Ρόδος, Μαρτιος Εργασία Προόδου #1. ίνονται Οµάδες Ερωτήσεων, Προβληµάτων και Ασκήσεων, Α,Β,Γ,,Ε,Ζ,Η

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ρόδος, Μαρτιος 2014. Εργασία Προόδου #1. ίνονται Οµάδες Ερωτήσεων, Προβληµάτων και Ασκήσεων, Α,Β,Γ,,Ε,Ζ,Η"

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΑΙ ΑΓΩΓΙΚΟ ΤΜΗΜΑ ΗΜΟΤΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ Eaρινό Εξάµηνο Ρόδος, Μαρτιος 2014 ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΙΚΩΝ, Ι ΑΚΤΙΚΗΣ και ΠΟΛΥΜΕΣΩΝ Μάθηµα: ΥΓ00003 "ΕΙΣΑΓΩΓΗ στις ΒΑΣΕΙΣ και στις ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ των ΜΑΘΗΜΑΤΙΚΩΝ Ι" ιδάσκων: Ευγένιος Αυγερινός Εργασία Προόδου #1 φυλλάδιο 2 και 3 από 3 ίνονται Οµάδες Ερωτήσεων, Προβληµάτων και Ασκήσεων, Α,Β,Γ,,Ε,Ζ,Η Παρακαλούµε να απαντήσετε µε προσοχή δίνοντας έµφαση σε όσα ακούσατε στις διαλέξεις του µαθήµατος, αλλά και σε όσα µπορείτε να βρείτε στα αντίστοιχα κεφάλαια των συγγραµµάτων της προτεινόµενης βιβλιογραφίας. Θα πρέπει να απαντήσετε: οι φοιτητές µε άρτιο αριθµό µητρώου σε τέσσερις τουλαχιστον από κάθε µια από τις άρτια αριθµηµένες Ασκήσεις Προβληµατα, Ερωτησεις κλπ της αρεσκείας σας ολων των Οµάδων και οι φοιτητές µε περιττό αριθµό µητρώου σε σε τέσσερις τουλάχιστον από κάθε µια από τις περιττά αριθµηµένες Ασκήσεις Προβλήµατα, Ερωτήσεις της αρεσκείας σας ολων των Οµάδων Παράδοση Εργασίας Η Εργασία Προόδου #1 θα πρέπει να παραδοθεί την ευτέρα 12 Μαΐου 2014 και ώρες στο Εργαστήριο Μαθηµατικών στο 1 ο όροφο του κτηρίου 7 ης Μαρτίου. Ρόδος, Τετάρτη 30 Απριλίου 2014 Για το Εργαστήριο ΜΑΘΗΜΑΤΙΚΩΝ, Ι ΑΚΤΙΚΗΣ και Πολυµέσων Ευγένιος Αυγερινός ήµητρα Ρεµουνδου Ελένη Χρυσαφινα 1

2 ΑΣΚΗΣΕΙΣ ΑΛΗΘΟΣΥΝΟΛΩΝ Α Ποια είναι τα αληθοσύνολα των παρακάτω προτασιακών τύπων. ώστε τις απαντήσεις σας µε δύο τρόπους παράστασης. 1. P(x) : 5(x 2-1) = q(x) : x R(x) : 6x 2 + 5x = 0 4. α(x) : 7x > 0 5. β(x) : 2x c(x) : x = 0 7. d(x) : -x 2 + 2x h(x) : -6x x 4 < 0 3x 1 24x f(x) : {(3x 1) 24x π x Z} 45 2x > 7x 10. g(x) : 2(x + 4) (x + 6) < 12 x x N ΑΣΚΗΣΕΙΣ ΑΛΗΘΟΣΥΝΟΛΩΝ Β 11. k(x) : 6 x > 2(1 + x) x Z 12. l(x) : 3x 1 < x x x m(x) : x > 2 x + 1 x x n(x) : x 10 x = - 3 x - 2 x Z 15. P 1 (x) : x 2 > 1 x P 2 (x) : 5x 2x 2 x N 17. P 3 (x) : x < 3 x 2 + 3x 4 < P 4 (x) : x > 4x x Z 19. P 5 (x) : x + x+4 2 5x + 2 x N 2 1 x 1 x 20. P 6 (x) : x - > + 1 x P 7 (x) : x > 0 x N 22. P 8 (x) : x 2 x + 1 > 0 x(x + 4) 5 2

3 23. P 9 (x) : x 2 4 < 12 x Z 24. P 10 (x) : -2x 2 + 5x 3 0 x N 25. P 11 (x) : x 2 4x x Z ΑΣΚΗΣΕΙΣ Γ Οµάδα Ζ 1. Α. Χρησιµοποιώντας έναν υπολογιστή εάν είναι απαραίτητο, εκτιµήστε τον χρόνο που θα έπαιρνε σ ένα κοµπιούτερ να κάνει λίστα όλα τα θέµατα από {1, 2, 3, 64}. Υποθέτουµε ότι το γρηγορότερο κοµπιούτερ µπορεί να καταγράψει ένα θέµα περίπου σε 1 εκατοµµυριοστό δευτερολέπτου. Β. Βρείτε τον χρόνο που θα πάρει στο κοµπιούτερ να ολοκληρώσει όλες τις αντιστοιχήσεις 1-1 ανάµεσα στα σύνολα {1, 2, 3,, 64} και {65, 66, 67,, 128} 2 Πόσες διαφορετικές αντιστοιχίσεις 1-1 υπάρχουν µεταξύ δύο συνόλων µε: Α. 5 στοιχεία το καθένα Β. 8 στοιχεία το καθένα Γ. ν στοιχείa το καθένα ΠΡΟΒΛΗΜΑΤΑ ΠΙΘΑΝΟΤΗΤΩΝ ΑΣΚΗΣΕΙΣ 1. Εάν πέσει µια πινέζα µπορεί να προσγειωθεί ( ) µε το κεφάλι κάτω, ή ( ) µε το κεφάλι πάνω. Το πείραµα επαναλήφθηκε 80 φορές µε τα ακόλουθα αποτελέσµατα. Με την κεφαλή προς τα πάνω: 56 φορές µε την κεφαλή προς τα κάτω: 24 φορές. Α) Ποια είναι η πιθανότητα η πινέζα να προσγειωθεί µε το κεφάλι πάνω. Β) Ποια η πιθανότητα να προσγειωθεί µε το κεφάλι κάτω. Γ) Εάν επιχειρήσετε το πείραµα αυτό άλλες 80 φορές θα πάρετε τα ίδια αποτελέσµατα; γιατί; ) Περιµένετε να πλησιάσετε σχεδόν τα πρώτα αποτελέσµατα από τη δεύτερη προσπάθεια; Γιατί; 2. Σε ένα πείραµα συλλέξτε το τελευταίο νούµερο τηλεφωνικών αριθµών. Ας υποθέσουµε ότι κάθε ένα από τα 10 ψηφία έχει τις ίδιες πιθανότητες να παρουσιαστεί σαν τελικό ψηφίο. Καταγράψτε τα ακόλουθα. Α) Ένα διάστηµα δειγµάτων Β) Τα αποτελέσµατα εκείνα που το ψηφίο αυτό είναι µικρότερο του 5. Γ) Τα αποτελέσµατα που το ψηφίο είναι µονός αριθµός. ) Τα αποτελέσµατα που το ψηφίο δεν είναι το 2. Ε) Βρες τις πιθανότητες κάθε ενός από τα αποτελέσµατα (Β) ( ). 3. Γυρίζουµε τον παρακάτω τροχό

