ολική βαθµολογία θα είναι αυστηρότατες. Εάν υπάρχει σηµαντική διαφορά µεταξύ της βαθµολογίας των ασκήσεων και των διαγωνισµάτων (προόδων και τελικής εξέτασης), τότε δεν θα ισχύσει η πιο πάνω βαθµολογική κατανοµή. Ενδεχοµένως να δοθεί µεγαλύτερη ή και αποκλειστική βαρύτητα στα διαγωνίσµατα και µικρότερη στις ασκήσεις αν ο βαθµός τους είναι παράλογα ψηλός σε σχέση µε τους βαθµούς των διαγωνισµάτων. 30/1/2006 Σελίδα E 2 από 6E

3 Πανεπιστήµιο Κύπρου Θεµατικές Ενότητες: Εισαγωγή Σφάλµατα Επίλυση Συστηµάτων Γραµµικών Εξισώσεων o Μέθοδος Gauss o Μέθοδοι παραγοντοποίησης o Επαναληπτικές Μεθόδοι Γενική Επαναληπτική Μέθοδος Επαναληπτική Μέθοδος Jacobi Επαναληπτική Μέθοδος Gauss-Seidel o Μέθοδος SOR o Ιδιοτιµές και Ιδιοδιανύσµατα o Μέθοδος των Δυνάµεων Παρεµβολή και Πολυωνυµική Προσέγγιση o Το πολυώνυµο Taylor o Παρεµβολή Lagrange o Πολυώνυµο Taylor µε Διηρηµένες Διαφορές o Πολυώνυµο Παρεµβολής µε Πεπερασµένες Διαφορές o Πολυώνυµο Παρεµβολής Hermite o Παρεµβολή µε Συναρτήσεις Splines Επίλυση µη Γραµµικών Εξισώσεων o Μέθοδος της Διχοτόµησης o Επαναληπτική Μέθοδος Σταθερού Σηµείου o Επαναληπτική Μέθοδος Nevton-Raphson o Επαναληπτική Μέθοδος της Τέµνουσας o Επαναληπτική Μέθοδος Schroder o Ρίζες Πολυωνύµων Αριθµητική Παραγώγιση και Ολοκλήρωση o Αριθµητική Παραγώγιση o Αριθµητική Ολοκλήρωση Κανόνας ολοκλήρωσης Simpson Τύποι ολοκλήρωσης Newton-Cotes Ολοκλήρωση Romberg Ολοκλήρωση Gauss Διπλά ολοκληρώµατα Διαφορικές Εξισώσεις o Μέθοδος Απλού Βήµατος o Μέθοδος σειράς Taylor o Μέθοδοι Runge Kutta o Πολυβηµατικές Μέθοδοι o Μέθοδος Πρόβλεψης Διόρθωσης Θεωρία Προσέγγισης o Προσαρµογή σε Δεδοµένα o Διακριτή προσαρµογή µε ελάχιστα τετράγωνα o Πολυωνυµική προσέγγιση µε ελάχιστα τετράγωνα 30/1/2006 Σελίδα E 3 από 6E

4 Πανεπιστήµιο Κύπρου o Εκθετική προσέγγιση µε ελάχιστα τετράγωνα Προβλήµατα Συνοριακών Τιµών o Προσέγγιση µερικών παραγώγων o Προβλήµατα συνοριακών τιµών µίας µεταβλητής o Γραµµική µέθοδος σκόπευσης o Μέθοδος Πεπερασµέων Διαφορών o Μέθοδος Galerkin Άλλα Θέµατα o Μέθοδοι στατιστικής o Νευρονικά δίκτυα o Μέθοδος Προσοµοίωσης Monte Carlo 30/1/2006 Σελίδα E 4 από 6E

5 Πανεπιστήµιο Κύπρου Εβδοµαδιαίο Πρόγραµµα Μαθήµατος: Εβδοµάδα Ηµεροµηνία Θεµατική Ενότητα Αναφορά 1 Τρ. 24-Ιαν Εισαγωγή και Βασικές Έννοιες Κεφ. 1 2 Πα. 27-Ιαν Προσέγγιση και σφάλµατα Κεφ. 1 Τρ. 31-Ιαν Συστήµατα Γραµµικών Εξισώσεων Άµεσες Μέθοδοι Κεφ. 3 Πα. 3-Φεβ Συνέχεια Κεφ. 3 3 Τρ. 7-Φεβ Συνέχεια Κεφ. 3 Πα. 10-Φεβ Συστήµατα Γραµµικών Εξισώσεων Επαναληπτικές Μέθοδοι Κεφ. 3 4 Τρ. 14-Φεβ Συνέχεια Κεφ. 3 Πα. 17-Φεβ Συνέχεια Κεφ. 3 5 Τρ. 21-Φεβ Ιδιοτιµές και Ιδιοδιανύσµατα Κεφ. 4 Πα. 24-Φεβ Συνέχεια Κεφ. 4 6 Τρ. 28-Φεβ Συνέχεια Κεφ. 4 Πα. 3-Μαρ ΕΞΕΤΑΣΗ 7 Τρ. 7-Μαρ Παρεµβολή και Πολυωνυµική Προσέγγιση Κεφ. 5 Πα. 10-Μαρ Συνέχεια Κεφ. 5 8 Τρ. 14- Μαρ Συνέχεια Κεφ. 5 Πα. 17- Μαρ Επίλυση Μη Γραµµικών Εξισώσεων Κεφ. 3 9 Τρ. 21- Μαρ Συνέχεια Κεφ. 3 Πα. 24-Μαρ Συνέχεια Κεφ Τρ. 28-Μαρ Αριθµητική Παραγώγιση και Ολοκλήρωση Κεφ. 7, 8 Πα. 31-Μαρ Συνέχεια Κεφ. 7, 8 11 Τρ. 4-Απρ ΕΞΕΤΑΣΗ Πα. 7-Απρ Διαφορικές Εξισώσεις Κεφ Τρ. 11-Απρ Συνέχεια Κεφ. 9 Πα. 14-Απρ Θεωρία Προσέγγισης Κεφ Τρ. 18-Απρ Συνέχεια Κεφ. 9 Πα. 21-Απρ Προβλήµατα Συνοριακών Τιµών Κεφ /1/2006 Σελίδα E 5 από 6E

6 Πανεπιστήµιο Κύπρου Εβδοµάδα Ηµεροµηνία Θεµατική Ενότητα Αναφορά 14 Τρ. 25-Απρ Συνέχεια Κεφ. 10 Πα. 28-Απρ Άλλα Θέµατα (Στατιστική, Νευρονικά Δίκτυα, κλπ). Κεφ Τρ. 02-Μαϊ Συνέχεια Σηµειώσεις Πα. 05-Μαϊ Συνέχεια Σηµειώσεις ΛΗΞΗ ΜΑΘΗΜΑΤΩΝ 05-Μαΐου ΠΕΡΙΟΔΟΣ ΕΞΕΤΑΣΕΩΝ 13-Μαϊ 28-Μαϊ 30/1/2006 Σελίδα E 6 από 6E

