Συνέλιξη και Συστήµατα

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Συνέλιξη και Συστήµατα"

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2015/16 Επιµέλεια : Γιώργος Π. Καφεντζης ρ. Επιστήµης Η/Υ Πανεπιστηµίου Κρήτης ρ. Επεξεργασίας Σήµατος Πανεπιστηµίου Rennes 1 Συνέλιξη και Συστήµατα 1 Εισαγωγή Είναι γνωστό ότι η συνέλιξη αποτελεί µια πράξη πολύ σηµαντική, γιατί σχετίζεται µε την ανάλυση συστηµάτων και την εύρεση της εξόδου ενός ΓΧΑ συστήµατος δεδοµένης µιας εισόδου. Η συνέλιξη, λόγω του ότι εµπλέκει τον υπολογισµό ένος ολοκληρώµατος, έχει µια δυσκολία. Η δυσκολία έγκειται στο ότι στην πράξη εµπεριέχεται το γινόµενο δυο σηµάτων, εκ των οποίων το ένα έχει υποστεί ανάκλαση και µετατόπιση. 2 Η συνέλιξη αναλυτικά Εδώ ϑα ξεδιαλύνουµε τον τρόπο µε τον οποίο υπολογίζουµε το ολοκλήρωµα της συνέλιξης. Ας δούµε τον ορισµό : c xy (t) = x(τ)y(t τ)dτ (1) Η πρώτη παρατήρηση είναι ότι το ολοκλήρωµα έχει ως µεταβλητή το τ! ΟΧΙ το t. Το t το ϑεωρούµε σταθερό µέσα στο ολοκλήρωµα. Επειτα, το ολοκλήρωµα αυτό περιέχει δυο σήµατα : το x(τ) και το y(t τ). Το πρώτο είναι αυτούσιο το σήµα, δεν έχει κάποια µεταβολή. Το δεύτερο όµως, ϐλέπετε ότι έχει υποστεί δυο είδη επεξεργασίας : ανάκλαση και µετατόπιση. Η ακολουθία µετατροπής είναι η εξής : y(t) y(τ) y( τ) y( τ + t) = y(t τ) (2) Οπότε το σήµα που χρησιµοποιείται στο ολοκλήρωµα της συνέλιξης έχει υποστεί µια ανάκλαση ως προς τον κατακόρυφο άξονα και ακολούθως µια µετατόπιση ως προς t. Το σήµα που προκύπτει πολλαπλασιάζεται µε το x(τ) και ολοκληρώνεται ως προς τ. Συνήθως προτιµάται η γραφική λύση της συνέλιξης, και ένα τέτοιο παράδειγµα ϕαίνεται στο σχήµα 1. Παρατηρήστε ότι έχουµε δυο σήµατα, το f(t) και το g(t) στην πρώτη γραµµή του σχήµατος. παίξουµε µε το g(t), δηλ. αυτό ϑα µετατοπίσουµε και ϑα ανακλάσουµε. Επιλέγουµε να Στη δεύτερη γραµµή, έχουµε ξανά τα δυο σήµατα, µόνο που τώρα είναι συναρτήσει του τ και όχι του t, όπως ακριβώς επιτάσσει το ολοκλήρωµα της συνέλιξης, και το g(τ) έχει ανακλαστεί ως προς τον κατακόρυφο άξονα, και έχει µετατοπιστεί κατά t. Θυµίζω ότι αυτό το t το χειριζόµαστε ως σταθερά στο ολοκλήρωµα. είτε την αλλαγή στα άκρα του g(τ), και πώς αυτά προσαρµόστηκαν µετά την ανάκλαση και τη µετατόπιση. Στην τρίτη γραµµή, παίρνουµε το g(t τ) που µόλις ϕτιάξαµε και ξεκινάµε να το σέρνουµε πάνω στον ίδιο άξονα µε το f(τ), ξεκινώντας από το και προς το +. Στην πορεία (τέταρτη γραµµή), ϐλέπετε ότι συναντάει κάποια στιγµή το f(τ). Οταν το συναντάει, έχουµε γινόµενο µεταξύ των δυο σηµάτων και άρα αρχίζουµε να υπολογίζουµε το ολοκλήρωµα της συνέλιξης. Άρα, αυτές οι χρονικές στιγµές είναι όταν το δεξί άκρο του g(t τ) συναντά το αριστερό άκρο του f(τ) και πέρα, ΚΑΙ όταν το αριστερό άκρο του g(t τ) ΕΝ έχει περάσει το 0, δηλ. όταν t 1 0 t 1 και t 4 0 t 4 (3)

2 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς /16 2 Σχήµα 1: ιαδικασία συνέλιξης οπότε τότε η συνέλιξη υπολογίζεται στο διάστηµα από 0 ως t 1, εκεί δηλαδή που υπάρχει γινόµενο µεταξύ των

3 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς /16 3 δυο σηµάτων, ως c fg (t) = t 1 0 f(τ)g(t τ)dτ =, (4) όπου και αντικαθιστούµε τις µαθηµατικες µορφές των σηµάτων, και υπολογίζουµε το ολοκλήρωµα. Στην πέµπτη γραµµή, το g(t τ) έχει µπει ολόκληρο µέσα στο f(τ), πράγµα που δεν είχε συµβεί παραπάνω, άρα είναι διαφορετική περίπτωση. Εδώ, η συνέλιξη ορίζεται όταν το αριστερό άκρο της g(t τ) περάσει το 0, δηλ. όταν t 4 > 0 t > 4 (5) και η συνέλιξη υπολογίζεται ως c fg (t) = t 1 t 4 f(τ)g(t τ)dτ =, (6) όπου και αντικαθιστούµε τις µαθηµατικες µορφές των σηµάτων, και υπολογίζουµε το ολοκλήρωµα. Άλλη περίπτωση δεν υπάρχει, οπότε για κάθε άλλο t εκτός από τα παραπάνω, η συνέλιξη είναι µηδέν, άρα c fg (t) = 0, t < 1 (7) Τώρα που η διαδικασία είναι ξεκάθαρη, ας ϑεωρήσουµε ότι τα παραπάνω σήµατα είναι τα Οπότε ϑα έχουµε Οταν t 1 0 t 1, τότε c fg (t) = 0. Οταν t 1 > 0 και t 4 0, δηλ. οταν 0 < t 4, τότε Τέλος, όταν t 4 > 0, δηλ. t > 4, τότε Ας δούµε µερικές παρατηρήσεις... f(t) = e at (8) g(t) = e bt, t [1, 4] (9) c fg (t) = c fg (t) = t 1 0 e aτ e b(t τ) dτ (10) t 1 = e bt e (b a)τ dτ (11) 0 = e bt 1 t 1 b a e(b a)τ 0 = e bt 1 = t 1 t 4 (12) b a (e(b a)(t 1) 1) (13) 1 ( e (b a)(t 1) bt e bt) (14) b a e aτ e b(t τ) dτ (15) = e bt 1 t 1 b a e(b a)τ t 4 = e bt 1 = (16) b a (e(b a)(t 4) e (b a)(t 1) ) (17) 1 ( e (b a)(t 4) bt e (b a)(t 1) bt) (18) b a