4 Βρες τις πιθανότητες να λάβουµε τα κάθε ένα από τα ακόλουθα. Α) Ρ(παράγοντες του 35) Β) Ρ(πολλαπλάσιο του 3) Γ) Ρ(ζυγό αριθµό) ) Ρ(6 ή 2) Ε) Ρ(11) Στ) Ρ(σύνθετος αριθµό) Ζ) Ρ(ούτε ένας πρώτος ούτε ένας σύνθετος αριθµός) 4. Τραβάµε ένα χαρτί από µια τράπουλα 52 καρτών. Βρες την πιθανότητα για κάθε ένα από τα ακόλουθα. Α) Μια κόκκινη κάρτα Β) Μια κόκκινη κάρτα ή ένα 10 Γ) Μια φιγούρα ) Μια Ντάµα Ε) Όχι µια Ντάµα Στ) Μια φιγούρα ή ένα µπαστούνι Ζ) Μια φιγούρα και ένα µπαστούνι Η) Ούτε φιγούρα ούτε µπαστούνι. 5. Ένα συρτάρι περιέχει 6 µαύρες κάλτσες 4 καφέ και 2 πράσινες. Ας υποθέσουµε ότι τραβάµε µια κάλτσα από το συρτάρι. Βρες την πιθανότητα να συµβεί κάθε ένα από τα ακόλουθα. Α) Η κάλτσα είναι καφέ. Β) Η κάλτσα είναι η µαύρη ή πράσινη. Γ) Η κάλτσα είναι κόκκινη. ) Η κάλτσα δεν είναι µαύρη. 6. Κάθε γράµµα της αλφαβήτου γράφεται σε ένα ξεχωριστό χαρτί και τοποθετείται µέσα σ ένα κουτί. Στην συνέχεια τραβάµε ένα χαρτί στην τύχη. Α) Ποια είναι η πιθανότητα το χαρτί να έχει γραµµένο πάνω του ένα φωνήεν, Β) Ποια η πιθανότητα να έχει γραµµένο ένα σύµφωνο; 7) Εάν η πιθανότητα να καταφέρεις να ταξιδέψεις µε την πτήση για Βοστόνη είναι 0,2, ποια είναι η πιθανότητα να χάσεις την πτήση; 8) Η Σοφία έχει 6 δισκέτες κοµπιούτερ χωρίς καµία ένδειξη στην επιφάνειά τους. Αυτές περιέχουν Αγγλικά, Μαθηµατικά, Αµερικάνικη Ιστορία, Χηµεία και Φυσική. Απάντησε στις ακόλουθες ερωτήσεις. Α) Εάν επιλέξει µια δισκέτα στην τύχη ποια είναι η πιθανότητα να έχει επιλέξει το CD µε τα αγγλικά; Β) Ποια η πιθανότητα το CD που θα επιλέξει να µην είναι ούτε Μαθηµατικά ούτε Χηµεία. ΑΣΚΗΣΕΙΣ Ε 1. Ποια είναι η πιθανότητα να συµβεί το κάθε ένα από τα παρακάτω συγκεκριµένα γεγονότα µε το πέταγµα του ζαριού; Α Β 1 Ένα µονό νούµερο. Ένας αριθµός µικρότερος του 7. 2 Ένας ζυγός αριθµός Ένας αριθµός διαφορετικός του 0 3 Ένα νούµερο µεγαλύτερο από το 2 Ο αριθµός 0. 4 Ένας αριθµός µικρότερος του 4. Ένα νούµερο διαφορετικό του 4 4

5 2. Ποια είναι η πιθανότητα να συµβεί κάθε ένα από τα παρακάτω συγκεκριµένα γεγονότα τραβώντας ένα χαρτί από µια συνηθισµένη τράπουλα 52 χαρτιών; Ένας άσσος. Ένα µπαστούνι. Ένας βασιλιάς Ένα κόκκινο χαρτί. 3. Οι ακόλουθες ερωτήσεις αναφέρονται σ ένα πολύ δηµοφιλές παιχνίδι ζαριών στο οποίο κάθε παίχτης ρίχνει δύο ζάρια. Α) Φέρνοντας άθροισµα 7 ή 11 στην πρώτη ρήψη κερδίζεις. Ποια η πιθανότητα να κερδίσεις µε την πρώτη ρήψη; Β) Φέρνοντας 2, 3, ή 12 στην πρώτη ρήψη χάνεις. Ποια η πιθανότητα να χάσεις στην πρώτη ρήψη; Γ) Αν φέρεις 4, 5, 6, 8, 9, ή 10 στην πρώτη ρήψη ούτε χάνεις ούτε κερδίζεις. Ποια η πιθανότητα ούτε να χάσεις ούτε να κερδίσεις στην πρώτη ρήψη; ) Εάν φέρεις 4, 5, 6, 8, 9, ή 10 ο παίκτης πρέπει να φέρει ξανά το ίδιο νούµερο πριν φέρει 7. Ποιο ποσό τα 4, 5, 6, 8, 9, 10 ή 10 έχει την µεγαλύτερη πιθανότητα να ληφθεί ξανά; Ε. Ποια η πιθανότητα να φέρουµε το άθροισµα 1 σε οποιαδήποτε ρήψη; Στ. Ποια η πιθανότητα να φέρουµε άθροισµα µικρότερο του 13 σε οποιαδήποτε ρήψη; 4 Εάν ρίξουµε τα ζάρια 60 φορές υποθέστε πόσες φορές θα εµφανιστεί το άθροισµα 7; µέλη µιας τάξης δίνουν χειραψίες ο ένας µε τον άλλο την µέρα που ανοίγει το σχολείο. Α) πόσες χειραψίες έγιναν στο σύνολο; Β) πόσες θα γίνουν εάν συµπληρωµατικά κάθε ένας δίνει τα χέρια επίσης και µε τον διευθυντή; 6. Μια τάξη πρόκειται να διαιρεθεί σε δύο οµάδες µε τουλάχιστον ένα µαθητή η κάθε µια. Πόσα διαφορετικά ζευγάρια οµάδων µπορούν να γίνουν από µια τάξη 8 µαθητών; 7. Πόσα διαφορετικά ζευγάρια οµάδων από τέσσερις σπουδαστές η κάθε µια µπορούν να γίνουν από µια τάξη εννέα µαθητών; 8. Προβλήµατα µέτρησης µπορούν να προκύψουν µέσα από πολλά µαθηµατικά πάζλς. είτε το σχέδιο παρακάτω και βρείτε για παράδειγµα τα ακόλουθα πάζλς µε στόχους: Επιτρέπεται να ρίξεις τέσσερα βέλη και ας υποθέσουµε ότι δεν αστοχείς. Με πόσους διαφορετικούς τρόπους µπορείς να επιτύχεις το σκορ 60 πόντων; Παρατήρησε και τοποθέτησε µε την σειρά τα 2 τελευταία ψηφία από 20 πινακίδες αυτοκινήτων που βρίσκονται στο πάρκιν. Επανέλαβε αυτή τη διαδικασία για 5 τουλάχιστον σετ από 20 διψήφιους αριθµούς. Για κάθε σετ από 20 νούµερα παρατήρησε 5

