Statistika i osnovna mjerenja

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Statistika i osnovna mjerenja"

Transcript

1 Statistika i osnovna mjerenja Teorija vjerojatnosti M. Makek 2016/2017

2 Uvod Pokus bilo koji postupak ili proces koji rezultira opažanjem Ishod moguć rezultat pokusa (različiti ishodi se međusobno isključuju) Elementarni događaj pojedini ishod nekog pokusa Prostor elementarnih događaja skup svih ishoda nekog pokusa Ako je W prostor elementarnih događaja onda je: Događaj svaki podskup od W Elementarni događaj - jednočlani podskup od W Složeni događaj višečlani podskup od W Sigurni događaj cijeli W Nemoguć događaj prazan skup Primjer: bacanje kocke 6 mogućih ishoda (elementarnih događaja) Složeni događaj npr. parni ili neparni brojevi Siguran događaj bilo koji broj od 1-6 2

3 Vjerojatnost a priori (klasična definicija vjerojatnosti) Uzmimo pokus koji završava s konačno mnogo (n) ishoda tj. elementarnih događaja, koji su jednako mogući. Definicija: vjerojatnost proizvoljnog događaja A je dana omjerom broja povoljnih elementarnih događaja n A i ukupnog broja elem. događaja n: Iz ove definicije slijedi: 0 <= P(A) <= 1 (vjerojatnost je između 0 i 1) n A =0 P(A) = 0 (ako niti jedan elementarni događaj ne realizira A, tj. A je nemoguć događaj, onda je njegova vjerojatnost jednaka 0) n A =n P(A) = 1 (ako svi elementarni događaji realiziraju A, tj. A je siguran događaj, njegova je vjerojatnost 1) Nedostaci ovakve definicije su: pretpostavka o jednako mogućim događajima (tu već pretpostavljamo neku vjerojatnost pa je definicija kružna) Definirana na konačnom skupu događaja 3

4 Vjerojatnost a priori Primjer 1: bacanje 2 kocke Rezultat svakog bacanja je par brojeva (x 1,x 2 ) Ukupno 36 elementarnih događaja čini prostor elementarnih događaja Definirajmo složen događaj A kao onaj kod kojeg je suma brojeva na obje kocke jednaka 6 Elementarni događaji koji realiziraju A su: (1,5), (2,4),(3,3),(4,2),(5,1) n A =6 P(A) = 6/36 = 1/6 4

5 Vjerojatnost a priori Primjer 2: uzorak proizvoda Pretpostavimo da imamo 500 proizvoda Proizvođač garantira da je među njima maksimalno 5% neispravnih Želimo ovo provjeriti uzimajući uzorak od 5 proizvoda A. Koja je vjerojatnost da se među tih 5 proizvoda nađu 2 (tj. ~40%) loša? 1. Na koliko načina možemo odabrati uzorak od 5 proizvoda? 2. Na koliko načina se može odabrati uzorak u kojem je od 5 proizvoda 2 loša? Vjerojatnost takvog događaja je: = 0,021 Koristimo tablicu logaritama faktorijela Obzirom da je vjerojatnost takvog događaja vrlo mala (~2%) moglo bi se zaključiti da ako se među 5 nađu 2 loša proizvoda ukupni uzorak mora sadržavati više od 5% defektnih proizvoda i da garancija proizvođača nije ispunjena. 5

6 Za prethodni primjer: Kako računati s velikim faktorijelama? Može se pojednostavniti: a) Korištenjem Stirlingove formule: b) Uporabom logaritama faktorijela (dano u tablicama) c) Logaritmiranjem Stirlingove formule a) + b) 6

7 Vjerojatnost a posteriori Primjer: bacanje novčića Ako znamo daje novčić pošten onda možemo definirati a priori vjerojatnost: Elementarni događaji P i G su jednako vjerojatni p P =p G Slijedi: p P +p G = 1 p P =p G =0,5 Ako ne znamo da novčić daje jednako vjerojatne ishode onda možemo novčić bacati puno puta (n) i odrediti koliko puta se pojavljuje G (n G ), a koliko puta P (n P ) Tada možemo definirati a posteriori vjerojatnost kao: 7

8 Vjerojatnost a posteriori Definicija: vjerojatnost događaja A jednaka je relativnoj frekvenciji pojavljivanja tog događaja f r (A) u nizu od n pokusa: - vrijedi pod pretpostavkom da su pokusi izvedeni pod jednakim uvjetima te da je izveden dovoljan broj pokusa da se f r (A) ne mijenja s n, tj. da su relativne frekvencije stabilne Nedostaci ovakve definicije: Što znači dovoljan broj pokusa? Koja je vjerojatnost jednog događaja (ako ne možemo ponavljati pokus puno puta)? 8

