Generalized Point Operators for Aggregating Intuitionistic Fuzzy Information

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Generalized Point Operators for Aggregating Intuitionistic Fuzzy Information"

Transcript

1 Generalized Point Operators for Aggregating Intuitionistic Fuzzy Information Meimei Xia, Zeshui Xu School of Economics and Management, Southeast University, Naning , People s Republic of China We first develop a series of intuitionistic fuzzy point operators, and then based on the idea of generalized aggregation Yager RR. Generalized OWA aggregation operators. Fuzzy Optim Decis Making 2004;3: and Zhao H, Xu ZS, Ni MF, Liu SS. Generalized aggregation operators for intuitionistic fuzzy sets. Int J Intell Syst 2010;25:1 30, we develop various generalized intuitionistic fuzzy point aggregation operators, such as the generalized intuitionistic fuzzy point weighted averaging GIFPWA operators, generalized intuitionistic fuzzy point ordered weighted averaging GIFPOWA operators, and generalized intuitionistic fuzzy point hybrid averaging GIFPHA operators, which can control the certainty degrees of the aggregated arguments with some parameters. Furthermore, we study the properties and special cases of our operators. C 2010 Wiley Periodicals, Inc. 1. INTRODUCTION Intuitionistic fuzzy set IFS, which is characterized by a membership function and a non-membership function, was introduced by Atanassov. 1 Since it is powerful in dealing with uncertainty, imprecision and vagueness, IFS has attracted much attention. 2,3 For example, Chen and Tan 4 gave the score function of IFS. Hong and Choi 5 gave the accuracy function of IFS. Both the functions were applied to deal with the multi-criteria decision making problem. Atanassov 6 defined some operators for controlling the certainty degree of IFS by parameters. Liu and Wang 7 gave some point operators to translate an IFS into another one so as to reduce its uncertainty degree. In the last decades, a lot of research has been done about the aggregation methods Yager 12 gave the ordered weighted averaging OWA operator and then extended it to propose a class of generalized ordered weighted averaging aggregation GOWA operators. For the intuitionistic fuzzy values IFVs, Xu 13 developed some aggregation operators, such as the intuitionistic fuzzy weighted averaging IFWA operator, intuitionistic fuzzy ordered weighted averaging IFOWA Author to whom all correspondence should be addressed: xu zeshui@263.net. meimxia@163.com. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, VOL. 25, C 2010 Wiley Periodicals, Inc. View this article online at wileyonlinelibrary.com

2 1062 XIA AND XU operator, intuitionistic fuzzy hybrid aggregation IFHA operator, and established various properties of these operators. Then Xu and Yager 14 proposed some geometric aggregation operators for IFVs, such as the intuitionistic fuzzy weighted geometric operator, the intuitionistic fuzzy weighted geometric IFWG operator, intuitionistic fuzzy ordered weighted geometric IFOGA operator, and intuitionistic fuzzy hybrid geometric IFHG operator. Zhao et al. 15 combined Xu and Yager s operators to develop some generalized aggregation operators, such as the generalized intuitionistic fuzzy weighted averaging GIFWA operator, generalized intuitionistic fuzzy ordered weighted averaging GIFOWA operator, and H κ α,λ α α. It should be noted that all the above aggregation operators are only based on the original information, and thus cannot reduce the uncertainty of the aggregated arguments. However, in some situations with intuitionistic fuzzy information, it is necessary to reduce the uncertainty of IFSs. 6,7 In this article, we first give some point aggregation operators for IFVs, which can reduce the uncertainty degree of IFVs, and then based on the idea of generalized aggregation, 15,16 we develop various generalized intuitionistic fuzzy point aggregation operators, and study the properties and some special cases of these developed operators. 2. BASIC CONCEPTS 2.1. Intuitionistic Fuzzy Set Let a set X be fixed, Atanassov 1 gave the concept of IFS A on X as follows: A {<x, μ A x,ν A x > x X} 1 where the functions μ A x and v A x denote the degrees of membership and nonmembership of the element x X to the set A respectively, with the condition: 0 μ A x 1, 0 ν A x 1, 0 μ A x + ν A x 1 2 and π A x 1 μ A x ν A x is usually called the degree of indeterminacy of x to A. For convenience, Xu and Yager 13 named α μ α,ν α as an IFV. In this article, let V be the set of all IFVs. For α, α 1,α 2 V, Xu and Yager 13,14 gave some operational laws by which we can get other IFVs: α 1 α 2 μ α1 + μ α2 μ α1 μ α2,ν α1 ν α2 ; α 1 α 2 μ α1 μ α2,ν α1 + ν α2 ν α1 ν α2 ; λα 1 1 μ α λ,να λ,λ>0; αλ μ λ α, 1 1 ν α λ,λ>0. Chen and Tan 4 introduced the score function sα μ α ν α to get the score of α. Then Hong and Choi 5 defined the accuracy function hα μ α + ν α to evaluate the accuracy degree of α. Based on the score function s and the accuracy function h, Xu and Yager 14 gave an order relation between two IFVs α and β: 1 If sα <sβ, then α<β;

