ΒΑΣΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΒΑΣΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ"

Transcript

1 Χαράλαµπος Α. Χαραλαµπίδης 3 Νοεµβρίου 29

2 ΟΜΟΙΟΜΟΡΦΗ ΚΑΤΑΝΟΜΗ Ας ϑεωρήσουµε µια συνεχή τυχαία µεταβλητή X ορισµένη στον Ω µε πεδίο τιµών το διάστηµα [α, ϐ], όπου α < ϐ πραγµατικοί αριθµοί. Η οµοιόµορφη εκχώρηση πιθανότητας εκφράζεται από τη σχέση P(x 1 X x 2 ) = c (x 2 x 1 ), α x 1 x 2 ϐ, (1) όπου c προσδιοριστέα σταθερά. Θέτοντας x 1 = α, x 2 = ϐ και χρησιµοποιώντας τη σχέση P(α X ϐ) = 1, συµπεραίνουµε ότι c = 1 ϐ α. (2) Σηµειώνουµε ότι στην περίπτωση αυτή, στην οποία η τυχαία µεταβλητή X είναι συνεχής, οπότε P(X = x) = για κάθε x R, η εκχώρηση πιθανότητας δεν γίνεται σε σηµεία αλλά σε διαστήµατα και είναι ανάλογη του µήκους των. Τούτο είναι ισοδύναµο µε το ότι διαστήµατα του ιδίου µήκους είναι ισοπίθανα.

3 ΟΜΟΙΟΜΟΡΦΗ ΚΑΤΑΝΟΜΗ Η συνάρτηση κατανοµής της τυχαίας µεταβλητής X, όπως προκύπτει από τις (1) και (2), δίνεται από την F(x) =, < x < α, x α ϐ α, α x < ϐ, 1, ϐ x <. Η συνάρτηση αυτή είναι συνεχής και έτσι παραγωγίζοντάς την συνάγουµε την συνάρτηση πυκνότητας της τυχαίας µεταβλητής X: f(x) = 1 ϐ α, α x ϐ, x < α ή x > ϐ. (3) (4)

4 ΟΜΟΙΟΜΟΡΦΗ ΚΑΤΑΝΟΜΗ Ορισµός Εστω X µια συνεχής τυχαία µεταβλητή µε πυκνότητα την (4). Η κατανοµή της τ.µ. X συµβολίζεται µε U(α, ϐ) και καλείται οµοιόµορφη ή ορθογώνια στο διάστηµα [α, ϐ]. Τα σηµεία α και ϐ είναι παράµετροι της κατανοµής. Θεώρηµα Εστω ότι η τυχαία µεταβλητή X έχει την οµοιόµορφη κατανοµή U(α, ϐ). Τότε η µέση τιµή και η διασπορά αυτής δίνονται από τις µ = E(X) = α + ϐ, σ 2 = V(X) = 2 (ϐ α)2. (5) 12

5 ΟΜΟΙΟΜΟΡΦΗ ΚΑΤΑΝΟΜΗ Απόδειξη. Η µέση τιµή της τ.µ. X, σύµφωνα µε τον ορισµό, είναι µ = E(X) = 1 ϐ α ϐ α [ x 2 xdx = 2(ϐ α) και επειδή (ϐ 2 α 2 ) = (ϐ α)(ϐ + α), ] ϐ α = ϐ2 α 2 2(ϐ α) µ = E(X) = α + ϐ. 2

6 ΟΜΟΙΟΜΟΡΦΗ ΚΑΤΑΝΟΜΗ Επίσης είναι E(X 2 ) = 1 ϐ α ϐ α [ x 2 x 3 dx = 3(ϐ α) και επειδή ϐ 3 α 3 = (ϐ α)(ϐ 2 + αϐ + α 2 ), Η διασπορά της τ.µ. X είναι τότε E(X 2 ) = α2 + αϐ + ϐ 2. 3 ] ϐ α = ϐ3 α 3 3(ϐ α) σ 2 = V(X) = E(X 2 ) [E(X)] 2 = α2 + αϐ + ϐ 2 α2 + 2αϐ + ϐ 2 3 = α2 2αϐ + ϐ (ϐ α)2 =. 12

7 ΟΜΟΙΟΜΟΡΦΗ ΚΑΤΑΝΟΜΗ Παράδειγµα Εστω ότι ο συρµός ϕθάνει σε συγκεκριµένο σταθµό του µετρό κάθε 1 λεπτά, αρχίζοντας τα δροµολόγιά του στις 5 π.µ. Αν ένας επιβάτης ϕθάνει στο σταθµό σε χρόνο ο οποίος κατανέµεται οµοιόµορφα στο διάστηµα 7:2 ως 7:4, να υπολογισθούν οι πιθανότητες να περιµένει το συρµό (α) το πολύ 4 λεπτά και (ϐ) τουλάχιστον 7 λεπτά. Εστω X ο χρόνος άφιξης του επιβάτη στο σταθµό, µετρούµενος σε λεπτά µε αρχή τη χρονική στιγµή 7:2. Τότε η τ.µ. X έχει την οµοιόµορφη κατανοµή στο διάστηµα [, 2] και έτσι F(x) =, x < x 2, x < 2 1, x 2.

8 ΟΜΟΙΟΜΟΡΦΗ ΚΑΤΑΝΟΜΗ (α) Το ενδεχόµενο A ο επιβάτης να περιµένει το πολύ 4 λεπτά είναι ισοδύναµο µε το ενδεχόµενο να ϕθάσει στο σταθµό στο διάστηµα 7:26 ως 7:3 ή στο διάστηµα 7:36 ως 7:4. Εποµένως P(A)=P(6 < X 1)+P(16 < X 2)={F(1) F(6)}+{F(2) F(16)}= 2 5. (ϐ) Το ενδεχόµενο B ο επιβάτης να περιµένει τουλάχιστο 7 λεπτά είναι ισοδύναµο µε το ενδεχόµενο να ϕθάσει στο σταθµό στο διάστηµα 7:2 ως 7:23 ή 7:3 ως 7:33. Εποµένως P(B)=P( < X 3)+P(1 < X 13)={F(3) F()}+{F(13) F(1)}= 3 1.