4 4 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς /16 Σχήµα 2: Πολύς κόσµος έχει ταλαιπωρηθεί από τη συνέλιξη Οπως ϐλέπετε, το πιο σηµαντικό πράγµα είναι να µπορείτε να υπολογίσετε το µετατοπισµένο σήµα και να ϐλέπετε σωστά τις περιπτώσεις και τα άκρα του ολοκληρώµατος. Οι πράξεις στο ολοκλήρωµα είναι απλά µαθηµατικά. 2. Η συνέλιξη είναι αντιµεταθετική πράξη, ισχύει δηλ. ότι cf g (t) = f (t) g(t) = g(t) f (t) = cgf (t) (19) δηλ. αν παίζαµε µε το f (t) αντί για το g(t), ϑα είχαµε πάλι το ίδιο αποτέλεσµα. 3. Προτιµούµε να παίξουµε µε το µικρότερο σε διάρκεια σήµα, γιατί συνήθως είναι πιο εύκολη η διαδικασία. Αν και τα δυο σήµατα είναι άπειρης διάρκειας, προτιµούµε όποιο ϑέλουµε. 4. Χρήσιµη παρατήρηση για πεπερασµένης διάρκειας σήµατα είναι η εξής : αν το ένα εκ των δυο είναι µη µηδενικό στο διάστηµα [a, b] και το άλλο είναι µη µηδενικό στο διάστηµα [c, d], τότε η συνέλιξή τους είναι µη µηδενική στο διάστηµα [a + c, b + d]. Είναι χρήσιµη παρατήρηση για να µπορούµε να ελέγχουµε τα αποτελέσµατά µας. Για παράδειγµα, αν στο σχήµα 1, είχαµε συνέλιξη της g(t) µε τον εαυτό της, δηλ. cgg (t) = g(t) g(t), τότε το αποτέλεσµα ϑα ήταν µη µηδενικό στο διάστηµα [2, 8]. 5. Στη ϐιβλιογραφία, ϑα ϐρείτε τον ορισµό της συνέλιξης µε διαφορετικές µεταβλητές. Π.χ. Z x(τ )y(t τ )dτ cxy (t) = Z (20) x(t)y(τ t)dt cxy (τ ) = (21) Και οι δυο παραπάνω σχέσεις είναι σωστές. Απλά αλλάξαµε τις µεταβλητές t, τ µεταξύ τους. ιαλέξτε όποια σας ϐολεύει, αρκεί να είστε συνεπείς και προσεκτικοί. Σε αυτές τις σηµειώσεις, προτιµούµε συνήθως την πρώτη σχέση. 6. Η γραφική επίλυση που συζητήσαµε εδώ ϕαίνεται εκ πρώτης όψεως περίπλοκη και αποθαρρύνει το ϕοιτητή. Πράγµατι, κάποιοι ισχυρίζονται ότι η συνέλιξη έχει οδηγήσει πολλούς προπτυχιακούς σε τµήµατα Μηχανικών Η/Υ να ενστερνιστούν τη Θεολογία, είτε για σωτηρία ψυχής είτε ως εναλλακτική καριέρα!! :-) (δείτε το περιοδικό IEEE Spectrum, Μάρτιος 1991, σελ. 60).

5 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς / Πίνακας Συνέλιξης Η διαδικασια της συνέλιξης απλοποιείται σηµαντικά από έτοιµους πίνακες συνέλιξης, όπως ο Πίνακας 1. Αυτός ο πίνακας, που αναφέρει διάφορα Ϲεύγη σηµάτων και το αποτέλεσµα της συνέλιξής τους, µπορεί να σας ϐοηθήσει στον έλεγχο των αποτελεσµάτων σας. Χρήσιµα Ϲεύγη συνέλιξης x(t) y(t) x(t) y(t) x(t) δ(t T ) x(t T ) e at 1 e at a t e at e bt e at e bt a b, a b e at e at te at te at e at 1 2 t2 e at t n e at n!e at n a n+1 n!t n j a j+1 (n j)! t m t n m!n! (n + m + 1)! tm+n+1 te at e bt e bt e at + (a b)te at (a b) 2 t m e at t n e at m!n! (n + m + 1)! tm+n+1 e at m t m e at t n e bt ( 1) j m!(n + j)!t m j e at j!(m j)!(a b)! n+j+1 j=0 n ( 1) k n!(m + k)!t n k e bt a b + k!(n k)!(b a) m+k+1 e at cos(bt + θ) e λt k=0 j=0 cos(θ φ)e λt e at cos(bt + θ φ) (a + λ) 2 + b 2 e at e at ɛ( t) e bt ɛ( t) e bt ɛ( t) b a+λ φ = tan 1 e at + e bt ɛ( t), R{b} > R{a} b a e at e bt b a ɛ( t) Πίνακας 1: Πίνακας Ϲευγών συνελίξεων 4 Ιδιότητες Συνέλιξης Η διαδικασια της συνέλιξης απλοποιείται επίσης σηµαντικά από ιδιότητες, όπως αυτές στον Πίνακα 2. 5 Συστήµατα Τα συστήµατα δεν είναι τίποτα άλλο από σήµατα κι αυτά, τα οποία συνήθως κάνουν µια συγκεκριµένη δουλειά επάνω στο σήµα εισόδου τους, x(t). Αυτή η δουλειά αντικατοπτρίζεται στην έξοδο του συστήµατος, y(t). Το σήµα που περιγράφει το σύστηµα συνήθως συµβολίζεται ως h(t), και λέγεται κρουστική απόκριση. Η σχέση εισόδου-εξόδου

6 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς /16 6 Οµογένεια Αντιµεταθετικότητα Προσεταιριστικότητα Επιµεριστικότητα Γραµµικότητα Εύρος Ουδέτερο στοιχείο Ιδιότητες συνέλιξης ax(t) y(t) = x(t) ay(t) = a(x(t) y(t)) x(t) y(t) = y(t) x(t) (x(t) y(t)) z(t) = x(t) (y(t) z(t)) x(t) (y(t) + z(t)) = x(t) y(t) + x(t) z(t) z 1 (t) = x 1 (t) y(t) z 2 (t) = x 2 (t) y(t) αν x(t) = ax 1 (t) + bx 2 (t) τότε z(t) = x(t) y(t) = az 1 (t) + bz 2 (t) x(t) : R [t 1, t 2 ] y(t) : R [t 3, t 4 ] y(t) x(t) : R [t 1 + t 3, t 2 + t 4 ] x(t) δ(t) = δ(t) x(t) = x(t) Πίνακας 2: Ιδιότητες συνέλιξης ορίζεται ως η συνέλιξη της εισόδου µε την κρουστική απόκριση : y(t) = x(t) h(t) (22) όπου συµβολίζει την πράξη της συνέλιξης. Επίσης, µπορεί ένα σύστηµα να περιγραφεί µε µια απλή µαθηµατική σχέση, ως η έξοδος συναρτήσει της εισόδου : y(t) = f(x(t)) (23) 5.1 Ιδιότητες Συστηµάτων Τα συστήµατα έχουν ορισµένες χρήσιµες ιδιότητες, τις οποίες και ϑα συζητήσουµε εδώ. Οι ιδιότητες αυτές είναι οι εξής : 1. Συστήµατα δυναµικά: τα δυναµικά συστήµατα, ή αλλιώς συστήµατα µε µνήµη, είναι αυτά για τα οποία η έξοδός τους απαιτεί προηγούµενες τιµές της εισόδου για να υπολογιστεί. Για παράδειγµα, το σύστηµα y(t) = 2x(t) είναι ένα σύστηµα χωρίς µνήµη, ή αλλιώς στατικό, ενώ το σύστηµα y(t) = e x(t 1) είναι ένα σύστηµα µε µνήµη, ή αλλιώς δυναµικό. 2. Αιτιατά συστήµατα: τα αιτιατά συστήµατα είναι αυτά για τα οποία ο υπολογισµός της εξόδου ΕΝ απαιτεί µελλοντικές τιµές της εισόδου. Για παράδειγµα, το σύστηµα y(t) = 2x(t 1) + sin(x(t)) είναι αιτιατό, ενώ το σύστηµα y(t) = x(t 2) 2 + 4x(t + 4) είναι µη αιτιατό, επειδή για τον υπολογισµό του y(t) απαιτείται µελλοντική τιµή της εισόδου, η x(t + 4). 3. Γραµµικά συστήµατα: τα γραµµικά συστήµατα είναι αυτά για τα οποία ισχύει ότι : x(t) = Ax 1 (t) + Bx 2 (t) y(t) = T {Ax 1 (t) + Bx 2 (t)} = AT {x 1 (t)} + BT {x 2 (t)} = y 1 (t) + y 2 (t) (24) Με λόγια, γραµµικά είναι τα συστήµατα στα οποία αν εφαρµόσουµε ως είσοδο ένα άθροισµα σηµάτων, ϑα πάρουµε ως έξοδο το άθροισµα των εξόδων που ϑα παίρναµε αν είχαµε δώσει ως είσοδο ένα-ένα τα σήµατα, κι όχι όλα µαζί ως άθροισµα. Για παράδειγµα, το σύστηµα y(t) = 2x(t + 1) 3x(t 4) είναι γραµµικό, ενώ το σύστηµα y(t) = x(t) δεν είναι γραµµικό, όπως επίσης και το y(t) = x 2 (t) δεν είναι γραµµικό. Η ιδιότητα της γραµµικότητας είναι πολύ σηµαντική. 4. Χρονικά Αµετάβλητα συστήµατα: τα συστήµατα που είναι χρονικά αµετάβλητα είναι αυτά για τα οποία ισχύει ότι η έξοδός τους ΕΝ εξαρτάται ϱητά από το χρόνο t. Για παράδειγµα, το σύστηµα y(t) = 3x(t+2) 2 cos(x(t 2)) είναι χρονικά αµετάβλητο, ενώ το σύστηµα y(t) = tx(t) είναι χρονικά µεταβλητό.