3 GENERALIZED POINT OPERATORS AND FUZZY INFORMATION If sα sβ, then i If hα hβ, then α β; ii If hα <hβ, then α<β The GOWA and GIFOWA Operators Since its appearance, the OWA operator introduced by Yager 12 has received more and more attention In Ref. 16, Yager extended it and defined a GOWA operator as follows: DEFINITION The GOWA operator of dimension m is a mapping GOWA: I m I, which has the following form: 1/η m GOWA a 1,a 2,...,a m w b η 3 where η [, + ], w w 1,w 2,...,w m T is the associate weighting vector with w 0, 1, 2,...,m, m 1 w 1, b is the th largest of a i i 1, 2,...,m, and I [0, 1]. Zhao et al. 15 extended the GOWA operator to accommodate the situations where the input arguments are IFVs. A GIFOWA operator of dimension m is a mapping GIFOWA: V m V, which has the following form: DEFINITION GIFOWA w α 1,α 2,...,α m w 1 α η σ 1 w 2α η σ 2 w mα η σ m 1/η 4 where η>0, w w 1,w 2,...,w m T is the weight vector of α 1,α 2,...,α m,w 0, 1, 2,...,m, m 1 w 1, and α σ is the th largest of α i i 1, 2,...,m. However, the above aggregation operators only use the original information. In some situations, we should get more information from the original one, 6,7 so it is necessary to deal with the original information first. In the next sections, we shall develop some point aggregation operators for IFVs to control the membership degree or nonmembership degree of the IFVs using different parameters POINT OPERATORS FOR AGGREGATING IFVS For an IFS A {<x, μ A x,ν A x > x X}, let κ, λ [0, 1], Atanassov 6 gave the following operators: 1 D κ A {x, μ A x + κπ A x,ν A x + 1 κπ A x x X}. 2 F κ,λ A {x, μ A x + κπ A x,ν A x + λπ A x x X}, where κ + λ 1. 3 G κ,λ A {x, κμ A x,λν A x x X}. 4 H κ,λ A {x, κμ A x,ν A x + λπ A x x X}. 5 H κ,λ A {x, κμ Ax,ν A x + λ1 κμ A x ν A x x X}.