ΠΠΜ 512: Ανάλυση Κινδύνου για Πολιτικούς Μηχανικούς και Μηχανικούς Περιβάλλοντος

ΠΠΜ 512: Ανάλυση Κινδύνου για Πολιτικούς Μηχανικούς και Μηχανικούς Περιβάλλοντος ΠΠΜ 512: Ανάλυση Κινδύνου για Πολιτικούς Μηχανικούς και Μηχανικούς Περιβάλλοντος Εαρινό Εξάµηνο 2010/11 Τρίτη 6:00 µµ 9:00 µµ ΧΩΔ01-002 Το µάθηµα περιλαµβάνει προχωρηµένες έννοιες σε θέµατα πιθανοτήτων,

Διαβάστε περισσότερα

ΠΠΜ 512: Ανάλυση Κινδύνου για Πολιτικούς Μηχανικούς και Μηχανικούς Περιβάλλοντος

ΠΠΜ 512: Ανάλυση Κινδύνου για Πολιτικούς Μηχανικούς και Μηχανικούς Περιβάλλοντος ΠΠΜ 512: Ανάλυση Κινδύνου για Πολιτικούς Μηχανικούς και Μηχανικούς Περιβάλλοντος Εαρινό Εξάμηνο 2008 Τρίτη 6:00 μμ 9:00 μμ ΧΩΔ01-101 Το μάθημα περιλαμβάνει προχωρημένες έννοιες σε θέματα πιθανοτήτων, συλλογής

Διαβάστε περισσότερα

Πίνακας Περιεχομένων

Πίνακας Περιεχομένων Πίνακας Περιεχομένων Πρόλογος... 11 Κεφάλαιο 1o: Εισαγωγικά... 15 1.1 Με τι ασχολείται η Αριθμητική Ανάλυση... 15 1.2 Πηγές Σφαλμάτων... 17 1.2.1 Εισόδου... 17 1.2.2 Αριθμητικής Υπολογιστών... 18 1.2.3

Διαβάστε περισσότερα

Κατασκευαστικών Έργων (Ι)

Κατασκευαστικών Έργων (Ι) ΠΠΜ 310: Προγραµµατισµός CEE 310: Construction και Management Διεύθυνση (I) Κατασκευαστικών Έργων (Ι) Χειµερινό Εξάµηνο 2012/13 (ΧΩΔ02-116) (ΧΩΔ02-113) Το µάθηµα περιλαµβάνει βασικές έννοιες προγραµµατισµού

Διαβάστε περισσότερα

ΠΠΜ 511: Προγραµµατισµός και Διεύθυνση Κατασκευών

ΠΠΜ 511: Προγραµµατισµός και Διεύθυνση Κατασκευών ΠΠΜ 511: Προγραµµατισµός και Διεύθυνση Κατασκευών Εαρινό Εξάµηνο 2009 Το µάθηµα περιλαµβάνει προχωρηµένες έννοιες προγραµµατισµού και διεύθυνσης κατασκευαστικών έργων. Βασικά θέµατα που καλύπτονται περιλαµβάνουν,

Διαβάστε περισσότερα

Πίνακας Περιεχομένων

Πίνακας Περιεχομένων Πίνακας Περιεχομένων Πρόλογος... 13 Πρώτο Μέρος: Γενικές Έννοιες Κεφάλαιο 1 ο : Αλγοριθμική... 19 1.1 Περιγραφή Αλγορίθμου... 19 1.2. Παράσταση Αλγορίθμων... 21 1.2.1 Διαγράμματα Ροής... 22 1.2.2 Ψευδογλώσσα

Διαβάστε περισσότερα

Χ. Α. Αλεξόπουλος. Τµήµα Μηχ. Η/Υ και Πληροφορικής Πανεπιστήµιο Πατρών

Χ. Α. Αλεξόπουλος. Τµήµα Μηχ. Η/Υ και Πληροφορικής Πανεπιστήµιο Πατρών ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΑ ΥΛΟΠΟΙΗΣΗΣ Χ. Α. Αλεξόπουλος Τµήµα Μηχ. Η/Υ και Πληροφορικής Πανεπιστήµιο Πατρών Πάτρα 2014 Αφιερωµένο σε δύο εκλεκτούς ανθρώπους, πανεπιστηµιακούς δασκάλους

Διαβάστε περισσότερα

Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α. Πρόλογος...15 ΚΕΦΑΛΑΙΟ 1. Σφάλματα

Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α. Πρόλογος...15 ΚΕΦΑΛΑΙΟ 1. Σφάλματα Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Πρόλογος...15 ΚΕΦΑΛΑΙΟ 1 Σφάλματα 1.1 Εισαγωγή...17 1.2 Αρχικά Σφάλματα (σφάλματα μετρήσεων)...18 1.2.1 Απλές μετρήσεις...18 1.2.2 Σύνθετες μετρήσεις...19 1.2.3 Σημαντικά ψηφία και

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες)

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, 2016-2017 ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) Κεφ. 2: Επίλυση συστημάτων εξισώσεων (διάρκεια: 3 εβδομάδες) 2.1 Επίλυση εξισώσεων 2.2 Επίλυση

Διαβάστε περισσότερα

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα. i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical

Διαβάστε περισσότερα

Πρόλογος Εισαγωγή στη δεύτερη έκδοση Εισαγωγή... 11

Πρόλογος Εισαγωγή στη δεύτερη έκδοση Εισαγωγή... 11 Περιεχόμενα Πρόλογος... 9 Εισαγωγή στη δεύτερη έκδοση... 0 Εισαγωγή... Ε. Εισαγωγή στην έννοια της Αριθμητικής Ανάλυσης... Ε. Ταξινόμηση των θεμάτων που απασχολούν την αριθμητική ανάλυση.. Ε.3 Μορφές σφαλμάτων...