9 Suprotna vjerojatnost Vjerojatnost da se događaj A ne desi Ne događanje A je događaj koji ćemo označiti sa Ako je vjerojatnost za događaj A, P(A), onda je vjerojatnost da se A ne desi: Suprotna vjerojatnost još se označava i sa Q(A) te vrijedi: Primjer: Imamo 10 proizvoda od kojih 5 dobrih i 5 neispravnih Ako najednom uzmemo 3 proizvoda koja je vjerojatnost da barem jedan od njih bude neispravan ekvivalentno: koja je vjerojatnost da se desi suprotan događaj onom kada su sva tri proizvoda ispravna? Vjerojatnost da imamo 3 ispravna je: =1/12 Vjerojatnost da nastupi suprotan događaj je: = 0,917 9

10 Isključivost događaja Definicija: Događaji A i B se međusobno isključuju ako istovremeno ne mogu nastupiti oba. Analogno: događaji se međusobno isključuju ako se istovremeno može pojaviti samo jedan od njih znači da ne postoji elementaran događaj koji bi istovremeno realizirao događaje A i B grafički se to može prikazati disjunktnim skupovima točaka u ravnini A B skupovi elementarnih događaja koji realiziraju A odn. B su disjunktni 10

11 Zbrajanje vjerojatnosti Pretpostavimo da se događaji A 1, A 2,, A k međusobno isključuju Zanima nas koja je vjerojatnost da se desi ili A 1 ili A 2,, ili A k? Takav događaj označavamo s A 1 +A 2 + +A k ( + među događajima se čita ili i znači da se može desiti samo 1 događaj) Vrijedi: vjerojatnost da se desi složeni događaj jednaka je sumi vjerojatnosti komponentnih događaja Dokaz slijedi iz definicije vjerojatnosti (npr. a priori): 11

12 Zbrajanje vjerojatnosti Primjer: bacanje kocke Pretpostavimo da svakom broju na kocki pripada jednaka vjerojatnost P=1/6 Kolika je vjerojatnost da broj na kocki bude paran? To je vjerojatnost da broj bude ili 2 ili 4 ili 6 Vjerojatnost za takav događaj je: P(Paran) = 1/6 + 1/6 + 1/6 = 0,5 12

13 Nezavisni događaji Događaji A 1 i A 2 su nezavisni ako pojavljivanje jednog ne mijenja vjerojatnost pojavljivanja drugog Kasnije ćemo pokazati da za nezavisne događaje vrijedi da je vjerojatnost istovremenog pojavljivanja događaja A 1 i A 2 jednaka umnošku vjerojatnosti pojedinih događaja, tj: Grafički se može pokazati da je skup elementarnih događaja koji realiziraju i A 1 i A 2 jednak presjeku skupova elementarnih događaja za A 1 i A 2 A 1 A 2 A 1 A 2 Implicitan uvjet je da se događaji A 1 i A 2 ne isključuju drugim riječima događaji koji se isključuju ne mogu biti nezavisni 13

14 Množenje vjerojatnosti Pretpostavimo da se događaji A 1, A 2,, A k međusobno ne isključuju mogu se dogoditi istovremeno Zanima nas koja je vjerojatnost da se istovremeno dese i A 1 i A 2,, i A k? Takav događaj označavamo s ( se čita i ) Može se pokazati da prethodni primjer vrijedi i općenito: Vjerojatnost ovakvog složenog događaja je jednaka umnošku vjerojatnosti svih komponentnih događaja 14

15 Množenje vjerojatnosti Primjer koincidentno opažanje čestica Uzmimo da želimo opažati reakciju raspada piona: U reakciji se kao produkti pojavljuju elektron, pozitron i foton Efikasnost detektora za opažanje elektrona ili pozitrona je e e+e- = 0,9 Efikasnost detektora za opažanje fotona je e g =0,2 Kolika je vjerojatnost opažanja ovakvog događaja? Efikasnost detektora možemo poistovjetiti sa vjerojatnošću opažanja Ako pretpostavimo da je opažanje svake od čestica nezavisan događaj onda je vjerojatnost opažanja ovog događaja jednaka vjerojatnosti za istovremeno (koincidentno) opažanje ove tri čestice: = 0,162 15