4 1064 XIA AND XU 6 J κ,λ A {x, μ A x + κπ A x,λν A x x X}. 7 J κ,λ A {x, μ Ax + κ1 μ A x λν A x,λν A x x X}. 8 P κ,λ A {x, maxκ, μ A x, minλ, ν A x x X}, where κ + λ 1. 9 Q κ,λ A {x, minκ, μ A x, maxλ, ν A x x X}, where κ + λ 1. Let IFSX be the set of all IFSs on X.ForA IFSX, Burillo and Bustince 17 defined an operator D κx A for each point x X: D κx A {x, μ A x + κ x π A x,ν A x + 1 κ x π A x x X} 5 where κ x [0, 1]. Then, Liu and Wang 7 defined an IF point operator for aggregating IFSs: DEFINITION 3. 7 Let A IFSX, for each point x X, taking κ x,λ x [0, 1] and κ x + λ x 1, then an IF point operator F κx,λ x A: IFSX IFSX is as follows: F κx,λ x A {x, μ A x + κ x π A x,ν A x + λ x π A x x X} 6 and if let F 0 κ x,λ x A A, then F n κ x,λ x A { x, μ A x + κ x π A x 1 1 κ x λ x n, κ x + λ x ν A x + λ x π A x 1 1 κ x λ x n κ x + λ x x X} 7 In the following, we define some new point operators for aggregating IFVs: DEFINITION 4. ForanIFVα μ α,ν α, let κ α,λ α [0, 1], we define some point operators: IFV IFV as follows: 1 D κα α μ α + κ α π α,ν α + 1 κ α π α. 2 F κα,λ α α μ α + κ α π α,ν α + λ α π α,whereκ α + λ α 1. 3 G κα,λ α α κ α μ α,λ α ν α. 4 H κα,λ α α κ α μ α,ν α + λ α π α. 5 H κ α,λ α α κ α μ α,ν α + λ α 1 κ α μ α ν α. 6 J κα,λ α α μ α + κ α π α,λ α ν α. 7 J κ α,λ α α μ α + κ α 1 μ α λ α ν α,λ α ν α. 8 P κα,λ α α maxκ α,μ α, minλ α,ν α,whereκ α + λ α 1. 9 Q κα,λ α α minκ α,μ α, maxλ α,ν α,whereκ α + λ α 1. Based on Definition 4, let F 0 κ α,λ α A D 0 κ α A G 0 κ α,λ α A H 0 κ α,λ α A H,0 κ α,λ α A then we have the following theorem: J 0 κ α,λ α A J,0 κ α,λ α A P 0 κ α,λ α A Q 0 κ α,λ α A A 8

5 GENERALIZED POINT OPERATORS AND FUZZY INFORMATION 1065 THEOREM 1. Let α μ α,ν α be an IFV, and n be a positive integer, taking κ α,λ α [0, 1], then 1 Dκ n α α μ α + κ α π α,ν α + 1 κ α π α. 2 Fκ n 1 1 κ α,λ α α μ α + κ α π α λ α n α κ α+λ α,ν α + λ α π α 1 1 κ α λ α n κ α+λ α,whereκ α + λ α 1. 3 G n κ α,λ α α κ n α μ α,λ n α ν α. 4 H n κ α,λ α α κ n α μ α,ν α + 1 ν α 1 1 λ α n μ α λ α n 1 t0 κn 1 t α 1 λ α t. 5 H κ α,λ α α κα nμ α,ν α + 1 ν α 1 1 λ α n μ α κ α λ α n 1 t0 κn 1 t 6 Jκ n α,λ α α μ α + 1 μ α 1 1 κ α n ν α κ α n 1 t0 λn 1 t α t0 λn 1 t α 7 J κ α,λ α α μ α + 1 μ α 1 1 κ α n ν α κ α λ α n 1 8 Pκ n α,λ α α maxκ α,μ α, minλ α,ν α,whereκ α + λ α 1. 9 Q n κ α,λ α α minκ α,μ α, maxλ α,ν α,whereκ α + λ α 1. α 1 λ α t. 1 κ α t,λ n α ν α. 1 κ α t,λ n α ν α. By Definition 4, we can easily get that the point operators translate an IFV to another one. In the following section, we combine the developed point operators with Zhao et al. s operators 15 to develop a new class of aggregation operators, which we denote as generalized intuitionistic fuzzy point averaging GIFPA operators. 4. THE GIFPWA, GIFPOWA, AND GIFPHA OPERATORS 4.1. The GIFPWA Operators DEFINITION 5. Let α μ α,ν α 1, 2,...,m be a collection of IFVs, and n be a positive integer, taking κ α,λ α [0, 1], 1, 2,...,m. Let the generalized intuitionistic fuzzy point weighted averaging GIFPWA: V m V,if 1 GIFPWAD n w α 1,α 2,...,α m η η η 1/η w 1 D n κ α1 α 1 w2 D n κ α2 α 2 wm D n κ αm α m 2 GIFPWAF n w α 1,α 2,...,α m η η η 1/η w 1 F n κ α1,λ α1 α 1 w2 F n κ α2,λ α2 α 2 wm F n κ αm,λ αm α m where κ α + λ α 1, 1, 2,...,m. 3 GIFPWAG n w α 1,α 2,...,α m η η η 1/η w 1 G n κ α1,λ α1 α 1 w2 G n κ α2,λ α2 α 2 wm G n κ αm,λ αm α m 4 GIFPWAH n w α 1,α 2,...,α m η η η 1/η w 1 H n κ α1,λ α1 α 1 w2 H n κ α2,λ α2 α 2 wm H n κ αm,λ αm α m

