[ ], σχηµατίζουµε το άθροισµα. Το άθροισµα αυτό είναι µια δυαδική πράξη η οποία αντιστοιχεί στις ακολουθίες f [ 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "[ ], σχηµατίζουµε το άθροισµα. Το άθροισµα αυτό είναι µια δυαδική πράξη η οποία αντιστοιχεί στις ακολουθίες f [ 1"

Transcript

1 ΚΕΦΑΛΑΙΟ 4 ΣΥΝΕΛΙΞΗ 4.. ΣΥΝΕΛΙΞΗ Στην προηγούµενη παράγραφο εισαγάγαµε την ιδέα της συνέλιξης από τα συµφραζόµενα των γραµµικών συστηµάτων. Σ' αυτήν την παράγραφο ορίζουµε τη συνέλιξη σαν µια πράξη η οποία εµπλέκει δύο αυθαίρετα σήµατα και αναπτύσσουµε τις ιδιότητές της. Σήµατα διακριτού χρόνου εδοµένων δύο ακολουθιών f [ ] και f [ ], σχηµατίζουµε το άθροισµα f[ ] = f[ ] f[ ] f[ ] f[ ] f[ ] f[ ] (4.4). Το άθροισµα αυτό είναι µια δυαδική πράξη η οποία αντιστοιχεί στις ακολουθίες f [ ] και f [ ] την ακολουθία f[]. Η παραπάνω πράξη δηλώνεται µε f[ ] f[ ] και ονοµάζεται διακριτή συνέλιξη. Άρα, f [ ] f [ ] = f [ ] f [ ] = Παράδειγµα 4.5 Θεωρούµε τις ακολουθίες Από τον ορισµό (4.5) έπεται ότι f [ ] = α f [ ] = b f[ ] f[ ] = α b = b ( α / b) Το τελευταίο άθροισµα είναι µια γεωµετρική σειρά µε λόγο a/b. Άρα [βλέπε (3.5)], α α ( + ) = b α b = + + ( α b ) α b α b = = (4.5) (4.6) Το Θεώρηµα της Συνέλιξης για Μετασχηµατισµούς-Z Θα δείξουµε ότι ο µετασχηµατισµός-z της συνέλιξης δύο ακολουθιών ισούται µε το γινόµενο των µετασχηµατισµών-z των : Εάν f[ ] F( z) f[ ] F( z) τότε f[ ] f[ ] F( z) F( z) (4.7) Το θεώρηµα αυτό πράγµατι αποδείχτηκε στην τελευταία παράγραφο διότι [βλέπε (4.5) και (3.68)] y [ ] = x[ ] h[ ] Y ( z ) = X ( z ) H ( z ) Η απόδειξη ήταν, όµως, βασισµένη στις ιδιότητες των γραµµικών συστηµάτων. ίνουµε παρακάτω µια απόδειξη για αυθαίρετα σήµατα. ΑΠΟ ΕΙΞΗ Από τον ορισµό των µετασχηµατισµών-z έπεται ότι F ( z) = f [ ] + f [ ] z f [ ] z /7/988 :3: µµ

2 ΣΥΝΕΛΙΞΗ Πολλαπλασιάζοντας και τις δύο πλευρές µεf ( z ), λαµβάνουµε την F( z) F( z) = f[ ] F( z) + f[ ] z F( z) f[ ] z F( z) +... (4.8). Έπειτα, παίρνουµε τους αντίστροφους µετασχηµατισµούς-z και των δύο πλευρών της (4.8) χρησιµοποιώντας το θεώρηµα της µετατόπισης (3.34): f [ ] U[ ] z F ( z) Και εφ' όσον U[-]= για >, συµπεραίνουµε ότι η αντιστροφή του δεξιού µέλους της (4.8) είναι το άθροισµα f [ ] f [ ] + f [ ] f [ ] f [ ] f [ ] Αυτό έπεται από την (4.7) διότι το παραπάνω άθροισµα ισούται µε τη συνέλιξη των ακολουθιών f [ ] και f [ ]. Ιδιότητες Οι δύο παρακάτω ιδιότητες της συνέλιξης προκύπτουν εύκολα από την (4.7). Εφ' όσον F( z) F( z) = F( z) F( z), και η αντιστροφή του γινοµένου F( z) F( z) ισούται µε f [ ] f [ ], συµπεραίνουµε ότι ή, ισοδύναµα, f[ ] f[ ] = f[ ] f[ ] (4.9) f [ ] f [ ] = f [ ] f [ ] = = (4.) Τα παραπάνω δείχνουν πως η πράξη της συνέλιξης είναι αντιµεταθετική. Το συµπέρασµα αυτό µπορεί να ληφθεί απ' ευθείας από τον ορισµό εάν αντιστρέψουµε τη σειρά των όρων του αθροίσµατος της σχέσης (4.4). Παροµοίως, εφ' όσον [ F ( z) F ( z)] F ( z) = F ( z)[ F ( z) F ( z)], συµπεραίνουµε ότι 3 3 { f [ ] f [ ]} f3[ ] = f[ ] { f[ ] f3[ ]} (4.). Άρα λοιπόν, η πράξη της συνέλιξης είναι προσετεριστική. Υπολογισµός της συνέλιξης Η συνέλιξη f[] δύο ακολουθιών f [ ] και f [ ] µπορεί να βρεθεί είτε άµεσα από τον ορισµό, είτε έµµεσα από το θεώρηµα της συνέλιξης. Η πρώτη προσέγγιση περιλαµβάνει τον υπολογισµό του αθροίσµατος στην (4.4) για κάθε. Στην δεύτερη προσέγγιση πρέπει να βρούµε τους µετασχηµατισµούς F ( z) και F ( z) των δεδοµένων ακολουθιών και την αντιστροφή του γινοµένου των. Παρακάτω ασχολούµαστε µε τις κύριες εκδοχές αυτού του προβλήµατος, ξεκινώντας µε την έµµεση µέθοδο. Εάν το γινόµενο F ( z) F ( z) είναι µια ρητή συνάρτηση, τότε η f[] µπορεί εύκολα να βρεθεί µέσω της διάσπασης σε απλά κλάσµατα. Παρακάτω δίνουµε ένα παράδειγµα. Παράδειγµα 4.6 Εφ' όσον Επιθυµούµε να βρούµε τη συνέλιξη f[] των ακολουθιών 6. από τη σχέση (4.7) προκύπτει ότι f [ ] = 6. f [ ] = 4. z z 4. z 6. z