16 Svojstva nezavisnih događaja Tvrdnja: ako su A 1 i A 2 nezavisni onda su i A 1 i Iz grafičkog prikaza slijedi: nezavisni A 1 Ᾱ 2 A 2 Zbog nezavisnosti A 1 i A 2 možemo pisati: Čime je prema definicija nezavisnih događaja dokazana tvrdnja 16

17 Ostali složeni događaji Uzmimo događaje A 1 i A 2 koji su međusobno ne isključuju Kolika je vjerojatnost da nastupi barem jedan od tih događaja, tj. A 1 ili A 2 ili A 1 i A 2? Takav složeni događaj označavamo s A 1 U A 2 Iz grafičkog prikaza slijedi: A 1 A 2 A 1 A 2 U specijalnom slučaju kad su A 1 i A 2 nezavisni događaji, vrijedi: 17

18 Ostali složeni događaji Prethodnu relaciju možemo napisati na drugačiji način: po definiciji: znači da se ne dogodi A 1 ili A 2 ili oba Ekvivalentno možemo reći da će se dogoditi događaj suprotan A 1 i suprotan A 2 : Slijedi: Općenito vrijedi: A posebno za nezavisne događaje: 18

19 Ostali složeni događaji Primjer: A,B,C su nezavisni događaji koji se međusobno ne isključuju U nekom pokusu oni imaju vjerojatnosti: P(A)=0.5, P(B)=0.3 i P(C)=0.1 Koja je vjerojatnost da nastupi bar jedan od događaja? 19

20 Konstantna vjerojatnost Događaji čija vjerojatnost se ne mijenja tijekom pokusa Vjerojatnost da događaj nastupi u nekom pokusu: Vjerojatnost da događaj ne nastupi u nekom pokusu: Vjerojatnost da događaj nastupi barem jednom u seriji od k pokusa: (događaji su po definiciji nezavisni jer se događaju u različitim pokusima) Slijedi: 20

21 Konstantna vjerojatnost Primjer: U nekom pokusu događaj A nastupa uz vjerojatnost P(A)=p=0,4 Koliko pokusa treba učiniti da u njima sa vjerojatnošću od 95% nastupi barem jedan događaj? P = 1-q n = ,6 n =0.05 n= 5,86 ~ 6 21

22 Uvjetna vjerojatnost Kolika je vjerojatnost da se dogodi A ako se dogodio B? Označava se sa P(A B) (čitamo A ako je B ) Skup elementarnih događaja koji realiziraju B onda postaje prostorom elementarnih događaja za A B U tom prostoru A B elementarnih događaja realizira dog. A Slijedi da je: (uvjet P(B)>0) Jednako vrijedi: Iz čega slijedi: (vjerojatnost istovremenog zbivanja dva događaja jednaka je produktu apsolutne vjerojatnosti prvog i uvjetne vjerojatnosti drugog) 22

23 Nezavisnost događaja Definicija: događaji A i B su nezavisni onda i samo onda kad vrijedi: P (A B) = P(A) (Vjerojatnost da se dogodi A ne ovisi o tome da li se dogodio B) Iz relacije za uvjetnu vjerojatnost vrijedi: Iz toga slijedi relacija koju smo prije uveli: 23

24 Potpun sistem događaja Neka za događaje A i (i=1,2, ) vrijedi: Događaji A i čine potpun sistem događaja A 1 A 3 A 2 A i W 24

25 Zakon totalne vjerojatnosti Neka A i čine potpun sistem događaja Tada za bilo koji događaj B vrijedi: A 1 B A i A 2 A 3 W 25

26 Bayesov teorem Neka A i čine potpun sistem događaja i B neki događaj Za bilo koji događaj A k vrijedi: Slijedi Bayesov teorem: 26

27 Bayesov teorem Primjer: kontrola proizvoda Serija proizvoda sadrži 95% ispravnih proizvoda Kontrola proglašava ispravan proizvod dobrim s vjerojatnoću od 98% Kontrola proglašava neispravan proizvod dobrim s vjerojatnošću od 5% Koja je vjerojatnost da je proizvod stvarno dobar ako ga je kontrola proglasila dobrim? A 1 = proizvod stvarno dobar, P(A 1 ) = 0.95 A 2 = proizvod stvarno loš, P(A 2 ) = 0.05 B = kontrola proglašava proizvod dobrim P(A 1 B)=? Potpun sustav događaja = 0,997 Nakon kontrole serija će sadržavati 99,7% dobrih proizvoda 27