6 πόσο συχνά βρίσκεις µια επανάληψη από κάθε ζευγάρι ψηφίων. (το ίδιο διψήφιο νούµερο να εµφανίζεται τουλάχιστον δυο φορές). ΠΡΟΒΛΗΜΑΤΑ Ζ 1. Πόσοι είναι οι τετραψήφιοι αριθµοί; Πόσοι είναι οι τετραψήφιοι αριθµοί που περιέχουν µόνο άρτια ψηφία; Πόσοι τριψήφιοι δεν περιέχουν το ψηφίο 7, αλλά περιέχουν τουλάχιστο µια φορά το 8; 2. Έχουµε έναν αριθµό πουλιών και αγοράσαµε µερικά κλουβιά, για να τα βάλουµε µέσα. Αν βάλουµε 7 πουλιά σε κάθε κλουβί, τότε περισσεύει ένα πουλί. Αν βάλουµε 9 πουλιά σε κάθε κλουβί, τότε περισσεύει ένα κλουβί. Πόσα είναι τα πουλιά και πόσα τα κλουβιά; 3. Θεωρείστε έναν τριψήφιο αριθµό, έστω τον abc, µε a c και c 0. Αντιστρέψτε τη σειρά των ψηφίων, οπότε παίρνετε τον τριψήφιο αριθµό cba. Αφαιρέστε το µικρότερο από τον µεγαλύτερο. Αν π.χ. abc>cba, αφαιρέστε: abc-cba=def. Αντιστρέψτε το τριψήφιο def και προσθέστε τους αριθµούς def και fde. Επαναλάβετε τα ίδια µε άλλον τριψήφιο αριθµό. Τι παρατηρείτε; Πώς το εξηγείτε; 4. Μια βρύση γεµίζει µια δεξαµενή σε 15 λεπτά της ώρας, µια δεύτερη σε 20 λεπτά, και µια τρίτη σε 30. Αν είναι ανοιχτές και οι τρεις βρύσες, σε πόσο χρόνο θα γεµίσουν τη δεξαµενή; 5. Ένας γεωργός έχει στην αυλή του κότες και κουνέλια. Όλα τα ζώα είναι 50, ενώ τα πόδια τους συνολικά είναι 140. Πόσες είναι οι κότες και πόσα τα κουνέλια; 6. Ένα µικρό αεροπλάνο πετάει µε 360 km/h όταν δε φυσάει άνεµος. Στο ντεπόζιτό του έχει καύσιµα για ασφαλή πτήση τεσσάρων ωρών. Αν σ ένα ταξίδι του φυσάει αντίθετος άνεµος µε σταθερή ταχύτητα 40 km/h, που φυσικά στην επιστροφή αυτός ο άνεµος είναι ευνοϊκός, πόσα χιλιόµετρα µπορεί να πετάξει (µαζί µε την επιστροφή), ώστε το ταξίδι να είναι ασφαλές; 7. Πόσα κιλά καφέ αξίας των 900 δραχµών ανά κιλό και πόσα των 600 πρέπει να αναµίξουµε, ώστε να πάρουµε µίγµα 50 κιλών και αξίας 720 δραχµών ανά κιλό; 8. Σ ένα δοχείο µε υγρό υδράργυρο επιπλέει µια σφαίρα σιδήρου. Προσθέτουµε νερό πάνω από τον υδράργυρο, ώσπου να καλυφθεί η σφαίρα. Τι από τα τρία θα συµβεί: θα ανυψωθεί, θα βυθιστεί ή θα µείνει η σφαίρα στο ίδιο βάθος ως προς την επιφάνεια του υδράργυρου; Το ειδικό βάρος του νερού είναι 1,00 gr./cm³, του υδράργυρου 13,60 gr/cm³, και του σιδήρου 7,84 gr/cm³. 9. Κάποιος έκανε µια πορεία 5 ωρών. Αρχικά βάδισε σ έναν επίπεδο δρόµο, ύστερα σε έναν ανηφορικό, και µετά επέστρεψε από τον ίδιο δρόµο µέχρι το σηµείο που ξεκίνησε. Στον επίπεδο δρόµο η ταχύτητά του ήταν 4 km/h, στον ανήφορο ήταν 3 km/h, και στον κατήφορο 6 km/h. Ποιο ήταν το συνολικό µήκος του δρόµου που βάδισε; 6

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΑΙ ΑΓΩΓΙΚΟ ΤΜΗΜΑ ΗΜΟΤΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 Χειµερινό Εξάµηνο Ρόδος, εκέµβριος 2013 ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΙΚΩΝ, Ι ΑΚΤΙΚΗΣ και ΠΟΛΥΜΕΣΩΝ Μάθηµα: ΥΓ00003 "ΕΙΣΑΓΩΓΗ στις

Διαβάστε περισσότερα

κανένα από τα παραπάνω

κανένα από τα παραπάνω Το παρακάτω ερωτηµατολόγιο απευθύνεται σε προπτυχιακούς φοιτητές µη µαθηµατικών τµηµάτων και έχει ως στόχο να καταγράψει τις µαθηµατικές γνώσεις που απαιτούνται για την παρακολούθηση ενός εισαγωγικού µαθήµατος

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου

ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου Εαρινό Εξάµηνο 2009 Κάτια Παπακωνσταντινοπούλου 1. Εστω A ένα µη κενό σύνολο. Να δείξετε ότι η αλγεβρική δοµή (P(A), ) είναι αβελιανή οµάδα. 2. Εστω ένα ξενοδοχείο

Διαβάστε περισσότερα

ΙΙΙ εσµευµένη Πιθανότητα

ΙΙΙ εσµευµένη Πιθανότητα ΙΙΙ εσµευµένη Πιθανότητα 1 Λυµένες Ασκήσεις Ασκηση 1 Στρίβουµε ένα νόµισµα δύο ϕορές. Υποθέτοντας ότι και τα τέσσερα στοιχεία του δειγµατοχώρου Ω {(K, K, (K, Γ, (Γ, K, (Γ, Γ} είναι ισοπίθανα, ποια είναι

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50]

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Η καταληκτική ημερομηνία για την παραλαβή

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013. Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013. Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

Πιθανότητες ΣΤ Δημοτικού

Πιθανότητες ΣΤ Δημοτικού ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Διδακτική των Μαθηματικών Χειμερινό εξάμηνο ακαδ. έτους 2012-2013 ΣΧΕΔΙΑΣΜΟΣ ΜΑΘΗΜΑΤΟΣ Πιθανότητες ΣΤ Δημοτικού Σοφία Άιζενμπαχ Α.Μ. 5898 Πάτρα,

Διαβάστε περισσότερα

Ε - ΣΤ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012

Ε - ΣΤ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012 1. Πόσες ώρες έχουν περάσει από τις 6:45 πμ μέχρι τις 11:45 μμ της ίδιας μέρας; Α. 5 Β. 17 Γ. 24 Δ. 29 Ε. 41 1 1 2. Αν το χ είναι μεταξύ 1 και 1 +, τότε το χ μπορεί να είναι ίσο με τον κάθε 5 5 αριθμό

Διαβάστε περισσότερα

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44.

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44. ΤΕΧΝΙΚΕΣ ΚΑΤΑΜΕΤΡΗΣΗΣ Η καταµετρηση ενος συνολου µε πεπερασµενα στοιχεια ειναι ισως η πιο παλια µαθηµατικη ασχολια του ανθρωπου. Θα µαθουµε πως, δεδοµενης της περιγραφης ενος συνολου, να µπορουµε να ϐρουµε

Διαβάστε περισσότερα

Το Jungle Speed είναι ένα παιχνίδι για 2 έως 10 παίκτες (ή και ακόμη περισσότερους!) ηλικίας 7 και άνω.

