No 5 Άσκηση παραγώγισης γινοµένου. ( 4 x 2 3 ) 3 x 4 ) 2 x 3 ) 6 ( 4 x 2 3 ) x 2. = 8 x ( 1. = 24 x 20 x x 2. 3 x 4 ) 12 ( 2 x 2 1 ) x 3

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "No 5 Άσκηση παραγώγισης γινοµένου. ( 4 x 2 3 ) 3 x 4 ) 2 x 3 ) 6 ( 4 x 2 3 ) x 2. = 8 x ( 1. = 24 x 20 x 4 + 9 x 2. 3 x 4 ) 12 ( 2 x 2 1 ) x 3"

Transcript

1 Μαθηµατική Υποστήριξη Φοιτητών : Ιδιαίτερα Μαθήµατα, Λυµένες Ασκήσεις, Βοήθεια στη λύση Εργασιών. Θ. Χριστόπουλος, Tηλ.: Ασκήσεις παραγώγισης γινοµένου No Άσκηση παραγώγισης γινοµένου ( ( 4 x 3 ) ( 3 x 3 ( 4 x 3 ) ( 3 x 3 ) + ( 4 x 3 ) ( 3 x 3 ) 8 x ( 3 x 3 ) 3 ( 4 x 3 ) x 4 x 0 x x No Άσκηση παραγώγισης γινοµένου ( ( 3 x 3 ) ( 5 3 x 4 ( 3 x 3 ) ( 5 3 x 4 ) + ( 3 x 3 ) ( 5 3 x 4 ) 6 x ( 5 3 x 4 ) ( 3 x 3 ) x 3 30 x 54 x x 3 No 3 Άσκηση παραγώγισης γινοµένου ( ( x ) ( 3 x 4 ( x ) ( 3 x 4 ) + ( x ) ( 3 x 4 ) 4 x ( 3 x 4 ) ( x ) x 3 8 x 36 x 5 + x 3 No 4 Άσκηση παραγώγισης γινοµένου ( ( 4 x 3 ) ( x 3 ( 4 x 3 ) ( x 3 ) + ( 4 x 3 ) ( x 3 ) 8 x ( x 3 ) 6 ( 4 x 3 ) x 8 x 40 x x No 5 Άσκηση παραγώγισης γινοµένου

2 ( ( 3 x 4 ) ( 5 x ( 3 x 4 ) ( 5 x ) + ( 3 x 4 ) ( 5 x ) 6 x ( 5 x ) 0 ( 3 x 4 ) x 46 x 60 x 3 No 6 Άσκηση παραγώγισης γινοµένου ( ( 5 x 4 ) ( 4 x 3 ( 5 x 4 ) ( 4 x 3 ) + ( 5 x 4 ) ( 4 x 3 ) 0 x ( 4 x 3 ) 3 ( 5 x 4 ) x 40 x 5 x 4 + x No 7 Άσκηση παραγώγισης γινοµένου ( ( x 3 ) ( 3 x 4 ( x 3 ) ( 3 x 4 ) + ( x 3 ) ( 3 x 4 ) x ( 3 x 4 ) ( x 3 ) x 3 x 8 x x 3 No 8 Άσκηση παραγώγισης γινοµένου ( ( x ) ( x 3 ( x ) ( x 3 ) + ( x ) ( x 3 ) 4 x ( x 3 ) 3 ( x ) x 4 x 0 x x No 9 Άσκηση παραγώγισης γινοµένου ( ( 3 x 4 ) ( 4 5 x 3 ( 3 x 4 ) ( 4 5 x 3 ) + ( 3 x 4 ) ( 4 5 x 3 ) 6 x ( 4 5 x 3 ) 5 ( 3 x 4 ) x 4 x 75 x x No 0 Άσκηση παραγώγισης γινοµένου ( ( x 4 ) ( x 4 ( x 4 ) ( x 4 ) + ( x 4 ) ( x 4 )

3 x ( x 4 ) 4 ( x 4 ) x 3 x 6 x x 3 No Άσκηση παραγώγισης γινοµένου ( ( x ) ( 5 3 x ( x ) ( 5 3 x ) + ( x ) ( 5 3 x ) 4 x ( 5 3 x ) 6 ( x ) x 6 x 4 x 3 No Άσκηση παραγώγισης γινοµένου ( ( 5 x ) ( 4 x 4 ( 5 x ) ( 4 x 4 ) + ( 5 x ) ( 4 x 4 ) 0 x ( 4 x 4 ) 4 ( 5 x ) x 3 40 x 30 x x 3 No 3 Άσκηση παραγώγισης γινοµένου ( ( 3 x 5 ) ( 5 3 x 4 ( 3 x 5 ) ( 5 3 x 4 ) + ( 3 x 5 ) ( 5 3 x 4 ) 6 x ( 5 3 x 4 ) ( 3 x 5 ) x 3 30 x 54 x x 3 No 4 Άσκηση παραγώγισης γινοµένου ( ( x 4 ) ( x ( x 4 ) ( x ) + ( x 4 ) ( x ) x ( x ) 4 ( 4 ) x x 8 x 8 x 3 No 5 Άσκηση παραγώγισης γινοµένου ( ( x 5 ) ( 3 x ( x 5 ) ( 3 x ) + ( x 5 ) ( 3 x ) 3

4 x ( 3 x ) 6 ( 5 ) x x 3 x x 3 No 6 Άσκηση παραγώγισης γινοµένου ( ( x 3 ) ( 3 5 x 3 ( x 3 ) ( 3 5 x 3 ) + ( x 3 ) ( 3 5 x 3 ) x ( 3 5 x 3 ) 5 ( x 3 ) x 6 x 5 x x No 7 Άσκηση παραγώγισης γινοµένου ( ( 5 x ) ( 4 x ( 5 x ) ( 4 x ) + ( 5 x ) ( 4 x ) 0 x ( 4 x ) 8 ( 5 x ) x 6 x 80 x 3 No 8 Άσκηση παραγώγισης γινοµένου ( ( 5 x 5 ) ( 5 x ( 5 x 5 ) ( 5 x ) + ( 5 x 5 ) ( 5 x ) 0 x ( 5 x ) 0 ( 5 x 5 ) x 70 x 00 x 3 No 9 Άσκηση παραγώγισης γινοµένου ( ( 4 x ) ( 5 x 3 ( 4 x ) ( 5 x 3 ) + ( 4 x ) ( 5 x 3 ) 8 x ( 5 x 3 ) 6 ( 4 x ) x 40 x 40 x 4 + x No 0 Άσκηση παραγώγισης γινοµένου ( ( x ) ( x 4 ( x ) ( x 4 ) + ( x ) ( x 4 ) x ( x 4 ) 4 ( x ) x 3 4

5 x 6 x x 3. Θ. Χριστόπουλος, Tηλ.: Μαθηµατική Υποστήριξη Φοιτητών : Ιδιαίτερα Μαθήµατα, Λυµένες Ασκήσεις, Βοήθεια στη λύση Εργασιών. Θ. Χριστόπουλος, Tηλ.: Ασκήσεις παραγώγισης πηλίκου No Άσκηση παραγώγισης πηλίκου x + x+ 5 x x + ( x + x+ 5 ) ( x x + ) ( x + x+ 5 ) ( x x + ) ( x x + ) ( x+ ) ( x x + ) ( x + x+ 5 ) ( 4 x 3 + x ) ( x x + ) x5 3 x 4 0 x 3 6 x 58 x + ( x x + ) No Άσκηση παραγώγισης πηλίκου 5 x + x+ 5 8 x + ( 5 x + x+ 5 ) ( 8 x + ) ( 5 x + x+ 5 ) ( 8 x + ) ( 8 x + ) ( 0 x+ ) ( 8 x + ) 6 ( 5 x + x+ 5) x ( 8 x + ) 5

6 8 x 60 x + 4 ( 4 x + ) No 3 Άσκηση παραγώγισης πηλίκου x + 3 x+ 7 x ( x + 3 x+ ) ( 7 x ) ( x + 3 x+ ) ( 7 x ) ( 7 x ) ( 4 x+ 3 ) ( 7 x ) ( x + 3 x+ ) x ( 7 x ) 4 x4 4 x 3 x + 6 x + ( 7 x ) No 4 Άσκηση παραγώγισης πηλίκου x + x+ 4 7 x 3 + x + ( x + x+ 4 ) ( 7 x 3 + x + ) ( x + x+ 4 ) ( 7 x 3 + x + ) ( 7 x 3 + x + ) ( 4 x+ ) ( 7 x 3 + x + ) ( x + x+ 4 ) ( x + x ) ( 7 x 3 + x + ) 4 x4 8 x 3 86 x 4 x + ( 7 x 3 + x + ) No 5 Άσκηση παραγώγισης πηλίκου x + 5 x+ 5 8 x 3 + ( x + 5 x+ 5 ) ( 8 x 3 + ) ( x + 5 x+ 5 ) ( 8 x 3 + ) ( 8 x 3 + ) 6