7 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς / Ευσταθή συστήµατα: τα συστήµατα που είναι ευσταθή είναι αυτά για τα οποία ισχύει : x(t) < M x y(t) < M y, M x, M y < + (25) Με λόγια, αν η είσοδος είναι ϕραγµένη κατ απόλυτη τιµή, τότε και η έξοδος είναι ϕραγµένη κατ απόλυτη τιµή. Για παράδειγµα, το σύστηµα y(t) = x(t 1)+t δεν είναι ευσταθές, όπως επίσης και το σύστηµα y(t) = t/x(t+2), ενώ το σύστηµα y(t) = sin(x(t)) είναι ευσταθές. Ο συγκεκριµένος ορισµός της ευστάθειας λέγεται και BIBO stablility - Bounded Input Bounded Output stability, που δηλώνει ακριβώς ό,τι είπαµε : όταν η είσοδος είναι απολύτως ϕραγµένη, τότε και η έξοδος είναι απολύτως ϕραγµένη (κι όχι απαραίτητα από τον ίδιο αριθµό-ϕράγµα, όπως ϕαίνεται παραπάνω). Από όλες αυτές τις κατηγορίες σηµάτων, τα πιο σηµαντικά είναι αυτά που είναι γραµµικά, χρονικά αµετάβλητα, και σε αυτά ϑα αναφερόµαστε από εδώ και πέρα όταν µιλάµε για συστήµατα. Η ευστάθεια είναι συνήθως µια επιθυµητή ιδιότητα αλλά δε ϑα τη ϑεωρήσουµε δεδοµένη στη µελέτη µας Παράδειγµα : Εξετάστε αν τα παρακάτω συστήµατα είναι γραµµικά, χρονικά αµετάβλητα, ευσταθή, και αιτιατά. 1. y(t) = 2x(t 1) + 3x(t 3) 2. y(t) = t 2 x 2 (t + 2) x(t) 3. y(t) = x 2 (t 4), 4. y(t) = log 10 ( x(t) ), 5. y(t) = 1, µε x(t) 0 x(t) Λύση : 1. Το σύστηµα y(t) = 2x(t 1) + 3x(t 3) είναι γραµµικό. Ας το δείξουµε. Εστω η έξοδος του συστήµατος για είσοδο ax 1 (t). Εστω η έξοδος του συστήµατος για είσοδο bx 2 (t). Εχουµε y 1 (t) = 2ax 1 (t 1) + 3ax 1 (t 3) y 2 (t) = 2bx 2 (t 1) + 3bx 2 (t 3) y 1 (t) + y 2 (t) = 2ax 1 (t 1) + 3ax 1 (t 3) + 2bx 2 (t 1) + 3bx 2 (t 3) και y 1+2 (t) = 2ax 1 (t 1) + 3ax 1 (t 3) + 2bx 2 (t 1) + 3bx 2 (t 3) που είναι ταυτόσηµα, άρα το σύστηµα είναι γραµµικό. Το σύστηµα είναι χρονικά αµετάβλητο γιατί αν ϑέσουµε ως είσοδο το σήµα x(t t 0 ), τότε η έξοδος είναι y(t) = 2x(t t 0 1) + 3x(t t 0 3) και η καθυστέρηση της εξόδου κατά t 0 δίνετα ως y(t t 0 ) = 2x(t t 0 1) + 3x(t t 0 3) που είναι το ίδιο αποτέλεσµα µε αυτό που ϐρήκαµε νωρίτερα.

8 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς /16 8 Το σύστηµα είναι αιτιατό, γιατί για να υπολογίσουµε µια δεδοµένη τιµή της εξόδου (π.χ. την y(0)), χρειαζό- µαστε παρελθούσες τιµές της εισόδου (τις x( 1), x( 3)). Το σύστηµα είναι, τέλος, ευσταθές γιατί αν η είσοδος είναι ϕραγµένη κατ απόλυτη τιµή, x(t) < M x, τότε και η έξοδος είναι ϕραγµένη, γιατί y(t) = 2x(t 1) + 3x(t 3) < 2M x + 3M x = 5M x = M y 2. Το σύστηµα y(t) = t 2 x 2 (t + 2) x(t) δεν είναι γραµµικό. Εστω y 1 (t) = t 2 ax 2 1(t + 2) ax 1 (t) η έξοδος του συστήµατος για είσοδο ax 1 (t). Εστω y 2 (t) = t 2 bx 2 2(t + 2) bx 2 (t) η έξοδος του συστήµατος για είσοδο bx 2 (t). Εχουµε y 1 (t) + y 2 (t) = t 2 ax 2 1(t + 2) ax 1 (t) + t 2 bx 2 2(t + 2) bx 2 (t) και y 1+2 (t) = t 2 (ax 1 (t + 2) + bx 2 (t + 2)) 2 (ax 1 (t) + bx 2 (t)) που προφανώς δεν είναι ταυτόσηµα, άρα το σύστηµα είναι µή γραµµικό. Το σύστηµα είναι χρονικά µεταβλητό, γιατί αν ϑέσουµε ως είσοδο το σήµα x(t t 0 ), τότε η έξοδος είναι και η καθυστέρηση της εξόδου κατά t 0 δίνεται ως y(t) = t 2 x 2 (t t 0 + 2) x(t t 0 ) y(t t 0 ) = (t t 0 ) 2 x 2 (t t 0 + 2) x(t t 0 ) που ΕΝ είναι το ίδιο αποτέλεσµα µε αυτό που ϐρήκαµε νωρίτερα. Το σύστηµα είναι µη αιτιατό, γιατί για τον υπολογισµό µιας δεδοµένης τιµής της εξόδου (π.χ. απαιτείται µελλοντική τιµή της εισόδου (x(2)). y(0)), Το σύστηµα είναι, τέλος, ασταθές γιατί αν η είσοδος είναι ϕραγµένη κατ απόλυτη τιµή, x(t) < M x, τότε η έξοδος είναι µη-ϕραγµένη, γιατί όταν t ±. y(t) = t 2 x 2 (t + 2) + ( x(t)) < t 2 x 2 (t + 2) + x(t) < t 2 M 2 x + M x + 3. Το σύστηµα είναι µη γραµµικό, µε παρόµοια απόδειξη µε το προηγούµενο ερώτηµα. Το σύστηµα είναι χρονικά αµετάβλητο, διότι αν ϑέσουµε ως είσοδο το σήµα x(t t 0 ), τότε η έξοδος είναι και η καθυστέρηση της εξόδου κατά t 0 δίνεται ως y(t) = x 2 (t t 0 4) y(t t 0 ) = x 2 (t t 0 4) που είναι το ίδιο αποτέλεσµα µε αυτό που ϐρήκαµε νωρίτερα. Το σύστηµα είναι αιτιατό, γιατί απαιτούνται µόνο παρελθοντικές τιµές της εισόδου για τον υπολογισµό µιας οποιασδήποτε τιµής της εξόδου. Το σύστηµα είναι προφανώς ευσταθές, γιατί αν x(t) < M x, τότε y(t) = x 2 (t 4) < M 2 x.