6 1066 XIA AND XU 5 GIFPWAH w α 1,α 2,...,α m η η η 1/η w 1 H κ α1,λ α1 α 1 w2 H κ α2,λ α2 α 2 wm H κ αm,λ αm α m 6 GIFPWAJ n w α 1,α 2,...,α n η η η 1/η w 1 J n κ α1,λ α1 α 1 w2 J n κ α2,λ α2 α 2 wm J n κ αm,λ αm α m 7 GIFPWAJ w α 1,α 2,...,α m η η η 1/η w 1 J κ α1,λ α1 α 1 w2 J κ α2,λ α2 α 2 wm J κ αm,λ αm α m 8 GIFPWAP n w α 1,α 2,...,α m η η η 1/η w 1 P n κ α1,λ α1 α 1 w2 P n κ α2,λ α2 α 2 wm P n κ αm,λ αm α m where κ α + λ α 1, 1, 2,...,m. 9 GIFPWAQ n w α 1,α 2,...,α m η η η 1/η w 1 Q n κ α1,λ α1 α 1 w2 Q n κ α2,λ α2 α 2 wm Q n κ αm,λ αm α m where κ α + λ α 1, 1, 2,...,m. Then, the functions GIFPWAD n w, GIFPWAFn w, GIFPWAGn w, GIFPWAHn w, GIFPWAH w, GIFPWAJn w, GIFPWAJ w, GIFPWAPn w, and GIFPWAQn w are called the GIFPWA operators, where η>0, w w 1,w 2,...,w m T is a weight vec- associated with the GIFPWA operators, with w 0, 1, 2,...,n, and tor n 1 w 1. THEOREM 2. Let α μ α,ν α 1, 2,...,m be a collection of IFVs, and n be a positive integer, κ α,λ α [0, 1], 1, 2,...,m, η>0, w w 1,w 2,...,w m T is a weight vector associated with the GIFPWA operators, with w 0 and m 1 w 1, then the aggregated values by using the GIFPWA operators are also IFVs, and 1 GIFPWAD n w α 1,α 2,...,α m 1/η 1 m 1 μ α + κ α π α η w, 1 1 1/η 1 m 1 1 ν α 1 κ α π α η w 1