7 ( 4 x+ 5 ) ( 8 x 3 + ) 4 ( x + 5 x+ 5) x ( 8 x 3 + ) 6 x4 80 x 3 0 x + 4 x + 5 ( 8 x 3 + ) No 6 Άσκηση παραγώγισης πηλίκου x + 5 x+ 5 7 x 4 + x + ( x + 5 x+ 5 ) ( 7 x 4 + x + ) ( x + 5 x+ 5 ) ( 7 x 4 + x + ) ( 7 x 4 + x + ) ( 4 x+ 5 ) ( 7 x 4 + x + ) ( x + 5 x+ 5 ) ( 8 x 3 + x ) ( 7 x 4 + x + ) 8 x5 05 x 4 40 x 3 5 x 6 x + 5 ( 7 x 4 + x + ) No 7 Άσκηση παραγώγισης πηλίκου 5 x + x+ 6 x 4 + x + 4 ( 5 x + x+ ) ( 6 x 4 + x + 4 ) ( 5 x + x+ ) ( 6 x 4 + x + 4 ) ( 6 x 4 + x + 4) ( 0 x+ ) ( 6 x 4 + x + 4 ) ( 5 x + x+ ) ( 4 x 3 + x ) ( 6 x 4 + x + 4) 60 x5 36 x 4 48 x 3 x + 36 x + 8 ( 6 x 4 + x + 4) No 8 Άσκηση παραγώγισης πηλίκου 7

8 4 x + 4 x+ 5 7 x ( 4 x + 4 x+ 5 ) ( 7 x ) ( 4 x + 4 x+ 5 ) ( 7 x ) ( 7 x ) ( 8 x+ 4 ) ( 7 x ) 8 ( 4 x + 4 x+ 5) x 3 ( 7 x ) 56 x5 84 x 4 40 x x + ( 7 x ) No 9 Άσκηση παραγώγισης πηλίκου x + 3 x+ x x ( x + 3 x+ ) ( x x ) ( x + 3 x+ ) ( x x ) ( x x ) ( x+ 3 ) ( x x ) ( x + 3 x+ ) ( 4 x 3 + x ) ( x x 3 + 4) x5 3 x 4 3 x 3 4 x + 8 x + ( x x 3 + 4) No 0 Άσκηση παραγώγισης πηλίκου 4 x + x+ 4 x x + ( 4 x + x+ 4 ) ( x x + ) ( 4 x + x+ 4 ) ( x x + ) ( x x + ) ( 8 x+ ) ( x x + ) ( 4 x + x+ 4 ) ( 4 x 3 + x ) ( x x + ) 8 x5 6 x 4 6 x 3 x 3 x + 4 ( x x + ) 8

9 No Άσκηση παραγώγισης πηλίκου 5 x + 5 x+ 4 8 x 3 + ( 5 x + 5 x+ 4 ) ( 8 x 3 + ) ( 5 x + 5 x+ 4 ) ( 8 x 3 + ) ( 8 x 3 + ) ( 0 x+ 5 ) ( 8 x 3 + ) 4 ( 5 x + 5 x+ 4) x ( 8 x 3 + ) 40 x4 80 x 3 96 x + 0 x + 5 ( 8 x 3 + ) No Άσκηση παραγώγισης πηλίκου 4 x + 5 x+ 3 4 x 3 + ( 4 x + 5 x+ 3 ) ( 4 x 3 + ) ( 4 x + 5 x+ 3 ) ( 4 x 3 + ) ( 4 x 3 + ) ( 8 x+ 5 ) ( 4 x 3 + ) ( 4 x + 5 x+ 3) x ( 4 x 3 + ) 6 x4 40 x 3 36 x + 8 x + 5 ( 4 x 3 + ) No 3 Άσκηση παραγώγισης πηλίκου 5 x + 3 x+ 5 x 4 + ( 5 x + 3 x+ ) ( 5 x 4 + ) ( 5 x + 3 x+ ) ( 5 x 4 + ) ( 5 x 4 + ) ( 0 x+ 3 ) ( 5 x 4 + ) 0 ( 5 x + 3 x+ ) x 3 ( 5 x 4 + ) 50 x5 45 x 4 0 x x + 3 ( 5 x 4 + ) 9

10 No 4 Άσκηση παραγώγισης πηλίκου 4 x + 3 x+ 3 3 x 4 + x + 4 ( 4 x + 3 x+ 3 ) ( 3 x 4 + x + 4 ) ( 4 x + 3 x+ 3 ) ( 3 x 4 + x + 4 ) ( 3 x 4 + x + 4) ( 8 x+ 3 ) ( 3 x 4 + x + 4 ) ( 4 x + 3 x+ 3 ) ( x 3 + x ) ( 3 x 4 + x + 4) 4 x5 7 x 4 36 x 3 3 x + 6 x + ( 3 x 4 + x + 4) No 5 Άσκηση παραγώγισης πηλίκου 5 x + 4 x+ 4 x 4 + x ( 5 x + 4 x+ ) ( 4 x 4 + x ) ( 5 x + 4 x+ ) ( 4 x 4 + x ) ( 4 x 4 + x 3 + 4) ( 0 x+ 4 ) ( 4 x 4 + x ) ( 5 x + 4 x+ ) ( 6 x x ) ( 4 x 4 + x ) 40 x5 53 x 4 4 x 3 3 x + 40 x + 6 ( 4 x 4 + x 3 + 4) No 6 Άσκηση παραγώγισης πηλίκου 3 x + x+ 4 x x 3 + ( 3 x + x+ 4 ) ( x x 3 + ) ( 3 x + x+ 4 ) ( x x 3 + ) ( x x 3 + ) ( 6 x+ ) ( x x 3 + ) ( 3 x + x+ 4 ) ( 4 x x ) ( x x 3 + ) 0

11 6 x5 5 x 4 8 x 3 36 x + x + 4 ( x x 3 + ) No 7 Άσκηση παραγώγισης πηλίκου x + 5 x+ 6 x 3 + x + ( x + 5 x+ ) ( 6 x 3 + x + ) ( x + 5 x+ ) ( 6 x 3 + x + ) ( 6 x 3 + x + ) ( x+ 5 ) ( 6 x 3 + x + ) ( x + 5 x+ ) ( 8 x + x ) ( 6 x 3 + x + ) 6 x4 60 x 3 4 x x + 5 ( 6 x 3 + x + ) No 8 Άσκηση παραγώγισης πηλίκου 4 x + x+ 5 6 x + ( 4 x + x+ 5 ) ( 6 x + ) ( 4 x + x+ 5 ) ( 6 x + ) ( 6 x + ) ( 8 x+ ) ( 6 x + ) ( 4 x + x+ 5) x ( 6 x + ) x 44 x ( 3 x + ) No 9 Άσκηση παραγώγισης πηλίκου 3 x + 4 x+ x x ( 3 x + 4 x+ ) ( x x ) ( 3 x + 4 x+ ) ( x x ) ( x x 3 + 5)

12 ( 6 x+ 4 ) ( x x ) ( 3 x + 4 x+ ) ( 4 x 3 + x ) ( x x ) 6 x5 33 x 4 60 x 3 x + 30 x + 0 ( x x 3 + 5) No 0 Άσκηση παραγώγισης πηλίκου 5 x + x+ x x 3 + ( 5 x + x+ ) ( x x 3 + ) ( 5 x + x+ ) ( x x 3 + ) ( x x 3 + ) ( 0 x+ ) ( x x 3 + ) ( 5 x + x+ ) ( 4 x x ) ( x x 3 + ) 0 x5 8 x 4 4 x 3 8 x + 0 x + ( x x 3 + ). Θ. Χριστόπουλος, Tηλ.: Μαθηµατική Υποστήριξη Φοιτητών : Ιδιαίτερα Μαθήµατα, Λυµένες Ασκήσεις, Βοήθεια στη λύση Εργασιών. Θ. Χριστόπουλος, Tηλ.: Ασκήσεις σύνθετης παραγώγισης I (παρένθεση άθροισµα) No Άσκηση σύνθετης παραγώγισης [ ln ( t ( + ) + 8) ] t + 8 t 8 t t + 8

13 No Άσκηση σύνθετης παραγώγισης [ ln ( 9 t ( 9 t + 4 ) + 4) ] 9 t t 9 t + 4 No 3 Άσκηση σύνθετης παραγώγισης [ ln ( t ( t + 7 ) + 7) ] t t t + 7 No 4 Άσκηση σύνθετης παραγώγισης [ ln ( 3 t ( 3 t + 3 ) + 3) ] 3 t t 3 t + 3 No 5 Άσκηση σύνθετης παραγώγισης [ ln ( 4 t ( 4 t + 3 ) + 3) ] 4 t t 4 t + 3. Θ. Χριστόπουλος, 007, Tηλ.: No 6 Άσκηση σύνθετης παραγώγισης e ( 6 t+ 7 ) ( ) e ( + ) 6 t 7 ( 6 t + ) 7 3

14 e ( 6 t+ 7 ) ( t ) t e ( 6 t+ 7 ) No 7 Άσκηση σύνθετης παραγώγισης e ( 4 t+ 3 ) ( ) e ( + ) 4 t 3 ( 4 t + ) 3 e ( 4 t+ 3 ) ( 8 t ) 8 t e ( 4 t+ 3 ) No 8 Άσκηση σύνθετης παραγώγισης e ( 4 t+ 9 ) ( ) e ( + ) 4 t 9 ( 4 t + ) 9 e ( 4 t+ 9 ) ( 8 t ) 8 t e ( 4 t+ 9 ) No 9 Άσκηση σύνθετης παραγώγισης e ( 8 t+ 8 ) ( ) e ( + ) 8 t 8 ( 8 t + ) 8 e ( 8 t+ 8 ) ( 6 t ) 6 t e ( 8 t+ 8 ) No 0 Άσκηση σύνθετης παραγώγισης e ( 5 t+ 6 ) ( ) e ( + ) 5 t 6 ( 5 t + ) 6 e ( 5 t+ 6 ) ( 0 t ) 0 t e ( 5 t+ 6 ) 4