9 ΕΚΘΕΤΙΚΗ ΚΑΤΑΝΟΜΗ Ορισµός Εστω X µια συνεχής τυχαία µεταβλητή µε συνάρτηση πυκνότητας f(x) = { θe θx, x <, < x <, (6) όπου < θ <. Η κατανοµή της τ.µ. X καλείται εκθετική µε παράµ. θ. Σηµειώνουµε ότι η συνάρτηση (6) είναι µη αρνητική και f(x)dx = θe θx dx = [ e θx] = 1, όπως απαιτείται από τον ορισµό της συνάρτησης πυκνότητας. Η συνάρτηση κατανοµής της τ.µ. X είναι η F(x) = {, < x < 1 e θx, x <. (7)

10 ΕΚΘΕΤΙΚΗ ΚΑΤΑΝΟΜΗ Θεώρηµα Εστω ότι η τυχαία µεταβλητή X έχει την εκθετική κατανοµή µε συνάρτηση πυκνότητας την (6). Τότε η µέση τιµή και η διασπορά αυτής δίνονται από τις µ = E(X) = 1 θ, σ2 = V(X) = 1 θ 2. (8)

11 ΕΚΘΕΤΙΚΗ ΚΑΤΑΝΟΜΗ Απόδειξη. Η µέση τιµή της τ.µ. X, σύµφωνα µε τον ορισµό, δίνεται από την µ = E(X) = xf(x)dx = θxe θx dx = 1 ye y dy, θ όπου χρησιµοποιήθηκε ο µετασχηµατισµός y = θx. Εφαρµόζοντας την ολοκλήρωση κατά παράγοντες, το τελευταίο ολοκλήρωµα είναι ye y dy = yde y = [ ye y] + e y dy = [ e y] = 1 και έτσι µ = E(X) = 1 θ.

12 ΕΚΘΕΤΙΚΗ ΚΑΤΑΝΟΜΗ Οµοίως E(X 2 ) = x 2 f(x)dx = θx 2 e θx dx = 1 θ 2 y 2 e y dy και επειδή y 2 e y dy = y 2 de y = [ y 2 e y] + 2 ye y dy = [ y 2 e y + 2ye y + 2e y] = 2 έχουµε Εποµένως E(X 2 ) = 2 θ 2. V(X) = E(X 2 ) [E(X)] 2 = 1 θ 2.

13 ΕΚΘΕΤΙΚΗ ΚΑΤΑΝΟΜΗ Θεώρηµα Εστω ότι η τυχαία µεταβλητή X έχει την εκθετική κατανοµή µε συνάρτηση πυκνότητας την (6). Τότε P(X > x + y X > x) = P(X > y), x, y. (9) Απόδειξη. P(X > x + y X > x) = = P(X > x + y, X > x) P(X > x) 1 F(x + y) 1 F(x) = = e θ(x+y) e θx P(X > x + y) P(X > x) = e θy και επειδή P(X > y) = 1 F(y) = e θy έπεται η (9).

14 ΕΚΘΕΤΙΚΗ ΚΑΤΑΝΟΜΗ Παρατήρηση Ας ϑεωρήσουµε µια ανέλιξη Poisson X t, t, µε µέση τιµή E(X t ) = θt και ας παραστήσουµε µε T το χρόνο αναµονής µέχρι την πραγµατοποίηση της πρώτης επιτυχίας (εµφάνισης του ενδεχοµένου A). Επειδή το ενδεχόµενο {T > t}, είναι ισοδύναµο µε το ενδεχόµενο {X t = }, συνάγουµε τη σχέση P(T > t) = P(X t = ) = e θt, t και από αυτή τη συνάρτηση κατανοµής της τ.µ. T, F(t) = {, < t < 1 e θt, t <. (1)

15 ΕΚΘΕΤΙΚΗ ΚΑΤΑΝΟΜΗ Παράδειγµα Εστω ότι η διάρκεια σε λεπτά ενός τηλεφωνήµατος, σ ένα δηµόσιο τηλεφωνικό ϑάλαµο, ακολουθεί την εκθετική κατανοµή µε µέση τιµή 1 λεπτά. Επίσης, έστω ότι τη στιγµή που κάποιος µπαίνει στον τηλεφωνικό αυτό ϑάλαµο για ένα τηλεφώνηµα ένας άλλος ϕθάνει εκεί και δεν συναντά κανένα να περιµένει. Να υπολογισθούν οι πιθανότητες ο δεύτερος να περιµένει (α) περισσότερο από 1 λεπτά (ϐ) µεταξύ 1 και 2 λεπτών.

16 ΕΚΘΕΤΙΚΗ ΚΑΤΑΝΟΜΗ Αν X είναι η διάρκεια του τηλεφωνήµατος του πρώτου ατόµου, τότε {, x <, F(x) = 1 e x/1, x, και οι Ϲητούµενες πιθανότητες είναι (α) και (ϐ) P(X > 1) = 1 F(1) = e 1 =,3679, P(1 < X 2) = F(2) F(1) = e 1 e 2 =,3679,1353 =,2326.

17 ΚΑΤΑΝΟΜΗ ERLANG Ορισµός Εστω X µια συνεχής τυχαία µεταβλητή µε συνάρτηση πυκνότητας f(x) = θ ν (ν 1)! xν 1 e θx, x <, < x <, (11) όπου ν ϑετικός ακέραιος και < θ <. Η κατανοµή της τ.µ. X καλείται κατανοµή Erlang µε παραµέτρους ν και θ.

18 ΚΑΤΑΝΟΜΗ ERLANG Σηµειώνουµε ότι η συνάρτηση (11) είναι µη αρνητική και επειδή I ν = x ν 1 e x dx = (ν 1)!, ν = 1, 2,..., (12) συµπεραίνουµε ότι f(x)dx = θν (ν 1)! x ν 1 e θx dx = 1 (ν 1)! y ν 1 e y dy = 1, όπως απαιτείται από τον ορισµό της συνάρτησης πυκνότητας.

19 ΚΑΤΑΝΟΜΗ ERLANG Το ολοκλήρωµα I ν, ν = 1, 2,..., δύναται να υπολογισθεί εφαρµόζοντας την ολοκλήρωση κατά παράγοντες ως εξής: I ν+1 = x ν e x dx = x ν de x = [ x ν e x] +ν και έτσι x ν 1 e x dx I ν+1 = νi ν, ν = 1, 2,.... (13) Εφαρµόζοντας διαδοχικά την αναγωγική αυτή σχέση και επειδή I 1 = e x dx = 1, συνάγουµε την (12).

20 ΚΑΤΑΝΟΜΗ ERLANG Θεώρηµα Εστω ότι η τυχαία µεταβλητή X έχει την κατανοµή Erlang µε συνάρτηση πυκνότητας την (11). Τότε η µέση τιµή και η διασπορά αυτής δίνονται από τις Απόδειξη. µ = E(X) = ν θ, σ2 = V(X) = ν θ 2. (14) Η µέση τιµή της τ.µ. X δίνεται από την E(X) = xf(x)dx = θν (ν 1)! x ν e θx dfx = 1 θ(ν 1)! y ν e y dy και χρησιµοποιώντας την (12), συνάγουµε την µ = E(X) = ν! θ(ν 1)! = ν θ.

21 ΚΑΤΑΝΟΜΗ ERLANG Οµοίως και E(X 2 ) = x 2 f(x)dx = E(X 2 ) = = Εποµένως η διασπορά της τ.µ. X είναι θν (ν 1)! 1 θ 2 (ν 1)! (ν + 1)! (ν + 1)ν = θ 2 (ν 1)! θ 2. x ν+1 e θx dx y ν+1 e y dy σ 2 = V(X) = E(X 2 ) [E(X)] 2 = (ν + 1)ν θ 2 ν2 θ 2 = ν θ 2.