3 ΚΕΦΑΛΑΙΟ 4 ΣΥΝΕΛΙΞΗ z 3z z F ( z) = = ( z 6. )( z 4. ) z 6. z 4. Άρα, = σύµφωνα µε την (4.6). Παρακάτω θεωρούµε σήµατα µε πολυωνυµικούς µετασχηµατισµούς. Παράδειγµα 4.7 (α) Υποθέτουµε ότι f[ ] = ä [ ] + ä [ ] + ä [ ] f[ ] = ä [ ] + ä [ ] + ä [ ] όπως στο Σχ Στην περίπτωση αυτή, F ( z) = + z + z F ( z) = + z + z f [] * f [] = f[] F (z)=+z +z F (z)=+z +z ΣΧΗΜΑ 4.7 Πολλαπλασιάζοντας, λαµβάνουµε Άρα (Σχ.4.7), (β) τότε Άρα, Παροµοίως, εάν - - F ( z) F ( z) = + z + 3z + z + z 3 4 f[] f[] = ä [] + ä [ ] + 3ä [ ] + ä [ 3] + ä [ 4] f[ ] = áä[ ] + áä [ ] + áä[ ] f [ ] = bä[ ] + bä[ ] + bä[ ] F ( z) = á + á z + á z F ( z) = b + b z + b z F(z)=+z +3z +z +z 3 4 F( z) F( z) = áb + ( áb + áb ) z + ( áb + áb + áb ) z + ( áb + áb ) z + ( áb ) z Οι συντελεστές του πολυώνυµου αυτού είναι οι τιµές της f[] για =,..., /7/988 :3: µµ

4 ΣΥΝΕΛΙΞΗ f [] * f [] = f[] F (z)=+z +z +z ΣΧΗΜΑ 4.8 Παράδειγµα 4.8 (Σχ. 4.8),τότε -7 Εάν F (z)=+z +z +z F(z)=+z +z +z z +z +z +z +z f[ ] = f[ ] = ä [ ] + ä [ ] + ä [ 6] + ä [ 7] F ( z) = F ( z) = + z + z + z 6 7 F ( z) F ( z) = + z + z + z + 4z + z + z + z + z Η αντιστροφή f[ ] = f[ ] f [ ] του πιο πάνω γινοµένου φαίνεται στο Σχ Τα παραδείγµατα αυτά δείχνουν τη σχέση µεταξύ συνέλιξης και πολλαπλασιασµού πολυώνυµων: εάν δύο πολυώνυµα πολλαπλασιάζονται, οι συντελεστές των συνελίσσονται. Αυτή είναι µια ειδική περίπτωση του θεωρήµατος της συνέλιξης (4.7). Ηµι-γραφική µέθοδος Ο άµεσος υπολογισµός της συνέλιξης διευκολύνεται συχνά µε τη βοήθεια της παρακάτω κατασκευής. Επιθυµούµε να βρούµε το άθροισµα f[ ] = f [ ] f [ ] f [ ] f [ ] f [ ] f [ ] Για τον σκοπό αυτό σχεδιάζουµε τις ακολουθίες f [ ] και f [ ] ως συναρτήσεις του. Έπειτα σχηµατίζουµε την αντίστροφη εικόνα (mirror image) f [ ] της f [ ] ως προς την αρχή. Τελικώς, σχηµατίζουµε την ακολουθία f [ ] ολισθαίνοντας την αρχή του γραφήµατος της f [ ] ως το σηµείο. -4.-

5 ΚΕΦΑΛΑΙΟ 4 ΣΥΝΕΛΙΞΗ á á á f [] b b f [] f[] c b b3 c c c 3 c 4 c5 b f [-] b b f [-] f[]=c =á b - - b b b f [-] f[]=c =á b +á b - f[]=c =á b +á b +á b b b 3 b 3 f [3-] f [4-] f[3]=c 3=á b 3+á b +á b 3 4 f [5-] f[4]=c =á b +á b f[]=c 5 =á b 3 ΣΧΗΜΑ 4.9 Με αυτή την κατασκευή οι δύο παράγοντες του γινοµένου f [ ] f [ ] εµφανίζονται στην ίδια κατακόρυφη γραµµή. Αθροίζοντας για όλα τα, λαµβάνουµε την f[]. Σε όλα τα παραπάνω, είναι ένας σταθερός αριθµός και η µεταβλητή παίρνει όλες τις τιµές για τις οποίες και οι δύο συντελεστές γινοµένου f [ ] f [ ] είναι διάφοροι του µηδενός. Η διαδικασία αυτή εκτελείτε για =,,,... αποφέροντας f[], f[], f[],..., όπως στο Σχ Παράδειγµα 4.9 Στο Σχ. 4. προσδιορίζουµε τη συνέλιξη των ακολουθιών f [ ] = U[ ] U[ 6] f [ ] = U[ ] U[ 5] χρησιµοποιώντας την ηµι-γραφική µέθοδο. Παραδείγµατος χάριν, για να βρούµε την f[5], ολισθαίνουµε την ακολουθία f [ ] πέντε θέσεις προς τα δεξιά. Όπως βλέπουµε από το σχήµα, το γινόµενο f [ ] f [ ] είναι διάφορο του µηδενός για =,, και 3. Αυτό αποφέρει f[5]=3. 5 Αµφίπλευρη Συνέλιξη Η συνέλιξη όπως ορίστηκε στην σχέση (4.4) περιλαµβάνει τις τιµές του µόνον για. Σε κύριες εφαρµογές είναι επιθυµητό να θεωρούνται επίσης και αρνητικές τιµές του. Αυτό οδηγεί στην ακολουθία /7/988 :3: µµ

6 ΣΥΝΕΛΙΞΗ f[ ] = f [ ] f [ ] = f [ ] f [ ] = = (4.) η οποία ορίζεται για κάθε θετικό ή αρνητικό. Η ακολουθία f[] που σχηµατίστηκε έτσι θα ονοµάζεται αµφίπλευρη συνέλιξη των ακολουθιών f [ ] και f [ ]. Παράδειγµα 4. Θεωρούµε τις ακολουθίες f[ ] = f[ ] = > Εφαρµόζοντας την ηµι-γραφική µέθοδο που εισαγάγαµε προηγουµένως στην (4.), συµπεραίναµε πως f [ ] = για > 4, και για 4 έχει τριγωνική µορφή, όπως στο Σχ. 4.. f [] f [] f[] 3 f [-] f [5-] 3 5 f [9-] ΣΧΗΜΑ 4. f [] * f [] = f[] ΣΧΗΜΑ 4. Από την (4.) έπεται ότι εάν f [ ] = για <, τότε f[ ] = f [ ] f [ ] = f [ ] f [ ] = = διότι f [ ] = για > και f [ ] = για <. (4.3) Τελικώς, εάν f [ ] = και f[ ] = για <, τότε η f[] δίνεται από το άθροισµα στην (4.4). Παράδειγµα 4. Με f [ ] = y [ ] και f [ ] U[ ] =, η σχέση (4.3) αποφέρει -4.3-