15 . Θ. Χριστόπουλος, Tηλ.: No Άσκηση σύνθετης παραγώγισης ( 6 t + 6 ) 4 (( 6 t + 6 ) -4 ) (-4) ( 6 t + 6 ) -4- ( 6 t + 6 ) (-4) ( 6 t + 6 ) -5 ( t ) 48 t ( 6 t + 6 ) t ( 6 t + 6) 5 No Άσκηση σύνθετης παραγώγισης ( 8 t + 6 ) 3 (( 8 t + 6 ) -3 ) (-3) ( 8 t + 6 ) -3- ( 8 t + 6 ) (-3) ( 8 t + 6 ) -4 ( 6 t ) 48 t ( 8 t + 6 ) t ( 8 t + 6) 4 No 3 Άσκηση σύνθετης παραγώγισης 9 t + 7 ( ( 9 t + 7) - ) 5

16 (-) ( 9 t + 7 ) -- ( 9 t + 7 ) (-) ( 9 t + 7 ) - ( 8 t ) 8 t ( 9 t + 7 ) - 8 t ( 9 t + 7) No 4 Άσκηση σύνθετης παραγώγισης ( 7 t + 5 ) 5 (( 7 t + 5 ) -5 ) (-5) ( 7 t + 5 ) -5- ( 7 t + 5 ) (-5) ( 7 t + 5 ) -6 ( 4 t ) 70 t ( 7 t + 5 ) t ( 7 t + 5) 6 No 5 Άσκηση σύνθετης παραγώγισης ( 3 t + 3 ) (( 3 t + 3 ) - ) (-) ( 3 t + 3 ) -- ( 3 t + 3 ) (-) ( 3 t + 3 ) -3 ( 6 t ) t ( 3 t + 3 ) -3 6

17 t ( 3 t + 3) 3. Θ. Χριστόπουλος, Tηλ.: No 6 Άσκηση σύνθετης παραγώγισης / 4 ( ( 4 t + 6 ) ( ) ) 4 ( 4 t+ 6 ) ( / 4 ) ( 4 t + 6 ) 4 ( 4 t+ 6 ) -3 4 [ 8 t] [ t ] ( 4 t + 6) -3 4 t ( 4 t + 6 ) ( 3/ 4 ) No 7 Άσκηση σύνθετης παραγώγισης / 6 ( ( 3 t + 6 ) ( ) ) 6 ( 3 t+ 6 ) ( / 6 ) ( 3 t + 6 ) 6 ( 3 t+ 6 ) -5 6 [ 6 t] [ t ] ( 3 t + 6) -5 6 t ( 3 t + 6 ) ( 5/ 6 ) No 8 Άσκηση σύνθετης παραγώγισης / 7 ( ( t + 8 ) ( ) ) 7 ( t+ 8 ) ( / 7 ) ( t + ) 8 7

18 7 ( t+ 8 ) -6 7 [ t] t ( t + 8 ) t 7 ( t + 8 ) ( 6/ 7 ) No 9 Άσκηση σύνθετης παραγώγισης / 6 ( ( t + 9 ) ( ) ) 6 ( t+ 9 ) ( / 6 ) ( t + ) 9 6 ( t+ 9 ) -5 6 [ t] t 3 ( t+ 9 ) -5 6 t 3 ( t + 9 ) ( 5/ 6 ) No 0 Άσκηση σύνθετης παραγώγισης / 6 ( ( 4 t + 8 ) ( ) ) 6 ( 4 t+ 8 ) ( / 6 ) ( 4 t + 8 ) 6 ( 4 t+ 8 ) -5 6 [ 8 t] 4 t ( 4 t + 8 ) t 3 ( 4 t + 8 ) ( 5/ 6 ) 8

19 Μαθηµατική Υποστήριξη Φοιτητών : Ιδιαίτερα Μαθήµατα, Λυµένες Ασκήσεις, Βοήθεια στη λύση Εργασιών. Θ. Χριστόπουλος, Tηλ.: Ασκήσεις σύνθετης παραγώγισης II No Άσκηση σύνθετης παραγώγισης [ arctan ( 8 t 3 ( 8 t ) + 8) ] + ( 8 t 3 + 8) 4 t + ( 8 t 3 + 8) No Άσκηση σύνθετης παραγώγισης [ arctan ( 8 t 3 ( 8 t ) + 7) ] + ( 8 t 3 + 7) 4 t + ( 8 t 3 + 7) No 3 Άσκηση σύνθετης παραγώγισης [ arctan ( 5 t 5 ( 5 t ) + 6) ] + ( 5 t 5 + 6) 5 t 4 + ( 5 t 5 + 6) No 4 Άσκηση σύνθετης παραγώγισης ( 7 t+ 5 ) [ arctan ( 7 t+ 5 )] + ( 7 t+ 5) 9

20 7 + ( 7 t+ 5 ) No 5 Άσκηση σύνθετης παραγώγισης [ arctan ( 6 t 4 ( 6 t ) + 5) ] + ( 6 t 4 + 5) 4 t 3 + ( 6 t 4 + 5). Θ. Χριστόπουλος, Tηλ.: No 6 Άσκηση σύνθετης παραγώγισης ( 9 t+ 5 ) [ arcsin ( 9 t+ 5 )] ( 9 t+ 5 ) t 90 t No 7 Άσκηση σύνθετης παραγώγισης [ arcsin ( 9 t 5 ( 9 t ) + 5) ] ( 9 t ) 45 t t 0 90 t 5 No 8 Άσκηση σύνθετης παραγώγισης [ arcsin ( t 4 ( t ) + 9) ] ( t ) 4 t 3 0 t 8 9 t 4 No 9 Άσκηση σύνθετης παραγώγισης 0

21 ( 3 t+ 4 ) [ arcsin ( 3 t+ 4 )] ( 3 t+ 4 ) t 4 t No 0 Άσκηση σύνθετης παραγώγισης [ arcsin ( 9 t 5 ( 9 t ) + 9) ] ( 9 t ) 45 t t 0 6 t 5. Θ. Χριστόπουλος, 007, Tηλ.: No Άσκηση σύνθετης παραγώγισης arctan 7 t t ( 7 t 3 + 9) t ( 7 t ) 49 t t ( 7 t ) t 49 t t No Άσκηση σύνθετης παραγώγισης

22 arctan 6 t t+ 5 ( 6 t+ 5) 6 ( 6 t+ 5 ) ( 8 t + 30 t+ 3) ( 6 t+ 5 ) 3 8 t + 30 t+ 3 No 3 Άσκηση σύνθετης παραγώγισης arctan t+ 3 + t+ 3 ( t+ 3) ( t+ 3 ) ( t + 6 t+ 5) ( t+ 3 ) t + 6 t+ 5 No 4 Άσκηση σύνθετης παραγώγισης arctan 3 t t ( 3 t 3 + 9)

23 9 t ( 3 t ) 9 t t ( t ) 9 t 9 t t No 5 Άσκηση σύνθετης παραγώγισης arctan 9 t t 4 + ( 9 t 4 + ) 36 t 3 ( 9 t 4 + ) 8 t t ( 9 t 4 + ) 36 t 3 8 t t Θ. Χριστόπουλος, Tηλ.: No 6 Άσκηση σύνθετης παραγώγισης arcsin t t ( t ) 3

24 6 t ( t 3 + 5) ( t ) 3 t ( t ) t t No 7 Άσκηση σύνθετης παραγώγισης arcsin 3 t t + 3 ( 3 t + 3 ) 6 t ( 3 t + 3) ( 3 t + 3 ) t ( t + ) 9 t t + 8 No 8 Άσκηση σύνθετης παραγώγισης arcsin t + 7 t + 7 ( t + 7 ) t ( t + 7) ( t + 7 ) 4

25 t ( t + 7 ) t t + 48 No 9 Άσκηση σύνθετης παραγώγισης arcsin 6 t t + 4 ( 6 t + 4 ) t ( 6 t + 4) ( 6 t + 4 ) t 3 ( 3 t + ) t t + 5 No 0 Άσκηση σύνθετης παραγώγισης arcsin 5 t t ( 5 t ) 5 t ( 5 t 3 + 8) ( 5 t ) 5 t ( 5 t ) 5 t t

Υπολογίζουµε την πρώτη παράγωγο: f ' ( x ) = 3 x 2 6 x. Βρίσκουµε τα διαστήµατα µονοτονίας: Στο τριώνυµο είναι: = β 2 4 aγ. άρα οι ρίζες είναι: x 1,2