Διαβάστε περισσότερα

ΠΠΜ 220: Στατική Ανάλυση Κατασκευών Ι

ΠΠΜ 220: Στατική Ανάλυση Κατασκευών Ι Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος Γενικές οδηγίες: Ακαδηµαϊκό Έτος 2004 Χειµερινό Εξάµηνο ΠΠΜ 220: Στατική Ανάλυση Κατασκευών Ι 3 η Σειρά Ασκήσεων

Διαβάστε περισσότερα

Αριθµητική Ολοκλήρωση

Αριθµητική Ολοκλήρωση Κεφάλαιο 5 Αριθµητική Ολοκλήρωση 5. Εισαγωγή Για τη συντριπτική πλειοψηφία των συναρτήσεων f (x) δεν υπάρχουν ή είναι πολύ δύσχρηστοι οι τύποι της αντιπαραγώγου της f (x), δηλαδή της F(x) η οποία ικανοποιεί

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ Σηµειώσεις µαθήµατος ηµήτρης Βαλουγεώργης Αναπληρωτής Καθηγητής Τµήµα Μηχανολόγων Μηχανικών Βιοµηχανίας Εργαστήριο Φυσικών και Χηµικών ιεργασιών Πολυτεχνική Σχολή Πανεπιστήµιο Θεσσαλίας

Διαβάστε περισσότερα

Tel. & Fax , url: &

Tel. & Fax ,   url:  & ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙΔΑΓΩΓΙΚΗΣ ΚΑΙ ΤΧΝΟΛΟΓΙΚΗΣ ΚΠΑΙΔΥΣΗΣ ΤΜΗΜΑ ΚΠΑΙΔΥΤΙΚΩΝ ΜΗΧΑΝΟΛΟΓΙΑΣ Ανδρόνικος. Φιλιός, Καθηγητής, Δρ. Μηχ/γος Μηχ/κος SCHOOL OF PEDAGOGICAL AND TECHNOLOGICAL EDUCATION DEPARTMENT OF MECHANICAL

Διαβάστε περισσότερα

ΠΠΜ 490: Ενοποιημένος Σχεδιασμός Έργου, Ι

ΠΠΜ 490: Ενοποιημένος Σχεδιασμός Έργου, Ι Εαρινό Εξάμηνο 2007 Τρίτη/Παρασκευή 3:00 μμ 4:30 μμ Ολοκληρωμένη και ενοποιημένη εργασία σχεδιασμού έργου (διαρκείας δύο εξαμήνων) που σκοπό έχει να παράσχει στους φοιτητές τα απαραίτητα εφόδια και εμπειρίες

Διαβάστε περισσότερα

Μαρία Χ.Γουσίδου-Κουτίτα Επίκουρη Καθηγήτρια Τμήματος Μαθηματικών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ

Μαρία Χ.Γουσίδου-Κουτίτα Επίκουρη Καθηγήτρια Τμήματος Μαθηματικών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ Μαρία Χ.Γουσίδου-Κουτίτα Επίκουρη Καθηγήτρια Τμήματος Μαθηματικών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΘΕΣΣΑΛΟΝΙΚΗ 2004 Κάθε γνήσιο αντίτυπο υπογράφεται από τη συγγραφέα ΑΡΙΘΜΗΤΙΚΗ

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 63 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Κατατάξεις πτυχιούχων ΑΕΙ και ΤΕΙ στο Τμήμα ΜΑΘΗΜΑΤΙΚΩΝ & ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ για το έτος 2013-14

Κατατάξεις πτυχιούχων ΑΕΙ και ΤΕΙ στο Τμήμα ΜΑΘΗΜΑΤΙΚΩΝ & ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ για το έτος 2013-14 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ & ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Πανεπιστημιούπολη, 700 13 Βούτες Ηρακλείου Κρήτης, (Τ.Θ. 2208) Τηλ.: (2810) 393800, 393751, 393898,

Διαβάστε περισσότερα

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. Ολοκληρώματα.

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. Ολοκληρώματα. 69: Υπολογιστικές Μέθοδοι για Μηχανικούς Ολοκληρώματα ttp://ecourses.cemeng.ntu.gr/courses/computtionl_metods_or_engineers/ Αριθμητική Ολοκλήρωση συναρτήσεων Χρησιμοποιούμε αριθμητικές μεθόδους για τον

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ 1, Επιμέλεια λύσεων: Γιώργος Τάτσιος

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ 1, Επιμέλεια λύσεων: Γιώργος Τάτσιος ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 6-7, 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ, --6 Επιμέλεια λύσεων: Γιώργος Τάτσιος Άσκηση [] Επιλύστε με μία απευθείας μέθοδο διατηρώντας τρία σημαντικά ψηφία σε

Διαβάστε περισσότερα

Copyright: Ξένος Θ., Eκδόσεις Zήτη, Ιανουάριος 2008, Θεσσαλονίκη

Copyright: Ξένος Θ., Eκδόσεις Zήτη, Ιανουάριος 2008, Θεσσαλονίκη Kάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα Με το συγγραφέα επικοινωνείτε: Tηλ. 10.8.086, e-mail: thanasisxenos@yahoo.gr ISBN 978-960-56-08- Copyright: Ξένος Θ., Eκδόσεις Zήτη, Ιανουάριος 008,

Διαβάστε περισσότερα

2.Τι εννοούμε με βαθμό συνέχειας μιας συνάρτησης; Ποια είναι η χρησιμότητα της από πλευράς εφαρμογών;

2.Τι εννοούμε με βαθμό συνέχειας μιας συνάρτησης; Ποια είναι η χρησιμότητα της από πλευράς εφαρμογών; ΗΥ1 ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΣΕΤ ΑΣΚΗΣΕΩΝ 5 1.Tι είναι συνάρτηση; Περιγράψτε τα στοιχεία που την ορίζουν..τι εννοούμε με βαθμό συνέχειας μιας συνάρτησης; Ποια είναι η χρησιμότητα της από πλευράς εφαρμογών;.να

Διαβάστε περισσότερα

Θερμοδυναμική - Εργαστήριο

Θερμοδυναμική - Εργαστήριο Θερμοδυναμική - Εργαστήριο Ενότητα 1: Αριθμητικές μέθοδοι στα φαινόμενα μεταφοράς και στη θερμοδυναμική Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε

Διαβάστε περισσότερα

Ειδικά θέματα στην επίλυση

Ειδικά θέματα στην επίλυση Ενότητα 5: Εισαγωγή Βασικές Έννοιες Ειδικά Θέματα Αριθμητικής Παραγώγισης Επίλυση Γραμμικών Συστημάτων Αλγεβρικών Εξισώσεων Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ειδικά θέματα

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ 1. ΓΕΝΙΚΑ ΣΧΟΛΗ Σ.Τ.ΕΦ ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Τ.Ε. ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ ΠΡΟΠΤΥΧΙΑΚΟ ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ 2201301 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ Γ ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ

Διαβάστε περισσότερα

Interpolation (1) Τρίτη, 3 Μαρτίου Σελίδα 1

Interpolation (1) Τρίτη, 3 Μαρτίου Σελίδα 1 Iterpolatio () Τρίτη, 3 Μαρτίου 05 9:46 πμ 05.03.03 Σελίδα 05.03.03 Σελίδα 05.03.03 Σελίδα 3 05.03.03 Σελίδα 4 05.03.03 Σελίδα 5 05.03.03 Σελίδα 6 05.03.03 Σελίδα 7 05.03.03 Σελίδα 8 05.03.03 Σελίδα 9