22 ΚΑΤΑΝΟΜΗ ERLANG Παρατήρηση Ας ϑεωρήσουµε µια ανέλιξη Poisson X t, t, µε µέση τιµή E(X t ) = θt και ας παραστήσουµε µε T ν το χρόνο αναµονής µέχρι την πραγµατοποίηση της ν-οστής επιτυχίας (εµφάνισης του ενδεχ. A). Επειδή το ενδεχόµενο {T ν > t}, είναι ισοδύναµο µε το ενδεχόµενο {X t < ν}, συνάγουµε τη σχέση ν 1 ν 1 θt (θt)κ P(T ν > t) = P(X t < ν) = P(X t = κ) = e, t. κ! κ= κ= Η συνάρτηση κατανοµής της τ.µ. T ν δίνεται τότε από την µε F(t) =, t <. ν 1 F(t) = 1 e θt κ= (θt) κ, t, (15) κ!

23 ΚΑΤΑΝΟΜΗ ERLANG Παραγωγίζοντας αυτήν ως προς t, παίρνουµε f(t) = d ν 1 dt F(t) = θe θt κ= (θt) κ κ! ν 1 e θt κ= θ(θt) κ 1 (κ 1)! και εποµένως η πυκνότητα της τ.µ. T ν είναι η f(t) = θν (ν 1)! tν 1 e θt, t <. Η κατανοµή αυτή µελετήθηκε από το ανό µαθηµατικό A.K. Erlang ( ).

24 ΚΑΤΑΝΟΜΗ ERLANG Παράδειγµα Εστω ότι ο αριθµός των τραυµατιών σε αυτοκινητιστικά δυστυχήµατα µε σοβαρά κατάγµατα που εισάγονται σε νοσοκοµεία των Αθηνών ακολουθεί την κατανοµή Poisson µε µέση τιµή 8 άτοµα ανά ηµέρα. Να υπολογισθούν (α) η πιθανότητα όπως ο χρόνος αναµονής µέχρι την άφιξη του τρίτου τραυµατία, µετρούµενος από την αρχή της ηµέρας, είναι τουλάχιστο 12 ώρες και (ϐ) ο µέσος χρόνος αναµονής µέχρι την άφιξη του τρίτου τραυµατία.

25 ΚΑΤΑΝΟΜΗ ERLANG (α) Ο αριθµός X t των τραυµατιών σε χρονικό διάστηµα t ωρών ακολουθεί την κατανοµή Poisson µε µέση τιµή E(X t ) = θt, όπου θ = 8/24 = 1/3. Ο χρόνος αναµονής T 3 ακολουθεί την κατανοµή Erlang µε συνάρτηση κατανοµής 2 F(t) = 1 e t/3 (t/3) κ. κ! Εποµένως και έτσι κ= P(T 3 > 12) = 1 F(12) = 1 e 4 2 κ= 4 κ κ! P(T 3 > 12) = 1 (,183 +,733 +,1465) =,7619.

26 ΚΑΤΑΝΟΜΗ ERLANG (ϐ) Η µέση τιµή της T 3, σύµφωνα µε την πρώτη από τις (14), είναι E(T 3 ) = 3 θ = 9.

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 9 Νοεµβρίου 2009 ΣΥΝΑΡΤΗΣΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ Ορισµός Μία τυχαία µεταβλητή X καλείται διακριτή ή απαριθµητή αν παίρνει

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια)

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια) (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 25 Νοεµβρίου 2009 Ορισµός Εστω X µια διακριτή τυχαία µεταβλητή µε συνάρτηση πιθανότητας f(x) = e λ λx, x = 0, 1,..., (1) x! όπου 0 < λ

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Χαράλαµπος Α. Χαραλαµπίδης 16 εκεµβρίου 2009 ΣΥΝΑΡΤΗΣΗ ΚΑΤΑΝΟΜΗΣ Ενδιαφέρον τόσο από ϑεωρητική άποψη, όσο και από άποψη εφαρµογών, παρουσιάζει και η από κοινού µελέτη

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 11 Ιανουαρίου 21 Η δεσµευµένη µέση τιµή µιας τυχαίας µεταβλητής Y σε δεδοµένο σηµείο µιας άλλης τυχαίας µεταϐλητής X = x, συµϐολιϲόµενη

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 23 εκεµβρίου 29 5.1. Στο τυχαίο πείραµα της ϱίψης δύο διακεκριµένων κύβων έστω X η ένδειξη του πρώτου κύβου και Y η µεγαλύτερη από τις δύο ενδείξεις. Να προσδιορισθούν

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια)

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια) (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 23 Νοεµβρίου 2009 Γεωµετρική κατανοµή Ορισµός Εστω X ο αριθµός των δοκιµών µέχρι την πρώτη επιτυχία σε µια ακολουθία ανεξαρτήτων δοκιµών Bernoulli µε πιθανότητα επιτυχίας

Διαβάστε περισσότερα

ΜΕΡΙΚΕΣ ΕΙΔΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ

ΜΕΡΙΚΕΣ ΕΙΔΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ ΚΕΦΑΛΑΙΟ 8 ΜΕΡΙΚΕΣ ΕΙΔΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ Στις ενότητες που ακολουθούν εξετάζουμε συνεχείς κατανομές με ευρεία χρήση στις εφαρμογές. Σε αυτές περιλαμβάνονται η ομοιόμορφη, η εκθετική, η Γάμμα και η

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Χαράλαµπος Α. Χαραλαµπίδης 21 εκεµβρίου 2009 ΑΝΕΞΑΡΤΗΣΙΑ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Ορισµός (α) Εστω (X, Y) διακριτή διδιάστατη τυχαία µεταβλητή µε συνάρτηση πιθανότητας

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 19 Οκτωβρίου 2009 ΑΞΙΩΜΑΤΙΚΗ ΘΕΜΕΛΙΩΣΗ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ Ορισµός Εστω Ω δειγµατικός χώρος στοχαστικού (τυχαίου) πειράµατος (ή ϕαινοµένου).

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ (ΣΥΝΕΧΕΙΑ)

ΒΑΣΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ (ΣΥΝΕΧΕΙΑ) (ΣΥΝΕΧΕΙΑ) Χαράλαµπος Α. Χαραλαµπίδης 9 εκεµβρίου 2009 Η ηµαντικότερη κατανοµή πιθανότητας της Θεωρίας Πιθανοτήτων και της Στατιτικής, µε µεγάλο πεδίο εφαρµογών, είναι η κανονική κατανοµή. Η κατανοµή αυτή

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ Τµ. Επιστήµης των Υλικών Είδη τυχαίων µεταβλητών 1. ιακριτού τύπου X ονοµάζεται διακριτή τ.µ. αν το πεδίο τιµών της είναι της µορφής, {x 1, x 2,...,x n,...}. f(x) = P(X = x) ονοµάζεται συνάρτηση πυκνότητας

Διαβάστε περισσότερα

Τυχαίες Μεταβλητές (τ.µ.)