7 GENERALIZED POINT OPERATORS AND FUZZY INFORMATION GIFPWAF n w α 1,α 2,...,α m 1 m w 1/η η 1 μ η F 1 κα n α,λα, 1 1 m w 1/η 1 1 ν F n 1 κα α,λα where κ α + λ α 1, 1, 2,...,m, and 3 GIFPWAG n w α 1,α 2,...,α m μ F n κα,λα α μ α + κ α π α 1 1 κ α λ α n ν F n κα,λα α ν α + λ α π α 1 1 κ α λ α n κ α + λ α 9 κ α + λ α 10 1 m η w 1/η 1 κ n α 1 μ α, 1 1 m η w 1/η 1 1 λ n α 1 ν α 4 GIFPWAH n w α 1,α 2,...,α m 1 m η w 1/η η 1 κ n α 1 μ α, 1 1 m w 1/η 1 1 ν H n 1 κα α,λα where n 1 ν H n κα α,λα ν α + 1 ν α 1 1 λ α n μ α λ α κ n 1 t α 1 λ α t t GIFPWAH w α 1,α 2,...,α m 1 m η w 1/η η 1 κ n α 1 μ α, 1 1 m w 1/η 1 1 ν H α 1 κα,λα where ν H κα,λα α ν α + 1 ν α 1 1 λ α n μ α κ α λ α n 1 t0 κ n 1 t α 1 λ α t 12 6 GIFPWAJ n w α 1,α 2,...,α m 1 m w 1/η 1 μ η J 1 κα n α,λα, 1 1 m η w 1/η 1 1 λ n α 1 ν α

8 1068 XIA AND XU where μ J n κα α,λα μ α + 1 μ α 1 n n 1 1 κ α να κ α λ n 1 t α 1 μ α t t GIFPWAJ w α 1,α 2,...,α m 1 m w 1/η 1 μ η 1 J, 1 1 m η w 1/η α κα,λα 1 1 λ n α 1 ν α where μ J κα,λα α μ α + 1 μ α 1 1 κ α n να κ α λ α n 1 t0 λ n 1 t α 1 μ α t 14 8 GIFPWAP n w α 1,α 2,...,α m 1 m 1 maxκα,μ α 1/η 1/η η w, 1 1 m 1 1 minλ α,ν α η w 1 1 where κ α + λ α 1, 1, 2,...,m. 9 GIFPWAQ n w α 1,α 2,...,α m 1/η 1/η 1 m 1 minκ α,μ α η w, 1 1 m 1 1 maxλ α,ν α η w 1 1 where κ α + λ α 1, 1, 2,...,m. Moreover, from Definition 5 and the operational laws given in Section 2.1, we can easily prove that the aggregated values by using the GIFPWA operators are also IFVs. THEOREM 3. Let α μ α,ν α 1, 2,...,m be a collection of IFVs, n be a positive integer, κ α,λ α [0, 1], 1, 2,...,m, η>0, w w 1,w 2,...,w m T be the weight vector associated with the GIFPWA operators, with w 0, 1, 2,...,m, m 1 w 1. If all α 1, 2,...,m are equal, that is, α α, for all, then 1 GIFPWAD n w α 1,α 2,...,α m Dκ n α α. 2 GIFPWAF n w α 1,α 2,...,α m Fκ n α,λ α α,whereκ α + λ α 1, 1, 2,...,m. 3 GIFPWAG n w α 1,α 2,...,α m G n κ α,λ α α. 4 GIFPWAH n w α 1,α 2,...,α m Hκ n α,λ α α. 5 GIFPWAH w α 1,α 2,...,α m H κ α,λ α α. 6 GIFPWAJ n w α 1,α 2,...,α m Jκ n α,λ α α. 7 GIFPWAJ w α 1,α 2,...,α m J κ α,λ α α. 8 GIFPWAP n w α 1,α 2,...,α m Pκ n α,λ α α,whereκ α + λ α 1, 1, 2,...,m.