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΥΝΟΛΩΝ ΚΑΙ ΣΥΝΔΥΑΣΤΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΥΝΟΛΩΝ ΚΑΙ ΣΥΝΔΥΑΣΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 13 ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΥΝΟΛΩΝ ΚΑΙ ΣΥΝΔΥΑΣΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ 17 ΣΥΝΟΛΑ ΣΧΕΣΕΙΣ - ΣΥΝΑΡΤΗΣΕΙΣ 17 1. Η έννοια του συνόλου 17 2. Εγκλεισμός και ισότητα συνόλων 19

Διαβάστε περισσότερα

Μαθηματικά και Φυσική με Υπολογιστές

Μαθηματικά και Φυσική με Υπολογιστές ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά και Φυσική με Υπολογιστές Σύνθετοι αναλυτικοί - αριθμητικοί υπολογισμοί Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. 10 Μαίου 2010

ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. 10 Μαίου 2010 ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική 10 Μαίου 2010 Συµπληρώστε τα στοιχεία σας στο παρακάτω πίνακα τώρα Ονοµατεπώνυµο Αρ. Ταυτότητας Username Password Δηµιουργήστε ένα φάκελο στο home directory σας µε

Διαβάστε περισσότερα

15 εκεµβρίου εκεµβρίου / 64

15 εκεµβρίου εκεµβρίου / 64 15 εκεµβρίου 016 15 εκεµβρίου 016 1 / 64 Αριθµητική Ολοκλήρωση Κλειστοί τύποι αριθµητικής ολοκλήρωσης Εστω I(f) = b µε f(x) C[a, b], τότε I(f) = F(b) F(a), όπου F(x) είναι το αόριστο ολοκλήρωµα της f(x).

Διαβάστε περισσότερα

ΠΡΟΤΑΣΗ ΝΕΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ

ΠΡΟΤΑΣΗ ΝΕΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΕΠΙΤΡΟΠΗ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΤΜΗΜΑΤΟΣ ΦΥΣΙΚΗΣ Α.Π.Θ. 2010-2011 ΠΡΟΤΑΣΗ ΝΕΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ Εισαγωγικά: Το σχέδιο περιλαµβάνει τον προτεινόµενο κατάλογο υποχρεωτικών µαθηµάτων µε τις αντίστοιχες

Διαβάστε περισσότερα

http://kesyp.didefth.gr/ 1

http://kesyp.didefth.gr/ 1 248_Τµήµα Εφαρµοσµένων Μαθηµατικών Πανεπιστήµιο Κρήτης, Ηράκλειο Προπτυχιακό Πρόγραµµα Σκοπός του Τµήµατος Εφαρµοσµένων Μαθηµατικών είναι η εκαπαίδευση επιστηµόνων ικανών όχι µόνο να υπηρετήσουν και να

Διαβάστε περισσότερα

Ηλεκτρονικοί Υπολογιστές ΙΙ : Εισαγωγή στην Αριθµητική Ανάλυση

Ηλεκτρονικοί Υπολογιστές ΙΙ : Εισαγωγή στην Αριθµητική Ανάλυση Τµηµα Επιστηµης και Τεχνολογιας Υλικων Πανεπιστηµιο Κρητης Ηλεκτρονικοί Υπολογιστές ΙΙ : Εισαγωγή στην Αριθµητική Ανάλυση Σηµειώσεις ιαλέξεων και Εργαστηρίων Μ. Γραµµατικακης Γ. Κοπιδακης Ν. Παπαδακης

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Σύνοψη Εξεταστέας Ύλης

Δυναμική Μηχανών I. Σύνοψη Εξεταστέας Ύλης Δυναμική Μηχανών I 9 1 Σύνοψη Εξεταστέας Ύλης 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Ύλη Δυναμικής Μηχανών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΛΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Εξετάσεις Ιουνίου 2002

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΛΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Εξετάσεις Ιουνίου 2002 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΛΙΚΩΝ Εξετάσεις Ιουνίου (α) Αναπτύξτε την µέθοδο του τραπεζίου για τον αριθµητικό υπολογισµό του ολοκληρώµατος: b I( f ) = f ( x) a όπου f (x) συνεχής και ολοκληρώσιµη

Διαβάστε περισσότερα

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε Κεφάλαιο Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε. Εισαγωγή Η µέθοδος των πεπερασµένων διαφορών είναι από τις παλαιότερες και πλέον συνηθισµένες και διαδεδοµένες υπολογιστικές τεχνικές

Διαβάστε περισσότερα

ιάλεξη 1 η komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος Τρίτη, 7 Σεπτεµβρίου,, 2004 ΠΠΜ 220 Στατική Ανάλυση των Κατασκευών Ι 1

ιάλεξη 1 η komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος Τρίτη, 7 Σεπτεµβρίου,, 2004 ΠΠΜ 220 Στατική Ανάλυση των Κατασκευών Ι 1 ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 1 η Εισαγωγή στη Στατική Ανάλυση των Κατασκευών Τρίτη, 7 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk ΠΠΜ 220

Διαβάστε περισσότερα

ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. 5 Μαίου 2012

ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. 5 Μαίου 2012 ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική 5 Μαίου 2012 Συµπληρώστε τα στοιχεία σας στο παρακάτω πίνακα τώρα Ονοµατεπώνυµο Αρ. Ταυτότητας Username Password Δηµιουργήστε ένα φάκελο στο home directory σας µε

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 25 Μαΐου 2010 ΕΚΠΑ

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 25 Μαΐου 2010 ΕΚΠΑ Αριθµητική Ανάλυση Κεφάλαιο 9. Αριθµητική Ολοκλήρωση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 5 Μαΐου 010 ιδάσκοντες:τµήµα Α ( Αρτιοι)

Διαβάστε περισσότερα

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ HY3. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Π. ΤΣΟΜΠΑΝΟΠΟΥΛΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ. & ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ Βασικά σημεία Μη γραμμικές εξισώσεις με πραγματικές ρίζες. Μέθοδος

Διαβάστε περισσότερα

Non Linear Equations (2)

Non Linear Equations (2) Non Linear Equations () Τρίτη, 17 Φεβρουαρίου 015 5:14 μμ 15.0.19 Page 1 15.0.19 Page 15.0.19 Page 3 15.0.19 Page 4 15.0.19 Page 5 15.0.19 Page 6 15.0.19 Page 7 15.0.19 Page 8 15.0.19 Page 9 15.0.19 Page

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 22. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 22. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 22 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Ανακοινώσεις Εξέταση Μαθήματος: 1/4/2014, 12.00 Απαιτείται αποδεικτικό ταυτότητας (Α.Τ., Διαβατήριο, Διπλ. Οδ.) Απαγορεύεται

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #1: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ.