9 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς / Το σύστηµα είναι µη γραµµικό. Εστω η έξοδος για είσοδο ax 1 (t). Εστω y 1 (t) = log 10 ( ax 1 (t) ) y 2 (t) = log 10 ( bx 2 (t) ) η έξοδος για είσοδο bx 2 (t). Είναι y 1 (t) + y 2 (t) = log 10 ( ax 1 (t) ) + log 10 ( bx 2 (t) ) ενώ y 1+2 (t) = log 10 ( ax 1 (t) + bx 2 (t) ) y 1 (t) + y 2 (t) άρα µη γραµµικό. Επίσης, το σύστηµα είναι χρονικά αµετάβλητο γιατί αν ϑέσουµε ως είσοδο το σήµα x(t t 0 ), τότε η έξοδος είναι y(t) = log 10 x(t t 0 ) και η καθυστέρηση της εξόδου κατά t 0 δίνεται ως y(t t 0 ) = log 10 x(t t 0 ) που είναι το ίδιο αποτέλεσµα µε αυτό που ϐρήκαµε νωρίτερα. Το σύστηµα είναι αιτιατό. Το σύστηµα είναι ευσταθές γιατί αν x(t) < M x, τότε y(t) = log 10 ( x(t) ) < log 10 (M x ) < ±. 5. ικό σας! :-) 5.2 Συνέλιξη και συστήµατα Οπως αναφέραµε παραπάνω, η συνέλιξη είναι µια πολύ σηµαντική πράξη, γιατί όπως είδαµε στις διαλέξεις συνδέει την έξοδο, y(t), ενός συστήµατος µε την είσοδό του, x(t), µέσω της σχέσης y(t) = x(t) h(t) = h(t) x(t) (26) όπου h(t) η περίφηµη κρουστική απόκριση, το σήµα δηλαδή που χαρακτηρίζει το σύστηµά µας και τη λειτουργία του. Ας δούµε µερικές διατάξεις συστηµάτων που συναντώνται συχνά στην πράξη. (αʹ) Συστήµατα σε σειρά (ϐʹ) Συστήµατα σε σειρά - ισοδύναµη διάταξη Σχήµα 3: Συστήµατα σε σειρά Στο Σχήµα 3αʹ, ϕαίνονται δυο συστήµατα σε σειρά. Η έξοδος από ένα τέτοιο σύστηµα, y s1 (t), είναι : y s1 (t) = (x 1 (t) h 1 (t)) h 2 (t) = x 1 (t) (h 1 (t) h 2 (t)) (27) λόγω της αντιµεταθετικής ιδιότητας της συνέλιξης. Άρα η διάταξη στο σχήµα 3βʹ είναι µια ισοδύναµη διάταξη για το παραπάνω σύστηµα.

10 Εφαρµοσµένα Μαθηµατικά για Μηχανικούς /16 10 (αʹ) Παράλληλα συστήµατα (ϐʹ) Παράλληλα συστήµατα - ισοδύναµη διάταξη Σχήµα 4: Παράλληλα συστήµατα Στο Σχήµα 4αʹ, ϕαίνονται δυο συστήµατα σε παραλληλία. Η έξοδος από ένα τέτοιο σύστηµα, y s1 (t), είναι : y s1 (t) = (x 1 (t) h 1 (t)) + (x 1 (t) h 2 (t)) = x 1 (t) (h 1 (t) + h 2 (t)) (28) λόγω ιδιοτήτων της συνέλιξης. Εστω ότι έχουµε τη διάταξη στο σχήµα 4βʹ, για την οποία η έξοδος είναι y s2 (t) = x 1 (t) (h 1 (t) + h 2 (t)) = (x 1 (t) h 1 (t)) + (x 1 (t) h 2 (t)) (29) που είναι ισοδύναµη µε τη σχέση 28, άρα οι δυο διατάξεις είναι ισοδύναµες.

c xy [n] = x[k]y[n k] (1)

c xy [n] = x[k]y[n k] (1) Συνέλιξη Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 6 Οκτωβρίου 2015 1 Εισαγωγή Η συνέλιξη αποτελεί μια πράξη πολύ σημαντική,

Διαβάστε περισσότερα

= t2 t T 2T 3t + 9T, για t < 3T και t 2T 2T t < 3T (Σχήµα

= t2 t T 2T 3t + 9T, για t < 3T και t 2T 2T t < 3T (Σχήµα ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-15: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 016-17 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Συνέλιξη και Συστήµατα Σε αυτό

Διαβάστε περισσότερα

x(t) ax 1 (t) y(t) = 1 ax 1 (t) = (1/a)y 1(t) x(t t 0 ) y(t t 0 ) =

x(t) ax 1 (t) y(t) = 1 ax 1 (t) = (1/a)y 1(t) x(t t 0 ) y(t t 0 ) = ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 26-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης

Διαβάστε περισσότερα

bx 2 (t). Για είσοδο ax 1(t) + bx 2 (t), η έξοδος είναι x(t t 0 ) και y(t t 0) = t t 0 x(t) ax 1 (t 1) + bx 2 (t 1) sin ax 1 (t)+

bx 2 (t). Για είσοδο ax 1(t) + bx 2 (t), η έξοδος είναι x(t t 0 ) και y(t t 0) = t t 0 x(t) ax 1 (t 1) + bx 2 (t 1) sin ax 1 (t)+ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 5 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής Ασκηση. αʹ Γραµµικό: Είναι y = y = Τρίτη Σειρά Ασκήσεων

Διαβάστε περισσότερα

e jθ = cos θ j sin θ(1.2)

e jθ = cos θ j sin θ(1.2) Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκων : Α. Μουχτάρης Εφαρµοσµένα Μαθηµατικά για Μηχανικούς - Λύσεις ης Σειράς Ασκήσεων Ασκηση. Σχέσεις του Euler

Διαβάστε περισσότερα

x(t) 2 = e 2 t = e 2t, t > 0

x(t) 2 = e 2 t = e 2t, t > 0 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 216-17 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις σε Σήµατα και Συστήµατα Ασκηση

Διαβάστε περισσότερα

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων.