Υπολογίζουµε την πρώτη παράγωγο: f ' ( x ) = 3 x 2 6 x. Βρίσκουµε τα διαστήµατα µονοτονίας: Στο τριώνυµο είναι: = β 2 4 aγ. άρα οι ρίζες είναι: x 1,2 ================================================= Μαθηµατική Υποστήριξη Φοιτητών : Ιδιαίτερα Μαθήµατα, Λυµένες Ασκήσεις, Βοήθεια στη λύση Εργασιών. Θ. Χριστόπουλος, www.maths.gr, Tηλ.: 69 79 21 251 Ασκήσεις

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ - ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ - ΠΑΡΑΓΩΓΟΣ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ - ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ - ΠΑΡΑΓΩΓΟΣ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ - ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ - ΠΑΡΑΓΩΓΟΣ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ [Κεφ..: Παραγωγίσιμες Συναρτήσεις Παράγωγος Συνάρτηση - Κεφ..: Κανόνες Παραγώγισης του

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 Ο ΣΤΟΙΧΕΙΑ ΟΛΟΚΛΗΡΩΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΚΕΦΑΛΑΙΟ 4 Ο ΣΤΟΙΧΕΙΑ ΟΛΟΚΛΗΡΩΤΙΚΟΥ ΛΟΓΙΣΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ Ο ΣΤΟΙΧΕΙΑ ΟΛΟΚΛΗΡΩΤΙΚΟΥ ΛΟΓΙΣΜΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ : ΠΑΡΑΓΟΥΣΕΣ ΟΡΙΣΜΟΣ Έστω συνάρτηση : R, όπου Δ διάστημα

Διαβάστε περισσότερα

Μάθηµα 5. Κεφάλαιο: ιαφορικός Λογισµός. Θεµατικές ενότητες: 1. Συνέχεια συνάρτησης

Μάθηµα 5. Κεφάλαιο: ιαφορικός Λογισµός. Θεµατικές ενότητες: 1. Συνέχεια συνάρτησης Μάθηµα 5 Κεφάλαιο: ιαφορικός Λογισµός Θεµατικές ενότητες: Συνέχεια συνάρτησης Πότε λέµε ότι µια συνάρτηση είναι συνεχής σε ένα σηµείο («σηµείο» σηµαίνει «τιµή του χ») του πεδίου ορισµού της; Ορισµός: Μια

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράγωγος

Κεφάλαιο 6 Παράγωγος Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 13: Ακτίνα Σύγκλισης, Αριθμητική Ολοκλήρωση, Ολοκλήρωση Κατά Παράγοντες. Λουκάς Βλάχος Τμήμα Φυσικής

Γενικά Μαθηματικά Ι. Ενότητα 13: Ακτίνα Σύγκλισης, Αριθμητική Ολοκλήρωση, Ολοκλήρωση Κατά Παράγοντες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Ακτίνα Σύγκλισης, Αριθμητική Ολοκλήρωση, Ολοκλήρωση Κατά Παράγοντες Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Μαθηματική Ανάλυση Ι

Μαθηματική Ανάλυση Ι Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 6: Παράγωγοι Επίκ. Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

z i z 1 z i z 1 z i z i z 2 z 1 z zi iz 1 z 2 z 1 i z z 2 z i 2vi 2 k v v k v k 0 v 0

z i z 1 z i z 1 z i z i z 2 z 1 z zi iz 1 z 2 z 1 i z z 2 z i 2vi 2 k v v k v k 0 v 0 ΕΚΠ. ΕΤΟΥΣ -4 Λύσεις Θέμα ο α) H f παραγωγίσιμη στο (,) ως άθροισμα παραγωγίσιμων συναρτήσεων με: f() για κάθε (,). Αφού η f είναι συνεχής στο (,) και f() για κάθε (,) είναι γνησίως αύξουσα στο (,) άρα

Διαβάστε περισσότερα

Λύσεις των θεμάτων στα Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης 2015

Λύσεις των θεμάτων στα Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης 2015 Λύσεις των θεμάτων στα Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης 5 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ (ΚΑΙ ΕΠΑ.Λ. ΟΜΑΔΑ Β ) ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ

Διαβάστε περισσότερα

Πακέτο Επιχειρησιακή Έρευνα #02 ==============================================================

Πακέτο Επιχειρησιακή Έρευνα #02 ============================================================== Πακέτο Επιχειρησιακή Έρευνα #0 www.maths.gr www.facebook.com/maths.gr Tηλ.: 69790 e-mail: maths@maths.gr Μαθηµατική Υποστήριξη Φοιτητών : Ιδιαίτερα Μαθήµατα Λυµένες Ασκήσεις Βοήθεια στη λύση Εργασιών ==============================================================

Διαβάστε περισσότερα

Ασκήσεις στα Ολοκληρώματα, Αόριστο Ολοκλήρωμα, Ορισμένο Ολοκλήρωμα, Πολλαπλά Ολοκηρώματα για τα Γενικά Μαθηματικά ΙΙ, Τμήματος Χημείας Διδάσκων: Μιχάλης Ξένος, email : menos@cc.uoi.gr Μαρτίου. Να υπολογιστούν

Διαβάστε περισσότερα

ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)

ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΜΑΣ: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΟΛΟΚΛΗΡΩΜΑΤΑ:. Να υπολογιστούν τα ολοκληρώματα: 5 d d csc cot d (β) Απάντησεις: C (β) ln C C. Να υπολογιστούν τα ορισμένα ολοκληρώματα: d csc( ) C C d d (β) /5

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ - ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ - ΠΑΡΑΓΩΓΟΣ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ - ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ - ΠΑΡΑΓΩΓΟΣ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ - ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ - ΠΑΡΑΓΩΓΟΣ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ [Κεφ..: Παραγωγίσιμες Συναρτήσεις Παράγωγος Συνάρτηση - Κεφ..: Κανόνες Παραγώγισης του

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. x β. τo σύνολο των σημείων του Α στα οποία αυτή είναι παραγωγίσιμη. Αντιστοιχίζοντας κάθε x Α. = f (x)

ΣΗΜΕΙΩΣΕΙΣ. x β. τo σύνολο των σημείων του Α στα οποία αυτή είναι παραγωγίσιμη. Αντιστοιχίζοντας κάθε x Α. = f (x) ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ - ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ - ΠΑΡΑΓΩΓΟΣ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ [Κεφ..: Παραγωγίσιμες Συναρτήσεις Παράγωγος Συνάρτηση - Κεφ..3: Κανόνες Παραγώγισης

Διαβάστε περισσότερα

. Όλες οι συναρτήσεις δεν μπορούν να παρασταθούν στο καρτεσιανό επίπεδο όπως για παράδειγμα η συνάρτηση του Dirichlet:

. Όλες οι συναρτήσεις δεν μπορούν να παρασταθούν στο καρτεσιανό επίπεδο όπως για παράδειγμα η συνάρτηση του Dirichlet: Κεφάλαιο: Συναρτήσεις Γραφική παράσταση συνάρτησης Γράφημα μιας συνάρτησης ( ) ονομάζουμε το σύνολο των σημείων G( ) (, ( ) ) / A που είναι υποσύνολο του. Το γράφημα αυτό { } συνήθως παριστάνεται πάνω

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 015 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση... Error! Bookmark not deined. Σκοποί Μαθήματος (Επικεφαλίδα

Διαβάστε περισσότερα

όπου είναι γνήσια. ρητή συνάρτηση (δηλαδή ο βαθµός του πολυωνύµου υ ( x)

όπου είναι γνήσια. ρητή συνάρτηση (δηλαδή ο βαθµός του πολυωνύµου υ ( x) ΟΛΟΚΛΗΡΩΣΗ ΡΗΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Στην παράγραφο αυτή θα εξετάσουµε την ολοκλήρωση ρητών συναρτήσεων, δηλαδή συναρτήσεων της µορφής p f ( ( q(, όπου p( και q ( είναι πολυώνυµα µιας µεταβλητής του µε συντελεστές

Διαβάστε περισσότερα

Σύντομη μαθηματική εισαγωγή

Σύντομη μαθηματική εισαγωγή Σύντομη μαθηματική εισαγωγή (ή πώς να γίνουν ομοιογενείς 250 φοιτητές από 130 διαφορετικά Σχολεία δύο διαφορετικούς δασκάλους ο καθένας) με δύο http://www.cc.uoa.gr/~ctrikali http://eclass.uoa.gr Α. Καραμπαρμπούνης,

Διαβάστε περισσότερα

ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ 1. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ

ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ 1. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Έστω μια συνάρτηση f ορισμένη σε ένα σύνολο Α. Ένα από τα βασικότερα προβλήματα της Μαθηματικής Ανάλυσης είναι ο προσδιορισμός μιας συνάρτησης F/ A με F = f για κάθε

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 4: Ανατοκισμός Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Θέμα Α Α. Θεωρία (Σχ.Βιβλίο σελ.34) Α2. Θεωρία (Σχ.Βιβλίο σελ.279) Α3. Θεωρία (Σχ.Βιβλίο σελ.273) Μαθηματικά Θετικής & Τεχνολογικής Κατεύθυνσης Γ Λυκείου Τετάρτη 9 Μαΐου 2 Α4. (α)- Σ ( β)- Σ ( γ)- Λ (

Διαβάστε περισσότερα

= (2)det (1)det ( 5)det 1 2. u

= (2)det (1)det ( 5)det 1 2. u www.maths.gr, Ενδεικτικές Λύσεις ης Εργασίας ΦΥΕ4 έτους -. Οι Λύσεις είναι για την βοήθεια των φοιτητών, σε ΘΕΜΑ ο 5 6 4 6 4 5 det 4 5 6 ()det ()det ()det 8 9 7 9 7 8 7 8 9 ()( ) ()( 6 ) ()( ) 5 4 4 det