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #1: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 005-06, 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. Πως ορίζεται και τι σηµαίνει ο όρος lop στους επιστηµονικούς υπολογισµούς.

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ Πρόλογος... 11 Μέρος Α: Στοιχεία Αλγοριθμικής... 15 1 Επίλυση προβλημάτων με Η/Υ... 19 1.1 Εισαγωγή... 19 1.2 Αλγόριθμοι-αλγοριθμικά προβλήματα... 20 1.3 Το μαθηματικό μοντέλο... 26

Διαβάστε περισσότερα

Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων

Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων Σημειώσεις στα πλαίσια του μαθήματος: Βελτιστοποίηση Συστημάτων Υδατικών Πόρων Υδροπληροφορική Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων Ανδρέας Ευστρατιάδης, Χρήστος Μακρόπουλος

Διαβάστε περισσότερα

Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6)

Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6) Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Τυπικά Υδραυλικά Έργα Μέρος 2: ίκτυα διανοµής Άσκηση E0: Μαθηµατική διατύπωση µοντέλου επίλυσης απλού δικτύου διανοµής

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Περιγραφή Μαθήματος. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Περιγραφή Μαθήματος. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Περιγραφή Μαθήματος Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Αντικείμενο Μαθήματος Η εκμάθηση των βασικών αρχών λειτουργίας και

Διαβάστε περισσότερα

ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. 21 Μαίου Γράψτε το ονοµατεπώνυµο και αριθµό ταυτότητάς σας στο πάνω µέρος της αυτής της σελίδας.

ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. 21 Μαίου Γράψτε το ονοµατεπώνυµο και αριθµό ταυτότητάς σας στο πάνω µέρος της αυτής της σελίδας. ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική 21 Μαίου 2009 Γράψτε το ονοµατεπώνυµο και αριθµό ταυτότητάς σας στο πάνω µέρος της αυτής της σελίδας. Επίσης γράψετε το password σας. Στο τέλος της εξέτασης θα πρέπει

Διαβάστε περισσότερα

Επιστηµονικός Υπολογισµός Ι Ενότητα 1 - Εισαγωγή. Ευστράτιος Γαλλόπουλος

Επιστηµονικός Υπολογισµός Ι Ενότητα 1 - Εισαγωγή. Ευστράτιος Γαλλόπουλος Ενότητα 1 - Εισαγωγή Ευστράτιος Γαλλόπουλος c Ε. Γαλλόπουλος 201-2015 Ασκηση 1 Τι ονοµάζουµε υπολογιστικούς πυρήνες ; πυρήνων. Να δώσετε 3 παραδείγµατα τέτοιων Απάντηση ιαδικασίες (που µπορεί να είναι

Διαβάστε περισσότερα

Κεφάλαιο 1. Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων

Κεφάλαιο 1. Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων Κεφάλαιο Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων. Εισαγωγή Η µοντελοποίηση πολλών φυσικών φαινοµένων και συστηµάτων και κυρίως αυτών που εξελίσσονται στο χρόνο επιτυγχάνεται µε

Διαβάστε περισσότερα

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville Κεφάλαιο : Προβλήµατα τύπου Stur-Liouvie. Ορισµός προβλήµατος Stur-Liouvie Πολλές τεχνικές επίλυσης µερικών διαφορικών εξισώσεων βασίζονται στην αναγωγή της µερικής διαφορικής εξίσωσης σε συνήθεις διαφορικές

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 1: Εισαγωγή

K15 Ψηφιακή Λογική Σχεδίαση 1: Εισαγωγή K15 Ψηφιακή Λογική Σχεδίαση 1: Εισαγωγή Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Πληροφορίες για το μάθημα Περιεχόμενα 1 Πληροφορίες για το μάθημα

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. 14 εκεµβρίου Αριθµητική ΑνάλυσηΚεφάλαιο 6. Παρεµβολή 14 εκεµβρίου / 28

Αριθµητική Ανάλυση. 14 εκεµβρίου Αριθµητική ΑνάλυσηΚεφάλαιο 6. Παρεµβολή 14 εκεµβρίου / 28 Αριθµητική Ανάλυση Κεφάλαιο 6 Παρεµβολή 14 εκεµβρίου 2016 Αριθµητική ΑνάλυσηΚεφάλαιο 6 Παρεµβολή 14 εκεµβρίου 2016 1 / 28 Τα πολυώνυµα Chebyshev Αν η f (n+1) (x) είναι συνεχής, τότε υπάρχει ένας αριθµός

Διαβάστε περισσότερα

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1) ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (22 Σεπτεµβρίου) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ 1ο ΘΕΜΑ 1. Αφού ορίσετε ακριβώς τι σηµαίνει πίσω ευσταθής υπολογισµός, να εξηγήσετε αν ο υ- πολογισµός του εσωτερικού γινοµένου δύο διανυσµάτων

Διαβάστε περισσότερα

Στόχοι 1. Σχεδιασμός υψηλού επιπέδου προγραμμάτων σπουδών 2. Η προαγωγή των Μαθηματικών επιστημών μέσω της επιστημονικής έρευνας 3.

Στόχοι 1. Σχεδιασμός υψηλού επιπέδου προγραμμάτων σπουδών 2. Η προαγωγή των Μαθηματικών επιστημών μέσω της επιστημονικής έρευνας 3. Στόχοι 1. Σχεδιασμός υψηλού επιπέδου προγραμμάτων σπουδών 2. Η προαγωγή των Μαθηματικών επιστημών μέσω της επιστημονικής έρευνας 3. Η δημιουργία ικανών και άριστα εκπαιδευμένων επιστημόνων Γιατί Μαθηματικά

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΙ ΣΕΡΡΩΝ -- ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΘΗΜΑ 3 ο ΤΕΙ ΣΕΡΡΩΝ -- ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ Μάθημα 3 ο Αριθμητική επίλυση εξισώσεων (μη

Διαβάστε περισσότερα

ΔΙΑΚΡΙΤΕΣ ΚΑΙ ΣΥΝΕΧΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΜΕΘΟΔΟΙ ΚΑΡΑΓΙΑΝΝΑΚΗΣ ΔΗΜΗΤΡΙΟΣ

ΔΙΑΚΡΙΤΕΣ ΚΑΙ ΣΥΝΕΧΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΜΕΘΟΔΟΙ ΚΑΡΑΓΙΑΝΝΑΚΗΣ ΔΗΜΗΤΡΙΟΣ ΔΙΑΚΡΙΤΕΣ ΚΑΙ ΣΥΝΕΧΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΜΕΘΟΔΟΙ ΚΑΡΑΓΙΑΝΝΑΚΗΣ ΔΗΜΗΤΡΙΟΣ _CONT_.indd iii τίτλος: ΔΙΑΚΡΙΤΕΣ ΚΑΙ ΣΥΝΕΧΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΜΕΘΟΔΟΙ συγγραφέας: Καραγιαννάκης Δημήτριος 2014 Εκδόσεις Δίσιγμα Για την ελληνική