Το Jungle Speed είναι ένα παιχνίδι για 2 έως 10 παίκτες (ή και ακόμη περισσότερους!) ηλικίας 7 και άνω. Το Jungle Speed είναι ένα παιχνίδι για 2 έως 10 παίκτες (ή και ακόμη περισσότερους!) ηλικίας 7 και άνω. Σκοπός σας είναι να είστε ο πρώτος παίκτης που θα ξεφωρτωθεί όλες του τις κάρτες. Το τοτέμ τοποθετείται

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΚΕΦΑΛΑΙΟ 3 ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ Πολλαπλασιαστική αρχή (multiplicatio rule). Έστω ότι ένα πείραμα Ε 1 έχει 1 δυνατά αποτελέσματα. Έστω επίσης ότι για κάθε ένα από αυτά τα δυνατά

Διαβάστε περισσότερα

Το παιχνίδι αυτό είναι επέκταση και απαιτεί τη χρήση των παρακάτω

Το παιχνίδι αυτό είναι επέκταση και απαιτεί τη χρήση των παρακάτω Το Εγχειρίδιο αυτό περιγράφει τις αλλαγές στους κανόνες, σχετικά με τον Χάρτη της Ινδίας. Υποτίθεται ότι είστε εξοικειωμένοι με τους βασικούς κανόνες του Ticket to Ride. Ε Ο χάρτης της Ινδίας είναι σχεδιασμένος

Διαβάστε περισσότερα

ΔΥΝΑΤΟΤΗΤΕΣ ΕΦΑΡΜΟΓΗΣ

ΔΥΝΑΤΟΤΗΤΕΣ ΕΦΑΡΜΟΓΗΣ ΔΥΝΑΤΟΤΗΤΕΣ ΕΦΑΡΜΟΓΗΣ Εγκατάσταση του CD-ROM Βάλτε το CD του προγράμματος στον οδηγό των CD-ROM. Θα πρέπει αυτόματα να ξεκινήσει η εγκατάσταση του προγράμματος. Αν δεν ξεκινήσει αυτόματα η διαδικασία εγκατάστασης

Διαβάστε περισσότερα

Κεφάλαιο 2 Πιθανότητες. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

Κεφάλαιο 2 Πιθανότητες. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς Κεφάλαιο 2 Πιθανότητες Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς 2-2 2 Πιθανότητες Χρησιμοποιώντας την Στατιστική Βασικοί ορισμοί: Ενδεχόμενα, Δειγματικός χώρος και Πιθανότητες

Διαβάστε περισσότερα

Θέμα: ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΙΣ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΚΕΦΑΛΑΙΟ 7 ΒΙΒΛΙΟ KELLER

Θέμα: ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΙΣ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΚΕΦΑΛΑΙΟ 7 ΒΙΒΛΙΟ KELLER ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, email: mitro@teipat.gr Καθηγητής

Διαβάστε περισσότερα

Θέµατα Καγκουρό 2010 Επίπεδο: 1 (για µαθητές της Γ' και ' τάξης ηµοτικού)

Θέµατα Καγκουρό 2010 Επίπεδο: 1 (για µαθητές της Γ' και ' τάξης ηµοτικού) Θέµατα Καγκουρό 2010 Επίπεδο: 1 (για µαθητές της Γ' και ' τάξης ηµοτικού) Ερωτήσεις 3 πόντων: 1) Η γάτα θέλει να πάει στο γάλα και το ποντίκι στο τυρί, ακολουθώντας τους δρόµους του κήπου. Οι διαδροµές

Διαβάστε περισσότερα

P (A B) = P (A) + P (B) P (A B) = 0.5 + 0.4 0.3 = 0.6.

P (A B) = P (A) + P (B) P (A B) = 0.5 + 0.4 0.3 = 0.6. 1 Λυµένες Ασκήσεις Ασκηση 1 Θεωρούµε δύο ενδεχόµενα A, B. Με πιθανότητα 0.5 ϑα συµβεί το A, µε πιθανότητα 0.4 ϑα συµβεί το B και µε πιθανότητα 0.3 ϑα συµβούν και τα δυο. Ποια είναι η πιθανότητα να µη συµβεί

Διαβάστε περισσότερα

ΧΡΗΜΑΤΟΔΟΤΟΥΜΕΝΟ ΑΠΟ ΤΗΝ ΟΡΓΑΝΩΣΗ ΝΤΕΤΕΡΜΙΝΙΣΤΙΚΗΣ ΑΡΧΑΙΟΛΟΓΙΑΣ. Ο Επίσηµος ΟΔΗΓΟΣ ΑΠΟΣΤΟΛΗΣ. 1η Έκδοση

ΧΡΗΜΑΤΟΔΟΤΟΥΜΕΝΟ ΑΠΟ ΤΗΝ ΟΡΓΑΝΩΣΗ ΝΤΕΤΕΡΜΙΝΙΣΤΙΚΗΣ ΑΡΧΑΙΟΛΟΓΙΑΣ. Ο Επίσηµος ΟΔΗΓΟΣ ΑΠΟΣΤΟΛΗΣ. 1η Έκδοση ΧΡΗΜΑΤΟΔΟΤΟΥΜΕΝΟ ΑΠΟ ΤΗΝ ΟΡΓΑΝΩΣΗ ΝΤΕΤΕΡΜΙΝΙΣΤΙΚΗΣ ΑΡΧΑΙΟΛΟΓΙΑΣ Ο Επίσηµος ΟΔΗΓΟΣ ΑΠΟΣΤΟΛΗΣ 2013 1η Έκδοση ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ Περιεχόμενα... 3 Εκπαιδευτική Αποστολή Πορεία του Παιχνιδιού... 5 Χάνοντας

Διαβάστε περισσότερα

Του Friedmann Friese, για 3 έως 6 παίκτες 13 ετών και άνω. 60 κάρτες: - 36 κάρτες με αριθμούς (έξι σετ καρτών από το 0 έως 5)

Του Friedmann Friese, για 3 έως 6 παίκτες 13 ετών και άνω. 60 κάρτες: - 36 κάρτες με αριθμούς (έξι σετ καρτών από το 0 έως 5) Του Friedmann Friese, για 3 έως 6 παίκτες 13 ετών και άνω 60 κάρτες: - 36 κάρτες με αριθμούς (έξι σετ καρτών από το 0 έως 5) - 24 κάρτες αποστολών (με 1 έως 6 σύμβολα) 35 πλακίδια αντικειμένων: - 8 x σκαμπό

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 5ο Σχηματισμοί όπου επιτρέπεται η επανάληψη στοιχείων 2 Παράδειγμα 2.4.1 Πόσα διαφορετικά αποτελέσματα μπορούμε

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 21 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής).

Διαβάστε περισσότερα

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ Κοίταξε τις µεθόδους, τις λυµένες ασκήσεις και τις ασκήσεις προς λύση των ενοτήτων 6, 7 του βοηθήµατος Μεθοδολογία Άλγεβρας και Στοιχείων Πιθανοτήτων Α Γενικού Λυκείου των Ευσταθίου Μ. και Πρωτοπαπά Ελ.

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ"

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ" ΜΕΡΟΣ ΔΕΥΤΕΡΟ Υπεύθυνος Καθηγητής Λυκοθανάσης Σπυρίδων Ακαδημαικό Έτος:

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 10 ΙΟΥΝΙΟΥ 2013 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΠΑΡΙΘΜΗΣΗΣ

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΠΑΡΙΘΜΗΣΗΣ 1 ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΠΑΡΙΘΜΗΣΗΣ 1.1 Απαρίθμηση και καταγραφή 1.2 Η αρχή του αθροίσματος 1.3 Η πολλαπλασιαστική αρχή 1.4 Άλλοι κανόνες απαρίθμησης 1.5 Πιθανότητες σε πεπερασμένους δειγματικούς χώρους 1.6 Γενικές

Διαβάστε περισσότερα

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΙΘΑΝΟΤΗΤΕΣ. Μαθηματικά Γενικής Παιδείας. Γ.Λυκείου

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΙΘΑΝΟΤΗΤΕΣ. Μαθηματικά Γενικής Παιδείας. Γ.Λυκείου Γ. ΛΥΚΕΙΟΥ ΜΘΗΜΤΙΚ ΓΕΝΙΚΗΣ ΠΙΔΕΙΣ ΠΙΘΝΟΤΗΤΕΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου Π Ι Θ Ν Ο Τ Η Τ Ε Σ ΟΡΙΣΜΟΙ Πείραμα τύχης λέγεται το πείραμα το οποίο όσες φορές και αν επαναληφθεί (φαινομενικά τουλάχιστον

Διαβάστε περισσότερα

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 2 Φυσικοί

Διαβάστε περισσότερα

P (A 1 A 2... A n ) = P (A 1 )P (A 2 A 1 )P (A 3 A 1 A 2 ) P (A n A 1 A 2 A n 1 ).