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων. 2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ Γενικά τι είναι - Ορισµός. Τρόποι σύνδεσης συστηµάτων. Κατηγορίες των συστηµάτων ανάλογα µε τον αριθµό και το είδος των επιτρεποµένων εισόδων και εξόδων. Ιδιότητες των

Διαβάστε περισσότερα

x(t) = 4 cos(2π400t π/3) + 2 cos(2π900t + π/8) + cos(2π1200t) h(t) = 2000sinc(2000t) = h(t) = 2000sinc(2000t) H(f) = rect

x(t) = 4 cos(2π400t π/3) + 2 cos(2π900t + π/8) + cos(2π1200t) h(t) = 2000sinc(2000t) = h(t) = 2000sinc(2000t) H(f) = rect ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 215-16 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ιάρκεια : 3 ώρες - Ηµεροµηνία

Διαβάστε περισσότερα

y[n] 5y[n 1] + 6y[n 2] = 2x[n 1] (1) y h [n] = y h [n] = A 1 (2) n + A 2 (3) n (4) h[n] = 0, n < 0 (5) h[n] 5h[n 1] + 6h[n 2] = 2δ[n 1] (6)

y[n] 5y[n 1] + 6y[n 2] = 2x[n 1] (1) y h [n] = y h [n] = A 1 (2) n + A 2 (3) n (4) h[n] = 0, n < 0 (5) h[n] 5h[n 1] + 6h[n 2] = 2δ[n 1] (6) Ασκήσεις σε Σήματα Συστήματα Διακριτού Χρόνου Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 9 Οκτωβρίου 015 1. Ενα αιτιατό ΓΧΑ σύστημα

Διαβάστε περισσότερα

y(t) = x(t) + e x(2 t)

y(t) = x(t) + e x(2 t) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2015-16 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΕΞΕΤΑΣΗ ΠΡΟΟ ΟΥ - Σχόλια ιάρκεια : 3 ώρες Ηµεροµηνία

Διαβάστε περισσότερα

LCs 2 + RCs + 1. s 1,2 = RC ± R 2 C 2 4LC 2LC. (s 2)(s 3) = A. = 4 s 3 s=2 s + 2 B = (s 2)(s 3) (s 3) s=3. = s + 2. x(t) = 4e 2t u(t) + 5e 3t u(t) (2)

LCs 2 + RCs + 1. s 1,2 = RC ± R 2 C 2 4LC 2LC. (s 2)(s 3) = A. = 4 s 3 s=2 s + 2 B = (s 2)(s 3) (s 3) s=3. = s + 2. x(t) = 4e 2t u(t) + 5e 3t u(t) (2) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 06-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λύσεις Εβδοµης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης

Διαβάστε περισσότερα

a k y[n k] = b l x[n l] (12.1)

a k y[n k] = b l x[n l] (12.1) Κεφάλαιο 12 Ανάλυση Σημάτων και Συστημάτων στο Πεδίο του Διακριτού Χρόνου 12.1 Εισαγωγή Σε αυτό το κεφάλαιο, θα συζητήσουμε για το πως μπορούμε να μελετάμε γραμμικά και χρονικά αμετάβλητα ΓΧΑ) συστήματα

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Ιδιότητες της Συνέλιξης Η συνέλιξη μετατοπισμένων σημάτων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2013 ιδάσκων : Π.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2013 ιδάσκων : Π. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 203 ιδάσκων : Π. Τσακαλίδης Λύσεις Πέµπτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 23/05/203 Ηµεροµηνία

Διαβάστε περισσότερα

Σήματα και Συστήματα

Σήματα και Συστήματα Σήματα και Συστήματα Διάλεξη 12: Ιδιότητες του Μετασχηματισμού aplace Ο αντίστροφος Μετασχηματισμός aplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ιδιότητες του Μετασχηματισμού aplace 1. Ιδιότητες

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Διάλεξη 3 η Τα Συστήματα στις Τηλεπικοινωνίες

Διαβάστε περισσότερα

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να:

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: 6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: ορίσουµε το Μετασχηµατισµό Laplace (ML) και το Μονόπλευρο Μετασχηµατισµό Laplace (MML) και να περιγράψουµε

Διαβάστε περισσότερα

x(t) = 4 cos(2π600t π/3) + 2 cos(2π900t + π/8) + cos(2π1200t) (3)

x(t) = 4 cos(2π600t π/3) + 2 cos(2π900t + π/8) + cos(2π1200t) (3) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ιάρκεια : 3 ώρες Ρήτρα τελικού : 4.0/0.0 Θέµα ο - Περιοδικά

Διαβάστε περισσότερα

x(t) = sin 2 (5πt) cos(22πt) = x 2 (t)dt

x(t) = sin 2 (5πt) cos(22πt) = x 2 (t)dt ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 6-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Σειρές Fourier. Εστω το σήµα xt

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2017-18 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Πέµπτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης :

Διαβάστε περισσότερα

dx T0 (t) 2 T rect ( t sinc = 1 2 sinc ( k

dx T0 (t) 2 T rect ( t sinc = 1 2 sinc ( k ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 5-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Επαναληπτικά Θέµατα. Βρείτε το

Διαβάστε περισσότερα

x(t)e jωt dt = e 2(t 1) u(t 1)e jωt dt = e 2 t 1 e jωt dt =

x(t)e jωt dt = e 2(t 1) u(t 1)e jωt dt = e 2 t 1 e jωt dt = Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκν : Α. Μουχτάρης Εφαρµοσµένα Μαθηµατικά για Μηχανικούς- Λύσεις 3η Σειρά Ασκήσεν 03/05/0 Λύσεις 3ης Σειράς Ασκήσεν

Διαβάστε περισσότερα

x(t) = 2 + cos(2πt) sin(πt) 3 cos(3πt) cos(θ + π) = cos(θ). (3)

x(t) = 2 + cos(2πt) sin(πt) 3 cos(3πt) cos(θ + π) = cos(θ). (3) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 5-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Σειρές Fourier. Να σχεδιάσετε το

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην

Διαβάστε περισσότερα

x(t) = e st = e (σ+j2πf)t (7.1) h(t)e st dt (7.4) H(s) = y(t) = H{e st } = H(s)e st (7.5)

x(t) = e st = e (σ+j2πf)t (7.1) h(t)e st dt (7.4) H(s) = y(t) = H{e st } = H(s)e st (7.5) Κεφάλαιο 7 Συστήματα στο χώρο του Laplace 7. Εισαγωγή Ο μετασχ. Laplace είναι ένα πολύτιμο εργαλείο για την ανάλυση συστημάτων. Η ικανότητά του να ερμηνεύει συχνοτικά πλήθος σημάτων, σημαντικά περισσότερων

Διαβάστε περισσότερα

x[n] = e u[n 1] 4 x[n] = u[n 1] 4 X(z) = z 1 H(z) = (1 0.5z 1 )(1 + 4z 2 ) z 2 (βʹ) H(z) = H min (z)h lin (z) 4 z 1 1 z 1 (z 1 4 )(z 1) (1)

x[n] = e u[n 1] 4 x[n] = u[n 1] 4 X(z) = z 1 H(z) = (1 0.5z 1 )(1 + 4z 2 ) z 2 (βʹ) H(z) = H min (z)h lin (z) 4 z 1 1 z 1 (z 1 4 )(z 1) (1) Ασκήσεις με Συστήματα στο Χώρο του Ζ Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 7 Νοεμβρίου 015 1. Υπολόγισε τον μετ. Ζ και την

Διαβάστε περισσότερα

ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα 3: ΣΥΝΕΛΙΞΗ

ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα 3: ΣΥΝΕΛΙΞΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα 3: ΣΥΝΕΛΙΞΗ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Αντιστρέψιµα και µη αντιστρέψιµα συστήµατα

Αντιστρέψιµα και µη αντιστρέψιµα συστήµατα Αντιστρέψιµα και µη αντιστρέψιµα συστήµατα Ένα σύστηµα λέγεται αντιστρέψιµο, όταν η γνώση του σήµατος εξόδου καθιστά εφικτό τον υπολογισµό του σήµατος εισόδου. x () y ( ) c x ( ) x () y() Αντίστροφο σύστηµα

Διαβάστε περισσότερα

X(t) = A cos(2πf c t + Θ) (1) 0, αλλού. 2 cos(2πf cτ) (9)

X(t) = A cos(2πf c t + Θ) (1) 0, αλλού. 2 cos(2πf cτ) (9) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 05-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Τυχαίες ιαδικασίες Ασκηση. Εστω