Τυχαίες Μεταβλητές (τ.µ.) Τυχαίες Μεταβλητές (τ.µ.) Τυχαία Μεταβλητή (τ.µ.) : συνάρτηση Χ (.) µε πεδίο ορισµού τον δειγµατικό χώρο Ω και πεδίο τιµών ένα σύνολο πραγµατικών αριθµών. X (.) : Ω D ιακριτές τ.µ. Συνεχείς τ.µ. Η πιθανοτική

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 15/1/009 ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 10 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος:

Διαβάστε περισσότερα

P(200 X 232) = =

P(200 X 232) = = ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΠΙΘΑΝΟΤΗΤΕΣ. Το μέγεθος ενός αναλογικού σήματος, που λαμβάνεται από έναν ανιχνευτή και μετράται σε microvolts, είναι τυχαία μεταβλητή που ακολουθεί την Κανονική κατανομή Ν(00, 6) σε συγκεκριμένη

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 15 Οκτωβρίου 2009 ΚΛΑΣΙΚΗ ΠΙΘΑΝΟΤΗΤΑ De Moivre Ο κλασικός ορισµός της πιθανότητας αφορά πεπερασµένους δειγµατικούς χώρους και

Διαβάστε περισσότερα

ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος. Τµ. Επιστήµης των Υλικών

ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος. Τµ. Επιστήµης των Υλικών Τµ. Επιστήµης των Υλικών Είδη τυχαίων µεταβλητών 1. ιακριτού τύπου X ονοµάζεται διακριτή τ.µ. αν το πεδίο τιµών της είναι της µορφής, {x 1, x 2,...,x n,...}. f(x) = P(X = x) ονοµάζεται συνάρτηση πυκνότητας

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

ΠΙΘΑΝΟΤΗΤΕΣ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Στοιχεία Θεωρίας Συνόλων Θεωρούµε Ω το σύνολο αναφοράς. σ-άλγεβρα Εστω A είναι µια κλάση υποσυνόλων του Ω. τ.ω. A είναι µη κενή. 2 A A A c A. 3 A, A 2,... A A A 2...

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 26 Οκτωβρίου 2009 Η διερεύνηση, σε γενικές γραµµές, της δεσµευµένης πιθανότητας και η σύγκρισή της µε την απόλυτη πιθανότητα αποκαλύπτει

Διαβάστε περισσότερα

ιωνυµική Κατανοµή(Binomial)

ιωνυµική Κατανοµή(Binomial) ιωνυµική Κατανοµή(Binomial) ~B(n,p) n N και 0

Διαβάστε περισσότερα

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων 6 Απριλίου 2009 1 Συνδυαστική Η ϐασική αρχή µέτρησης µας λέει ότι αν σε ένα πείραµα που γίνεται σε δύο ϕάσεις και στο οποίο υπάρχουν n δυνατά αποτελέσµατα

Διαβάστε περισσότερα

Θεωρητικές Κατανομές Πιθανότητας

Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ

Διαβάστε περισσότερα

P (M = 9) = e 9! =

P (M = 9) = e 9! = Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης 5ο Φροντιστήριο Ασκηση 1. ύο ποµποί ο Α και ο Β στέλνουν ανεξάρτητα

Διαβάστε περισσότερα

ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ

ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ ΚΕΦΑΛΑΙΟ 11 ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ Θα εισαγάγουμε την έννοια του τυχαίου αριθμού με ένα παράδειγμα. Παράδειγμα: Θεωρούμε μια τυχαία μεταβλητή με συνάρτηση πιθανότητας η οποία σε

Διαβάστε περισσότερα

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ 20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΗ ΚΑΤΑΝΟΜΗΣ - ΜΕΣΗ ΤΙΜΗ

ΣΥΝΑΡΤΗΣΗ ΚΑΤΑΝΟΜΗΣ - ΜΕΣΗ ΤΙΜΗ Τµ. Επιστήµης των Υλικών Συνάρτηση Κατανοµής Ορισµός F(x) = P(X x) = f(t) x t x f(t)dt, X διακριτή τ.µ., X συνεχής τ.µ. Ιδιότητες 0 F(x). 2 F είναι αύξουσα συνάρτηση. 3 F είναι συνεχής εκ δεξιών. 4 lim

Διαβάστε περισσότερα

Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ

Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 12 Δεκεμβρίου 2012 Περιγραφή 1 Θεωρητικές Κατανομές ΙΙ Περιγραφή 1 Θεωρητικές

Διαβάστε περισσότερα

Πολύγωνο αθροιστικών σχετικών συχνοτήτων και διάµεσος µιας τυχαίας µεταβλητής ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Πρόλογος Στην εργασία αυτή αναλύονται

Διαβάστε περισσότερα

Στατιστική. 4 ο Μάθημα: Θεωρητικές και Εμπειρικές - Δειγματοληπτικές Κατανομές. Γεώργιος Μενεξές Τμήμα Γεωπονίας

Στατιστική. 4 ο Μάθημα: Θεωρητικές και Εμπειρικές - Δειγματοληπτικές Κατανομές. Γεώργιος Μενεξές Τμήμα Γεωπονίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Στατιστική 4 ο Μάθημα: Θεωρητικές και Εμπειρικές - Δειγματοληπτικές Κατανομές Γεώργιος Μενεξές Τμήμα Γεωπονίας Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

II. Τυχαίες Μεταβλητές

II. Τυχαίες Μεταβλητές II. Τυχαίες Μεταβλητές τυχαία μεταβλητή (τ.μ.) Χ : Αναφέρεται πάνω σε μία μετρούμενη ποσότητα του τυχαίου πειράματος Εκφράζει μία συνάρτηση (απεικόνιση) από τον δειγματικό χώρο (Ω) σε έναν αριθμητικό χώρο

Διαβάστε περισσότερα

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ Χαράλαµπος Α. Χαραλαµπίδης 12 Οκτωβρίου 2009 ΠΡΑΞΕΙΣ ΣΤΑ ΕΝ ΕΧΟΜΕΝΑ Ενωση ενδεχοµένων Η ένωση δύο ενδεχοµένων A και B (ως προς ένα δειγµατικό χώρο Ω), συµβολιζόµενη

Διαβάστε περισσότερα

(X1 X 2 ) 2}. ( ) f 1 (x i ; θ) = θ x i. (1 θ) n x i. x i log. i=1. i=1 t2 i

(X1 X 2 ) 2}. ( ) f 1 (x i ; θ) = θ x i. (1 θ) n x i. x i log. i=1. i=1 t2 i ΕΞΕΤΑΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΣΤΑΤΙΣΤΙΚΗ I: ΕΚΤΙΜΗΤΙΚΗ 8 Ιουνίου 005 Εξεταστική περίοδος Ιουνίου 005 ΘΕΜΑΤΑ Εστω X = (X,, X n ), n, τυχαίο δείγµα από κατανοµή Bernoull B(, θ), θ Θ = (0, ) (α) (0 µονάδες) Να δειχθεί