Διαβάστε περισσότερα

Τομέας Mαθηματικών "ρούλα μακρή"

Τομέας Mαθηματικών ρούλα μακρή Τομέας Mαθηματικών "ρούλα μακρή" ΑΠΑΝΤΗΣΕΙΣ Πρότυπου Εκπαιδευτικού Οργανισμού ρούλα μακρή ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 5 ΜΑΪΟΥ

Διαβάστε περισσότερα

ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ)

ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) Α ΜΕΡΟΣ- ΑΛΓΕΒΡΑ ΕΡΩΤΗΣΗ 1 Ποιοι αριθμοί ονομάζονται πρώτοι και ποιοι σύνθετοι; Να δώσετε παραδείγματα. ΑΠΑΝΤΗΣΗ 1 Όταν ένας αριθμός διαιρείται

Διαβάστε περισσότερα

Π Ρ Ο Ο Π Τ Ι Κ Η ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2015 ΘΕΜΑ Α. Α1. Απόδειξη σελίδα 194. Α2. Ορισμός σελίδα 188. Α3. Ορισμός σελίδα 259

Π Ρ Ο Ο Π Τ Ι Κ Η ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2015 ΘΕΜΑ Α. Α1. Απόδειξη σελίδα 194. Α2. Ορισμός σελίδα 188. Α3. Ορισμός σελίδα 259 ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 5 Α. Απόδειξη σελίδα 94 Α. Ορισμός σελίδα 88 Α. Ορισμός σελίδα 59 Α4. α) Λ, β) Σ, γ) Λ, δ) Σ, ε) Σ ΘΕΜΑ Β Β. z yi, yir z 4 z ( 4) yi 4 ( ) yi ( 4) 4( y ) 4 y...

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. Δευτέρα 25-5-2015 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ. Α4.) α) Λάθος, β) Σωστό, γ) Λάθος, δ) Σωστό, ε) Σωστό

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. Δευτέρα 25-5-2015 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ. Α4.) α) Λάθος, β) Σωστό, γ) Λάθος, δ) Σωστό, ε) Σωστό ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Δευτέρα 5-5-5 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΘΕΜΑ Α Α.) Θεωρία σελ. 94 Α.) Θεωρία σελ.88 Α3.) Θεωρία σελ. 59 Α4.) α) Λάθος, β) Σωστό, γ) Λάθος, δ) Σωστό, ε) Σωστό

Διαβάστε περισσότερα

5 Παράγωγος συνάρτησης

5 Παράγωγος συνάρτησης 5 Παράγωγος συνάρτησης Ας ϑεωρήσουµε µια συνάρτηση f µε πεδίο ορισµού το [a, b]. Για κάθε 0 [a, b] ορίζουµε µια νέα συνάρτηση µε τύπο µε πεδίο ορισµού D(Π 0 ) = D(f ) { 0 }. Την συνάρτηση Π 0 Π 0 () =

Διαβάστε περισσότερα

Οι εντολές του MaLT+

Οι εντολές του MaLT+ Έλεγχος του χαρακτήρα Οι εντολές του MaLT+ Ελληνική Εντολή Αγγλική Εντολή Περιγραφή Παράδειγμα Κίνηση του χαρακτήρα Μπροστά/μ Πίσω/π fw/fd/forward bw/bk/backward προχωράει μπροστά τόσα βήματα όσο ο προχωράει

Διαβάστε περισσότερα

Α. ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ (ΜΕΡΟΣ Β)

Α. ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ (ΜΕΡΟΣ Β) ΜΑΘΗΜΑ 5 Κεφάλαιο o : Αλγεβρικές Παραστάσεις Υποενότητα.: Κλασµατικές Εξισώσεις Θεµατικές Ενότητες:. Κλασµατικές Εξισώσεις (Μέρος Β). Α. ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ (ΜΕΡΟΣ Β) ΟΡΙΣΜΟΙ Κλασµατική εξίσωση λέγεται

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

Α Γυμνασίου, Μέρο Α, Άλγεβρα, Κεφάλαιο 7, Θετικοί και Αρνητικοί Αριθμοί, Α.7.8. Δυνάμει ρητών αριθμών με εκθέτη φυσικό, Α.7.9. Δυνάμει ρητών αριθμών

Α Γυμνασίου, Μέρο Α, Άλγεβρα, Κεφάλαιο 7, Θετικοί και Αρνητικοί Αριθμοί, Α.7.8. Δυνάμει ρητών αριθμών με εκθέτη φυσικό, Α.7.9. Δυνάμει ρητών αριθμών Α Γυμνασίου, Μέρο Α, Άλγεβρα, Κεφάλαιο, Θετικοί και Αρνητικοί Αριθμοί, Α..8. Δυνάμει ρητών αριθμών με εκθέτη φυσικό, Α..9. Δυνάμει ρητών αριθμών με εκθέτη ακέραιο Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Θεωρία Συνόλων, Συναρτήσεις Πραγματικής Μεταβλητής, Όριο και Συνέχεια Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής

Διαβάστε περισσότερα

Πραγματικοί Αριθμοί 2

Πραγματικοί Αριθμοί 2 Διαφορικός Λογισμός Συναρτήσεις μίας μεταβλητής Όριο και συνέχεια Συνάρτησης Παράγωγος Συνάρτησης o Ιδιότητες παραγώγων o Κανόνες παραγώγισης o Διαφορικό συνάρτησης o Συναρτήσεις με παραμετρική μορφή Βασικά

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Έντυπο Υποβολής Αξιολόγησης Γ.Ε. O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

4.2 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ

4.2 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ 4 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΘΕΩΡΗΜΑ (ΤΑΥΤΟΤΗΤΑ ΤΗΣ ΔΙΑΙΡΕΣΗΣ) Για κάθε ζεύγος πολυωνύμων ( και ( με ( 0 υπάρχουν δυο μοναδικά πολυώνυμα ( και (, τέτοια ώστε : ( ( όπου το ( ή είναι το μηδενικό

Διαβάστε περισσότερα

Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com.

Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com. Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com. A. Οι κανόνες De L Hospital και η αρχική συνάρτηση κάνουν πιο εύκολη τη λύση των προβλημάτων με το Θ. Rolle. B. Η αλγεβρική

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση: Να γνωρίζει: την αποδεικτική μέθοδο της μαθηματικής επαγωγής για την οποία πρέπει να γίνει κατανοητό ότι η αλήθεια

Διαβάστε περισσότερα

Σημειώσεις Μαθηματικών 2

Σημειώσεις Μαθηματικών 2 Σημειώσεις Μαθηματικών 2 Συναρτήσεις - 4 Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 4 Παράγωγος Συνάρτησης 4.1 Έννοια Παραγώγου Ορισμός f(x) f(x 0 ) Μια συνάρτηση f ονομάζεται παραγωγίσιμη στο x 0 Df αν υπάρχει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 8 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία, σελ. 53, σχολικού βιβλίου. Α. Θεωρία, σελ. 9, σχολικού βιβλίου. Α3. Θεωρία, σελ. 58, σχολικού βιβλίου. Α4. α) Σ, β) Σ,

Διαβάστε περισσότερα

Μαθηματική Ανάλυση Ι

Μαθηματική Ανάλυση Ι Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 4: Συναρτήσεις Επίκ. Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

ΔΙΗΜΕΡΙΔΑ ΜΑΘΗΜΑΤΙΚΩΝ

ΔΙΗΜΕΡΙΔΑ ΜΑΘΗΜΑΤΙΚΩΝ ΔΙΗΜΕΡΙΔΑ ΜΑΘΗΜΑΤΙΚΩΝ Θέμα: Τεχνικές Ολοκλήρωσης Εισηγητής: Κων/νος Λ. Κωνσταντόπουλος Σχολικός Σύμβουλος Μαθηματικών Ηράκλειο 7-8 Μαρτίου 014 ΠΕΚ A. Ολοκλήρωση ρητής συνάρτησης Έστω μία ρητή συνάρτηση

Διαβάστε περισσότερα

dy df(x) y= f(x) y = f (x), = dx dx θ x m= 1

dy df(x) y= f(x) y = f (x), = dx dx θ x m= 1 I. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ d df() = f() = f (), = d d.κλίση ευθείας.μεταολές 3.(Οριακός) ρυθμός μεταολής ή παράγωγος 4.Παράγωγοι ασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία 8.Στάσιμα

Διαβάστε περισσότερα

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Τι είναι κλάσμα; Κλάσμα είναι ένα μέρος μιας ποσότητας. ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Κλάσμα είναι ένας λόγος δύο αριθμών(fraction is a ratio of two whole numbers) Πως εκφράζετε συμβολικά ένα κλάσμα; Εκφράζετε

Διαβάστε περισσότερα

Το βιβλίο αυτό αποτελεί τον πρώτο τόμο των Μαθηματικών Γʹ Λυκείου για τις

Το βιβλίο αυτό αποτελεί τον πρώτο τόμο των Μαθηματικών Γʹ Λυκείου για τις wwwzitigr Πρόλογος Το βιβλίο αυτό αποτελεί τον πρώτο τόμο των Μαθηματικών Γʹ Λυκείου για τις ομάδες προσανατολισμού: ç Θετικών σπουδών ç Οικονομίας και Πληροφορικής Αναπτύσσονται διεξοδικά τα κεφάλαια:

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ (Νο2) ΧΡΗΣΙΜΕΣ ΣΧΕΣΕΙΣ έ ώ ό έ ώ. ώ ό. ί ό ό 1, 1,2,, 1,,,,,,, 1,2,,, V ό V V. ή ό ί ά ύ. ό, ί ί ή έ ύ.