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Μετασχηματισμός Fourier Στο κεφάλαιο αυτό θα εισάγουμε και θα μελετήσουμε

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Σήματα και Συστήματα στο Πεδίο του Χρόνου Επιμέλεια: Αθανάσιος N. Σκόδρας, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα Ι

Τηλεπικοινωνιακά Συστήματα Ι Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 1: Σήματα και Συστήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μέρος 1: Σήματα Συνεχούς Χρόνου 2 Σήματα Συνεχούς Χρόνου 1. Κατηγορίες Σημάτων

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Φυσική Σημασία του Μετασχηματισμού Fourier Ο μετασχηματισμός Fourier

Διαβάστε περισσότερα

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο. Aνάλυση Σήματος. 2 η Σειρά Ασκήσεων Θεόδωρος Αλεξόπουλος

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο. Aνάλυση Σήματος. 2 η Σειρά Ασκήσεων Θεόδωρος Αλεξόπουλος Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Aνάλυση Σήματος 2 η Σειρά Ασκήσεων Θεόδωρος Αλεξόπουλος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

400 = t2 (2) t = 15.1 s (3) 400 = (t + 1)2 (5) t = 15.3 s (6)

400 = t2 (2) t = 15.1 s (3) 400 = (t + 1)2 (5) t = 15.3 s (6) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής Πρώτη Σειρά Ασκήσεων - Λύσεις Ασκηση 1. Θεωρούµε ως χρονικό σηµείο αναφοράς τη στιγµή που

Διαβάστε περισσότερα

[ ], σχηµατίζουµε το άθροισµα. Το άθροισµα αυτό είναι µια δυαδική πράξη η οποία αντιστοιχεί στις ακολουθίες f [ 1

[ ], σχηµατίζουµε το άθροισµα. Το άθροισµα αυτό είναι µια δυαδική πράξη η οποία αντιστοιχεί στις ακολουθίες f [ 1 ΚΕΦΑΛΑΙΟ 4 ΣΥΝΕΛΙΞΗ 4.. ΣΥΝΕΛΙΞΗ Στην προηγούµενη παράγραφο εισαγάγαµε την ιδέα της συνέλιξης από τα συµφραζόµενα των γραµµικών συστηµάτων. Σ' αυτήν την παράγραφο ορίζουµε τη συνέλιξη σαν µια πράξη η οποία

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμός Laplace και ΓΧΑ Συστήματα Συνάρτηση μεταφοράς αιτιατών και ευσταθών συστημάτων Συστήματα που περιγράφονται από ΔΕ Διαγράμματα Μπλοκ Μετασχηματισμός

Διαβάστε περισσότερα

x(t) = cos(2π100t + π/3) sin(2π250t + π/4) (1)

x(t) = cos(2π100t + π/3) sin(2π250t + π/4) (1) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-15: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 016-17 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Τέταρτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 16/3/017

Διαβάστε περισσότερα

Ισοδυναµία τοπολογιών βρόχων.

Ισοδυναµία τοπολογιών βρόχων. Ισοδυναµία τοπολογιών βρόχων. Κατά κανόνα, συµφέρει να ανάγουµε τις «πολύπλοκες» τοπολογίες βρόχων σε έναν απλό κλειστό βρόχο, µε µία συνάρτηση µεταφοράς στον κατ ευθείαν κλάδο και µία συνάρτηση µεταφοράς

Διαβάστε περισσότερα

11 Το ολοκλήρωµα Riemann

11 Το ολοκλήρωµα Riemann Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 4: Μελέτη των Γραμμικών και Χρονικά Αμετάβλητων Συστημάτων. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 4: Μελέτη των Γραμμικών και Χρονικά Αμετάβλητων Συστημάτων. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 4: Μελέτη των Γραμμικών και Χρονικά Αμετάβλητων Συστημάτων Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Μελέτη των Γραμμικών και Χρονικά Αμετάβλητων Συστημάτων Η Κρουστική Απόκριση

Διαβάστε περισσότερα

( t) όπου το * αντιστοιχεί σε συνέλιξη και. (t 2) * x 2

( t) όπου το * αντιστοιχεί σε συνέλιξη και. (t 2) * x 2 Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΥ 0: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδηµαϊκό έτος 0-3 -- Εαρινό Εξάµηνο Σειρά Ασκήσεων αρ. 6 Παρασκευή 5 Απριλίου

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Περίληψη Ευστάθεια Συστημάτων Απόκριση ΓΧΑ Συστημάτων σε Διεγέρσεις

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 205-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Εβδοµη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 23/4/206

Διαβάστε περισσότερα

4 Συνέχεια συνάρτησης

4 Συνέχεια συνάρτησης 4 Συνέχεια συνάρτησης Σε αυτό το κεφάλαιο ϑα µελετήσουµε την έννοια της συνέχειας συνάρτησης. Πιο συγκεκριµένα πότε ϑα λέγεται µια συνάρτηση συνεχής σε ένα σηµείο το οποίο ανήκει στο πεδίο ορισµού της

Διαβάστε περισσότερα

Σ. Φωτόπουλος -1- ΨΕΣ- AΣΚΗΣΕΙΣ-ΛΥΣΕΙΣ- Κεφάλαιο 2 ο

Σ. Φωτόπουλος -1- ΨΕΣ- AΣΚΗΣΕΙΣ-ΛΥΣΕΙΣ- Κεφάλαιο 2 ο Σ. Φωτόπουλος -- ΨΕΣ- AΣΚΗΣΕΙΣ-ΛΥΣΕΙΣ- Κεφάλαιο ο Άσκηση. Περιγράψτε τα σήµατα που φαίνονται στο σχήµα. χρησιµοποιώντας κατάλληλα την συνάρτηση µοναδιαίας κρούσης δ[]. x[] + x[] + + + + + (a) (b) -.5 Σχήµα.

Διαβάστε περισσότερα

sin(30 o ) 4 cos(60o ) = 3200 Nm 2 /C (7)

sin(30 o ) 4 cos(60o ) = 3200 Nm 2 /C (7) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής Πέµπτη Σειρά Ασκήσεων - Λύσεις Ασκηση 1. (αʹ Η ηλεκτρική ϱοή διαµέσου µιας επιφάνειας A είναι

Διαβάστε περισσότερα

y[n] ay[n 1] = x[n] + βx[n 1] (6)

y[n] ay[n 1] = x[n] + βx[n 1] (6) Ασκήσεις με το Μετασχηματισμό Fourier Διακριτού Χρόνου Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 8 Οκτωβρίου 015 1. Εστω το

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 2: Συστήματα διακριτού χρόνου Συστήματα διακριτού χρόνου Σύστημα διακριτού χρόνου: Μετασχηματισμός Τ που μετατρέπει το σήμα εισόδου x[] στο σήμα

Διαβάστε περισσότερα

Οι ιδιότητες και οι µέθοδοι επίλυσης διαφορικών εξισώσεων παρουσιάζονται σε µία σειρά εγχειριδίων µαθηµατικών

Οι ιδιότητες και οι µέθοδοι επίλυσης διαφορικών εξισώσεων παρουσιάζονται σε µία σειρά εγχειριδίων µαθηµατικών Γιώργος Αλογοσκούφης, Δυναµική Μακροοικονοµική, Αθήνα 2015 Μαθηµατικό Παράρτηµα 1 Διαφορικές Εξισώσεις Στο µαθηµατικό αυτό παράρτηµα ορίζουµε και αναλύουµε την επίλυση απλών συστηµάτων γραµµικών διαφορικών

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Ακαδημαϊκό Έτος Παρουσίαση Νο. 2. Δισδιάστατα Σήματα και Συστήματα #1