P (A 1 A 2... A n ) = P (A 1 )P (A 2 A 1 )P (A 3 A 1 A 2 ) P (A n A 1 A 2 A n 1 ). Υπενθυμίσεις Παραδείγματα Ασκήσεις Μελέτη 31 Οκτωβρίου 2014 Πιθανότητες και Στατιστική Διάλεξη 7 Ασκήσεις ΙΙ Δεσμευμένη πιθανότητα, Συνδυαστικά επιχειρήματα Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο

Διαβάστε περισσότερα

Επέκταση παραλλαγών 4, 5 και 6 του Fresco, για 2-4 παίκτες ηλικίας 10 ετών και άνω

Επέκταση παραλλαγών 4, 5 και 6 του Fresco, για 2-4 παίκτες ηλικίας 10 ετών και άνω Επέκταση παραλλαγών 4, 5 και 6 του Fresco, για 2-4 παίκτες ηλικίας 10 ετών και άνω Στο εγχειρίδιο αυτό, θα βρείτε τους κανόνες της επέκτασης παραλλαγών 4, 5 και 6. Μόνο οι αλλαγές στους κανόνες και τυχόν

Διαβάστε περισσότερα

γραμματισμό των νηπίων Μέρος 5ο: Παιχνίδια

γραμματισμό των νηπίων Μέρος 5ο: Παιχνίδια Η αξιοποίηση του ονόματος του παιδιού για το γραμματισμό των νηπίων Μέρος 5ο: Παιχνίδια Μαρία Θεοδωρακάκου Νηπιαγωγός, ΜΤΕΕΑ maria.theodorakakou@gmail.com Η παρουσίαση αναπτύχθηκε για την πλατφόρμα Ταξίδι

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ ΚΕΦΛΙΟ Ο ΠΙΘΝΟΤΗΤΕΣ. Εισαγωγή Στην Θεωρία Πιθανοτήτων, ξεκινάµε από το λεγόµενο πείραµα δηλαδή µια διαδικασία η οποία µπορεί να επαναληφθεί θεωρητικά άπειρες φορές, κάτω από τις ίδιες ουσιαστικά συνθήκες,

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί.

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί. Κεφάλαιο : ιατάξεις και Συνδυασµοί. Περιεχόµενα Εισαγωγή Βασική αρχή απαρίθµησης ιατάξεις µε και χωρίς επανατοποθέτηση Συνδυασµοί Ασκήσεις Εισαγωγή Μέχρι το τέλος αυτού του κεφαλαίου ϑα ϑεωρούµε πειράµατα

Διαβάστε περισσότερα

3 ΠΙΘΑΝΟΤΗΤΕΣ Εισαγωγή

3 ΠΙΘΑΝΟΤΗΤΕΣ Εισαγωγή 3 ΠΙΘΑΝΟΤΗΤΕΣ Εισαγωγή Υπάρχει σε πολλούς η εντύπωση ότι το κύριο κίνητρο για την ανάπτυξη της Θεωρίας των Πιθανοτήτων προήλθε από το ενδιαφέρον του ανθρώπου για τα τυχερά παιχνίδια Σημαντική μάλιστα ώθηση

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 3ο Διατάξεις και μεταθέσεις 2 ΔΙΑΤΑΞΕΙΣ-ΜΕΤΑΘΕΣΕΙΣ- ΣΥΝΔΥΑΣΜΟΙ 2.1 Διατάξεις και μεταθέσεις 2.2 Κυκλικές διατάξεις

Διαβάστε περισσότερα

Εισαγωγή. Περιεχόμενα. Μέσα στο Κουτί. Εισαγωγή... 2. Στόχος... 2. Μέσα στο Κουτί... 2. Οι Κάρτες... 3. Περιγραφή των Καρτών... 3. Επιβίβαση!...

Εισαγωγή. Περιεχόμενα. Μέσα στο Κουτί. Εισαγωγή... 2. Στόχος... 2. Μέσα στο Κουτί... 2. Οι Κάρτες... 3. Περιγραφή των Καρτών... 3. Επιβίβαση!... Αριθμός Παικτών: 2-4 Χρόνος Παιχνιδιού: 45 λεπτά Ηλικίες: 12 και άνω Περιεχόμενα Εισαγωγή................................... 2 Στόχος..................................... 2 Μέσα στο Κουτί...............................

Διαβάστε περισσότερα

1-3 10 1-3 6 3-5 40 3-5 30 5-7 20 5-7 20 7-9 20 7-9 30 9-11 8 9-11 10 11-13 2 11-13 4 Σύνολο 100 Σύνολο 100

1-3 10 1-3 6 3-5 40 3-5 30 5-7 20 5-7 20 7-9 20 7-9 30 9-11 8 9-11 10 11-13 2 11-13 4 Σύνολο 100 Σύνολο 100 1. (Εξεταστ. Φεβ. 2004) Μια µεγάλη εταιρία θέλει να εξετάσει εάν το εκπαιδευτικό πρόγραµµα που ακολουθήσανε οι 100 πωλητές της ήταν αποτελεσµατικό (δηλαδή εάν αυξήθηκαν οι πωλήσεις). Οι δύο παρακάτω πίνακες

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 3. Δίνονται τα σύνολα 2

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 3. Δίνονται τα σύνολα 2 ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΑ-ΠΙΘΑΝΟΤΗΤΕΣ Έστω βασικό σύνολο Ω = {, 4, 5, 8, 0} και τα υποσύνολα του Ω, Α = {, 5, 0}, Β = {4, 8, 0} i) Να παραστήσετε με διάγραμμα Venn τα παραπάνω σύνολα ii) Να περιγράψετε

Διαβάστε περισσότερα

4.2 4.3 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ

4.2 4.3 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ 1 4. 4.3 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΘΕΩΡΙΑ 1. Πρόβληµα : Ονοµάζουµε την κατάσταση που δηµιουργείται όταν αντι- µετωπίζουµε εµπόδια και δυσκολίες στην προσπάθεια µας να φτάσουµε σε έναν συγκεκριµένο στόχο.. Επίλυση

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΕΞΕΡΕΥΝΗΣΤΕ ΤΗ ΜΥΣΤΗΡΙΩΔΗ ΝΗΣΟ

ΕΞΕΡΕΥΝΗΣΤΕ ΤΗ ΜΥΣΤΗΡΙΩΔΗ ΝΗΣΟ ΕΞΕΡΕΥΝΗΣΤΕ ΤΗ ΜΥΣΤΗΡΙΩΔΗ ΝΗΣΟ ΕΙΣΑΓΩΓΗ Εξερευνήστε τη μυστηριώδη νήσο La Isla, και κυνηγήστε ζώα που μέχρι πρότινος θεωρούνταν εξαφανισμένα. Το ευγενές Ντόντο, το προσεκτικό Γιγάντιο Φόσα, τον άπιαστο

Διαβάστε περισσότερα

Μεταβλητές. Για περισσότερες λεπτομέρειες πάνω στις μεταβλητές θα ήταν χρήσιμο να διαβάσεις το