9 GENERALIZED POINT OPERATORS AND FUZZY INFORMATION GIFPWAQ n w α 1,α 2,...,α m Q n κ α,λ α α,whereκ α + λ α 1, 1, 2,...,m. THEOREM 4. Let α μ α,ν α 1, 2,...,m be a collection of IFVs, n be a positive integer, κ α,λ α [0, 1], 1, 2,...,m, η>0, w w 1,w 2,...,w m T be the weight vector related to the GIFPWA operators, with w 0, 1, 2,...,m, and m 1 w 1, then 1 α D n GIFPWAD n w α 1,α 2,...,α m α + D n. 2 α F n GIFPWAF n w α 1,α 2,...,α m α + F n,whereκ α + λ α 1, 1, 2,...,m. 3 α G n GIFPWAG n w α 1,α 2,...,α m α + G n. 4 α H n GIFPWAH n w α 1,α 2,...,α m α + H n. 5 α Hn GIFPWAH w α 1,α 2,...,α m α + Hn. 6 α J n GIFPWAJ n w α 1,α 2,...,α m α + J n. 7 α Jn GIFPWAJ w α 1,α 2,...,α m α + Jn. 8 α P n GIFPWAP n w α 1,α 2,...,α m α + P n,whereκ α + λ α 1, 1, 2,...,m. 9 α Q n GIFPWAQ n w α 1,α 2,...,α m α + Q n,whereκ α + λ α 1, 1, 2,...,m, and α D n min α F n min α G n min α H n min μ D n κα,λα α, max μ F n κα,λα α, max μ G n κα,λα α, max μ H n κα,λα α, max α H min n μ H α κα,λα, max α J n min μ J n κα,λα α, max α J min n μ J α κα,λα, max α P n min α Q n min μ P n κα,λα α, max μ Q n κα,λα α, max ν D n κα α,λα ν F n κα α,λα ν G n κα α,λα ν H n κα α,λα ν H,α + D n,α + F n,α + G n,α + H n maxμ D n κα α,λα, minν D n κα α,λα maxμ F n κα α,λα, minν F n κα α,λα maxμ G n κα α,λα, minν G n κα α,λα maxμ H n κα α,λα, minν H n κα α,λα α κα,λα,α + H max n μ H α κα,λα, min ν J n κα α,λα ν J,α + J n ν H α κα,λα maxμ J n κα α,λα, minν J n κα α,λα α κα,λα,α + J max n μ J α κα,λα, min ν P n κα α,λα ν Q n κα α,λα,α + P n,α + Q n ν J α κα,λα maxμ P n κα α,λα, minν P n κα α,λα maxμ Q n κα α,λα, minν Q n κα α,λα THEOREM 5. Let α μ α,ν α 1, 2,...,m and α μ α,ν α

10 1070 XIA AND XU 1, 2,...,m be two collections of IFVs, n be a positive integer, κ α,λ α [0, 1], 1, 2,...,m, η>0, w w 1,w 2,...,w m T be the weight vector related to the GIFPWA operators, where w 0, 1, 2,...,m, and m 1 w 1, then 1 If μ D n κα α μ D n α and ν D n κα α ν D n α, for all,then GIFP W AD n w α 1,α 2,...,α m GIFP W AD n w α 1,α 2,...,α m. 2 If μ F n κα,λα α μ F n α and ν F n κα,λα α ν F n α, for all,then GIFP W AF n w α 1,α 2,...,α m GIFP W AF n w α 1,α 2,...,α n where κ α + λ α 1, 1, 2,...,m. 3 If μ G n κα α,λα μ G n,λ α α and ν G n κα α,λα ν G n,λ α α, for all,then GIFP W AG n w α 1,α 2,...,α m GIFP W AG n w α 1,α 2,...,α m. 4 If μ H n κα,λα α μ H n α and ν H n κα,λα α ν H n α, for all,then GIFP W AH n w α 1,α 2,...,α m GIFP W AH n w α 1,α 2,...,α m. 5 If μ H κα,λα α μ H κ α α and ν H κα,λα α ν H κ α α, for all,then GIFP W AH w α 1,α 2,...,α m GIFP W AH w α 1,α 2,...,α m. 6 If μ J n κα,λα α μ J n α and ν J n κα,λα α ν J n α, for all,then GIFP W AJ n w α 1,α 2,...,α m GIFP W AJ n w α 1,α 2,...,α m. 7 If μ J κα,λα α μ J κ α α and ν J κα,λα α ν J κ α α, for all,then GIFP W AJ w α 1,α 2,...,α m GIFP W AJ w α 1,α 2,...,α m. 8 If μ P n κα,λα α μ P n α and ν P n κα,λα α ν P n α, for all,then GIFP W AP n w α 1,α 2,...,α m GIFP W AP n w α 1,α 2,...,α m where κ α + λ α 1, 1, 2,...,m. 9 If μ Q n κα α,λα μ Q n,λ α α and ν Q n κα α,λα ν Q n,λ α α, for all,then GIFP W AQ n w α 1,α 2,...,α m GIFP W AQ n w α 1,α 2,...,α m where κ α + λ α 1, 1, 2,...,m.