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Ακαδημαϊκό Έτος Παρουσίαση Νο. 2. Δισδιάστατα Σήματα και Συστήματα #1 Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ακαδημαϊκό Έτος 009-0 Παρουσίαση Νο. Δισδιάστατα Σήματα και Συστήματα # Βασικοί ορισμοί () Κάθε εικόνα είναι ένα δισδιάστατο (-D) σήμα. Αναλογική εικόνα: x α Ψηφιακή

Διαβάστε περισσότερα

Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών

Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών Το εκπαιδευτικό υλικό που ακολουθεί αναπτύχθηκε στα πλαίσια του έργου «Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών», του Μέτρου «Εισαγωγή

Διαβάστε περισσότερα

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ] Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες-εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Συνδιασπορά - Συσχέτιση Τυχαίων Μεταβλητών Επιµέλεια : Κωνσταντίνα

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου

Συστήματα Αυτομάτου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Β: Ευστάθεια Συστήματος (Α Μέρος) Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών

Διαβάστε περισσότερα

6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE 6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE Σκοπός του κεφαλαίου είναι να ορίσει τον αμφίπλευρο μετασχηματισμό aplace ή απλώς μετασχηματισμό aplace (Μ) και το μονόπλευρο μετασχηματισμό aplace (ΜΜ), να περιγράψει

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #3 Ιδιάζοντα σήματα Βασικές κατηγορίες συστημάτων Διασυνδέσεις συστημάτων Ιδιάζοντα σήματα (singular signals) Τα ιδιάζοντα σήματα είναι σήματα τα οποία είναι ιδεατά

Διαβάστε περισσότερα

. Σήματα και Συστήματα

. Σήματα και Συστήματα Σήματα και Συστήματα Βασίλειος Δαλάκας & Παναγιώτης Ριζομυλιώτης Τμήμα Πληροφορικής & Τηλεματικής Χαροκόπειο Πανεπιστήμιο Σήματα και Συστήματα 1/14 Πρόβλημα 1 (βιβλίο σελίδα 27) Να υπολογιστεί η βασική

Διαβάστε περισσότερα

Ο Μετασχηματισμός Ζ. Ανάλυση συστημάτων με το μετασχηματισμό Ζ

Ο Μετασχηματισμός Ζ. Ανάλυση συστημάτων με το μετασχηματισμό Ζ Ο Μετασχηματισμός Ζ Ανάλυση συστημάτων με το μετασχηματισμό Ζ Ο μετασχηματισμός Z (Ζ-Τransform: ZT) χρήσιμο μαθηματικό εργαλείο για την ανάλυση των διακριτών σημάτων και συστημάτων αποτελεί ό,τι ο μετασχηματισμός

Διαβάστε περισσότερα

Κεφάλαιο 4 ιανυσµατικοί Χώροι

Κεφάλαιο 4 ιανυσµατικοί Χώροι Κεφάλαιο 4 ιανυσµατικοί Χώροι 4 ιανυσµατικοί χώροι - Βασικοί ορισµοί και ιδιότητες ιανυσµατικοί Χώροι Ένας ιανυσµατικός Χώρος V (δχ) είναι ένα σύνολο από µαθηµατικά αντικείµενα (αριθµούς, διανύσµατα, πίνακες,

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Ακολουθίες πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας α Κάθε

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Όταν θα έχουµε τελειώσει το κεφάλαιο αυτό θα µπορούµε να: υπολογίσουµε το µετασχηµατισµό aplace στοιχειωδών σηµάτων. αναφέρουµε τις ιδιότητες του µετασχηµατισµού aplace. Σεραφείµ Καραµπογιάς 6. ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Μερικά πρώτα παραδείγµατα συστηµάτων διακριτού χρόνου

Μερικά πρώτα παραδείγµατα συστηµάτων διακριτού χρόνου ΣΥΣΗΜΑΑ ΙΑΚΡΙΟΥ ΧΡΟΝΟΥ Από αυστηρά µαθηµατικής απόψεως σαν σύστηµα διακριτού χρόνου ορίζεται ένας οποιοσδήποτε µετασχηµατισµός ή τελεστής (operator) ο οποίος δρα σε µία ακολουθία x [ που συνήθως θεωρείται

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Συστήματα Επιμέλεια: Πέτρος Π. Γρουμπός, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

3 Αναδροµή και Επαγωγή

3 Αναδροµή και Επαγωγή 3 Αναδροµή και Επαγωγή Η ιδέα της µαθηµατικής επαγωγής µπορεί να επεκταθεί και σε άλλες δοµές εκτός από το σύνολο των ϕυσικών N. Η ορθότητα της µαθηµατικής επαγωγής ϐασίζεται όπως ϑα δούµε λίγο αργότερα

Διαβάστε περισσότερα

Ο αντίστροφος μετασχηματισμός Laplace ορίζεται από το μιγαδικό ολοκλήρωμα : + +

Ο αντίστροφος μετασχηματισμός Laplace ορίζεται από το μιγαδικό ολοκλήρωμα : + + Μετασχηματισμός aplace ορίζεται ως εξής : t X() [x( t)] xte () dt = = Ο αντίστροφος μετασχηματισμός aplace ορίζεται από το μιγαδικό ολοκλήρωμα : t x(t) = [ X()] = X() e dt π j c C είναι μία καμπύλη που

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Μετασχηματισμός Laplace 1. Ο μετασχηματισμός

Διαβάστε περισσότερα

Σχολικός Σύµβουλος ΠΕ03

Σχολικός Σύµβουλος ΠΕ03 Ασκήσεις Μαθηµατικών Θετικής & Τεχνολογικής Κατεύθυνσης Γ Λυκείου ρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις

Διαβάστε περισσότερα

E = P t = IAt = Iπr 2 t = J (1)

E = P t = IAt = Iπr 2 t = J (1) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής Τέταρτη Σειρά Ασκήσεων - Λύσεις Ασκηση 1. Η ενέργεια που παραδίδεται στο αυτί µας σε χρόνο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 4

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 10 Νοεµβρίου 2016 Ασκηση 1. Να ϐρεθούν

Διαβάστε περισσότερα

Γεωµετρικη Θεωρια Ελεγχου

Γεωµετρικη Θεωρια Ελεγχου Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Σχολη Θετικων Επιστηµων Τµηµα Μαθηµατικων Χειµερινό Εξάµηνο 2016-2017 Γεωµετρικη Θεωρια Ελεγχου εύτερη Εργασία 1. Βρείτε δύο διαφορετικά παραδείγµατα συστηµάτων στο

Διαβάστε περισσότερα

Μετασχηµατισµός Laplace

Μετασχηµατισµός Laplace ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 25/6 Επιµέλεια : Γιώργος Π. Καφεντζης ρ. Επιστήµης Η/Υ Πανεπιστηµίου Κρήτης ρ. Επεξεργασίας Σήµατος

Διαβάστε περισσότερα

1 Ορισµός ακολουθίας πραγµατικών αριθµών

1 Ορισµός ακολουθίας πραγµατικών αριθµών ΜΑΣ 02. Απειροστικός Λογισµός Ι Ορισµός ακολουθίας πραγµατικών αριθµών Ορισµός.. Ονοµάζουµε ακολουθία πραγµατικών αριθµών κάθε απεικόνιση του συνόλου N των ϕυσικών αριθµών, στο σύνολο R των πραγµατικών

Διαβάστε περισσότερα

2. Ανάλυση Γραμμικών Χρονικά Αμετάβλητων Συστημάτων (ΓΧΑΣ) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1

2. Ανάλυση Γραμμικών Χρονικά Αμετάβλητων Συστημάτων (ΓΧΑΣ) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 2. Ανάλυση Γραμμικών Χρονικά Αμετάβλητων Συστημάτων (ΓΧΑΣ) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Επίλυση Εξισώσεων Κατάστασης Δεδοµένου του ΓΧΑΣ nn nm pn pm όπου A R B R C R D R Τίθεται το ζήτηµα της επίλυσης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής. εύτερη Σειρά Ασκήσεων - Λύσεις.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής. εύτερη Σειρά Ασκήσεων - Λύσεις. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής εύτερη Σειρά Ασκήσεων - Λύσεις Ασκηση 1. Από το ύψος και τη γωνία που µας δίνεται, έχουµε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΚΕΦΑΛΑΙΟ 1ο: ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1ο: ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ) Copyright 2015 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com Αδεια χρήσης 3η Εκδοση, Ιωάννινα, Σεπτέµβριος 2015 Περιεχόµενα 1 ΣΥΣΤΗΜΑΤΑ....................................................