Διαβάστε περισσότερα

Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών Εθνικό Μετσόβιο Πολυτεχνείο. Στοχαστικές Ανελίξεις. Ασκήσεις Κεφαλαίου 2. Κοκολάκης Γεώργιος

Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών Εθνικό Μετσόβιο Πολυτεχνείο. Στοχαστικές Ανελίξεις. Ασκήσεις Κεφαλαίου 2. Κοκολάκης Γεώργιος Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών Εθνικό Μετσόβιο Πολυτεχνείο Στοχαστικές Ανελίξεις Ασκήσεις Κεφαλαίου 2 Κοκολάκης Γεώργιος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την πρώτη εργασία της ενότητας ΔΙΠ50

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την πρώτη εργασία της ενότητας ΔΙΠ50 Άσκηση 1 η 1 η Εργασία ΔΙΠ50 Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την πρώτη εργασία της ενότητας ΔΙΠ50 Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών

Διαβάστε περισσότερα

Πανεπιστήμιο Πελοποννήσου

Πανεπιστήμιο Πελοποννήσου Πανεπιστήμιο Πελοποννήσου Τυχαίες μεταβλητές Κατανομές Τυχαία Μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) ονομάζεται η συνάρτηση που απεικονίζει το σύνολο των δυνατών αποτελεσμάτων ενός πειράματος στο σύνολο

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΠΙΘΑΝΟΤΗΤΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΠΙΘΑΝΟΤΗΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΠΙΘΑΝΟΤΗΤΩΝ ΜΕΡΟΣ Ο ΙΩΝΥΜΙΚΗ ΚΑΤΑΝΟΜΗ Στο εργαστήριο αυτό θα ασχοληθούµε µε την προσοµοίωση της ρίψεως ενός δίκαιου νοµίσµατος. Το µοντέλο το οποίο θα πρέπει να πραγµατοποιήσουµε θα πρέπει να

Διαβάστε περισσότερα

ρ. Ευστρατία Μούρτου

ρ. Ευστρατία Μούρτου ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΕΞΑΜΗΝΟ : Ε ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ : - ΜΑΘΗΜΑ «ΒΙΟΣΤΑΤΙΣΤΙΚΗ» ΚΕΦ. ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ρ. Ευστρατία Μούρτου

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ ΤΗΛΕΦΩΝΙΚΗΣ ΚΙΝΗΣΗΣ

ΣΤΑΤΙΣΤΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ ΤΗΛΕΦΩΝΙΚΗΣ ΚΙΝΗΣΗΣ ΣΤΑΤΙΣΤΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ ΤΗΛΕΦΩΝΙΚΗΣ ΚΙΝΗΣΗΣ Τέλεια δέσµη: όλες οι γραµµές της είναι προσπελάσιµες από οποιαδήποτε είσοδο. Ατελής δέσµη: όλες οι γραµµές της δεν είναι προσπελάσιµες από οποιαδήποτε είσοδο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ

ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ 4.. Εισαγωγή Στην προσομοίωση σε πολλές περιπτώσεις είναι απαραίτητη η δημιουργία δειγμάτων τυχαίων μεταβλητών που ακολουθούν κάποια καθορισμένη

Διαβάστε περισσότερα

10ο Φροντιστηριο ΗΥ217 - Επαναληπτικό

10ο Φροντιστηριο ΗΥ217 - Επαναληπτικό ο Φροντιστηριο ΗΥ7 - Επαναληπτικό Επιµέλεια : Γ. Καφεντζής 7 Ιανουαρίου 4 Ασκηση. Το σήµα s µεταδίδεται από ένα δορυφόρο αλλά λόγω της επίδρασης του ϑορύβου το λαµβανόµενο σήµα έχει τη µορφή X s + W. Οταν

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 21 Οκτωβρίου 2009 ΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ Η ανάγκη εισαγωγής της δεσµευµένης πιθανότητας αναφύεται στις περιπτώσεις όπου µία µερική

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. αλλού

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. αλλού ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. Η τυχαία μεταβλητή Χ έχει συνάρτηση πιθανότητας που δίνεται από τον πίνακα: x f(x) / / / / / Να βρεθεί η μέση τιμή και η διασπορά.. Η τυχαία μεταβλητή

Διαβάστε περισσότερα

0. Σύντοµη επισκόπηση θεωρίας πιθανοτήτων

0. Σύντοµη επισκόπηση θεωρίας πιθανοτήτων . Σύντοµη επισκόπηση θεωρίας πιθανοτήτων Α. Τυχαίες µεταβητές Τυχαία µεταβητή καείται µια µεταβητή η τιµή της οποίας καθορίζεται από το αποτέεσµα κάποιου στοχαστικού πειράµατος. Αν Ω ο δειγµατικός χώρος

Διαβάστε περισσότερα

ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ. 1. 0 F(x) 1, x n. 2. Η F είναι μη φθίνουσα και δεξιά συνεχής ως προς κάθε μεταβλητή. 3.

ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ. 1. 0 F(x) 1, x n. 2. Η F είναι μη φθίνουσα και δεξιά συνεχής ως προς κάθε μεταβλητή. 3. ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ Έστω Χ = (Χ 1,,Χ ) T τυχαίο διάνυσμα (τ.δ). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) του τ.δ. Χ την: F(x) = P(X 1 x 1,, X x ), x = (x 1,,x ) T 1. 0 F(x) 1, x.. Η F είναι μη

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Αναλυτικών Τεχνικών Θεωρίας Πιθανοτήτων για Εφαρμογή σε Ουρές Αναμονής M/G/1

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Αναλυτικών Τεχνικών Θεωρίας Πιθανοτήτων για Εφαρμογή σε Ουρές Αναμονής M/G/1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Αναλυτικών Τεχνικών Θεωρίας Πιθανοτήτων για Εφαρμογή σε Ουρές Αναμονής M/G/1 Απόδειξη Τύπου Little Ιδιότητα PASTA (Poisson Arrivals See Time Averages) Βασικοί

Διαβάστε περισσότερα

Στατιστική. Ενότητα 3 η : Χαρακτηριστικά Τυχαίων Μεταβλητών Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή

Στατιστική. Ενότητα 3 η : Χαρακτηριστικά Τυχαίων Μεταβλητών Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3 η : Χαρακτηριστικά Τυχαίων Μεταβλητών Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή Γεώργιος Ζιούτας Άδειες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνεχείς τυχαίες μεταβλητές Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνεχείς τυχαίες μεταβλητές Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πιθανότητες Συνεχείς τυχαίες μεταβλητές Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6 η : Μερική Παράγωγος ΙΙ Λουκάς Βλάχος Καθηγητής Αστροφυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας.

Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας. Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας. Περιεχόµενα ιακριτές τυχαίες µεταβλητές Συνεχείς τυχαίες µεταβλητές Μέση τιµή τυχαίων µεταβλητών Ροπές, διασπορά, και τυπική απόκλιση τυχαίων µεταβλητών

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΜΕΤΑΒΛΗΤΩΝ

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΜΕΤΑΒΛΗΤΩΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΜΕΤΑΒΛΗΤΩΝ Όπως έχει αποδειχθεί (βλέπε π.χ. Ε. Ξεκαλάκη και Ι. Πανάρετο 993) οι αναµενόµενες τιµές E( ) και E( m ) παρέχουν σηµαντικές πληροφορίες σχετικά µε την κατανοµή µιας πραγµατικής

Διαβάστε περισσότερα

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή: Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ι θ α ν ό τ η τ ε ς ΙΙ Πειραιάς 2007 1 2 Από κοινού συνάρτηση πυκνότητας μιας δισδιάστατης συνεχούς τυχαίας μεταβλητής Μία διδιάστατη συνεχής τυχαία μεταβλητή

Διαβάστε περισσότερα

S T (x) = exp. (α) m n q x = m+n q x m q x. (β) m n q x = m p x m+n p x. (γ) m n q x = m p x n q x+m. tp x = S Tx (t) = S T (x + t) { x+t

S T (x) = exp. (α) m n q x = m+n q x m q x. (β) m n q x = m p x m+n p x. (γ) m n q x = m p x n q x+m. tp x = S Tx (t) = S T (x + t) { x+t ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕ ΚΑΤΕΥΘΥΝΣΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΣΗΣ ΘΝΗΣΙΜΟΤΗΤΑΣ ΙΩΑΝΝΗΣ Σ. ΣΤΑΜΑΤΙΟΥ ΣΑΜΟΣ, ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2013-2014

Διαβάστε περισσότερα

12xy(1 x)dx = 12y. = 12 y. = 12 y( ) = 12 y 1 6 = 2y. x 6x(1 x)dx = 6. dx = 6 3 x4

12xy(1 x)dx = 12y. = 12 y. = 12 y( ) = 12 y 1 6 = 2y. x 6x(1 x)dx = 6. dx = 6 3 x4 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-7: Πιθανότητες-Χειµερινό Εξάµηνο 5 ιδάσκων: Π. Τσακαλίδης Λύσεις 6ης Σειρά Ασκήσεων Ασκηση. α) Η περιθωριακή σ.π.π. της f X,Y για την τ.µ X γίνεται:

Διαβάστε περισσότερα

(365)(364)(363)...(365 n + 1) (365) k

(365)(364)(363)...(365 n + 1) (365) k ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 21//2016 Ηµεροµηνία Παράδοσης :

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Κατανόηση της έννοιας κατανοµής πιθανοτήτων συνεχούς τυχαίας µεταβλητής Υπολογισµός της συνάρτησης κατανοµής πιθανοτήτων τυχαίων µεταβλητών καθώς και την µέση τιµή και διασπορά τους

Διαβάστε περισσότερα

p B p I = = = 5

p B p I = = = 5 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο 2011 ιδάσκων : Π. Τσακαλίδης Λύσεις εύτερης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 17/3/2011

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ - ΠΙΘΑΝΟΤΗΤΕΣ

ΑΣΚΗΣΕΙΣ - ΠΙΘΑΝΟΤΗΤΕΣ ΑΣΚΗΣΕΙΣ - ΠΙΘΑΝΟΤΗΤΕΣ Οµάδα η. Αν Ω={ω,ω,,ω 6 } είναι ο δ.χ ενός πειράµατος τύχης να βρείτε τις πιθανότητες Ρ(ω ),,Ρ(ω 6 ) αν είναι γνωστό ότι αυτές αποτελούν διαδοχικούς όρους αριθµητικής προόδου µε

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ. Ορισμός (Συνάρτηση Κατανομής Πιθανότητας). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) της τ.μ. Χ την: F(x) = P(X x), x.

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ. Ορισμός (Συνάρτηση Κατανομής Πιθανότητας). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) της τ.μ. Χ την: F(x) = P(X x), x. ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Ορισός (Τυχαία Μεταβλητή). Οοάζουε τυχαία εταβλητή (τ..) κάθε απεικόιση Χ: Ω για τη οποία το σύολο { ω Ω : Χ(ω) x} έχει προσδιορίσιη πιθαότητα για κάθε x. Τούτο σηαίει ότι η ατίστροφη

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ι θ α ν ό τ η τ ε ς Ι Πειραιάς 2008 Πιθανότητες Ι-Μ. Κούτρας 2 Κατανομές χρόνου αναμονής (... μέχρι να συμβεί ηπρώτη επιτυχία) 3 Ας θεωρήσουμε μία ακολουθία

Διαβάστε περισσότερα

ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Είδη τυχαίων διανυσµάτων 1. ιακριτού τύπου X = (X 1, X 2,...,X k ) ονοµάζεται διακριτό τυχαίο διάνυσµα αν το πεδίο τιµών του είναι της µορφής, S = {x 1 x 2 n,,...,x,...}.

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1 Συστήµατα αναµονής Οι ουρές αναµονής αποτελούν καθηµερινό και συνηθισµένο φαινόµενο και εµφανίζονται σε συστήµατα εξυπηρέτησης, στα οποία η ζήτηση για κάποια υπηρεσία δεν µπορεί να

Διαβάστε περισσότερα

ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΑΠΟΚΛΙΣΗΣ

ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΑΠΟΚΛΙΣΗΣ ΚΕΦΑΛΑΙΟ 5 ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΑΠΟΚΛΙΣΗΣ ΜΕΣΗ ΤΙΜΗ Έστω Χ μια διακριτή τυχαία μεταβλητή, και έστω ότι το P(X=x)=p Χ καθορίζει ένα τυχαίο πείραμα. Ένα ερώτημα που τίθεται συχνά είναι το εξής: Τί θα συμβεί μακροπρόθεσμα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚA Β ΚΥΚΛΟΥ ΗΜΕΡΗΣΙΩΝ ΤΕΕ 2002 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚA Β ΚΥΚΛΟΥ ΗΜΕΡΗΣΙΩΝ ΤΕΕ 2002 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚA Β ΚΥΚΛΟΥ ΗΜΕΡΗΣΙΩΝ ΤΕΕ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Οι βαθμοί των 11 μαθητών μιας τάξης ενός Τ.Ε.Ε. σε ένα μάθημα είναι: 1, 1, 9, 15, 1, 16, 17, 7, 19, 18, 17. Για τα δεδομένα αυτά: α. Να κατασκευάσετε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ Ακαδ. Έτος 2011-2012 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Διδάσκων επί Συμβάσει Π.Δ 407/80 v.koutras@fme.aegean.gr

Διαβάστε περισσότερα

ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ

ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Δ.Φουσκάκης- Πολυδιάστατες Τυχαίες Μεταβλητές 1 ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Συνάρτηση Κατανομής: Έστω Χ=(Χ 1,,Χ ) T τυχαίο διάνυσμα (τ.δ). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) του τ.δ.