Διαβάστε περισσότερα

Επίλυση Γραµµικών Συστηµάτων

Επίλυση Γραµµικών Συστηµάτων Κεφάλαιο 3 Επίλυση Γραµµικών Συστηµάτων 31 Εισαγωγή Αριθµητική λύση γενικών γραµµικών συστηµάτων n n A n n x n 1 b n 1, όπου a 11 a 12 a 1n a 21 a 22 a 2n A [a i j, x a n1 a n2 a nn x n, b b 1 b 2 b n

Διαβάστε περισσότερα

Λογισμικό για Μαθηματικά

Λογισμικό για Μαθηματικά Λογισμικό για Μαθηματικά Γεώργιος Χρ. Μακρής http://users.sch.gr/gmakris 6 Αυγούστου 2012 Λογισμικό 2 Λογισμικό Με τον όρο λογισμικό υπολογιστών, ή λογισμικό (software), ορίζεται η συλλογή από προγράμματα

Διαβάστε περισσότερα

Μαθηματικά και Φυσική με Υπολογιστές

Μαθηματικά και Φυσική με Υπολογιστές ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά και Φυσική με Υπολογιστές Εφαρμογές στα Μαθηματικά Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

όπου είναι γνήσια. ρητή συνάρτηση (δηλαδή ο βαθµός του πολυωνύµου υ ( x)

όπου είναι γνήσια. ρητή συνάρτηση (δηλαδή ο βαθµός του πολυωνύµου υ ( x) ΟΛΟΚΛΗΡΩΣΗ ΡΗΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Στην παράγραφο αυτή θα εξετάσουµε την ολοκλήρωση ρητών συναρτήσεων, δηλαδή συναρτήσεων της µορφής p f ( ( q(, όπου p( και q ( είναι πολυώνυµα µιας µεταβλητής του µε συντελεστές

Διαβάστε περισσότερα

Αριθμητική Ανάλυση. Σημειώσεις από τις παραδόσεις. Για τον κώδικα σε L A TEX, ενημερώσεις και προτάσεις: https://github.com/kongr45gpen/ece-notes

Αριθμητική Ανάλυση. Σημειώσεις από τις παραδόσεις. Για τον κώδικα σε L A TEX, ενημερώσεις και προτάσεις: https://github.com/kongr45gpen/ece-notes Αριθμητική Ανάλυση Σημειώσεις από τις παραδόσεις Για τον κώδικα σε L A TEX, ενημερώσεις και προτάσεις: https://github.com/kongr45gpen/ece-notes 017 Τελευταία ενημέρωση: 15 Ιουνίου 017 Περιεχόμενα 1 Εισαγωγή

Διαβάστε περισσότερα

ΗΜΥ 203 Εργαστήριο Κυκλωµάτων και Μετρήσεων

ΗΜΥ 203 Εργαστήριο Κυκλωµάτων και Μετρήσεων ΗΜΥ 203 Εργαστήριο Κυκλωµάτων και Μετρήσεων Ιστοσελίδα: www.eng.ucy.ac.cy/ece203 Εκπαιδευτικά Βίντεο Εργαστηρίου: https://www.youtube.com/channel/ucijg2vydwdsk2ir13jdjr8g/videos Συµβόλαιο Μαθήµατος Ώρες

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ. (2 μονάδες) Δίνονται τα σημεία (-2, -16), (-1, -3), (0, 0), (1, -1) και (2, 0). Υπολογίστε το πολυώνυμο παρεμβολής Newton.

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ. (2 μονάδες) Δίνονται τα σημεία (-2, -16), (-1, -3), (0, 0), (1, -1) και (2, 0). Υπολογίστε το πολυώνυμο παρεμβολής Newton. ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΑΚΑΔ. ΕΤΟΣ - Τ. Ε. Ι. Σ Ε Ρ Ρ Ω Ν Σέρρες, 9 Ιανουαρίου ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ Ομάδα Α ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΘΕΜΑ ον (+ μονάδες) Δίνεται ο πρόβολος, με μήκος = m, με κατανεμημένο φορτίο που

Διαβάστε περισσότερα

ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΙΑΝΟΥΑΡΙΟΥ 2014 (Αφορά αλλαγές μόνο σε μερικές αίθουσες)

ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΙΑΝΟΥΑΡΙΟΥ 2014 (Αφορά αλλαγές μόνο σε μερικές αίθουσες) ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΙΑΝΟΥΑΡΙΟΥ 2014 (Αφορά αλλαγές μόνο σε μερικές αίθουσες) 1 η ΕΒΔΟΜΑΔΑ Δευτέρα, 20.1.2014

Διαβάστε περισσότερα

2η Οµάδα Ασκήσεων. ΑΣΚΗΣΗ 3 (Θεωρία-Αλγόριθµοι-Εφαρµογές)

2η Οµάδα Ασκήσεων. ΑΣΚΗΣΗ 3 (Θεωρία-Αλγόριθµοι-Εφαρµογές) ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ : ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ 2η Οµάδα Ασκήσεων 1442008 ΑΣΚΗΣΗ 3 (Θεωρία-Αλγόριθµοι-Εφαρµογές)

Διαβάστε περισσότερα

Συστήµατα Μη-Γραµµικών Εξισώσεων Μέθοδος Newton-Raphson

Συστήµατα Μη-Γραµµικών Εξισώσεων Μέθοδος Newton-Raphson Ιαν. 009 Συστήµατα Μη-Γραµµικών Εξισώσεων Μέθοδος Newton-Raphson Έστω y, y,, yn παρατηρήσεις µιας m -διάστατης τυχαίας µεταβλητής µε συνάρτηση πυκνότητας πιθανότητας p( y; θ) η οποία περιγράφεται από ένα

Διαβάστε περισσότερα

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Αριθµητική Παραγώγιση και Ολοκλήρωση

Αριθµητική Παραγώγιση και Ολοκλήρωση Ιαν. 9 Αριθµητική Παραγώγιση και Ολοκλήρωση Είδαµε στο κεφάλαιο της παρεµβολής συναρτήσεων πώς να προσεγγίζουµε µια (συνεχή) συνάρτηση f από ένα πολυώνυµο, όταν γνωρίζουµε + σηµεία του γραφήµατος της συνάρτησης:

Διαβάστε περισσότερα

4.1 Πράξεις με Πολυωνυμικές Εκφράσεις... 66

4.1 Πράξεις με Πολυωνυμικές Εκφράσεις... 66 Περιεχόμενα Ευρετήριο Πινάκων... 7 Ευρετήριο Εικόνων... 8 Εισαγωγή... 9 Κεφάλαιο 1-Περιβάλλον Εργασίας - Στοιχεία Εντολών... 13 1.1 Το Πρόγραμμα... 14 1.2.1 Εισαγωγή Εντολών... 22 1.2.2 Εισαγωγή Εντολών

Διαβάστε περισσότερα

Aριθμητική Ανάλυση, 4 ο Εξάμηνο Θ. Σ. Παπαθεοδώρου

Aριθμητική Ανάλυση, 4 ο Εξάμηνο Θ. Σ. Παπαθεοδώρου Aριθμητική Ανάλυση, 4 ο Εξάμηνο Θ. Σ. Παπαθεοδώρου Άνοιξη 2002 ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ 1. Τι σημαίνει f ; f 2 ; f 1 ; Να υπολογισθούν αυτές οι ποσότητες για f(x)=(x-α) 3 (β-x) 3, α

Διαβάστε περισσότερα

ή/και με απόσβεση), και να υπολογίσουν αναλυτικά την απόκριση τους σε ελεύθερη ταλάντωση.

ή/και με απόσβεση), και να υπολογίσουν αναλυτικά την απόκριση τους σε ελεύθερη ταλάντωση. Τίτλος μαθήματος: Δυναμική Κατασκευών Ι Κωδικός μαθήματος: CE08_S02 Πιστωτικές μονάδες: 5 Φόρτος εργασίας (ώρες): 153 Επίπεδο μαθήματος: Προπτυχιακό Μεταπτυχιακό Τύπος μαθήματος: Υποχρεωτικό Επιλογής Κατηγορία

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ Πρόλογος... 11 Μέρος Α: Στοιχεία Αλγοριθμικής... 15 1 Επίλυση προβλημάτων με Η/Υ... 19 1.1 Εισαγωγή... 19 1.2 Αλγόριθμοι αλγοριθμικά προβλήματα... 20 1.3 Το μαθηματικό μοντέλο... 26

Διαβάστε περισσότερα

προβλήµατα ανάλυσης ροής

προβλήµατα ανάλυσης ροής προβλήµατα ανάλυσης ροής ΕΚ ΟΣΗ Νοέµβριος 2006 Σελίδα 1 ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ ΑΝΑΛΥΣΗ ΣΥΝ ΥΑΣΜΕΝΑ ΠΡΟΒΛΗΜΑΤΑ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΑΝΑΛΥΣΗΣ ΑΝΑΛΥΣΗΣ ΑΝΤΟΧΗΣ Ενσωµατώνεται το εξελιγµένο πρόγραµµα ανάλυσης προβληµάτων

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Περιγραφή μαθημάτων 3 ου εξαμήνου

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Περιγραφή μαθημάτων 3 ου εξαμήνου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Περιγραφή μαθημάτων 3 ου εξαμήνου Ακαδημαϊκό έτος 2012-13 Φυσική 'Ωρες Μαθήματος : 4 Ελεύθερες ταλαντώσεις. Απλή αρμονική κίνηση. Αρμονικός ταλαντωτής με απόσβεση: φθίνουσες

Διαβάστε περισσότερα

Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss

Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss Γραµµική Άλγεβρα Εισαγωγικά Υπάρχουν δύο βασικά αριθµητικά προβλήµατα στη Γραµµική Άλγεβρα. Το πρώτο είναι η λύση γραµµικών συστηµάτων Aλγεβρικών εξισώσεων και το δεύτερο είναι η εύρεση των ιδιοτιµών και

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ. 1.1 Τι είναι η αριθµητική ανάλυση

1. ΕΙΣΑΓΩΓΗ. 1.1 Τι είναι η αριθµητική ανάλυση 1 ΕΙΣΑΓΩΓΗ 11 Τι είναι η αριθµητική ανάλυση Στα µαθητικά και φοιτητικά µας χρόνια, έχουµε γνωριστεί µε µία ποικιλία από µαθηµατικά προβλήµατα των οποίων µαθαίνουµε σταδιακά τις λύσεις Παραδείγµατος χάριν,

Διαβάστε περισσότερα

Μέθοδοι πολυδιάστατης ελαχιστοποίησης

Μέθοδοι πολυδιάστατης ελαχιστοποίησης Μέθοδοι πολυδιάστατης ελαχιστοποίησης με παραγώγους Μέθοδοι πολυδιάστατης ελαχιστοποίησης Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

Απαντήσεις στα Θέµατα Ιουνίου 2012 (3 και 4)

Απαντήσεις στα Θέµατα Ιουνίου 2012 (3 και 4) -- Αριθµητική Ανάλυση και Περιβ. Υλοποίησης Απαντήσεις στα Θέµατα Ιουνίου (3 και 4) Θέµα 3 [6µ] Θεωρούµε ότι κατά την επίλυση ενός προβλήµατος προσέγγισης προέκυψε ένα γραµµικό σύστηµα Αxb, µε αγνώστους,

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 7)

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 7) Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 7) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 7) Δεκέμβριος 2014

Διαβάστε περισσότερα

Ηλεκτρονικοί Υπολογιστές ΙΙ : Εισαγωγή στην Αριθµητική Ανάλυση

Ηλεκτρονικοί Υπολογιστές ΙΙ : Εισαγωγή στην Αριθµητική Ανάλυση Τµηµα Επιστηµης και Τεχνολογιας Υλικων Πανεπιστηµιο Κρητης Ηλεκτρονικοί Υπολογιστές ΙΙ : Εισαγωγή στην Αριθµητική Ανάλυση Σηµειώσεις ιαλέξεων και Εργαστηρίων Μ Γραµµατικακης Γ Κοπιδακης Ν Παπαδακης Σ Σταµατιαδης

Διαβάστε περισσότερα

Εισαγωγή στην Αριθµητική Ανάλυση µε Εφαρµογές στη Φυσική

Εισαγωγή στην Αριθµητική Ανάλυση µε Εφαρµογές στη Φυσική Κώστας. Κόκκοτας Εισαγωγή στην Αριθµητική Ανάλυση µε Εφαρµογές στη Φυσική Σηµειώσεις για τους ϕοιτητές 13 Φεβρουαρίου 2008 Περιεχόµενα 1 ΡΙΖΕΣ ΜΗ-ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ.......................... 1 1.1 ΜΕΘΟ