28 Nedostaci klasičnih definicija vjerojatnosti A priori: vjerojatnost proizvoljnog događaja A je dana omjerom broja povoljnih elementarnih događaja n A i ukupnog broja elem. događaja n Nedostaci ovakve definicije su: pretpostavka o jednako mogućim događajima (tu već pretpostavljamo neku vjerojatnost pa je definicija kružna) Definirana na konačnom skupu događaja A posteriori: vjerojatnost događaja A jednaka je relativnoj frekvenciji pojavljivanja tog događaja f r (A) u nizu od n pokusa Nedostaci ovakve definicije: Koliki je broj pokusa dovoljan? Koja je vjerojatnost jednog događaja? (ako ne možemo ponavljati pokus puno puta) 28

29 Aksiomatska izgradnja teorije vjerojatnosti Ako poznajemo prostor elementarnih događaja W za neki pokus, svrha definicije vjerojatnosti je da svakom događaju pridruži broj P(A), koji će biti precizna mjera šanse da se A ostvari Definicija vjerojatnosti treba biti općenita i obuhvaćati i klasične definicije vjerojatnosti Takvu definiciju temeljenu na aksiomima uveo je Kolmogorov godine Objekti u aksiomatskom pristupu su slučajni događaji 29

30 Kolmogorovi aksiomi Uzmimo da je W prostor elementarnih događaja Nekom događaju želimo pridružiti vjerojatnost P(A) Pri tome tvrdimo da svako takvo pridruživanje mora zadovoljavati (aksiomi): a) ako se konačan broj događaja međusobno isključuju (svaki par je disjunktan), vrijedi: b) ako se prebrojivo beskonačan broj događaja međusobno isključuje, vrijedi: 30

31 Svojstva vjerojatnosti I. a) Zbog zatvorenosti skupa elementarnih događaja: b) Prema definiciji suprotnog događaja je: c) Siguran događaj: Iz a), b), c) i trećeg Kolmogorovog aksioma slijedi A, A W II. Iz prvog aksioma i relacije (I.) slijedi: III. Ako u relaciju (I.) umjesto A uvrstimo siguran događaj W, dobivamo: Uz postavku da je slijedi: 31

32 Svojstva vjerojatnosti IV. Uzmimo da je Onda je Iz trećeg aksioma slijedi da je Za bilo koja dva događaja vrijedi i: Pa iz trećeg aksioma i gornjih relacija slijedi: P(A U B) = P(A) + P(B) P(A B) Sva ova svojstva poznata su i u klasičnoj definiciji vjerojatnosti 32

33 Podudarnost sa klasičnom definicijom Neka pokus ima velik broj mogućih ishoda elementarnih događaja w i Tada je vjerojatnost složenog događaja A: Ako imamo n jednako vjerojatnih ishoda (kao u definiciji a 1 priori), onda je vjerojatnost svakog od njih: P(w i ), i n Proizlazi da je vjerojatnost događaja A: na P( A) n gdje je n A broj elementarnih događaja koji su podskupovi A to je klasična definicija vjerojatnosti! P( A) w A i P(w ) i 33

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Skup svih mogućih ishoda datog opita, odnosno skup svih elementarnih događaja se najčešće obeležava sa E. = {,,,... }

Skup svih mogućih ishoda datog opita, odnosno skup svih elementarnih događaja se najčešće obeležava sa E. = {,,,... } VEROVTNOĆ - ZDI (I DEO) U računu verovatnoće osnovni pojmovi su opit i događaj. Svaki opit se završava nekim ishodom koji se naziva elementarni događaj. Elementarne događaje profesori različito obeležavaju,

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo:

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: 2 Skupovi Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: A B def ( x)(x A x B) Kažemo da su skupovi A i

Διαβάστε περισσότερα

Četrnaesto predavanje iz Teorije skupova

Četrnaesto predavanje iz Teorije skupova Četrnaesto predavanje iz Teorije skupova 27. 01. 2006. Kratki rezime prošlog predavanja: Dokazali smo teorem rekurzije, te primjenom njega definirali zbrajanje ordinalnih brojeva. Prvo ćemo navesti osnovna

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

1 Aksiomatska definicija skupa realnih brojeva

1 Aksiomatska definicija skupa realnih brojeva 1 Aksiomatska definicija skupa realnih brojeva Definicija 1 Polje realnih brojeva je skup R = {x, y, z...} u kojemu su definirane dvije binarne operacije zbrajanje (oznaka +) i množenje (oznaka ) i jedna binarna