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ (Νο2) ΧΡΗΣΙΜΕΣ ΣΧΕΣΕΙΣ έ ώ ό έ ώ. ώ ό. ί ό ό 1, 1,2,, 1,,,,,,, 1,2,,, V ό V V. ή ό ί ά ύ. ό, ί ί ή έ ύ. ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ (Νο) ΧΡΗΣΙΜΕΣ ΣΧΕΣΕΙΣ έ ώ ό έ ώ 0,,,, i i i i i i ό i i i Έ ώ,,, ό,,, ί ώ ό. ί ό ό,,,,,,,,,,, V ό V 0 V 0,,, ύ ώ ό ή ό ό ή ό ί ά ύ ό, ί ί ή έ ύ ό ό, ί ί ή έ ύ ό ύ ό ΠΑΡΑΔΕΙΓΜΑΤΑ

Διαβάστε περισσότερα

ΛΥΣΕΙΣ : ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΛΥΣΕΙΣ : ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΝΤΕΠΩ Β Όλγας 776 ΘΕΜΑ Α Σχολικό βιβλίο σελίδα -5 Σχολικό βιβλίο σελίδα 75 i ii iii iv v Λ Σ Λ Σ Λ ΛΥΣΕΙΣ : ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Β Για κάθε >, * f '( ) f ( ) f ( ) f '( ) f ( ) f '( )

Διαβάστε περισσότερα

ΣΥΓΚΡΙΤΙΚΗ ΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ ΠΑΡΑΓΩΓΟΣ- ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ

ΣΥΓΚΡΙΤΙΚΗ ΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ ΠΑΡΑΓΩΓΟΣ- ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ ΣΥΓΚΡΙΤΙΚΗ ΣΤΑΤΙΚΗ ΑΝΑΛΥΣΗ ΠΑΡΑΓΩΓΟΣ- ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ Η Συγκριτική Στατική Ανάλυση ασχολείται με την σύγκριση διαφόρων καταστάσεων ισορροπίας οι οποίες συνδέονται με διαφορετικά σύνολα τιμών των παραμέτρων

Διαβάστε περισσότερα

3. Η µερική παράγωγος

3. Η µερική παράγωγος 1 Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 1 Μερική παραγώγιση παράγωγος µιας συνάρτησης µερική παράγωγος ( ( µιας µεταβλητής ορίζεται ως d d ( ( (1 Για συναρτήσεις δύο

Διαβάστε περισσότερα

ΘΕΜΑ Γ. x y x y. x y. Β4. Με βάση την τριγωνική ανισότητα και επειδή z w = w z έχουµε:

ΘΕΜΑ Γ. x y x y. x y. Β4. Με βάση την τριγωνική ανισότητα και επειδή z w = w z έχουµε: ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 8 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία, σελ. 53, σχολικού βιβλίου. Α. Θεωρία, σελ. 9, σχολικού βιβλίου. Α3. Θεωρία, σελ. 58, σχολικού βιβλίου. Α4. α) Σ, β) Σ,

Διαβάστε περισσότερα

2.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

2.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ 6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ Αν θέλουμε να δείξουμε ότι μια συνάρτηση είναι σταθερή σε ένα διάστημα Δ αποδεικνύουμε ότι η είναι συνεχής στο Δ και ότι για κάθε

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 1: Κεφαλαιοποίηση Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ

A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ A. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ d df() = f() = f (), = d d.κλίση ευθείας.μεταβολές 3.(Οριακός) ρυθµός µεταβολής ή παράγωγος 4.Παράγωγοι βασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία

Διαβάστε περισσότερα

(α) Από τους κανόνες σύνθετης παραγώγισης δύναμης συναρτήσεως και λογαρίθμου συναρτήσεως:

(α) Από τους κανόνες σύνθετης παραγώγισης δύναμης συναρτήσεως και λογαρίθμου συναρτήσεως: http://elearn.maths.gr/, maths@maths.gr, Τηλ: 6979 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΔΕΟ -: Άσκηση I. (α) Από τους κανόνες σύνθετης παραγώγισης δύναμης συναρτήσεως και λογαρίθμου συναρτήσεως:

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

f(x) x 3x 2, όπου R, y 2x 2

f(x) x 3x 2, όπου R, y 2x 2 Δίνεται η συνάρτηση με τύπο,. Μαθηματικά κατεύθυνσης f(), όπου R, α) Να αποδειχθεί ότι η f παρουσιάζει ένα τοπικό μέγιστο, ένα τοπικό ελάχιστο και ένα σημείο καμπής. β) Να αποδειχθεί ότι η εξίσωση f()

Διαβάστε περισσότερα

Κεφάλαιο 1. Τι θα μάθουμε σήμερα: -AND, OR, NOT. -Ενσωματωμένες συναρτήσεις. -Μαθηματικοί τελεστές -ΤΕΛΕΣΤΕΣ DIV ΚΑΙ MOD. -Προτεραιότητα πράξεων

Κεφάλαιο 1. Τι θα μάθουμε σήμερα: -AND, OR, NOT. -Ενσωματωμένες συναρτήσεις. -Μαθηματικοί τελεστές -ΤΕΛΕΣΤΕΣ DIV ΚΑΙ MOD. -Προτεραιότητα πράξεων Κεφάλαιο 1 Αρχή ήμισυ παντός. Πλάτων, 427-347 π.χ., Φιλόσοφος Τι θα μάθουμε σήμερα: -AND, OR, NOT -Ενσωματωμένες συναρτήσεις -Μαθηματικοί τελεστές -ΤΕΛΕΣΤΕΣ DIV ΚΑΙ MOD -Προτεραιότητα πράξεων 1 Λογικές

Διαβάστε περισσότερα

Κεφάλαιο 8 Το αόριστο ολοκλήρωµα

Κεφάλαιο 8 Το αόριστο ολοκλήρωµα Κεφάλαιο 8 Το αόριστο ολοκλήρωµα 8 Θεµελίωση έννοιας αορίστου ολοκληρώµατος Στο 7 0 Κεφάλαιο ορίσαµε την έννοια της αντιπαραγώγου µιας συνάρτησης f σ ένα κλειστό και φραγµένο διάστηµα Γενικότερα Ορισµός

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΣΥΝΑΡΤΗΣΕΙΣ Σύνολο τιµών Γραφική παράσταση συνάρτησης Βασικές συναρτήσεις Ισότητα συναρτήσεων Πράξεις µε συναρτήσεις

ΜΑΘΗΜΑ ΣΥΝΑΡΤΗΣΕΙΣ Σύνολο τιµών Γραφική παράσταση συνάρτησης Βασικές συναρτήσεις Ισότητα συναρτήσεων Πράξεις µε συναρτήσεις ΜΑΘΗΜΑ. ΣΥΝΑΡΤΗΣΕΙΣ Σύνολο τιµών Γραφική παράσταση συνάρτησης Βασικές συναρτήσεις Ισότητα συναρτήσεων Πράξεις µε συναρτήσεις Θεωρία Σχόλια Ασκήσεις ΘΕΩΡΙΑ. Ορισµός του συνόλου τιµών, κατάλληλος για τις

Διαβάστε περισσότερα

Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση

Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 2.1 Συνάρτηση Η έννοια της συνάρτησης είναι ϐασική σ όλους τους κλάδους των µαθη- µατικών, αλλά και πολλών άλλων επιστηµών. Ο λόγος είναι, ότι µορφοποιεί τη σχέση

Διαβάστε περισσότερα

Αριθμητής = Παρονομαστής

Αριθμητής = Παρονομαστής Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ To κλάσμα κ εκφράζει τα κ μέρη από τα ν ίσα μέρη στα οποία έχει χωριστεί μία ποσότητα ν Αριθμητής = Παρονομαστής Το ν α = 0 = α κ ν = κ ν ονομάζεται κλασματική μονάδα 8 = α α = Άρα

Διαβάστε περισσότερα

Γράφημα της συνάρτησης = (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R )

Γράφημα της συνάρτησης = (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R ) Γράφημα της συνάρτησης f( x), αν p x< 0 F( x) = f( x), αν 0 x p και F( x+ 2 p) = F( x), x R (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R ) ΠΡΟΛΟΓΟΣ Το Βιβλίο αυτό απευθύνεται στους

Διαβάστε περισσότερα

). Πράγματι, στο διάστημα [ x, x 1 2 ικανοποιεί τις προϋποθέσεις του Θ.Μ.Τ. Επομένως, υπάρχει ξ x 1,

). Πράγματι, στο διάστημα [ x, x 1 2 ικανοποιεί τις προϋποθέσεις του Θ.Μ.Τ. Επομένως, υπάρχει ξ x 1, ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 8 MAΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α A Αποδεικνύουμε το θεώρημα στην περίπτωση που