Διαβάστε περισσότερα

5. Σειρές Taylor και Laurent. Ολοκληρωτικά υπόλοιπα και εφαρµογές.

5. Σειρές Taylor και Laurent. Ολοκληρωτικά υπόλοιπα και εφαρµογές. 5 Σειρές Taylor και Lauret Ολοκληρωτικά υπόλοιπα και εφαρµογές Σειρές Taylor και Lauret Θεωρούµε µια δυναµοσειρά ( ) a a µε κέντρο δοθέν σηµείο Υπενθυµίζουµε ότι για µια τέτοια δυναµοσειρά υπάρχει πάντα

Διαβάστε περισσότερα

P(Ο Χρήστος κερδίζει) = 1 P(Ο Χρήστος χάνει) = 1 P(X > Y ) = 1 2. P(Ο Χρήστος νικά σε 7 από τους 10 αγώνες) = 7

P(Ο Χρήστος κερδίζει) = 1 P(Ο Χρήστος χάνει) = 1 P(X > Y ) = 1 2. P(Ο Χρήστος νικά σε 7 από τους 10 αγώνες) = 7 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 28 ιδάσκων: Π. Τσακαλίδης Λύσεις Εβδοµης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης: 3/2/28 Ηµεροµηνία Παράδοσης: 7/2/28

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Τµ. Επιστήµης των Υλικών ειγµατοληψία Με ιάταξη ειγµατοληψία Χωρίς ιάταξη Χωρίς Επανατοποθέτηση (n)k Με Επανατοποθέτηση n k Χωρίς Επανατοποθέτηση ( n k) Με Επανατοποθέτηση ( n+k 1 ) k ειγµατοληψία Με ιάταξη

Διαβάστε περισσότερα

εξαρτάται από το θ και για αυτό γράφουµε την σ.π.π. στην εξής µορφή: ( θ, + ) θ θ n 2n (θ,+ ) 1, 0, x θ.

εξαρτάται από το θ και για αυτό γράφουµε την σ.π.π. στην εξής µορφή: ( θ, + ) θ θ n 2n (θ,+ ) 1, 0, x θ. Άσκηση : Έστω Χ,,Χ τυχαίο δείγµα µεγέους από την κατανοµή µε σππ 3 p (,, >, > 0 α είξτε ότι η στατιστική συνάρτηση Τ( Χ : Χ ( m είναι επαρκής για την παράµετρο και πλήρης κ β Βρείτε ΑΕΕ του α Το στήριγµα

Διαβάστε περισσότερα

P (M = n T = t)µe µt dt. λ+µ

P (M = n T = t)µe µt dt. λ+µ Ουρές Αναμονής Σειρά Ασκήσεων 1 ΑΣΚΗΣΗ 1. Εστω {N(t), t 0} διαδικασία αφίξεων Poisson με ρυθμό λ, και ένα χρονικό διάστημα η διάρκεια του οποίου είναι τυχαία μεταβλητή T, ανεξάρτητη της διαδικασίας αφίξεων,

Διαβάστε περισσότερα

Σύγκλιση σειρών Fourier σε χώρους L p

Σύγκλιση σειρών Fourier σε χώρους L p Σύγκλιση σειρών Fourier σε χώρους L p Μιχάλης Σαράντης και Κωνσταντίνος Τσίνας Βασικά αποτελέσµατα από την ανάλυση Fourier Ορισµός.. Ο n-οστός πυρήνας του Dirichlet ορίζεται ως (.) D n (y) Πρόταση.. Για

Διαβάστε περισσότερα

3. Οριακά θεωρήµατα. Κεντρικό Οριακό Θεώρηµα (Κ.Ο.Θ.)

3. Οριακά θεωρήµατα. Κεντρικό Οριακό Θεώρηµα (Κ.Ο.Θ.) 3 Οριακά θεωρήµατα Κεντρικό Οριακό Θεώρηµα (ΚΟΘ) Ένα από τα πιο συνηθισµένα προβλήµατα που ανακύπτουν στη στατιστική είναι ο προσδιορισµός της κατανοµής ενός µεγάλου αθροίσµατος ανεξάρτητων τµ Έστω Χ Χ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 05 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο R, να αποδείξετε ότι: f + g ' = f ' + g ', R Μονάδες 7 Α. Πότε λέµε ότι µια συνάρτηση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ Εισαγωγή Οι αριθμοί που εκφράζουν το πλήθος των στοιχείων ανά αποτελούν ίσως τους πιο σημαντικούς αριθμούς της Συνδυαστικής και καλούνται διωνυμικοί συντελεστές διότι εμφανίζονται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνάρτηση κατανομής πιθανότητας Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνάρτηση κατανομής πιθανότητας Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πιθανότητες Συνάρτηση κατανομής πιθανότητας Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 4 η : Χαρακτηριστικά Τυχαίων Μεταβλητών. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ.

Διαβάστε περισσότερα

Μαθηματικά ΜΕΡΟΣ 8 ΟΛΟΚΛΗΡΩΜΑΤΑ α

Μαθηματικά ΜΕΡΟΣ 8 ΟΛΟΚΛΗΡΩΜΑΤΑ α Μαθηματικά ΜΕΡΟΣ 8 ΟΛΟΚΛΗΡΩΜΑΤΑ α β xdx Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΟΛΟΚΛΗΡΩΜΑΤΑ-ΑΝΤΙΠΑΡΑΓΩΓΟΙ Έστω συνάρτηση y=f(x) Ορίζουμε την παράγωγο της f(x)

Διαβάστε περισσότερα

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις ΚΕΦΑΛΑΙΟ 2 Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις 2.1 ΕΙΣΑΓΩΓΗ Όπως έχουµε δει, για να προσδιορίσουµε τις αποκρίσεις ενός κυκλώµατος, πρέπει να λύσουµε ένα σύνολο διαφορικών

Διαβάστε περισσότερα

Στατιστική Περιγραφή Φυσικού Μεγέθους - Πιθανότητες

Στατιστική Περιγραφή Φυσικού Μεγέθους - Πιθανότητες Στατιστική Περιγραφή Φυσικού Μεγέθους - Πιθανότητες Είπαμε ότι γενικά τα συστηματικά σφάλματα που υπεισέρχονται σε μια μέτρηση ενός φυσικού μεγέθους είναι γενικά δύσκολο να επισημανθούν και να διορθωθούν.