7 ΚΕΦΑΛΑΙΟ 4 ΣΥΝΕΛΙΞΗ y [ ] U [ ] = y [ ] = Άρα, η συνέλιξη της y[] µε τη βηµατική ακολουθία U[] ισούται µε το άθροισµα όλων των τιµών της y[] από έως. ΣΗΜΕΙΩΣΕΙΣ. Στην προηγούµενη παράγραφο δείξαµε ότι η απόκριση y[] ενός συστήµατος δίνεται από το άθροισµα της σχέσης (4.6), µε την προϋπόθεση ότι η είσοδος x[] εφαρµόζεται για =. Με παρόµοια αιτιολόγηση, µπορούµε να δείξουµε ότι εάν η x[] δεν εφαρµοστεί στο = αλλά στο =, τότε y [ ] = x[ ] h[ ] = x[ ] h[ ] = = (4.4) Άρα, η απόκριση y[] για µια αυθαίρετη είσοδο x[] ισούται µε την αµφίπλευρη συνέλιξη της x[] µε την κρουστική απόκριση h[].. Αιτιολογώντας παροµοίως µε την απόδειξη της (4.7) µπορούµε να δείξουµε ότι εάν F ( z) = f [ ] z F ( z) = f [ ] z = = είναι οι αµφίπλευροι µετασχηµατισµοί-z των σηµάτων f [ ] και f F ( z) F ( z ). της αµφίπλευρης συνέλιξής των f[] ισούται µε [ ], τότε ο µετασχηµατισµός-z F(z) Σήµατα Συνεχούς Χρόνου Η συνέλιξη δύο σηµάτων συνεχούς χρόνου f [ ] και f [ ] είναι το ολοκλήρωµα f () = f() ôf( ôdô ) Όπως και στην περίπτωση διακριτών σηµάτων, η πράξη δηλώνεται µε f () f (). Παράδειγµα 4. Εάν f e ()= α και f e ()= β, τότε Άρα, e αô β( ô) β ( βα) ô f () f () = e e dô = e e dô a (4.5) a e a b b = e = b a e a e b ( ) a b (4.6) Το θεώρηµα της Συνέλιξης για Μετασχηµατισµούς Laplace Θα δείξουµε ότι ο µετασχηµατισµός Laplace της συνέλιξης δύο συναρτήσεων ισούται µε το γινόµενο του µετασχηµατισµού Laplace των συναρτήσεων. Εάν f() F() s f() F() s τότε f() f() F() s F() s (4.7) ΑΠΟ ΕΙΞΗ. Όπως γνωρίζουµε /7/988 :3: µµ

8 ΣΥΝΕΛΙΞΗ s F () s = f () ô e dô Πολλαπλασιάζοντας και τις δύο πλευρές µε F (), s λαµβάνουµε F s F s f ô e sô () () = () F() s dô (4.8) sô Το παραπάνω ολοκλήρωµα είναι µια υπέρθεση όρων της µορφής e F () s πολλαπλασιασµένοι µε f ( ô) dô. Εφ' όσον [βλέπε (.69)] f ô U ô e sô ( ) ( ) F( s) συµπεραίνουµε ότι ο αντίστροφος µετασχηµατισµός του ολοκληρώµατος της (4.8) ισούται µε και έτσι προκύπτει η σχέση (4.7). f ( ô) f ( ô) U( ô) dô = f ( ô) f ( ô) dô Ιδιότητες Οι παραπάνω ιδιότητες προκύπτουν εύκολα από το θεώρηµα της συνέλιξης (βλέπε Προβλήµατα 4.8 και 4.9):. Η πράξη της συνέλιξης είναι αντιµεταθετική και προσετεριστική f() f() = f() f() (4.9) [ f ( ) f ( )] f3( ) = f( ) [ f ( ) f3 ( )] (4.3). Εάν f () = f() f (), τότε f () = f () f() = f() f () (4.3) 3. Εάν y () = f ( ) y () = f ( ) y() = y () y () α b τότε (Σχ. 4.) y () = f ( α b ) (4.3) -4.5-

9 ΚΕΦΑΛΑΙΟ 4 ΣΥΝΕΛΙΞΗ f () * f () = f() y () * y () y() á b á + b ΣΧΗΜΑ 4. Υπολογισµός της Συνέλιξης Όπως και στην περίπτωση διακριτών σηµάτων, µπορούµε να υπολογίσουµε τη συνέλιξη δύο συναρτήσεων είτε απ' ευθείας από τον ορισµό είτε έµµεσα από το θεώρηµα της συνέλιξης. Ξεκινούµε µε την έµµεση µέθοδο. Παράδειγµα 4.3 Εφ' όσον από την (4.7) έπεται ότι άρα, Ηµι-γραφική µέθοδος Επιθυµούµε να βρούµε τη συνέλιξη f() των συναρτήσεων 3 5 f () = f () = 3 3! 5 5! 4 6 s s!! F () s = 35 s =!! 9! Επιθυµούµε να υπολογίσουµε το συνελικτικό ολοκλήρωµα f () = f() ôf( ôdô ) για κάθε. Άρα λοιπόν, δεν έχουµε ένα ολοκλήρωµα αλλά έναν άπειρο αριθµό ολοκληρωµάτων, διότι η προς ολοκλήρωση ποσότητα f( ô) f( ô) και τα όρια της ολοκλήρωσης µεταβάλλονται καθώς το παίρνει διάφορες τιµές. Η παρακάτω µέθοδος απλοποιεί τον προσδιορισµό αυτών των ορίων (Σχ. 4.3). Σχεδιάζουµε τις συναρτήσεις f ( ô) και f ( ô), όπου τ είναι η µεταβλητή ολοκλήρωσης. Σχηµατίζουµε την ανάστροφη εικόνα (mirror image) f ( ô) της f ( ô). Σχηµατίζουµε τη συνάρτηση f ( ô) µεταθέτοντας την αρχή της καµπύλης f ( ô) στο σηµείο. Ολοκληρώνουµε το γινόµενο f ( ô) f ( ô) ως προς τ. Κατά την ολοκλήρωση αυτή το είναι ένας σταθερός αριθµός και η ολοκλήρωση περικλείει όλες τις τιµές του τ για τις οποίες και οι δύο συντελεστές του γινοµένου f ( ô) f ( ô) είναι διάφοροι του µηδενός. Τα όρια της ολοκλήρωσης εξαρτώνται από το /7/988 :3: µµ

10 ΣΥΝΕΛΙΞΗ f (-ô) f (ô) f ( -ô) f()=f ()*f () f ( -ô) f ( 3-ô) f (ô) 3 ô 4 ô f( )= f (ô)f ( -ô)dô f( )= f (ô)f ( -ô)dô f( )= f (ô)f ( -ô)dô (á) f (ô) f (ô) f() 3 f ( -ô) f ( -ô) f ( 3-ô) 4 3 ô 4 ô ΣΧΗΜΑ 4.3 (â) Για τις καµπύλες του Σχ. 4.3α λαµβάνουµε f () = fôf ( ) ( ôdô ) < 4 f () = fôf ( ) ( ôdô ) < f () = fôf ( ) ( ôdô ) < 6 και f()= για 6. Εάν οι συναρτήσεις f () και f () είναι τετραγωνικοί παλµοί, όπως στο Σχ. 4.3β, τότε η f() είναι ένα τραπεζοειδές. Παράδειγµα 4.4 Επιθυµούµε να βρούµε τη συνέλιξη µιας αυθαίρετης συνάρτησης y() µε τον τετραγωνικό παλµό PT () που φαίνεται στο Σχήµα 4.4. Όπως φαίνεται από το σχήµα το P ( T ô ) = για κάθε τ στο διάστηµα ολοκλήρωσης (-Τ, ) και ισούται µε µηδέν οπουδήποτε αλλού. Άρα, y () P() = yôdô ( ) > T T T -4.7-