Διαβάστε περισσότερα

1. Θεωρήματα Διαφορικού Λογισμού

1. Θεωρήματα Διαφορικού Λογισμού Θεωρήματα Διαφορικού Λογισμού α Θεώρημα Rolle Αν μία συνάρτηση f είναι: Συνεχής στο κλειστό διάστημα [ αα ] παραγωγίσιμη στο ανοικτό διάστημα ( αα ) και f( α) = f( ) τότε υπάρχει τουλάχιστον ένα ( α )

Διαβάστε περισσότερα

Παράγωγοι. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. ΕΠΑΛ Κεφάλαιο ασκήσεις σε 19 σελίδες. εκδόσεις. Καλό πήξιμο / 1 1 /

Παράγωγοι. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. ΕΠΑΛ Κεφάλαιο ασκήσεις σε 19 σελίδες. εκδόσεις. Καλό πήξιμο / 1 1 / Παράγωγοι Κώστας Γλυκός ΕΠΑΛ Κεφάλαιο 59 ασκήσεις σε 9 σελίδες 6 9 7. 0 0. 8 8. 8 8 εκδόσεις / / 0 8 Καλό πήξιμο τηλ. Οικίας : 0-60.78 κινητό : 697-00.88.88 Τα πάντα για παραγώγους (ΕΠΑΛ) Να βρεις τα πεδία

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ Α': ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ ο: Αλγεβρικές παραστάσεις Παράγραφος A..: Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) Β: Πράξεις με μονώνυμα Τα σημαντικότερα σημεία

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων

Διαβάστε περισσότερα

Επιχειρησιακά Μαθηματικά

Επιχειρησιακά Μαθηματικά Τηλ:10.93.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά () ΑΘΗΝΑ ΝΟΕΜΒΡΙΟΣ 01 1 Τηλ:10.93.4.450 Πεδίο Ορισμού Οικονομικών Συναρτήσεων Οι οικονομικές συναρτήσεις (συνάρτηση Ζήτησης, συνάρτηση

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Βαθμωτές Συναρτήσεις Πολλών Μεταβλητών Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Βαθμωτές Συναρτήσεις Πολλών Μεταβλητών :

Διαβάστε περισσότερα

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Μαθηματικά για Οικονομολόγους 3 ο Μάθημα: Παράγωγος Συνάρτησης Διδάσκουσα: Κοντογιάννη

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Μαθηματικά για Οικονομολόγους 3 ο Μάθημα: Παράγωγος Συνάρτησης Διδάσκουσα: Κοντογιάννη Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Μαθηματικά για Οικονομολόγους 3 ο Μάθημα: Παράγωγος Συνάρτησης Διδάσκουσα: Κοντογιάννη Αριστούλα Σχέση με τα οικονομικά Στην επιστήμη των οικονομικών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο «ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ»

ΚΕΦΑΛΑΙΟ 2 Ο «ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ» ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ Ο «ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ ο : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Α ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Πεδίο

Διαβάστε περισσότερα

Μάθηµα 11. Κεφάλαιο: Στατιστική

Μάθηµα 11. Κεφάλαιο: Στατιστική Μάθηµα Κεφάλαιο: Στατιστική Θεµατικές Ενότητες:. Παρουσίαση Στατιστικών εδοµένων (Στατιστικοί Πίνακες). Γενικά για στατιστικούς πίνακες. Τα στατιστικά δεδοµένα καταγράφονται σε στατιστικούς πίνακες (ή

Διαβάστε περισσότερα

Απαντήσεις στα Θέματα Πανελλαδικών εξετάσεων Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης 19/05/2010 ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ

Απαντήσεις στα Θέματα Πανελλαδικών εξετάσεων Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης 19/05/2010 ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Απαντήσεις στα Θέματα Πανελλαδικών εξετάσεων Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης 9/5/ ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Απαντήσεις Πανελλαδικών εξετάσεων στα Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης -

Διαβάστε περισσότερα

Πρότυπα κλειστά τμήματα «ΜΕΘΟΔΟΣ» 2.6. ΘΕΩΡΗΜΑ ROLLE. Υποδείξεις Απαντήσεις Ασκήσεων. Προσδιορισμός παραμέτρων ώστε να εφαρμόζεται το θεώρημα Rolle

Πρότυπα κλειστά τμήματα «ΜΕΘΟΔΟΣ» 2.6. ΘΕΩΡΗΜΑ ROLLE. Υποδείξεις Απαντήσεις Ασκήσεων. Προσδιορισμός παραμέτρων ώστε να εφαρμόζεται το θεώρημα Rolle Σελ.414 Πρότυπα κλειστά τμήματα «ΜΕΘΟΔΟΣ».6. ΘΕΩΡΗΜΑ ROLLE Υποδείξεις Απαντήσεις Ασκήσεων.344. α. Σωστό β. Λάθος γ. Λάθος δ. Σωστό ε. Σωστό στ. Σωστό ζ. Λάθος η. Σωστό θ. Σωστό ι. Λάθος ια. Σωστό ιβ. Σωστό

Διαβάστε περισσότερα

2 1, x < 2. f(x) = 3x + 1, x 2. lim. f(x) = lim. x 2. x 1, x < 1. 3x 2 x > 1

2 1, x < 2. f(x) = 3x + 1, x 2. lim. f(x) = lim. x 2. x 1, x < 1. 3x 2 x > 1 ΣΥΝΕΧΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Επιμέλεια: Καρράς Ιωάννης Μαθηματικός οὐκ οἴεται θεοὺς εἶναι ὁ ἄθεος, ὁ δὲ δεισιδαίμων οὐ βούλεται, πιστεύει δ ἄκων φοβεῖται γὰρ ἀπιστεῖν. gkarras@gmail.com 2 2 o ΛΥΚΕΙΟ ΓΕΡΑΚΑ - ΚΑΡΡΑΣ

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής ΕΝΟΤΗΤΑ

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. D x D / h x D δηλαδή. ισχύει για x 1, e ln x 1 e. e ln x e ln x e ln x e ln x 1 e ln x 1 f x f x

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. D x D / h x D δηλαδή. ισχύει για x 1, e ln x 1 e. e ln x e ln x e ln x e ln x 1 e ln x 1 f x f x Λύση (ΘΕΜΑ ο ) Γ. Έστω οι συναρτήσεις : h ln με D 0, h f με D, h h h με 3 0, 0, ln h h D D / h D δηλαδή h3 h h ή D 0, h h h με 4 f,, h 3 D D / h D δηλαδή h4 h h ή D, Έτσι η εξίσωση h ln h f h 4 ισχύει

Διαβάστε περισσότερα

3Νο. ασκήσεις Α Ν Α Λ Υ Σ Η 1Ο Κ Ε Φ Α Λ Α Ι Ο. Θετική Τεχνολογική Κατεύθυνση ( ) ( 0)

3Νο. ασκήσεις Α Ν Α Λ Υ Σ Η 1Ο Κ Ε Φ Α Λ Α Ι Ο. Θετική Τεχνολογική Κατεύθυνση ( ) ( 0) Λ Υ Κ Ε Ι Ο Α Ν Α Λ Υ Σ Η 1Ο Κ Ε Φ Α Λ Α Ι Ο ΕΠΙΜΕΛΕΙΑ : Π Δ ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Θετική Τεχνολογική Κατεύθυνση ασκήσεις (ΝΑ ΛΥΘΟΥΝ ΜΕΤΑ ΑΠΟ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΤΟΥ ΒΙΒΛΙΟΥ) 3Νο ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 1 Να μελετήσετε

Διαβάστε περισσότερα

2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457.

2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457. 1. Ένα κεφάλαιο ενός βιβλίου ξεκινάει από τη σελίδα 32 και τελειώνει στη σελίδα 75. Από πόσες σελίδες αποτελείται το κεφάλαιο; Αν το κεφάλαιο ξεκινάει από τη σελίδα κ και τελειώνει στη σελίδα λ, από πόσες

Διαβάστε περισσότερα

Σημειώσεις Μαθηματικών 1

Σημειώσεις Μαθηματικών 1 Σημειώσεις Μαθηματικών 1 Διανύσματα Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 3 Διανύσματα 3.1 Έννοια διανύσματος Ορισμός 1 Ονομάζουμε Διάνυσμα ΑΒ ένα προσανατολισμένο ευθύγραμμο τμήμα ΑΒ με αρχή το Α και πέρας

Διαβάστε περισσότερα

με μ,ν ακέραιους και ν 0 και δημιουργήθηκε το σύνολο Q ( ρητοί). Το σύνολο Ζ επεκτάθηκε με την προσθήκη αριθμών της τύπου

με μ,ν ακέραιους και ν 0 και δημιουργήθηκε το σύνολο Q ( ρητοί). Το σύνολο Ζ επεκτάθηκε με την προσθήκη αριθμών της τύπου ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΠΡΑΓΜΑΤΙΚΟΥΣ ΚΑΙ ΣΤΟ ΜΑΘΗΜΑΤΙΚΟ ΛΟΓΙΣΜΟ Η ΑΛΓΕΒΡΑ ασχολείται με τους αριθμούς και τις μεταξύ τους σχέσεις Οι φυσικοί αριθμοί (συμβολίζονται με το γράμμα Ν) Ν={ 1,,3 }επινοήθηκαν από τον