Μεταβλητές. Για περισσότερες λεπτομέρειες πάνω στις μεταβλητές θα ήταν χρήσιμο να διαβάσεις το Τάξη : Α Λυκείου Λογισμικό : Scratch Ενδεικτική Διάρκεια : 45 λεπτά Μεταβλητές Όλα όσα έμαθες στα προηγούμενα φυλλάδια είναι απαραίτητα για να υλοποιήσεις απλές εφαρμογές. Ωστόσο αν θέλεις να δημιουργήσεις

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 19 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΛΑΙΟ 1 ο ΠΙΘΑΝΟΤΗΤΕΣ 1. Για οποιαδήποτε ενδεχόμενα Α, Β ενός δειγματικού χώρου Ω ισχύει η σχέση ( ) ( ) ( ).. Ισχύει ότι P( A B) P( A

Διαβάστε περισσότερα

Projects στο Εργαστήριο Αρχιτεκτονικής Υπολογιστών Version 2 Ισχύει από Φεβρουάριο 2009

Projects στο Εργαστήριο Αρχιτεκτονικής Υπολογιστών Version 2 Ισχύει από Φεβρουάριο 2009 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΜΑΘΗΜΑ : ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ 4 ο ΕΞΑΜΗΝΟ Projects στο Εργαστήριο Αρχιτεκτονικής Υπολογιστών Version 2 Ισχύει από Φεβρουάριο

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 19 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα)

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Πείραμα: διαδικασία που παράγει πεπερασμένο σύνολο αποτελεσμάτων Πληθικός αριθμός συνόλου

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50]

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ. Θέματα: - Ερμηνεία και κατασκευή γραφικών παραστάσεων - Ερμηνεία πινάκων - Πιθανότητες

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ. Θέματα: - Ερμηνεία και κατασκευή γραφικών παραστάσεων - Ερμηνεία πινάκων - Πιθανότητες ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Θέματα: - Ερμηνεία και κατασκευή γραφικών παραστάσεων - Ερμηνεία πινάκων - Πιθανότητες 1 Ερμηνεία και κατασκευή γραφικών παραστάσεων 1. Η αγαπημένη γεύση παγωτού των παιδιών Γεύση

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΙΟΙΚΗΤΙΚΗΣ ΛΟΓΙΣΤΙΚΗΣ ΜΕ ΒΑΣΗ ΤΟ ΒΙΒΛΙΟ «ΙΟΙΚΗΤΙΚΗ ΛΟΓΙΣΤΙΚΗ» ΤΩΝ GARISSON ΚΑΙ NOREEN

ΑΣΚΗΣΕΙΣ ΙΟΙΚΗΤΙΚΗΣ ΛΟΓΙΣΤΙΚΗΣ ΜΕ ΒΑΣΗ ΤΟ ΒΙΒΛΙΟ «ΙΟΙΚΗΤΙΚΗ ΛΟΓΙΣΤΙΚΗ» ΤΩΝ GARISSON ΚΑΙ NOREEN ΑΣΚΗΣΕΙΣ ΙΟΙΚΗΤΙΚΗΣ ΛΟΓΙΣΤΙΚΗΣ ΜΕ ΒΑΣΗ ΤΟ ΒΙΒΛΙΟ «ΙΟΙΚΗΤΙΚΗ ΛΟΓΙΣΤΙΚΗ» ΤΩΝ GARISSON ΚΑΙ NOREEN Σχεδιασµός συστηµάτων: Κοστολόγηση κατά έργο ή κατά παραγγελία Άσκηση 1. Η εταιρεία ΛΑΜΑΠΛΑΣΤ Α.Ε. αντιµετωπίζει

Διαβάστε περισσότερα

Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες.

Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ 3 ου ΚΕΦΑΛΑΙΟΥ Άσκηση (Προτάθηκε από pito ) Για ένα φάρμακο σε πειραματικό στάδιο αποδείχθηκε ότι δημιουργεί δύο ειδών παρενέργειες. Η πιθανότητα να δημιουργήσει

Διαβάστε περισσότερα

Προετοιμασία κάρτες ξεκινήματος μένουν κλειστές. Κανόνες παιξίματος.

Προετοιμασία κάρτες ξεκινήματος μένουν κλειστές. Κανόνες παιξίματος. Κάπου στο Λονδίνο κρύβεται ο αυτόνομος Χ. Η Σέκλαντ Γιάρντ έχει στη διαθεσή της δύο, τρεις ως πέντε σεκίτες για να τον εντοπίσουν. Κινούνται με ταξί, μετρό ή λεωφορείο κι έχουν στη διάθεση τους ορισμένα

Διαβάστε περισσότερα

Εργαστήριο Ασύγχρονης ιδασκαλίας Πανεπιστηµίου Πειραιώς 12 Απριλίου 2006

Εργαστήριο Ασύγχρονης ιδασκαλίας Πανεπιστηµίου Πειραιώς 12 Απριλίου 2006 Εργαστήριο Ασύγχρονης ιδασκαλίας Πανεπιστηµίου Πειραιώς 12 Απριλίου 2006 1ο Μονόδροµη 2ο Αλληλεπιδραστική Εκπαίδευση Μονόδροµη εκπαίδευση ( ιάβασέ το, δες το, άκουσέ το) Αλληλεπιδραστική εκπαίδευση ( οκίµασε,

Διαβάστε περισσότερα

ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Γνωστικό Αντικείµενο. Κυριακή 1 Οκτωβρίου 2000

ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Γνωστικό Αντικείµενο. Κυριακή 1 Οκτωβρίου 2000 ΑΣΕΠ - ΚΕ ΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ 2000 ΚΛΑ ΟΣ ΠΕ 70 ΑΣΚΑΛΩΝ ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Γνωστικό Αντικείµενο Κυριακή 1 Οκτωβρίου 2000 ΕΡΩΤΗΜΑ 1ο (Γλώσσα - Λογοτεχνία): Θέµατα που απασχόλησαν τους συγγραφείς

Διαβάστε περισσότερα

ΥΠΟΒΡΥΧΙΟ ΡΑΓΚΜΠΥ ΠΕΡΙΛΗΨΗ ΚΑΝΟΝΙΣΜΩΝ

ΥΠΟΒΡΥΧΙΟ ΡΑΓΚΜΠΥ ΠΕΡΙΛΗΨΗ ΚΑΝΟΝΙΣΜΩΝ ΥΠΟΒΡΥΧΙΟ ΡΑΓΚΜΠΥ ΠΕΡΙΛΗΨΗ ΚΑΝΟΝΙΣΜΩΝ (με βάση τις οδηγίες της CMAS) Σύντομη περιγραφή του παιχνιδιού: Το υποβρύχιο ράγκμπυ είναι ένα τρισδιάστατο άθλημα που παίζεται κάτω από την επιφάνεια του νερού,

Διαβάστε περισσότερα

Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015

Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015 Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015 Άσκηση Φ8.1 Τρεις λαμπτήρες επιλέγονται τυχαία από ένα σύνολο 15 λαμπτήρων εκ των οποίων οι 5 είναι ελαττωματικοί. (α) Βρέστε την πιθανότητα κανείς από

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012. Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012. Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Όλες οι απαντήσεις. Μαθηματικά Δ Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Όλες οι απαντήσεις. Μαθηματικά Δ Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Όλες οι απαντήσεις Μαθηματικά Δ Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ Περιεχόμενα Κεφάλαιο : Θυμάμαι ό,τι έμαθα από την Γ Τάξη... 5 Κεφάλαιο : Διαχειρίζομαι αριθμούς ως το 0.000... 8 Κεφάλαιο

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) 5 1 1 1η σειρά ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) ΘΕΜΑ 1 Α. Ας υποθέσουμε ότι x 1,x,...,x κ είναι οι τιμές μιας μεταβλητής X, που αφορά τα άτομα ενός δείγματος μεγέθους

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Το κύριο αντικείμενο της Συνδυαστικής Οι τεχνικές υπολογισμού του πλήθους των στοιχείων πεπερασμένων συνόλων ή υποσυνό-