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 8: Ιδιότητες του Μετασχηματισμού Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 8: Ιδιότητες του Μετασχηματισμού Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 8: Ιδιότητες του Μετασχηματισμού ourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ιδιότητες του Μετασχηματισμού ourier 1. Ιδιότητες του Μετασχηματισμού ourier 2. Θεώρημα

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Lebesgue - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Lebesgue - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Ολοκλήρωµα Lebesgue - Ασκήσεις Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 205/6 Επιµέλεια : Γιώργος Π. Καφεντζης ρ. Επιστήµης Η/Υ Πανεπιστηµίου Κρήτης ρ. Επεξεργασίας

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι Βασικές Έννοιες Σήματα Κατηγορίες Σημάτων Συνεχούς/ Διακριτού Χρόνου, Αναλογικά/ Ψηφιακά Μετασχηματισμοί Σημάτων Χρόνου: Αντιστροφή, Κλιμάκωση, Μετατόπιση Πλάτους Βασικά

Διαβάστε περισσότερα

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές Κ Ι ΠΑΠΑΧΡΗΣΤΟΥ Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ Ιδιότητες & Εφαρµογές ΠΕΙΡΑΙΑΣ 2013 ΟΡΙΖΟΥΣΕΣ Έστω 2 2 πίνακας: a b A= c d Όπως γνωρίζουµε, η ορίζουσα του Α είναι ο αριθµός a

Διαβάστε περισσότερα

Μηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν

Μηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 7/5/2000 Μηχανική ΙI Μετασχηµατισµοί Legendre Έστω µια πραγµατική συνάρτηση. Ορίζουµε την παράγωγο συνάρτηση της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα).

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #5 Ιδιότητες του Μετασχηματισμού Fourier (Συνέχεια) Παραδείγματα Ιδιότητες του Μετασχηματισμού Fourier Χρονική κλιμάκση j xt () X( j) xat ( ) X( ) a a xate ( ) τ=at

Διαβάστε περισσότερα

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Κεφάλαιο 5 ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Οταν ένα µεταβλητό µέγεθος εξαρτάται αποκλειστικά από τις µεταβολές ενός άλλου µεγέθους, τότε η σχέση που συνδέει

Διαβάστε περισσότερα

14 Εφαρµογές των ολοκληρωµάτων

14 Εφαρµογές των ολοκληρωµάτων 14 Εφαρµογές των ολοκληρωµάτων 14.1 Υπολογισµός εµβαδών µε την µέθοδο των παράλληλων διατοµών Θεωρούµε µια ϕραγµένη επίπεδη επιφάνεια A µε οµαλό σύνορο, δηλαδή που περιγράφεται από µια συνεχή συνάρτηση.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 205/6 Επιµέλεια : Γιώργος Π. Καφεντζης ρ. Επιστήµης Η/Υ Πανεπιστηµίου Κρήτης ρ. Επεξεργασίας

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΠΛΗΡΟΦΟΡΙΚΗ (ΘΕ ΠΛΗ ) ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ TEΛΙΚΗΣ ΕΞΕΤΑΣΗΣ 7 Ιουνίου 8 Θέµα ο ( µονάδες) α) ( µονάδες) yz yz του διανυσµατικού

Διαβάστε περισσότερα

[A I 3 ] [I 3 A 1 ].

[A I 3 ] [I 3 A 1 ]. ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΤΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟ ΟΥ ΣΕΠΤΕΜΒΡΙΟΥ 9 (α) Να ϐρεθεί ο αντίστροφος του πίνακα A = 6 4 (ϐ) Εστω b, b, b στο R Να λύθεί το σύστηµα x = b 6x + x + x = b x

Διαβάστε περισσότερα

( s ) Παραγώγιση στο χρόνο. Ολοκλήρωση στο χρόνο. Θεώρηµα αρχικής και τελικής τιµής Ο ΜΟΝΟΠΛΕΥΡΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE. Σεραφείµ Καραµπογιάς

( s ) Παραγώγιση στο χρόνο. Ολοκλήρωση στο χρόνο. Θεώρηµα αρχικής και τελικής τιµής Ο ΜΟΝΟΠΛΕΥΡΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE. Σεραφείµ Καραµπογιάς Ο ΜΟΝΟΠΛΕΥΡΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE Παραγώγιση στο χρόνο d x( ) sx ( s ) x ( ) [ x ) ] X X x( ) e ( s Μετασχηµατισµός aplace παραγώγου dx ( ) sx Ολοκλήρωση στο χρόνο Μετασχηµατισµός aplace ολοκληρώµατος

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt014/nt014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114

Διαβάστε περισσότερα

2.1 ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗ

2.1 ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗ ΚΕΦΑΛΑΙΟ Ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ. ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ ΣΥΝΑΡΤΗΣΗΣ Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β λέγεται μια διαδικασία (κανόνας), με την οποία κάθε στοιχείο του

Διαβάστε περισσότερα

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών Ενότητα: ιανυσµατικοί χώροι Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Η αδυναµία επίλυσης της πλειοψηφίας των µη γραµµικών εξισώσεων µε αναλυτικές µεθόδους, ώθησε στην ανάπτυξη αριθµητικών µεθόδων για την προσεγγιστική επίλυσή τους, π.χ. συν()

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Ακαδημαϊκό Έτος Παρουσίαση Νο. 2. Δισδιάστατα Σήματα και Συστήματα #1

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Ακαδημαϊκό Έτος Παρουσίαση Νο. 2. Δισδιάστατα Σήματα και Συστήματα #1 Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ακαδημαϊκό Έτος 06-7 Παρουσίαση Νο. Δισδιάστατα Σήματα και Συστήματα # Βασικοί ορισμοί () Κάθε εικόνα είναι ένα δισδιάστατο (-D) σήμα. Αναλογική εικόνα: x t, t,

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 1

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 1 Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 1 Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Δισδιάστατα σήματα

Διαβάστε περισσότερα

u = x t t = t 0 = T = x u = = s t = = s u = u bat 1 + T c = 343 m/s 273

u = x t t = t 0 = T = x u = = s t = = s u = u bat 1 + T c = 343 m/s 273 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-: Φυσική Ι Χειµερινό Εξάµηνο 5 ιδάσκων : Γ. Καφεντζής Τέταρτη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : //5 Ηµεροµηνία Παράδοσης : 7//5 Σηµείωση : Επιτρέπεται

Διαβάστε περισσότερα

ΚΥΚΛΩΜΑ RC ΜΕ ΚΡΟΥΣΤΙΚΗ ΔΙΕΓΕΡΣΗ

ΚΥΚΛΩΜΑ RC ΜΕ ΚΡΟΥΣΤΙΚΗ ΔΙΕΓΕΡΣΗ ΚΥΚΛΩΜΑ ΜΕ ΚΡΟΥΣΤΙΚΗ ΙΕΓΕΡΣΗ Εννοούμε την απόκριση ενός γραμμικού, χρονικά αμετάβλητου κυκλώματος σε μια μοναδιαία κρουστική συνάρτηση δ() εφαρμοζόμενη στον χρόνο = 0 (απόκριση μηδενικής κατάστασης). Η

Διαβάστε περισσότερα