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ Έννοια συνάρτησης δύο μεταβλητών Ισουψείς καμπύλες Παραγώγιση Μερικές παράγωγοι πρώτου και δευτέρου βαθμού Ασκήσεις Βασικές έννοιες Στην Οικονομία, τα περισσότερα από τα μετρούμενα

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ Μαθηματικά ΣT Δημοτικού 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - ΣΤ Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 201, Εκδόσεις Κυριάκος

Διαβάστε περισσότερα

Μαθηματικά προσανατολισμού ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ ΒΙΒΛΙΟ ΜΑΘΗΤΗ

Μαθηματικά προσανατολισμού ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ ΒΙΒΛΙΟ ΜΑΘΗΤΗ Μαθηματικά προσανατολισμού ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ ΒΙΒΛΙΟ ΜΑΘΗΤΗ Μπάμπης Στεργίου - Χρήστος Νάκης ΕΠΙΜΕΛΕΙΑ : Τάκης Χρονόπουλος ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ : ος ΚΥΚΛΟΣ (7-5-08) Θέματα..0 Απαντήσεις.. α) Κ.Π. με πλευρικά

Διαβάστε περισσότερα

Παράγωγοι. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. ΘΕΩΡΗΤΙΚΗ Κατεύθυνση Κεφάλαιο 1. Kglykos.gr. 359 ασκήσεις σε 19 σελίδες. εκδόσεις.

Παράγωγοι. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. ΘΕΩΡΗΤΙΚΗ Κατεύθυνση Κεφάλαιο 1. Kglykos.gr. 359 ασκήσεις σε 19 σελίδες. εκδόσεις. Παράγωγοι Κώστας Γλυκός ΘΕΩΡΗΤΙΚΗ Κατεύθυνση Κεφάλαιο 59 ασκήσεις σε 9 σελίδες Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglykos.gr / 6 / 0 6 εκδόσεις Καλό πήξιμο τηλ. Οικίας : 0-60.78 κινητό

Διαβάστε περισσότερα

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 28 (με Δημητριάδος) Βόλος τηλ.

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 28 (με Δημητριάδος) Βόλος τηλ. ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με Δημητριάδος) Βόλος τηλ. 4598 Κεφάλαιο ο Ολοκληρωτικός Λογισμός Ολοκληρωτικός Λογισμός Μεθοδολογία Λυμένα

Διαβάστε περισσότερα

Μαθηματικά. Β'Γυμνασίου. Μαρίνος Παπαδόπουλος

Μαθηματικά. Β'Γυμνασίου. Μαρίνος Παπαδόπουλος Μαθηματικά Β'Γυμνασίου Μαρίνος Παπαδόπουλος ΠΡΟΛΟΓΙΚΟ ΣΗΜΕΙΩΜΑ Σας καλωσορίζω στον όµορφο κόσµο των Μαθηµατικών της B Γυµνασίου. Τα µαθηµατικά της συγκεκριµένης τάξης αποτελούν βάση των µαθηµατικών του

Διαβάστε περισσότερα

Δοκιμασίες πολλαπλών επιλογών

Δοκιμασίες πολλαπλών επιλογών Δοκιμασίες πολλαπλών επιλογών ) Η απόλυτη τιμή θετικού αριθμού είναι: Α. Ο αντίθετός του Β. Ο ίδιος ο αριθμός Γ. Ο αντίστροφός του 2) Αν x =3, τότε Α. x=3 Β. x 0 Γ. x=-3 Δ. x=3 ή x=-3 3) Με το -x συμβολίζουμε

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0 ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ ΑΠΑΝΤΗΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΚΑΙ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 8 ΜΑΪΟΥ 6 ΘΕΜΑ Α Α. Θεωρία, βλ. σχολικό βιβλίο

Διαβάστε περισσότερα

Δύο λόγια από τη συγγραφέα

Δύο λόγια από τη συγγραφέα Δύο λόγια από τη συγγραφέα Τα μαθηματικά ή τα λατρεύεις ή τα μισείς! Για να λατρέψεις κάτι πρέπει να το κατανοήσεις, για τη δεύτερη περίπτωση τα πράγματα μάλλον είναι λίγο πιο απλά. Στόχος αυτού του βιβλίου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΙΙ Παραδείγματα Στις Μερικές Παραγώγους Και τον Κανόνα Αλυσιδωτής Παραγώγισης

ΜΑΘΗΜΑΤΙΚΑ ΙΙ Παραδείγματα Στις Μερικές Παραγώγους Και τον Κανόνα Αλυσιδωτής Παραγώγισης ΜΑΘΗΜΑΤΙΚΑ ΙΙ Παραδείγματα Στις Μερικές Παραγώγους Και τον Κανόνα Αλυσιδωτής Παραγώγισης Άσκηση Αν t ( ) < cos t,sin( t) > δύο τρόπους και gt () 3t 4 d gt να υπολογισθεί η παράγωγος ( ()) με Λύση 1 ος

Διαβάστε περισσότερα

ΗΜΕΡΙΔΑ ΜΑΘΗΜΑΤΙΚΩΝ. Θέμα: Τεχνικές Ολοκλήρωσης. Εισηγητής: Κων/νος Λ. Κωνσταντόπουλος. Σχολικός Σύμβουλος Μαθηματικών

ΗΜΕΡΙΔΑ ΜΑΘΗΜΑΤΙΚΩΝ. Θέμα: Τεχνικές Ολοκλήρωσης. Εισηγητής: Κων/νος Λ. Κωνσταντόπουλος. Σχολικός Σύμβουλος Μαθηματικών ΗΜΕΡΙΔΑ ΜΑΘΗΜΑΤΙΚΩΝ Θέμα: Τεχνικές Ολοκλήρωσης Εισηγητής: Κων/νος Λ. Κωνσταντόπουλος Σχολικός Σύμβουλος Μαθηματικών Ρέθυμνο 0 Φεβρουαρίου 05 Πρότυπο Πειραματικό Λύκειο Ρεθύμνου A. Ολοκλήρωση ρητής συνάρτησης

Διαβάστε περισσότερα

ΣΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΗΜΩΝ ΠΑΝΕΠΙΣΗΜΙΟ ΠΑΣΡΩΝ ΑΚ. ΕΣΟ

ΣΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΗΜΩΝ ΠΑΝΕΠΙΣΗΜΙΟ ΠΑΣΡΩΝ ΑΚ. ΕΣΟ ΣΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΗΜΩΝ ΠΑΝΕΠΙΣΗΜΙΟ ΠΑΣΡΩΝ ΑΚ. ΕΣΟ 016-017 Μαθηματικά για Οικονομολόγουσ Ι-Μάθημα 7o Αόριςτο Ολοκλήρωμα (Ολοκληρωτικόσ Λογιςμόσ). Πραγματεύεται την εύρεςη τησ ςυνάρτηςησ όταν γνωρίζουμε

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΜΟΝΕΜΒΑΣΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΛΓΕΒΡΑΣ-λύσεις

ΓΥΜΝΑΣΙΟ ΜΟΝΕΜΒΑΣΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΛΓΕΒΡΑΣ-λύσεις ΓΥΜΝΑΣΙΟ ΜΟΝΕΜΒΑΣΙΑΣ 2016-17 Α ΓΥΜΝΑΣΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΛΓΕΒΡΑΣ-λύσεις Άσκηση 1. Να εξετάσετε ποιες από τις παρακάτω ισότητες παριστάνουν Ευκλείδειες διαιρέσεις α) 80 = 9 8 +8 β)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Πράξεις με μονώνυμα και πολυώνυμα Ενότητα 2 η Πράξεις με μονώνυμα και πολυώνυμα Σκοπός Ο σκοπός της 2 ης

Διαβάστε περισσότερα

Περίληψη μαθημάτων Ι. ΣΥΝΑΡΤΗΣΕΙΣ. Με N θα συμβολίζουμε το σύνολο των φυσικών αριθμών, δηλ. N = {1, 2, 3, 4, }.

Περίληψη μαθημάτων Ι. ΣΥΝΑΡΤΗΣΕΙΣ. Με N θα συμβολίζουμε το σύνολο των φυσικών αριθμών, δηλ. N = {1, 2, 3, 4, }. Περίληψη μαθημάτων Ι. ΣΥΝΑΡΤΗΣΕΙΣ Με N θα συμβολίζουμε το σύνολο των φυσικών αριθμών, δηλ. N = {1, 2, 3, 4, }. Με Z θα συμβολίζουμε το σύνολο των ακεραίων αριθμών, δηλ. Z = N {0, 1, 2, 3, 4, }. Με Q θα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 8 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία, σελ. 53, σχολικού βιβλίου. Α. Θεωρία, σελ. 9, σχολικού βιβλίου. Α3. Θεωρία, σελ. 58, σχολικού βιβλίου. Α4. α) Σ, β) Σ,

Διαβάστε περισσότερα

ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ

ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ Ορισμοί α) Έστω f μία συνάρτηση με πεδίο ορισμού το Α Αν η f είναι παραγωγίσιμη σε κάθε Β, όπου Β ένα υποσύνολο του Α, θα λέμε ότι η f είναι παραγωγίσιμη στο Β Αν

Διαβάστε περισσότερα