11 ΚΕΦΑΛΑΙΟ 4 ΣΥΝΕΛΙΞΗ y(ô) P (-ô) T -T ô ΣΧΗΜΑ 4.4 P (ô) T T ô y()*p ()= y(ô)dô -T ô >Ô Συνέλιξη µε ένα σήµα βραχείας διάρκειας Η συνέλιξη µιας τυχαίας συνάρτησης y() µε µια συνάρτηση zå( ) η οποία είναι µηδενική έξω από το προς ολοκλήρωση διάστηµα (,ε) δίνεται από τη σχέση ε y () z () = y( τ ) z ( τ) dτ τ (βλέπε Σχ. 4.5). Εάν η συνάρτηση y(τ) είναι σχεδόν στιγµιαία στο διάστηµα (-ε, ), τότε µπορούµε να χρησιµοποιήσουµε την προσέγγιση å å å å yôz ( ) ( ôdô ) y () z ( ôdô ) = Ay () όπου Α είναι η επιφάνεια της zå (). Αυτό οδηγεί στο συµπέρασµα ότι εάν η y() είναι συνεχής και το ε είναι ικανοποιητικά µικρό, τότε (βλέπε επίσης Πρόβληµα 6.7) y () z å () Ay () (4.33) y(ô) z (ô) å å z (-ô) å z (ô)dô=á å -å ô å ô ΣΧΗΜΑ 4.5 Η προσέγγιση δεν ισχύει στην γειτονιά(περιοχή) του ε για τα σηµεία ασυνέχειας της y(). Από τα παραπάνω έπεται ότι z () Áä () καθώς το ε διότι [βλέπε (.9)] Αµφίπλευρη Συνέλιξη ολοκλήρωµα å y () ä () = y () (4.34) Η αµφίπλευρη συνέλιξη δυο συναρτήσεων f () και f () είναι το f( ) = f ( ô) f ( ô) dô = f ( ô) f ( ô) dô οριζόµενο για κάθε θετικό ή αρνητικό. (4.35) Παράδειγµα 4.5 Εάν /7/988 :3: µµ

12 ΣΥΝΕΛΙΞΗ f() = f() = T > T τότε f() είναι ένας τριγωνικός παλµός, όπως στο Σχ Αυτό έπεται εύκολα από την ηµι-γραφική µέθοδο κατάλληλα διαµορφωµένη. f () * f () = f() T ΣΧΗΜΑ 4.6 -T T -T T -T T Εάν f ()= για <, τότε f( ) = f ( ô) f ( ô) dô = f ( ô) f ( ô) dô διότι f ( ô) = για ô > και f ( ô) = για ô <. Τελικώς, εάν f ()= και f ()= για <, τότε η f() δίνεται από το ολοκλήρωµα της σχέσης (4.5). Παράδειγµα 4.6 Με f () = y() και f () = U(), (4.36) αποφέρει y () U () = yôdô ( ) (4.37) Άρα η συνέλιξη της y() µε µια βηµατική συνάρτηση U() ισούται µε το ολοκλήρωµα της y() από - έως. ΣΗΜΕΙΩΣΕΙΣ. Στην προηγούµενη παράγραφο δείξαµε ότι αν η είσοδος x() σε ένα σύστηµα εφαρµόζεται για =, τότε η προκύπτουσα απόκριση y() δίνεται από το ολοκλήρωµα της σχέσης (4.3). Με παρόµοια αιτιολόγηση, µπορούµε να δείξουµε ότι εάν η είσοδος x() εφαρµοστεί όχι για = αλλά για =- τότε y ( ) = xôh ( ) ( ôdô ) x ( ôhôdô ) ( ) = Αυτή είναι η αµφίπλευρη συνέλιξη της x() µε την κρουστική απόκριση h() του συστήµατος.. Αιτιολογώντας όπως στην απόδειξη της σχέσης (4.7), µπορούµε να δείξουµε ότι εάν F s f e s ( ) = ( ) d F ( s) = f ( ) e s d - είναι οι αµφίπλευροι µετασχηµατισµοί Laplace των σηµάτων f () και f Laplace F(s) της αµφίπλευρης συνέλιξης f() ισούται µε F ( s) F ( s). (4.38) (), τότε ο µετασχηµατισµός -4.9-

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις ΚΕΦΑΛΑΙΟ 2 Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις 2.1 ΕΙΣΑΓΩΓΗ Όπως έχουµε δει, για να προσδιορίσουµε τις αποκρίσεις ενός κυκλώµατος, πρέπει να λύσουµε ένα σύνολο διαφορικών

Διαβάστε περισσότερα

1.2 ΣΗΜΑΤΑ. (Σχ. 1.7). Η σταθερή Τ είναι το διάστηµα δειγµατοληψίας.

1.2 ΣΗΜΑΤΑ. (Σχ. 1.7). Η σταθερή Τ είναι το διάστηµα δειγµατοληψίας. ΣΗΜΑΤΑ.2 ΣΗΜΑΤΑ Ένα σήµα (sigal ) είναι µια συνάρτηση που παριστάνει ένα φυσικό µέγεθος. Ένα σήµα συνεχούς χρόνου (coiuous-ime sigal ) είναι µια συνάρτηση x() της οποίας το πεδίο ορισµού αποτελείται από

Διαβάστε περισσότερα

Στοχαστικά Σήµατα και Εφαρµογές

Στοχαστικά Σήµατα και Εφαρµογές Στοχαστικά Σήµατα & Εφαρµογές Ανασκόπηση Στοιχείων Γραµµικής Άλγεβρας ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής ιανύσµατα Ορίζουµετοδιάνυσµα µε Ν στοιχεία

Διαβάστε περισσότερα

Ζητείται να µελετηθεί το εν λόγω σύστηµα µε είσοδο βηµατική συνάρτηση δηλαδή () =(). (3)

Ζητείται να µελετηθεί το εν λόγω σύστηµα µε είσοδο βηµατική συνάρτηση δηλαδή () =(). (3) Παράδειγµα 1: Έστω ένα σύστηµα που περιγράφεται από τη διαφορική εξίσωση () +2 () 29 () +42()=() (1) µε µηδενικές αρχικές συνθήκες. (δηλαδή ()(0) = () (0)=()(0)=0) (2) Ζητείται να µελετηθεί το εν λόγω

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: Οκτωβρίου 005) Η Άσκηση στην εργασία αυτή είναι

Διαβάστε περισσότερα

Μετασχηµατισµός Ζ (z-tranform)

Μετασχηµατισµός Ζ (z-tranform) Μετασχηµατισµός Ζ (-traform) Εργαλείο ανάλυσης σηµάτων και συστηµάτων διακριτού χρόνου ιεργασία ανάλογη του Μετ/σµού Laplace Απόκριση συχνότητας Εφαρµογές επίλυση γραµµικών εξισώσεων διαφορών µε σταθερούς

Διαβάστε περισσότερα

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση 8 Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση Υπάρχουν δύο θεµελιώδη αποτελέσµατα που µας βοηθούν να υπολογίζουµε πολλαπλά ολοκληρώµατα Το πρώτο αποτέλεσµα σχετίζεται µε τον υπολογισµό ενός

Διαβάστε περισσότερα

Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών

Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών Το εκπαιδευτικό υλικό που ακολουθεί αναπτύχθηκε στα πλαίσια του έργου «Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών», του Μέτρου «Εισαγωγή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobso Είδαµε στο προηγούµενο κεφάλαιο ότι κάθε ηµιαπλός δακτύλιος είναι δακτύλιος του Art. Επειδή υπάρχουν παραδείγµατα δακτυλίων του Art που δεν είναι ηµιαπλοί, πχ Z 2, > 1, τίθεται

Διαβάστε περισσότερα

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων.