Διαβάστε περισσότερα

1.1 ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ ΙΑΤΑΞΗ

1.1 ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ ΙΑΤΑΞΗ 1 1.1 ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ ΙΑΤΑΞΗ ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΘΕΩΡΙΑ 1. Φυσικοί αριθµοί : Είναι οι αριθµοί 0, 1, 2, 3,, 10000, 10001,.50000 2. Προηγούµενος επόµενος : Κάθε φυσικός αριθµός εκτός από το 0 έχει έναν προηγούµενο

Διαβάστε περισσότερα

Θέματα. Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες)

Θέματα. Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες) Θέματα Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες) Β. Είναι Σωστή ή Λάθος καθεμιά από τις παρακάτω προτάσεις ; Θέμα α. Αν x

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

20 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ

20 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 20 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Αφιερωµένη στη µνήµη της Φυσικού Σύλβιας Γιασουµή Κυριακή, 19 Μαρτίου, 2006 Ώρα: 10:30-13:30 Οδηγίες: 1) Το δοκίµιο αποτελείται από έξι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009 ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 2009 ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 4 ώρες (240 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ Ευρωπαικό τυπολόγιο Μη προγραμματιζόμενος υπολογιστής, χωρίς γραφικά

Διαβάστε περισσότερα

Παιχνίδια του χθες και του σήμερα

Παιχνίδια του χθες και του σήμερα Παιχνίδια του χθες και του σήμερα Πολιτιστικό πρόγραμμα Υπεύθυνη τμήματος: Γιώτα Αλεξάνδρου Διάρκεια προγράμματος: 3 μήνες Μάρτιος Μάιος 2013 Γενικοί στόχοι προγράμματος Να ανακαλύψουν τα παιχνίδια που

Διαβάστε περισσότερα

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2 ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 14 MAΪΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ

Διαβάστε περισσότερα

Οδηγίε παιχνιδιού 3211

Οδηγίε παιχνιδιού 3211 Οδηγίε παιχνιδιού 3211 Copyright - Spiele Bad Rodach 2004 Επιτραπέζιο HABA: 3211 Κάλτσε Ένα συναρπαστικό παιχνίδι αναζήτηση όμοιων καρτών το οποίο απαιτεί παρατηρητικότητα και ταχύτητα, για 2 έω 6 παίκτε

Διαβάστε περισσότερα

Extensive Games with Imperfect Information

Extensive Games with Imperfect Information Extensive Games with Imperfect Information Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εκτεταµένα παίγνια µε ατελή πληροφόρηση

Διαβάστε περισσότερα

Εάν όμως πείτε να κάνετε το πάρτι γενεθλίων στο σπίτι ή τον κήπο σας, τα πράγματα δυσκολέυουν. Πρέπει να οργανώσετε μόνοι σας ένα σωρό πράγματα.

Εάν όμως πείτε να κάνετε το πάρτι γενεθλίων στο σπίτι ή τον κήπο σας, τα πράγματα δυσκολέυουν. Πρέπει να οργανώσετε μόνοι σας ένα σωρό πράγματα. Ιδέες για Γενέθλια παιδιών Πόσες φορές σπάσατε το κεφάλι σας, που να κάνετε το πάρτι γενεθλίων των παιδιών σας; Στο σπίτι, στον κήπο ή τελικά σε κάποιον παιδότοπο; Εάν επιλέξετε έναν παιδότοπο, τα πράγματα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Τελικές εξετάσεις 3 Ιανουαρίου 27 Διάρκεια εξέτασης: 3 ώρες (2:-5:) ΘΕΜΑ ο

Διαβάστε περισσότερα

Το πρόβλημα στα Μαθηματικά

Το πρόβλημα στα Μαθηματικά Το πρόβλημα στα Μαθηματικά από το ΣΔΕ Γιαννιτσών Δημήτρης Πολυτίδης (Μαθηματικός) Στα Μαθηματικά το πρόβλημα θα πρέπει να είναι μια κατάσταση η επίλυση της οποίας, από το μαθητή, δεν είναι αυτόματη και

Διαβάστε περισσότερα

Πρόχειρες σηµειώσεις στις Πιθανότητες

Πρόχειρες σηµειώσεις στις Πιθανότητες Τµήµα Επιστήµης και Τεχνολογίας Υλικών Πρόχειρες σηµειώσεις στις Πιθανότητες Νίκος Λαζαρίδης Για το µάθηµα Εφαρµοσµένα Μαθηµατικά (ΤΕΤΥ 116) Αναθεώρηση, συµπληρώσεις : Μαρία Καφεσάκη 1 Κεφάλαιο 1: Η έννοια

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΤΕΧΝΟΛΟΓΙΑ (IΙ) ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα: ΓΕΜΟΛΟΓΙΑ [310] Ημερομηνία και ώρα

Διαβάστε περισσότερα

Οργάνωση καθημερινών ημερίδων

Οργάνωση καθημερινών ημερίδων Οργάνωση καθημερινών ημερίδων 1) Αγώνες ζευγών 1α) Διαθέσιμες κινήσεις: Φιλοσοφία, μηχανισμοί και τα χαρακτηριστικά τους. Οι κινήσεις είναι ένα από τα βασικότερα εργαλεία που έχει ένας διαιτητής στη διάθεσή

Διαβάστε περισσότερα

Στην Γ' Λυκείου τα µαθήµατα γενικής παιδείας µειώνονται σε 5 και οι µαθητές παράλληλα µε αυτά παρακολουθούν µία εκ των τριών οµάδων προσανατολισµού:

Στην Γ' Λυκείου τα µαθήµατα γενικής παιδείας µειώνονται σε 5 και οι µαθητές παράλληλα µε αυτά παρακολουθούν µία εκ των τριών οµάδων προσανατολισµού: Στην Γ' Λυκείου τα µαθήµατα γενικής παιδείας µειώνονται σε 5 και οι µαθητές παράλληλα µε αυτά παρακολουθούν µία εκ των τριών οµάδων προσανατολισµού: Ανθρωπιστικές Σπουδές Θετικές- Τεχνολογικές Σπουδές

Διαβάστε περισσότερα

Ασκήσεις υναµικής 3 η ενότητα: Κινητική σωµατιδίου: ενέργεια, ορµή, κρούση

Ασκήσεις υναµικής 3 η ενότητα: Κινητική σωµατιδίου: ενέργεια, ορµή, κρούση Ασκήσεις υναµικής 3 η ενότητα: Κινητική σωµατιδίου: ενέργεια, ορµή, κρούση 1. Mόλις τεθεί σε κίνηση µε σταθερή ταχύτητα, ο µάζας 1000 kg ανελκυστήρας Α ανεβαίνει µε ρυθµό έναν όροφο (3 m) το δευτερόλεπτο.

Διαβάστε περισσότερα

http://kesyp.didefth.gr/ 1

http://kesyp.didefth.gr/ 1 248_Τµήµα Εφαρµοσµένων Μαθηµατικών Πανεπιστήµιο Κρήτης, Ηράκλειο Προπτυχιακό Πρόγραµµα Σκοπός του Τµήµατος Εφαρµοσµένων Μαθηµατικών είναι η εκαπαίδευση επιστηµόνων ικανών όχι µόνο να υπηρετήσουν και να

Διαβάστε περισσότερα

Σενάριο 16: Ο κόσμος του Robby

Σενάριο 16: Ο κόσμος του Robby Σενάριο 16: Ο κόσμος του Robby Φύλλο Εργασίας Τίτλος: Ο κόσμος του Robby Γνωστικό Αντικείμενο: Εφαρμογές Πληροφορικής-Υπολογιστών Διδακτική Ενότητα: Διερευνώ - Δημιουργώ Ανακαλύπτω, Συνθετικές εργασίες.