11 GENERALIZED POINT OPERATORS AND FUZZY INFORMATION 1071 We now look at some special cases obtained by using different choices of the parameters n, w, and η. THEOREM 6. Let α μ α,ν α 1, 2,...,m be a collection of IFVs, n be a positive integer, κ α,λ α [0, 1], 1, 2,...,m, η>0, and w w 1,w 2,...,w m T be the weight vector related to the GIFPWA operators with w 0, 1, 2,...,m, and m 1 w 1, then 1 If n 0, then the GIFPWA operators reduce to the following: GIF W A w α 1,α 2,...,α m w 1 α η 1 w 2α η 2 w mα η m which is called a GIFWA operator If η 1, n 0, then the GIFPWA operators reduce to the following: 1/η IFWA w α 1,α 2,...,α m w 1 α 1 w 2 α 2 w m α m which is called an IFWA operator If w 1/m,1/m,...,1/m T, n 0, and η 1, then the GIFPWA operators reduce to the following: IFA w α 1,α 2,...,α m 1 m α 1 α 2 α m which is called an intuitionistic fuzzy averaging IFA operator The GIFPOWA Operators DEFINITION 6. Let α μ α,ν α, 1, 2,...,m be a collection of IFVs, n be a positive integer, κ α,λ α [0, 1], 1, 2,...,m, η>0,w w 1,w 2,...,w m T is an associated weighting vector such that w 0, 1, 2,...,m, and m 1 w 1, let the generalized intuitionistic fuzzy point ordered weighted averaging GIFPOWA: V m V,if 1 GIFPOWAD n w α 1,α 2,...,α m η η η 1/η w 1 D n κ ασ α σ 1 w2 D n 1 κ ασ α σ 2 wm D n 2 κ ασ α σ m m where D n κ ασ α σ is the th largest of D n κ αi α i i 1, 2,...,m 2 GIFPOWAF n w α 1,α 2,...,α m η η η 1/η w 1 F n κ ασ 1 α σ 1 w2 F n 1 κ ασ 2 α σ 2 wm F n 2 κ ασ m α σ m m where κ ασ + λ ασ 1, 1, 2,...,m, F n κ ασ α σ is the thlargest of F n κ αi,λ αi α i i 1, 2,...,m