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων. 2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ Γενικά τι είναι - Ορισµός. Τρόποι σύνδεσης συστηµάτων. Κατηγορίες των συστηµάτων ανάλογα µε τον αριθµό και το είδος των επιτρεποµένων εισόδων και εξόδων. Ιδιότητες των

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

Ανάλυση Γ Λυκείου όριο συνάρτησης στο xο. 0, τότε

Ανάλυση Γ Λυκείου όριο συνάρτησης στο xο. 0, τότε Ανάλυση Γ Λυκείου όριο συνάρτησης στο ο Ιδιότητες των ορίων Όριο και διάταξη ΘΕΩΡΗΜΑ ο Αν f >, τότε f > κοντά στο Αν f

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράγωγος

Κεφάλαιο 6 Παράγωγος Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

Ισοδυναµία τοπολογιών βρόχων.

Ισοδυναµία τοπολογιών βρόχων. Ισοδυναµία τοπολογιών βρόχων. Κατά κανόνα, συµφέρει να ανάγουµε τις «πολύπλοκες» τοπολογίες βρόχων σε έναν απλό κλειστό βρόχο, µε µία συνάρτηση µεταφοράς στον κατ ευθείαν κλάδο και µία συνάρτηση µεταφοράς

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων 4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές

Διαβάστε περισσότερα

ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ

ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ Ο κύριος στόχος αυτού του κεφαλαίου είναι να δείξουµε ότι η ολοκλήρωση είναι η αντίστροφη πράξη της παραγώγισης και να δώσουµε τις βασικές µεθόδους υπολογισµού των ολοκληρωµάτων

Διαβάστε περισσότερα

(CLR, κεφάλαιο 32) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier

(CLR, κεφάλαιο 32) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier Ταχύς Μετασχηµατισµός Fourier CLR, κεφάλαιο 3 Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier Ταχύς Μετασχηµατισµός Fourier

Διαβάστε περισσότερα

Στροβιλισµός πεδίου δυνάµεων

Στροβιλισµός πεδίου δυνάµεων Στροβιλισµός πεδίου δυνάµεων Θεωρείστε ένα απειροστό απλό χωρίο στο χώρο τόσο µικρό ώστε να µπορεί να θεωρηθεί ότι βρίσκεται σε ένα επίπεδο Έστω ότι το χωρίο αυτό περικλείει εµβαδόν µέτρου Το έργο που

Διαβάστε περισσότερα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα Κεφάλαιο 5 Ιδιοτιµές και Ιδιοδιανύσµατα 5 Ιδιοτιµές και Ιδιοδιανύσµατα Αν ο A είναι ένας n n πίνακας και το x είναι ένα διάνυσµα στον R n, τότε το Ax είναι και αυτό ένα διάνυσµα στον R n Συνήθως δεν υπάρχει

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07)

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) Επιµέλεια Σηµειώσεων : Βασιλειάδης Γεώργιος Καστοριά, εκέµβριος 2006

Διαβάστε περισσότερα

Εξισώσεις ικτύων. t t 0, τότε µπορούµε να προσδιορίσουµε τις αποκρίσεις του για κάθε t t 0.

Εξισώσεις ικτύων. t t 0, τότε µπορούµε να προσδιορίσουµε τις αποκρίσεις του για κάθε t t 0. ΣΤΟΙΧΕΙΑ ΚΥΚΛΩΜΑΤΩΝ ΚΑΙ ΕΞΙΣΩΣΕΙΣ.3 ΣΤΟΙΧΕΙΑ ΚΥΚΛΩΜΑΤΩΝ ΚΑΙ ΕΞΙΣΩΣΕΙΣ Τα ηλεκτρικά στοιχεία είναι εξιδανικευµένα µοντέλα των φυσικών διατάξεων, παθητικών ή ενεργών, που καθορίζονται µέσω των αντίστοιχων

Διαβάστε περισσότερα

1 Ορισµός ακολουθίας πραγµατικών αριθµών

1 Ορισµός ακολουθίας πραγµατικών αριθµών ΜΑΣ 02. Απειροστικός Λογισµός Ι Ορισµός ακολουθίας πραγµατικών αριθµών Ορισµός.. Ονοµάζουµε ακολουθία πραγµατικών αριθµών κάθε απεικόνιση του συνόλου N των ϕυσικών αριθµών, στο σύνολο R των πραγµατικών

Διαβάστε περισσότερα

Τυπική µορφή συστήµατος 2 ας τάξης

Τυπική µορφή συστήµατος 2 ας τάξης Τυπική µορφή συστήµατος 2 ας τάξης Έστω το γενικό σύστηµα 2 ας τάξεως µε σταθερό αριθµητή (1) Είθισται αυτό να γράφεται σε συγκεκριµένη µορφή, την εξής: θέτουµε ±, επιλέγοντας το πρόσηµο ούτως ώστε το

Διαβάστε περισσότερα

11 Το ολοκλήρωµα Riemann

11 Το ολοκλήρωµα Riemann Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την

Διαβάστε περισσότερα

Όνοµα: Λιβαθινός Νικόλαος 2291

Όνοµα: Λιβαθινός Νικόλαος 2291 ΠΡΩΤΗ ΆΣΚΗΣΗ ΣΤΗΝ ΚΡΥΠΤΟΓΡΑΦΙΑ Όνοµα: Λιβαθινός Νικόλαος 9 Ηµεροµηνία: 3/5/003 Άσκηση ώστε όλες τις υποοµάδες των Z και Ζ 5 * Προκειµένου να δώσουµε τις υποοµάδες θα πρέπει αρχικά να ορίσουµε τα σύνολα

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ).