Διαβάστε περισσότερα

Επίλυση 2ας. Προόδου & ιάλεξη 12 η. Τρίτη 5 Οκτωβρίου,,

Επίλυση 2ας. Προόδου & ιάλεξη 12 η. Τρίτη 5 Οκτωβρίου,, ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 12 η Επίλυση 2ας Προόδου & Εισαγωγή στις Παραµορφώσεις και Μετακινήσεις Τρίτη 5 Οκτωβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα

Βιομαθηματικά BIO-156. Ντίνα Λύκα. Εισαγωγικές έννοιες. Εαρινό Εξάμηνο, 2016

Βιομαθηματικά BIO-156. Ντίνα Λύκα. Εισαγωγικές έννοιες. Εαρινό Εξάμηνο, 2016 Βιομαθηματικά BIO-156 Εισαγωγικές έννοιες Ντίνα Λύκα Εαρινό Εξάμηνο, 2016 lika@biology.uoc.gr Μαθηματικά Μοντέλα στη Βιολογία Ένα μαθηματικό μοντέλο είναι ένα σύνολο υποθέσεων για κάποιο βιολογικό σύστημα

Διαβάστε περισσότερα

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. ρ ρμ

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. ρ ρμ 569: Υπολογιστικές Μέθοδοι για Μηχανικούς Παρεμβολή Προσαρμογή ρ ρμ http://ecouseschemegtug/couses/computtol_methods_fo_egees/ Παρεµβολή Προσαρμογή Παρεµβολή tepolto είναι η διαδικασία µε την οποία βρίσκεται

Διαβάστε περισσότερα

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή.

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή. Η Αριθµητική Ανάλυση χρησιµοποιεί απλές αριθµητικές πράξεις για την επίλυση σύνθετων µαθηµατικών προβληµάτων. Τις περισσότερες φορές τα προβλήµατα αυτά είναι ή πολύ περίπλοκα ή δεν έχουν ακριβή αναλυτική

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων

Τμήμα Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα 0: Στοιχεία για το µάθηµα- Εισαγωγικές έννοιες ιδάσκων: Βασίλειος Ισµυρλής Τηλ:6979948174, e-mail: vasismir@gmail.com http://vasilis-ismyrlis.webnode.gr/

Διαβάστε περισσότερα

ΚΑΝΟΝΙΣΜΟΣ ΙΠΛΩΜΑΤΙΚΩΝ ΕΡΓΑΣΙΩΝ

ΚΑΝΟΝΙΣΜΟΣ ΙΠΛΩΜΑΤΙΚΩΝ ΕΡΓΑΣΙΩΝ ΚΑΝΟΝΙΣΜΟΣ ΙΠΛΩΜΑΤΙΚΩΝ ΕΡΓΑΣΙΩΝ Η διπλωµατική εργασία στο τµήµα μηχανικών σχεδίασης προϊόντων και συστημάτων Η ιπλωµατική Εργασία ( Ε) εκπονείται από τους τελειόφοιτους του Τμήματος προκειμένου να αποκτήσουν

Διαβάστε περισσότερα

ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. 12 Μαίου 2011

ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. 12 Μαίου 2011 ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική 12 Μαίου 2011 Συµπληρώστε τα στοιχεία σας στο παρακάτω πίνακα τώρα Ονοµατεπώνυµο Αρ. Ταυτότητας Username Password Δηµιουργήστε ένα φάκελο στο home directory σας µε

Διαβάστε περισσότερα

Θερμοδυναμική - Εργαστήριο

Θερμοδυναμική - Εργαστήριο Θερμοδυναμική - Εργαστήριο Ενότητα 8: Συστήματα γραμμικών αλγεβρικών εξισώσεων Εργαλεία Excel minverse & mmult Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης

Διαβάστε περισσότερα

Λ. Α Π Ε Κ Η Σ Κ. Χ Ρ Ι Σ Τ Ο Ο Υ Λ Ι Η Σ

Λ. Α Π Ε Κ Η Σ Κ. Χ Ρ Ι Σ Τ Ο Ο Υ Λ Ι Η Σ Λ. Α Π Ε Κ Η Σ Κ. Χ Ρ Ι Σ Τ Ο Ο Υ Λ Ι Η Σ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο Σ Η Μ Ε Ι Ω Σ Ε Ι Σ Τ Ο Υ Μ Α Θ Η Μ Α Τ Ο

Διαβάστε περισσότερα

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης

Διαβάστε περισσότερα

Μάστερ στην Εφαρµοσµένη Στατιστική

Μάστερ στην Εφαρµοσµένη Στατιστική Μάστερ στην Εφαρµοσµένη Στατιστική Πρότυπο Πρόγραµµα Master Εξάµηνο Σπουδών Κωδικός Τίτλος Μαθήµατος ιδακτικές Μονάδες 1 ο Εξάµηνο ΜΑΣ650 Μαθηµατική Στατιστική 10 ΜΑΣ655 ειγµατοληψία 10 ΜΑΣ658 Στατιστικά

Διαβάστε περισσότερα

Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών

Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών 1. Εισαγωγή. Προβλήματα δύο οριακών τιμών 3. Η μέθοδος των πεπερασμένων διαφορών 4. Οριακές συνθήκες με παραγώγους 5. Παραδείγματα

Διαβάστε περισσότερα

ΠΡΟΣΟΧΗ : Νέα Ύλη για τις Κατατακτήριες από 2012 και μετά στην Φυσική Ι. Για το 1ο εξάμηνο. ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ΦΥΣΙΚΗ Ι -ΜΗΧΑΝΙΚΗ

ΠΡΟΣΟΧΗ : Νέα Ύλη για τις Κατατακτήριες από 2012 και μετά στην Φυσική Ι. Για το 1ο εξάμηνο. ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ΦΥΣΙΚΗ Ι -ΜΗΧΑΝΙΚΗ στην Φυσική Ι ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ΦΥΣΙΚΗ Ι -ΜΗΧΑΝΙΚΗ 1. Κινηματική (ευθύγραμμη και καμπυλόγραμμη κίνηση) 2. Σχετική κίνηση-μετασχηματισμοί Lorentz 3. Δυναμική ενός σωματιδίου (Νόμοι της δυναμικής-ορμή-στροφορμήσυστήματα

Διαβάστε περισσότερα

1η Οµάδα Ασκήσεων. ΑΣΚΗΣΗ 1 (Θεωρία)

1η Οµάδα Ασκήσεων. ΑΣΚΗΣΗ 1 (Θεωρία) ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ KAI THΛΕΠΙΚΟΙΝΩΝΙΩΝ ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ 13/3/8 1η Οµάδα Ασκήσεων ΑΣΚΗΣΗ 1 (Θεωρία) 1.1 Σε ένα σύστηµα

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές Δυναμική Μηχανών I Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις 5 3 Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com

Διαβάστε περισσότερα