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

SKUPOVI I SKUPOVNE OPERACIJE

SKUPOVI I SKUPOVNE OPERACIJE SKUPOVI I SKUPOVNE OPERACIJE Ne postoji precizna definicija skupa (postoji ali nama nije zanimljiva u ovom trenutku), ali mi možemo koristiti jednu definiciju koja će nam donekle dočarati šta su zapravo

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Jednodimenzionalne slučajne promenljive

Jednodimenzionalne slučajne promenljive Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

Poglavlje 1 GRAM-SCHMIDTOV POSTUPAK ORTOGONALIZACIJE. 1.1 Ortonormirani skupovi

Poglavlje 1 GRAM-SCHMIDTOV POSTUPAK ORTOGONALIZACIJE. 1.1 Ortonormirani skupovi Poglavlje 1 GRAM-SCHMIDTOV POSTUPAK ORTOGONALIZACIJE 1.1 Ortonormirani skupovi Prije nego krenemo na sami algoritam, uvjerimo se koliko je korisno raditi sa ortonormiranim skupovima u unitarnom prostoru.

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Slučajna varijabla i vjerojatnost.

Slučajna varijabla i vjerojatnost. Statistika, Prehrambeno-tehnološki fakultet 1 Slučajna varijabla i vjerojatnost. Primjer 1: Promotrimo pokus koji se sastoji od zagrijavanja određene količine vode pod normalnim atmosferskim tlakom na

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

3 Populacija i uzorak

3 Populacija i uzorak 3 Populacija i uzorak 1 3.1 Slučajni uzorak X varijabla/stat. obilježje koje izučavamo Cilj statističke analize na osnovi uzorka izvesti odredene zaključke o (populacijskoj) razdiobi od X 2 Primjer 3.1.

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a. Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a

Διαβάστε περισσότερα

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Teorija skupova. Matko Males Split. lipanj 2003.

Teorija skupova. Matko Males Split. lipanj 2003. Teorija skupova Matko Males Split lipanj 2003. 2 O pojmu skupa A, B, C,... oznake za skupove a, b, c,... oznake za elemente skupa a A, a / A Skup je posve odredjen svojim elementima, tj u potpunosti je

Διαβάστε περισσότερα

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i PRIPREMA ZA II PISMENI IZ ANALIZE SA ALGEBROM. zadatak Re{avawe algebarskih jedna~ina tre}eg i ~etvrtog stepena. U skupu kompleksnih brojeva re{iti jedna~inu: a x 6x + 9 = 0; b x + 9x 2 + 8x + 28 = 0;

Διαβάστε περισσότερα

Slučajne varijable. Diskretna slučajna varijabla X je promjenjiva veličina koja poprima vrijednosti iz skupa

Slučajne varijable. Diskretna slučajna varijabla X je promjenjiva veličina koja poprima vrijednosti iz skupa Slučajne varijable Statistički podaci su distribuirani po odredenoj zakonitosti. Za matematičko (apstraktno) opisivanje te zakonitosti potrebno je definirati slučajnu varijablu kojoj pripada odredena razdioba

Διαβάστε περισσότερα

Matematika (PITUP) Prof.dr.sc. Blaženka Divjak. Matematika (PITUP) FOI, Varaždin

Matematika (PITUP) Prof.dr.sc. Blaženka Divjak. Matematika (PITUP) FOI, Varaždin Matematika (PITUP) FOI, Varaždin Dio III Umijeće postavljanja pravih pitanja i problema u matematici treba vrednovati više nego njihovo rješavanje Georg Cantor Sadržaj Matematika (PITUP) Relacije medu

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

KONAČNA MATEMATIKA Egzistencija kombinatornih konfiguracija Dirichlet-ov i Ramseyev teorem

KONAČNA MATEMATIKA Egzistencija kombinatornih konfiguracija Dirichlet-ov i Ramseyev teorem Природно-математички факултет, Универзитет у Нишу, Србија http://www.pmf.ni.ac.yu/mii Математика и информатика 1 (3) (2009), 19-24 KONAČNA MATEMATIKA Egzistencija kombinatornih konfiguracija Dirichlet-ov

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

OSNOVNI PRINCIPI PREBROJAVANJA. () 6. studenog 2011. 1 / 18

OSNOVNI PRINCIPI PREBROJAVANJA. () 6. studenog 2011. 1 / 18 OSNOVNI PRINCIPI PREBROJAVANJA () 6. studenog 2011. 1 / 18 TRI OSNOVNA PRINCIPA PREBROJAVANJA -vrlo često susrećemo se sa problemima prebrojavanja elemenata nekog konačnog skupa S () 6. studenog 2011.

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B.