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ). 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1 ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε σχολικό βιβλίο σελίδα 194, το θεώρηµα ενδιάµεσων τιµών. Β. Βλέπε τον ορισµό στη σελίδα 279 του σχολικού βιβλίου. Γ. Βλέπε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 4 Άσκηση. (8 µον.) (α) ίνεται παραγωγίσιµη συνάρτηση f για την οποία ισχύει f /

Διαβάστε περισσότερα

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Σ.Α.Ε στο χώρο 6 Nicola Tapaouli Λύση εξισώσεων ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [4]: Κεφάλαιο 5: Ενότητες 5.-5. Παρασκευόπουλος

Διαβάστε περισσότερα

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x Ευκλείδειοι Χώροι Ορίζουµε ως R, όπου N, το σύνολο όλων διατεταµένων -άδων πραγµατικών αριθµών x, x,, x ) Tο R λέγεται ευκλείδειος -χώρος και τα στοιχεία του λέγονται διανύσµατα ή σηµεία Το x i λέγεται

Διαβάστε περισσότερα

Το θεώρηµα πεπλεγµένων συναρτήσεων

Το θεώρηµα πεπλεγµένων συναρτήσεων 57 Το θεώρηµα πεπλεγµένων συναρτήσεων Έστω F : D R R µια ( τουλάχιστον ) C συνάρτηση ορισµένη στο ανοικτό D x, y D F x, y = Ενδιαφερόµαστε για την ύπαρξη µοναδικής και ώστε διαφορίσιµης συνάρτησης f ορισµένης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάµε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων. Αυτές συνδέονται µεταξύ τους µε την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ 1 ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση, η οποία είναι ορισµένη σε ένα κλειστό διάστηµα,. Αν: η συνεχής στο, και τότε, για κάθε αριθµό µεταξύ των

Διαβάστε περισσότερα

, όπου οι σταθερές προσδιορίζονται από τις αρχικές συνθήκες.

, όπου οι σταθερές προσδιορίζονται από τις αρχικές συνθήκες. Στην περίπτωση της ταλάντωσης µε κρίσιµη απόσβεση οι δύο γραµµικώς ανεξάρτητες λύσεις εκφυλίζονται (καταλήγουν να ταυτίζονται) Στην περιοχή ασθενούς απόσβεσης ( ) δύο γραµµικώς ανεξάρτητες λύσεις είναι

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Παραγοντοποιήσεις Πινάκων και Γραµµικών Απεικονίσεων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 82 13 Παραγοντοποιήσεις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι Είδαµε στο κύριο θεώρηµα του προηγούµενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισµα απλών προτύπων. Εδώ θα χαρακτηρίσουµε όλους

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Μετασχηµατισµός-Z. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Μετασχηµατισµός-Z. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Μετασχηµατισµός-Z Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Μετασχηµατισµός - Ιδιότητες Μετασχηµατισµού- Γραµµικότητα Χρονική Ολίσθηση Κλιµάκωση

Διαβάστε περισσότερα

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1)

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1) 1 ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης (1) όπου οι συντελεστές είναι δοσµένες συνεχείς συναρτήσεις ορισµένες σ ένα ανοικτό διάστηµα. Ορισµός 1. Ορίζουµε τον διαφορικό τελεστή µέσω της

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR

KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR 6 Ορισµοί Ορισµός 6 Εστω α είναι µία πραγµατική ακολουθία και είναι πραγµατικοί αριθµοί Ένα άπειρο πολυώνυµο της µορφής: a ( ) () = καλείται δυναµοσειρά µε κέντρο το

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

Αριθµητική Παραγώγιση και Ολοκλήρωση

Αριθµητική Παραγώγιση και Ολοκλήρωση Ιαν. 9 Αριθµητική Παραγώγιση και Ολοκλήρωση Είδαµε στο κεφάλαιο της παρεµβολής συναρτήσεων πώς να προσεγγίζουµε µια (συνεχή) συνάρτηση f από ένα πολυώνυµο, όταν γνωρίζουµε + σηµεία του γραφήµατος της συνάρτησης:

Διαβάστε περισσότερα

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές Κ Ι ΠΑΠΑΧΡΗΣΤΟΥ Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ Ιδιότητες & Εφαρµογές ΠΕΙΡΑΙΑΣ 2013 ΟΡΙΖΟΥΣΕΣ Έστω 2 2 πίνακας: a b A= c d Όπως γνωρίζουµε, η ορίζουσα του Α είναι ο αριθµός a

Διαβάστε περισσότερα

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( ) Συνεχείς συναρτήσεις πολλών µεταβλητών 7 Η Ευκλείδεια απόσταση που ορίσαµε στον R επιτρέπει ( εκτός από τον ορισµό των ορίων συναρτήσεων και ακολουθιών και τον ορισµό της συνέχειας συναρτήσεων της µορφής

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΗ ΣΥΣΤΗΜΑΤΟΣ, ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ, ΠΡΟΣΟΜΟΙΩΣΗ

ΣΥΝΑΡΤΗΣΗ ΣΥΣΤΗΜΑΤΟΣ, ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ, ΠΡΟΣΟΜΟΙΩΣΗ ΣΥΝΑΡΤΗΣΗ ΣΥΣΤΗΜΑΤΟΣ, ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ, ΠΡΟΣΟΜΟΙΩΣΗ 5. ΣΥΝΑΡΤΗΣΗ ΣΥΣΤΗΜΑΤΟΣ ΑΝΑΛΟΓΙΚΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Στα προηγούμενα κεφάλαια παρουσιάσαμε την έννοια της συνάρτησης συστήματος για αναλογικά

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: Ιανουαρίου 6 Ηµεροµηνία Παράδοσης της Εργασίας από

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt014/nt014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

( ) 10 ( ) εποµ ένως. π π π π ή γενικότερα: π π. π π. π π. Άσκηση 1 (10 µον) Θεωρούµε το µιγαδικό αριθµό z= i.

( ) 10 ( ) εποµ ένως. π π π π ή γενικότερα: π π. π π. π π. Άσκηση 1 (10 µον) Θεωρούµε το µιγαδικό αριθµό z= i. http://elern.mths.gr/, mths@mths.gr, Τηλ: 697905 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ 00-0: Άσκηση (0 µον) Θεωρούµε το µιγαδικό αριθµό z= i. α) (5 µον) Βρείτε την τριγωνοµετρική µορφή του z.

Διαβάστε περισσότερα

{ } ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι 2 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ. Απαντήσεις. 1. (15 µονάδες)

{ } ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι 2 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ. Απαντήσεις. 1. (15 µονάδες) Σελίδα από 8 (5 µονάδες) ΠΛΗ : ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Απαντήσεις i Εξηγείστε γιατί κάθε ένα από τα παρακάτω υποσύνολα του R δεν είναι υπόχωρος του R {[ xyz,, ] T z } {[ xyz,,

Διαβάστε περισσότερα

Α. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

Α. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE 73 Α. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Ο µετασχηµατισµός Laplace µετασχηµατίζει τις διαφορικές εξισώσεις που περιγράφουν τα γραµµικά µη χρονικά µεταβαλλόµενα συστήµατα συνεχούς χρόνου, σε αλγεβρικές εξισώσεις και

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

Κεφάλαιο 8. Η οµάδα S n. 8.1 Βασικές ιδιότητες της S n

Κεφάλαιο 8. Η οµάδα S n. 8.1 Βασικές ιδιότητες της S n Κεφάλαιο 8 Η οµάδα S n Στο κεφάλαιο αυτό ϑα µελετήσουµε την οµάδα µεταθέσεων ή συµµετρική οµάδα S n εφαρµόζοντας τη ϑεωρία που αναπτύχθηκε στα προηγούµενα κε- ϕάλαια. Η σηµαντικότητα της S n εµφανίστηκε

Διαβάστε περισσότερα

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ-

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- Κεφάλαιο 4 ΟΛΟΚΛΗΡΩΜΑ 4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- µατα Ορισµός 4.1.1. Αρχική ή παράγουσα συνάρτηση ή αντιπαράγωγος µιας συνάρτησης f(x), x [, b], λέγεται κάθε συνάρτηση F (x) που επαληθεύει

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ ΙΙ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΕΝΟΤΗΤΑ ΙΙ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ ΕΝΟΤΗΤΑ ΙΙ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ 0 Ηλεκτρικά κυκλώµατα Ηλεκτρικό κύκλωµα ονοµάζουµε ένα σύνολο στοιχείων που συνδέονται κατάλληλα έτσι ώστε να επιτελέσουν ένα συγκεκριµένο σκοπό. Για παράδειγµα το παρακάτω

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Burnside

ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Burnside ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Bursde Θα αποδείξουµε εδώ ότι κάθε οµάδα τάξης a q b (, q πρώτοι) είναι επιλύσιµη. Το θεώρηµα αυτό αποδείχτηκε από τον Bursde το 904 ο οποίος χρησιµοποίησε τη νέα τότε

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...