Διαβάστε περισσότερα

ΕΞEΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ-ΣΤΑΤΙΣΤΙΚΗ ΜΑΡΤΙΟΣ 2003 Λ Υ Σ Ε Ι Σ Τ Ω Ν Α Σ Κ Η Σ Ε Ω Ν ΜΕΡΟΣ Α

ΕΞEΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ-ΣΤΑΤΙΣΤΙΚΗ ΜΑΡΤΙΟΣ 2003 Λ Υ Σ Ε Ι Σ Τ Ω Ν Α Σ Κ Η Σ Ε Ω Ν ΜΕΡΟΣ Α ΕΞEΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ-ΣΤΑΤΙΣΤΙΚΗ ΜΑΡΤΙΟΣ Λ Υ Σ Ε Ι Σ Τ Ω Ν Α Σ Κ Η Σ Ε Ω Ν ΜΕΡΟΣ Α ) Έχουμε κατασκευάσει 4 δοκίμια. Να βρεθεί προσεγγιστικά ο αριθμός των δοκιμίων που περιέχονται μεταξύ των σημείων

Διαβάστε περισσότερα

3. Προσομοίωση ενός Συστήματος Αναμονής.

3. Προσομοίωση ενός Συστήματος Αναμονής. 3. Προσομοίωση ενός Συστήματος Αναμονής. 3.1. Διατύπωση του Προβλήματος. Τα συστήματα αναμονής (queueing systems), βρίσκονται πίσω από τα περισσότερα μοντέλα μελέτης της απόδοσης υπολογιστικών συστημάτων,

Διαβάστε περισσότερα

Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων

Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων Διάλεξη 6: Εισαγωγή στην Ουρά M/G/1 Δρ Αθανάσιος Ν Νικολακόπουλος ΜΔΕ Επιστήμης και Τεχνολογίας Υπολογιστών Τμήμα Μηχανικών Η/Υ & Πληροφορικής 18 Νοεμβρίου 2016

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

Τυχαία Διανύσματα και Ανεξαρτησία

Τυχαία Διανύσματα και Ανεξαρτησία Τυχαία Διανύσματα και Ανεξαρτησία Θα γενικεύσουμε την έννοια της τυχαίας μεταβλητής από συνάρτηση στο R σε συνάρτηση στο R n. Ακολούθως, θα επεκτείνουμε τις έννοιες με τις οποίες ασχοληθήκαμε μέχρι τώρα

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Χρήση τυχαίων µεταβλητών για την απεικόνιση εκβάσεων τυχαίου πειράµατος Κατανόηση της έννοιας κατανοµής πιθανοτήτων τυχαίας µεταβλητής Υπολογισµός της συνάρτηση κατανοµής πιθανοτήτων

Διαβάστε περισσότερα

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αμπελόκηποι Αθήνα Τηλ.: ,

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αμπελόκηποι Αθήνα Τηλ.: , ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Αμπελόκηποι Αθήνα Τηλ.: 0 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ.: 0 69 97 985, e-mail: edlag@otenet.gr, www.edlag.gr ΣΜΑΡΑΓΔΑ ΣΑΡΑΝΤΟΠΟΥΛΟΥ, MSC, ΥΠΟΨΗΦΙΑ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο A. Έστω µια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστηµα. Αν f () > σε κάθε εσωτερικό σηµείο του, τότε να αποδείξετε ότι η f είναι γνησίως

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 009-0 ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΥΝΟΨΗΣ

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 8 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gasil

Διαβάστε περισσότερα

Ολοκλήρωση - Μέθοδος Monte Carlo

Ολοκλήρωση - Μέθοδος Monte Carlo ΦΥΣ 145 - Διαλ.09 Ολοκλήρωση - Μέθοδος Monte Carlo Χρησιμοποίηση τυχαίων αριθμών για επίλυση ολοκληρωμάτων Η μέθοδος Monte Carlo δίνει μια διαφορετική προσέγγιση για την επίλυση ενός ολοκληρώμτατος Τυχαίοι

Διαβάστε περισσότερα

Η «ύλη» του προπτυχιακού µαθήµατος

Η «ύλη» του προπτυχιακού µαθήµατος ΠΙΘΑΝΟΤΗΤΕΣ Ι Η «ύλη» του προπτυχιακού µαθήµατος Βασικές έννοιες Πείραµα τύχης ειγµατοχώρος Ενδεχόµενα Πιθανότητα εσµευµένη πιθανότητα Ανεξαρτησία Βασικά ϑεωρήµατα Θεώρηµα ολικής πιθανότητας Θεώρηµα Bayes

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι

Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι Ενότητα: Θεώρημα ύπαρξης και μοναδικότητας της λύσης του Π.Α.Τ.: y = f ( x, y), y( x ) (Θεώρημα Picard) ' Όνομα Καθηγητή: Χρυσή Κοκολογιαννάκη Τμήμα: Μαθηματικών

Διαβάστε περισσότερα

Σημερινό μάθημα: Εκτιμήτριες συναρτήσεις και σημειακή εκτίμηση παραμέτρων Στατιστική συμπερασματολογία (ή εκτιμητική ): εξαγωγή συμπερασμάτων για το σ

Σημερινό μάθημα: Εκτιμήτριες συναρτήσεις και σημειακή εκτίμηση παραμέτρων Στατιστική συμπερασματολογία (ή εκτιμητική ): εξαγωγή συμπερασμάτων για το σ 10ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2016-2017 Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 10ο Μάθημα

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 68 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Ορισμός : Η συνάρτηση X : Ω είναι μετρήσιμη εάν 1. της τυχαίας μεταβλητής X : Ω, είναι το πεδίο τιμών της X. Δηλαδή είναι το υποσύνολο του { }

Ορισμός : Η συνάρτηση X : Ω είναι μετρήσιμη εάν 1. της τυχαίας μεταβλητής X : Ω, είναι το πεδίο τιμών της X. Δηλαδή είναι το υποσύνολο του { } Ορισμός : Η συνάρτηση : Ω είναι μετρήσιμη εάν B B B B = ω Ω : ω B = B { όπου { { Μία μετρήσιμη συνάρτηση : Ω ονομάζεται τυχαία μεταβλητή Ορισμός: Ο χώρος καταστάσεων της τυχαίας μεταβλητής : Ω είναι το

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις Επιμέλεια Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Το ο Θέμα στις πανελλαδικές εξετάσεις Ερωτήσεις+Απαντήσεις

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ 1 ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1. Ένα σηµείο Α(χ, ψ) ανήκει στη γραφική παράσταση της f αν f(ψ)=χ. 2. Αν µια συνάρτηση είναι γνησίως αύξουσα σε ένα διάστηµα A,

Διαβάστε περισσότερα

p k = (1- ρ) ρ k. E[N(t)] = ρ /(1- ρ).

p k = (1- ρ) ρ k. E[N(t)] = ρ /(1- ρ). ΚΕΦΑΛΑΙΟ 2: CAM 2.1 Συστήµατα Μ/Μ/1 2.1.1 Ανασκόπηση θεωρίας Η ουρά Μ/Μ/1 είναι η πιο σηµαντική διαδικασία ουράς Άφιξη: ιαδικασία Poisson Εξυπηρέτηση: Ακολουθεί εκθετική κατανοµή Εξυπηρετητής: Ένας Χώρος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.outras@fme.aegean.gr Τηλ: 7035468 σ-άλγεβρα

Διαβάστε περισσότερα