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Korespondencije Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Pojmovi B pr 2 f A B f prva projekcija od

Διαβάστε περισσότερα

U teoriji vjerojatnosti razmatraju se događaji koji se mogu, ali ne moraju dogoditi. Takvi se događaji zovu slučajnim događajima.

U teoriji vjerojatnosti razmatraju se događaji koji se mogu, ali ne moraju dogoditi. Takvi se događaji zovu slučajnim događajima. Sažetak vjerojatnost Skup ishoda U teoriji vjerojatnosti razmatraju se događaji koji se mogu, ali ne moraju dogoditi. Takvi se događaji zovu slučajnim događajima. Jednostavne događaje u nekom pokusu zvat

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ). 0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

Uvod u teoriju brojeva. Andrej Dujella

Uvod u teoriju brojeva. Andrej Dujella Uvod u teoriju brojeva (skripta) Andrej Dujella PMF - Matematički odjel Sveučilište u Zagrebu Sadržaj. Djeljivost.... Kongruencije... 3. Kvadratni ostatci... 9 4. Kvadratne forme... 38 5. Aritmetičke funkcije...

Διαβάστε περισσότερα

1. Topologija na euklidskom prostoru R n

1. Topologija na euklidskom prostoru R n 1 1. Topologija na euklidskom prostoru R n Euklidski prostor R n je okruženje u kojem ćemo izučavati realnu analizu. Kao skup R n se sastoji od svih uredenih n-torki realnih brojeva: R n = {(x 1,...,x

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

4. poglavlje (korigirano) LIMESI FUNKCIJA

4. poglavlje (korigirano) LIMESI FUNKCIJA . Limesi funkcija (sa svim korekcijama) 69. poglavlje (korigirano) LIMESI FUNKCIJA U ovom poglavlju: Neodređeni oblik Neodređeni oblik Neodređeni oblik Kose asimptote Neka je a konačan realan broj ili

Διαβάστε περισσότερα

MJERA I INTEGRAL 1. kolokvij 29. travnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!)

MJERA I INTEGRAL 1. kolokvij 29. travnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) MJERA I INTEGRAL 1. kolokvij 29. travnja 2016. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (ukupno 6 bodova) Neka je I kolekcija svih ograničenih jednodimenzionalnih intervala

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova.

On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova. Pojam skupa U matematici se pojam skup ne definiše eksplicitno. On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova.

Διαβάστε περισσότερα

Diferencijalni i integralni račun I. Prirodoslovno matematički fakultet

Diferencijalni i integralni račun I. Prirodoslovno matematički fakultet Diferencijalni i integralni račun I Saša Krešić-Jurić Prirodoslovno matematički fakultet Sveučilište u Splitu Sadržaj Skupovi i funkcije. Skupovi N, Z i Q................................. 4.2 Skup realnih

Διαβάστε περισσότερα

(Hi-kvadrat test) r (f i f ti ) 2 H = f ti. i=1

(Hi-kvadrat test) r (f i f ti ) 2 H = f ti. i=1 χ 2 test (Hi-kvadrat test) Jedan od prvih statističkih testova je χ 2 -test. Predložio ga je K. Pearson 900. godine, pa je poznat i pod nazivom Pearsonov test. χ 2 test je neparametarski test. Pomoću χ

Διαβάστε περισσότερα

Sintaksa i semantika u logici

Sintaksa i semantika u logici Sintaksa i semantika u logici PMF Matematički odsjek Sveučilište u Zagrebu 13. listopad 2012., Zadar Sintaksa i semantika u logici 1 / 51 1. Logika sudova 1.1. Sintaksa jezik 1.2. Semantika logike sudova

Διαβάστε περισσότερα

Diferencijalni i integralni račun I. Prirodoslovno matematički fakultet

Diferencijalni i integralni račun I. Prirodoslovno matematički fakultet Diferencijalni i integralni račun I Saša Krešić-Jurić Prirodoslovno matematički fakultet Sveučilište u Splitu Sadržaj Skupovi i funkcije. Skupovi N, Z i Q................................. 4.2 Skup realnih

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

Relacije poretka ure denja

Relacije poretka ure denja Relacije poretka ure denja Relacija na skupu A je relacija poretka na A ako je ➀ refleksivna ➁ antisimetrična ➂ tranzitivna Umesto relacija poretka često kažemo i parcijalno ured enje ili samo ured enje.

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA

VJEROJATNOST I STATISTIKA Vera Čuljak VJEROJATNOST I STATISTIKA Gradevinski fakultet Sveučilište u Zagrebu Predgovor Poštovani čitatelji, nadam se da ćete naći korisne informacije u ovom nastavnom tekstu. Ruski matematičar P.L.