Διαβάστε περισσότερα

ΠΟΛΥΩΝΥΜΙΚΕΣ - ΡΗΤΕΣ ΑΝΙΣΩΣΕΙΣ P x = x+ 2 4 x x 3x x x x 3x

ΠΟΛΥΩΝΥΜΙΚΕΣ - ΡΗΤΕΣ ΑΝΙΣΩΣΕΙΣ P x = x+ 2 4 x x 3x x x x 3x o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ ΠΟΛΥΩΝΥΜΙΚΕΣ - Α ΠΡΟΣΗΜΟ ΠΟΛΥΩΝΥΜΟΥ Μέχρι τώρα ξέρουµε να βρίσκουµε το πρόσηµο ενός πολυωνύµου βαθµού ή δεύτερου βαθµού Για να βρούµε το πρόσηµο ενός πολυωνύµου f πρώτου f βαθµού µεγαλύτερου

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Β ΛΥΚ. ΕΞΙΣΩΣΕΙΣ

ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Β ΛΥΚ. ΕΞΙΣΩΣΕΙΣ ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Β ΛΥΚ. ΕΞΙΣΩΣΕΙΣ Λυγάτσικας Ζήνων Πειραµατικό Γενικό Λύκειο Βαρβακείου Σχολής 6 Ιανουαρίου 013 1 Ασκήσεις 1.1 Ασκήσεις Επανάληψης 1. είξτε ότι : ηµ x + 3συν y 5.. Να αποδείξτε ότι

Διαβάστε περισσότερα

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ 20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα 3: ΣΥΝΕΛΙΞΗ

ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα 3: ΣΥΝΕΛΙΞΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα 3: ΣΥΝΕΛΙΞΗ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Μαθηματικά μοντέλα συστημάτων

Μαθηματικά μοντέλα συστημάτων Μαθηματικά μοντέλα συστημάτων 1. Γενικά Για να κατανοήσουμε και να ελέγξουμε διάφορα πολύπλοκα συστήματα πρέπει να καταφύγουμε σε κάποιο ποσοτικό μοντέλο των συστημάτων αυτών. Έτσι, είναι απαραίτητο να

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt01b/nt01b.html Πέµπτη 1 Οκτωβρίου 01 Ασκηση 1. είξτε ότι

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Σταθµητοί Χώροι και Ευκλείδειοι Χώροι Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 59 Μέρος 2. Ευκλείδειοι

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι Βασικές Έννοιες Σήματα Κατηγορίες Σημάτων Συνεχούς/ Διακριτού Χρόνου, Αναλογικά/ Ψηφιακά Μετασχηματισμοί Σημάτων Χρόνου: Αντιστροφή, Κλιμάκωση, Μετατόπιση Πλάτους Βασικά

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,... KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Μετασχηματισμός Laplace 1. Ο μετασχηματισμός

Διαβάστε περισσότερα

Κεφάλαιο M3. Διανύσµατα

Κεφάλαιο M3. Διανύσµατα Κεφάλαιο M3 Διανύσµατα Διανύσµατα Διανυσµατικά µεγέθη Φυσικά µεγέθη που έχουν τόσο αριθµητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούµε µε τις µαθηµατικές πράξεις των

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα Στο κεφάλαιο αυτό εισάγουµε την έννοια του τανυστικού γινοµένου προτύπων. Θα είµαστε συνοπτικοί καθώς αναπτύσσουµε µόνο εκείνες τις στοιχειώδεις προτάσεις που θα βρουν εφαρµογές

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ22 ( ) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #1 ΑΠΑΝΤΗΣΕΙΣ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ22 ( ) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #1 ΑΠΑΝΤΗΣΕΙΣ Θ.Ε. ΠΛΗ (0-3) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ # ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Στόχος της άσκησης είναι η εξοικείωση με γραφικές παραστάσεις βασικών σημάτων και πράξεις, καθώς και τον υπολογισμό ΜΣ Fourier βασικών σημάτων με τη χρήση

Διαβάστε περισσότερα

Επίλυση Γραµµικών Συστηµάτων

Επίλυση Γραµµικών Συστηµάτων Κεφάλαιο 3 Επίλυση Γραµµικών Συστηµάτων 31 Εισαγωγή Αριθµητική λύση γενικών γραµµικών συστηµάτων n n A n n x n 1 b n 1, όπου a 11 a 12 a 1n a 21 a 22 a 2n A [a i j, x a n1 a n2 a nn x n, b b 1 b 2 b n

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης.

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης. Παράρτηµα Α Στοιχεία θεωρίας µέτρου και ολοκλήρωσης Α Χώροι µέτρου Πέραν της «διαισθητικής» περιγραφής του µέτρου «σχετικά απλών» συνόλων στο από το µήκος τους (όπως πχ είναι τα διαστήµατα, ενώσεις/τοµές

Διαβάστε περισσότερα

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x. Κεφάλαιο 4 Μήκη και ορθές γωνίες Μήκος διανύσµατος Στο επίπεδο, R 2, ϐρίσκουµε το µήκος ενός διανύσµατος x = (x 1, x 2 ) χρησιµοποιώντας το Πυθαγόρειο ϑεώρηµα : x 2 = x 2 1 + x 2 2. Στο χώρο R 3, εφαρµόζουµε

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΤΙΚΗ FOURIER. Γ. Μήτσου

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΤΙΚΗ FOURIER. Γ. Μήτσου ΕΡΓΑΣΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΙΚΗΣ - ΟΠΟΗΛΕΚΡΟΝΙΚΗΣ & LASER ΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & /Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΙΚΗ FOURIER Γ. Μήτσου Μάρτιος 8 Α. Θεωρία. Εισαγωγή Η επεξεργασία οπτικών δεδοµένων, το φιλτράρισµα χωρικών συχνοτήτων

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές Δυναμική Μηχανών I Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις 5 3 Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 5

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 5 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 5 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt206/nt206.html Πέµπτη 6 Νεµβρίου 206 Ασκηση. Να δειχθεί ότι

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 12 Μαίου 2016 Ασκηση 1. Εστω