Διαβάστε περισσότερα

Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να γνωρίζει:

Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να γνωρίζει: Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να γνωρίζει: Τον ορισµό της συνάρτησης και τον τρόπο εύρεσης του πεδίου ορισµού της. Τις πράξεις µεταξύ συναρτήσεων, τις γραφικές παραστάσεις

Διαβάστε περισσότερα

3 + 5 = 23 :13 + 18 = 23

3 + 5 = 23 :13 + 18 = 23 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106

Διαβάστε περισσότερα

Θεωρία παιγνίων Δημήτρης Χριστοφίδης Εκδοση 1η: Παρασκευή 3 Απριλίου 2015. Παραδείγματα Παράδειγμα 1. Δυο άτομα παίζουν μια παραλλαγή του σκακιού όπου σε κάθε βήμα ο κάθε παίκτης κάνει δύο κανονικές κινήσεις.

Διαβάστε περισσότερα

(GNU-Linux, FreeBSD, MacOsX, QNX

(GNU-Linux, FreeBSD, MacOsX, QNX 1.7 διαταξεις (σελ. 17) Παράδειγµα 1 Θα πρέπει να κάνουµε σαφές ότι η επιλογή των λέξεων «προηγείται» και «έπεται» δεν έγινε απλώς για λόγους αφαίρεσης. Μπορούµε δηλαδή να ϐρούµε διάφορα παραδείγµατα στα

Διαβάστε περισσότερα

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης τόμος Καγκουρό Ελλάς 0 007 (ο πρώτος αριθµός σε µια γραµµή αναφέρεται στη σελίδα που αρχίζει το άρθρο και ο δεύτερος στη σελίδα που περιέχει τις απαντήσεις) Πρόλογος

Διαβάστε περισσότερα

Πριν απο λιγα χρονια ημουνα ακριβως σαν εσενα.

Πριν απο λιγα χρονια ημουνα ακριβως σαν εσενα. Πριν απο λιγα χρονια ημουνα ακριβως σαν εσενα. Ηξερα οτι υπαρχουν επαγγελματιες παιχτες που κερδιζουν πολλα χρηματα απο το στοιχημα και εψαχνα να βρω τη "μυστικη formula" 'Ετσι κ εσυ. Πηρες μια απο τις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 010 ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 4 Ιουνίου 010 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 4 ώρες (40 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ Ευρωπαικό τυπολόγιο Μη προγραμματιζόμενος υπολογιστής, χωρίς γραφικά

Διαβάστε περισσότερα

Πολύμετρο Βασικές Μετρήσεις

Πολύμετρο Βασικές Μετρήσεις Πολύμετρο Βασικές Μετρήσεις 1. Σκοπός Σκοπός της εισαγωγικής άσκησης είναι η εξοικείωση του σπουδαστή με τη χρήση του πολύμετρου για τη μέτρηση βασικών μεγεθών ηλεκτρικού κυκλώματος, όπως μέτρηση της έντασης

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων «πειράματος» ή «γεγονότος» (με συνδυαστικά επιχειρήματα). «Πείραμα» ή «γεγονός»: διαδικασία με συγκεκριμένο (πεπερασμένο) σύνολο παρατηρήσιμων

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

Χρήσιμες Οδηγίες για την Πλοήγηση στο Υποστηρικτικό Υλικό. Περιεχόμενα

Χρήσιμες Οδηγίες για την Πλοήγηση στο Υποστηρικτικό Υλικό. Περιεχόμενα Χρήσιμες Οδηγίες για την Πλοήγηση στο Υποστηρικτικό Υλικό Περιεχόμενα Βασικές απαιτήσεις... 2 Εγκατάσταση και Εκκίνηση... 2 Παράθυρο Πλοήγησης... 8 Πλήκτρα Ενεργειών του Πίνακα Πλοήγησης... 13 Πλήκτρα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Α Να αποδείξετε ότι η παράγωγος της συνάρτησης f(x) x είναι f (x) Β Πότε µια συνάρτηση f σε ένα διάστηµα

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

3 O Π ΑΝΕΛΛΗΝΙΟ Π ΡΩΤΑΘΛΗΜΑ SUDOKU 09

3 O Π ΑΝΕΛΛΗΝΙΟ Π ΡΩΤΑΘΛΗΜΑ SUDOKU 09 www.e-sudoku.gr 1 3O ΠΑΝΕΛΛΗΝΙΟ ΠΡΩΤΑΘΛΗΜΑ SUDOKU 2 MAIOY 2009 Οι παρόντες κανονισμοί συντάχθηκαν λαμβάνοντας υπ όψιν τους επίσημους κανονισμούς του παιχνιδιού καθώς και τους κανονισμούς της World Puzzle

Διαβάστε περισσότερα

1 H Ελλάδα Κάνετε ερωτήσεις και απαντήσεις. Χρησιμοποιήσετε τις λέξεις κοντά, μακριά, δίπλα, απέναντι, δεξιά, αριστερά, πίσω... Καβάλα. Θάσος.

1 H Ελλάδα Κάνετε ερωτήσεις και απαντήσεις. Χρησιμοποιήσετε τις λέξεις κοντά, μακριά, δίπλα, απέναντι, δεξιά, αριστερά, πίσω... Καβάλα. Θάσος. ΜΑΘΗΜΑ ΔΥΟ ΠΡΟΦΟΡΙΚΕΣ ΑΣΚΗΣΕΙΣ 1 H Ελλάδα Κάνετε ερωτήσεις και απαντήσεις. Χρησιμοποιήσετε τις λέξεις κοντά, μακριά, δίπλα, απέναντι, δεξιά, αριστερά, πίσω... Θεσσαλονίκη Καβάλα Κέρκυρα Θάσος Σαμοθράκη

Διαβάστε περισσότερα

2 Ο ΓΥΜΝΑΣΙΟ ΑΛΕΞΑΝΔΡΕΙΑΣ ΤΑ ΠΑΙΧΝΙΔΙΑ ΝΤΟΠΙΩΝ ΚΑΙ ΠΡΟΣΦΥΓΩΝ ΣΤΟ ΡΟΥΜΛΟΥΚΙ ΣΤΑ ΜΕΣΑ ΤΟΥ ΠΕΡΑΣΜΕΝΟΥ ΑΙΩΝΑ. Η πολιτιστική μας ομάδα

2 Ο ΓΥΜΝΑΣΙΟ ΑΛΕΞΑΝΔΡΕΙΑΣ ΤΑ ΠΑΙΧΝΙΔΙΑ ΝΤΟΠΙΩΝ ΚΑΙ ΠΡΟΣΦΥΓΩΝ ΣΤΟ ΡΟΥΜΛΟΥΚΙ ΣΤΑ ΜΕΣΑ ΤΟΥ ΠΕΡΑΣΜΕΝΟΥ ΑΙΩΝΑ. Η πολιτιστική μας ομάδα 2 Ο ΓΥΜΝΑΣΙΟ ΑΛΕΞΑΝΔΡΕΙΑΣ ΤΑ ΠΑΙΧΝΙΔΙΑ ΝΤΟΠΙΩΝ ΚΑΙ ΠΡΟΣΦΥΓΩΝ ΣΤΟ ΡΟΥΜΛΟΥΚΙ ΣΤΑ ΜΕΣΑ ΤΟΥ ΠΕΡΑΣΜΕΝΟΥ ΑΙΩΝΑ Η πολιτιστική μας ομάδα Σχολικό Έτος 2011 2012 Η πολιτιστική μας ομάδα ΟΚΟΠΟΥΛΟΥ ΑΝΑΣΤΑΣΙΑ ΟΚΟΠΟΥΛΟΥ

Διαβάστε περισσότερα