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

Kazimir Majorinc. Povijest Lispa 12. Razmjena vještina Hacklab u mami 10. studeni 2012.

Kazimir Majorinc. Povijest Lispa 12. Razmjena vještina Hacklab u mami 10. studeni 2012. Kazimir Majorinc Povijest Lispa 12. j Razmjena vještina Hacklab u mami 10. studeni 2012. MIT Research Laboratory of Electronics, Quarterly Progress Report, 15. travnja, 1959. Sadrži jednu od bar četiri

Διαβάστε περισσότερα

b = k a. Govorimo jošda a dijeli b ipišemo a b.

b = k a. Govorimo jošda a dijeli b ipišemo a b. 1 DJELJIVOST 1.1. Djeljivost. Prosti brojevi Količnik dvaju prirodnih brojeva nije uvijek prirodni broj. Tako na primjer, broj 54 8 nije prirodan, jer 54 nije djeljiv s 8. Broj 221 jest prirodan, jer 221

Διαβάστε περισσότερα

R ω s uniformnom topologijom i aksiomi prebrojivosti

R ω s uniformnom topologijom i aksiomi prebrojivosti Opća topologija 116 Opća topologija 118 Drugi aksiom prebrojivosti 4 AKSIOMI SEPARACIJE I PREBROJIVOSTI Aksiomi prebrojivosti Aksiomi separacije Normalni prostori Urysonova lema Urysonov teorem o metrizaciji

Διαβάστε περισσότερα

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se

Διαβάστε περισσότερα

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa Binarne operacije Binarna operacija na skupu A je preslikavanje skupa A A u A, to jest : A A A. Pišemo a b = c. Označavanje operacija:,,,. Poznate operacije: sabiranje (+), oduzimanje ( ), množenje ( ).

Διαβάστε περισσότερα

ZBIRKA ZADATAKA IZ TEORIJE SKUPOVA

ZBIRKA ZADATAKA IZ TEORIJE SKUPOVA Sveučilište u Zagrebu PMF-Matematički odsjek Franka Miriam Brückler, Vedran Čačić, Marko Doko, Mladen Vuković ZBIRKA ZADATAKA IZ TEORIJE SKUPOVA Zagreb, 2009. Sadržaj 1 Osnovno o skupovima, relacijama

Διαβάστε περισσότερα

Sadrˇzaj. Sadrˇzaj 1 9 DVODIMENZIONALNI SLUČAJNI VEKTOR DISKRETNI DVODIMENZIONALNI

Sadrˇzaj. Sadrˇzaj 1 9 DVODIMENZIONALNI SLUČAJNI VEKTOR DISKRETNI DVODIMENZIONALNI Sadrˇzaj Sadrˇzaj DVODIMENZIONALNI. DISKRETNI DVODIMENZIONALNI............................ KONTINUIRANI -dim tko želi znati više.............................. 5. KOVARIJANCA, KORELACIJA, PRAVCI REGRESIJE........

Διαβάστε περισσότερα

POGLAVLJE II Račun vjerovatnosti: definicija vjerovatnosti

POGLAVLJE II Račun vjerovatnosti: definicija vjerovatnosti 2 POGLAVLJE II Račun vjerovatnosti: definicija vjerovatnosti Cilj Uvesti definiciju vjerovatnosti polazeći od koncepta frekvence Definirati vjerovatnost na asiomatski način Definirati algebru događaja

Διαβάστε περισσότερα

VEROVATNO A I STATISTIKA A - TEST 1 9. NOVEMBAR 2013.

VEROVATNO A I STATISTIKA A - TEST 1 9. NOVEMBAR 2013. VEROVATNO A I STATISTIKA A - TEST 1 9. NOVEMBAR 2013. 1. Novqi se baca tri puta. (a) Zapisati skup svih mogu ih ishoda. (b) Oznaqimo sa A k događaj da je u k-tom bacanju palo pismo, k {1, 2, 3}. Koriste

Διαβάστε περισσότερα

2. Vektorski prostori

2. Vektorski prostori 2. Vektorski prostori 2.1. Pojam vektorskog prostora. Grubo govoreći, vektorski prostor je skup na kojem su zadane binarna operacija zbrajanja i operacija množenja skalarima koje poštuju uobičajena računska

Διαβάστε περισσότερα

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. Istinitosna tablica p q r F odgovara formuli A) q p r p r). B) q p r p r). V) q p r p r). G) q p r p r). D) q p r p r). N) Ne znam. Date