Διαβάστε περισσότερα

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις Κεφάλαιο M4 Κίνηση σε δύο διαστάσεις Κινηµατική σε δύο διαστάσεις Θα περιγράψουµε τη διανυσµατική φύση της θέσης, της ταχύτητας, και της επιτάχυνσης µε περισσότερες λεπτοµέρειες. Θα µελετήσουµε την κίνηση

Διαβάστε περισσότερα

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ

Διαβάστε περισσότερα

Πολυώνυµα - Πολυωνυµικές εξισώσεις

Πολυώνυµα - Πολυωνυµικές εξισώσεις 4 ΚΕΦΑΛΑΙΟ Πολυώνυµα - Πολυωνυµικές εξισώσεις Ορισµός πολυωνύµου Ονοµάζoυµε ΠΟΛΥΩΝΥΜΟ του κάθε παράσταση της µορφής α ν ν +α ν- ν- + +α +α 0, ν ΙΝ και α 0, α,, α ν-, α ν ΙR. Παρατηρήσεις α. Τα α ν ν, α

Διαβάστε περισσότερα

Οι ιδιότητες και οι µέθοδοι επίλυσης διαφορικών εξισώσεων παρουσιάζονται σε µία σειρά εγχειριδίων µαθηµατικών

Οι ιδιότητες και οι µέθοδοι επίλυσης διαφορικών εξισώσεων παρουσιάζονται σε µία σειρά εγχειριδίων µαθηµατικών Γιώργος Αλογοσκούφης, Δυναµική Μακροοικονοµική, Αθήνα 2015 Μαθηµατικό Παράρτηµα 1 Διαφορικές Εξισώσεις Στο µαθηµατικό αυτό παράρτηµα ορίζουµε και αναλύουµε την επίλυση απλών συστηµάτων γραµµικών διαφορικών

Διαβάστε περισσότερα

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Κεφάλαιο 5 ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Οταν ένα µεταβλητό µέγεθος εξαρτάται αποκλειστικά από τις µεταβολές ενός άλλου µεγέθους, τότε η σχέση που συνδέει

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασµένων Οµάδων Ι

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασµένων Οµάδων Ι ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασµένων Οµάδων Ι Χρησιµοποιώντας το θεώρηµα του Weddebu για ηµιαπλούς δακτυλίους αναπτύσσουµε εδώ τις πρώτες προτάσεις από τη θεωρία των αναπαραστάσεων και αρακτήρων πεπερασµένων

Διαβάστε περισσότερα

6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE 6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE Σκοπός του κεφαλαίου είναι να ορίσει τον αμφίπλευρο μετασχηματισμό aplace ή απλώς μετασχηματισμό aplace (Μ) και το μονόπλευρο μετασχηματισμό aplace (ΜΜ), να περιγράψει

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Παρασκευή 16 & Τετάρτη 21 Νοεµβρίου

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 7 Από τα κάτωθι Θέµατα καλείστε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη

Διαβάστε περισσότερα

Ερωτήσεις επί των ρητών αριθµών

Ερωτήσεις επί των ρητών αριθµών Σελ. 1 Ερωτήσεις επί των ρητών αριθµών 1. Ποια είναι τα πρόσηµα των ακεραίων αριθµών; Ζ={... -3,-2,-1,0,+1,+2,+3,... } 2. Ποιοι αριθµοί λέγονται θετικοί και ποιοι αρνητικοί; Γράψε από έναν. 3. Στον άξονα

Διαβάστε περισσότερα

Έργο µιας χρονικά µεταβαλλόµενης δύναµης

Έργο µιας χρονικά µεταβαλλόµενης δύναµης Έργο µιας χρονικά µεταβαλλόµενης δύναµης Κ. Ι. Παπαχρήστου Τοµέας Φυσικών Επιστηµών, Σχολή Ναυτικών οκίµων papachristou@snd.edu.gr Θα συζητήσουµε µερικά λεπτά σηµεία που αφορούν το έργο ενός χρονικά µεταβαλλόµενου

Διαβάστε περισσότερα

Θεωρια Αριθµων Προβληµατα

Θεωρια Αριθµων Προβληµατα Θεωρια Αριθµων Προβληµατα Μιχάλης Κολουντζάκης Τµήµα Μαθηµατικών και Εφαρµοσµένων Μαθηµατικών Πανεπιστήµιο Κρήτης Βούτες 700 3 Ηράκλειο 6 Απριλίου 205 Πολλές από τις παρακάτω ασκήσεις είναι από το ϐιβλίο

Διαβάστε περισσότερα

Ροµποτική. είτε µε το ανυσµατικό άθροισµα. όπου x = αποτελούν τα µοναδιαία ανύσµατα του

Ροµποτική. είτε µε το ανυσµατικό άθροισµα. όπου x = αποτελούν τα µοναδιαία ανύσµατα του Ροµποτική Ο χειρισµός αντικειµένων και εργαλείων από ένα ροµποτικό βραχίονα σηµαίνει ότι το ροµπότ πρέπει να είναι ικανό να τοποθετεί και να προσανατολίζει κατάλληλα το άκρο του στο χώρο εργασίας π.χ.

Διαβάστε περισσότερα

Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 8 (λύσεις)

Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 8 (λύσεις) Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 8 (λύσεις) Λουκάς Βλάχος και Μανώλης Πλειώνης Άσκηση : (α) Να υπολογισθεί το γενικευµένο ολοκλήρωµα (x+)(x 2 +) (ϐ) Να υπολογισθεί το ολοκλήρωµα f(x) f(x)+f(x+) για κάθε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο. Πίνακας διερεύνησης της εξίσωσης Εξίσωση: αx 2 +βx+γ=0 (α 0) (Ε) Έχει ΥΟ ρίζες άνισες που δίνονται από τους τύπους x 1,2 =

ΚΕΦΑΛΑΙΟ 4 ο. Πίνακας διερεύνησης της εξίσωσης Εξίσωση: αx 2 +βx+γ=0 (α 0) (Ε) Έχει ΥΟ ρίζες άνισες που δίνονται από τους τύπους x 1,2 = ΕΞΙΩΕΙ-ΑΝΙΩΕΙ ου ΒΑΘΜΟΥ - 38 - ΚΕΦΑΑΙΟ 4 ΚΕΦΑΑΙΟ 4 ο Εξισώσεις - Ανισώσεις β βαθµού 5.1. Μορφή και διερεύνηση της εξίσωσης β βαθµού Άθροισµα και γινόµενο των ριζών της Κάθε εξίσωση β βαθµού πριν τη λύσουµε,

Διαβάστε περισσότερα

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012 ιδασκοντες: Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 10 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

οµή δικτύου ΣΧΗΜΑ 8.1

οµή δικτύου ΣΧΗΜΑ 8.1 8. ίκτυα Kohonen Το µοντέλο αυτό των δικτύων προτάθηκε το 1984 από τον Kοhonen, και αφορά διαδικασία εκµάθησης χωρίς επίβλεψη, δηλαδή δεν δίδεται καµία εξωτερική επέµβαση σχετικά µε τους στόχους που πρέπει

Διαβάστε περισσότερα