Διαβάστε περισσότερα

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije Glava 1 Realne funkcije realne promen ive 1.1 Elementarne funkcije Neka su dati skupovi X i Y. Ukoliko svakom elementu skupa X po nekom pravilu pridruimo neki, potpuno odreeni, element skupa Y kaemo da

Διαβάστε περισσότερα

Predavanje 7. Napredna poglavlja teorije skupova; Booleove algebre višeg reda; Digitalne i analogne veličine. Dinko Osmanković

Predavanje 7. Napredna poglavlja teorije skupova; Booleove algebre višeg reda; Digitalne i analogne veličine. Dinko Osmanković Predavanje 7 Napredna poglavlja teorije skupova; Booleove algebre višeg reda; Digitalne i analogne veličine Dinko Osmanković Kurs: Matematička logika i teorija izračunljivosti Sadržaj predavanja 1 Prirodni

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

Numerička analiza 26. predavanje

Numerička analiza 26. predavanje Numerička analiza 26. predavanje Saša Singer singer@math.hr web.math.hr/~singer PMF Matematički odjel, Zagreb NumAnal 2009/10, 26. predavanje p.1/21 Sadržaj predavanja Varijacijske karakterizacije svojstvenih

Διαβάστε περισσότερα

Diskretna matematika. Prof. dr Olivera Nikolić

Diskretna matematika. Prof. dr Olivera Nikolić Diskretna matematika Prof. dr Olivera Nikolić onikolic@singidunum.ac.rs 1 OSNOVNI POJMOVI MATEMATIČKE LOGIKE 2 1. Diskretna matematika 2. Kontinualna matematika 3 Pojam diskretne matematike Diskretna matematika

Διαβάστε περισσότερα

Karakteristične funkcije

Karakteristične funkcije Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Matea Spajić Karakteristične funkcije Završni rad Osijek, 2015. Sveučilište J. J. Strossmayera u

Διαβάστε περισσότερα

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE 1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar

Διαβάστε περισσότερα

1. Skupovi Algebra skupova

1. Skupovi Algebra skupova 1. Skupovi 1.1. Algebra skupova Temeljne definicije i oznake. Pod pojmom skupa razumijevamo bilo koju množinu elemenata. Npr.: (a) skup svih prirodnih brojeva N = {1, 2, 3,...} ; (b) skup svih cijelih

Διαβάστε περισσότερα

Geometrija (I smer) deo 1: Vektori

Geometrija (I smer) deo 1: Vektori Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo

Διαβάστε περισσότερα

Periodične funkcije. Branimir Dakić, Zagreb

Periodične funkcije. Branimir Dakić, Zagreb Periodične funkcije Branimir Dakić, Zagreb Periodičnost 1 je pojava koju susrećemo na svakom koraku. Periodične su mnoge prirodne pojave, primjerice izmjena dana i noći ili izmjena godišnjih doba, pojava

Διαβάστε περισσότερα

Slučajne varijable Materijali za nastavu iz Statistike

Slučajne varijable Materijali za nastavu iz Statistike Slučajne varijable Materijali za nastavu iz Statistike Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 1 Slučajna varijabla Slučajna varijabla je funkcija X koja elementarnim dogadajima pridružuje

Διαβάστε περισσότερα

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

1 Pojam funkcije. f(x)

1 Pojam funkcije. f(x) Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije

Διαβάστε περισσότερα

Uvod u vjerojatnost i matematičku statistiku

Uvod u vjerojatnost i matematičku statistiku Uvod u vjerojatnost i matematičku statistiku - vježbe - Danijel Krizmanić 28. rujna 2007. Sadržaj Osnove vjerojatnosti 2 2 Kombinatorika i vjerojatnost 5 3 Uvjetna vjerojatnost. Nezavisnost 9 4 Geometrijske

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija Sadržaj: Nizovi brojeva Pojam niza Limes niza. Konvergentni nizovi Neki važni nizovi. Broj e. Limes funkcije Definicija esa Računanje esa Jednostrani esi Neprekinute funkcije i esi Definicija neprekinute

Διαβάστε περισσότερα

1. Skup kompleksnih brojeva

1. Skup kompleksnih brojeva 1. Skup kompleksnih brojeva 1. Skupovibrojeva... 2 2. Skup kompleksnih brojeva................................. 5 3. Zbrajanje i množenje kompleksnih brojeva..................... 8 4. Kompleksno konjugirani

Διαβάστε περισσότερα