12 1072 XIA AND XU 3 GIFPOWAG n w α 1,α 2,...,α m η η η 1/η w 1 G n κ ασ 1 α σ 1 w2 G n 1 κ σ 2,λ σ 2 α σ 2 wm G n κ ασ m α σ m m where G n κ ασ α σ is the th largest of G n κ αi,λ αi α i i 1, 2,...,m. 4 GIFPOWAH n w α 1,α 2,...,α m η η η 1/η w 1 H n κ σ 1,λ σ 1 α σ 1 w2 H n κ σ 2,λ σ 2 α σ 2 wm H n κ ασ m α m m where H n κ ασ α σ is the th largest of H n κ αi,λ αi α i i 1, 2,...,m. 5 GIFPOWAH w α 1,α 2,...,α m η η η 1/η w 1 H κ ασ 1 α σ 1 w2 H 1 κ ασ 2 α σ 2 wm H 2 κ ασ m α σ m m where H κ ασ α σ is the th largest of H κ αi,λ αi α i i 1, 2,...,m. 6 GIFPOWAJ n w α 1,α 2,...,α m η η η 1/η w 1 J n κ ασ 1 α σ 1 w2 J n 1 κ ασ 2 α σ 2 wm J n 2 κ ασ m α σ m m where J n κ ασ α σ is the th largest of J n κ αi,λ αi α i i 1, 2,...,m. 7 GIFPOWAJ w α 1,α 2,...,α m η η η 1/η w 1 J κ ασ 1 α σ 1 w2 J 1 κ ασ 2 α σ 2 wm J 2 κ ασ m α σ m m where J κ ασ α σ is the th largest of J κ αi,λ αi α i i 1, 2,...,m. 8 GIFPOWAP n w α 1,α 2,...,α m η η η 1/η w 1 P n κ ασ 1 α σ 1 w2 P n 1 κ ασ 2 α σ 2 wm P n 2 κ ασ m α σ m m where κ ασ + λ ασ 1, 1, 2,...,m, P n κ ασ α σ is the thlargest of P n κ αi,λ αi α i i 1, 2,...,m. 9 GIFPOWAQ n w α 1,α 2,...,α m η η η 1/η w 1 Q n κ ασ 1 α σ 1 w2 Q n 1 κ ασ 2 α σ 2 wm Q n 2 κ ασ m α σ m m where κ ασ + λ ασ 1, 1, 2,...,m, Q n κ ασ α σ is the thlargest of Q n κ αi,λ αi α i i 1, 2,...,m. Then the functions GIFPOWAD n w, GIFPOWAFn w, GIFPOWAGn w, GIFPOWAHn w, GIFPOWAH w, GIFPOWAJn w, GIFPOWAJ w, GIFPOWAPn w, and GIFPOWAQn w are called the GIFPOWA operators.

13 GENERALIZED POINT OPERATORS AND FUZZY INFORMATION 1073 The GIFPOWA operators have some properties similar to those of the GIFPWA operators. THEOREM 7. Let α μ α,ν α 1, 2,...,m be a collection of IFVs, n be a positive integer, κ α,λ α [0, 1], 1, 2,...,m, η>0, w w 1,w 2,...,w m T be an associated weight vector such that w 0, 1, 2,...,m, and m 1 w 1, then the aggregated value by using the GIFPOWA operators are also IFVs, and 1 GIFPOWAD n w α 1,α 2,...,α m 1 m η 1/η w 1 μασ + κ ασ π ασ, m η 1/η w 1 1 νασ 1 κ ασ π ασ 1 2 GIFPOWAF n w α 1,α 2,...,α m 1 m w 1/η 1 μ η F 1 κα n α σ,λα σ σ, η 1 1 m w 1/η 1 1 ν F n 1 κασ α,λα σ σ where κ ασ + λ ασ 1, 1, 2,...,m, and μ F n κασ,λα σ α σ μ ασ + κ ασ π ασ 1 1 κ ασ λ ασ n κ ασ + λ ασ 15 ν F n κασ,λα σ α σ ν ασ + λ ασ π ασ 1 1 κ ασ λ ασ n 3 GIFPOWAG n w α 1,α 2,...,α m κ ασ + λ ασ 16 1 m η w 1/η 1 κ n α 1 σ μ ασ, 1 1 m η w 1/η 1 1 λ n α 1 σ ν ασ 4 GIFPOWAH n w α 1,α 2,...,α m 1 m η w 1/η 1 κ n α 1 σ μ ασ, η 1 1 m w 1/η 1 1 ν H n 1 κασ α,λα σ σ

14 1074 XIA AND XU where ν H n κασ,λα σ α σ ν ασ + 1 ν ασ 1 1 λασ n n 1 μ ασ λ ασ κ n 1 t n α σ 1 λασ t GIFPOWAH w α 1,α 2,...,α m 1 m η w 1/η 1 κ n α 1 σ μ ασ, 1 η 1 m w 1/η 1 1 ν H α 1 κα σ,λα σ σ where ν H κα σ,λα σ α σ ν ασ + 1 ν ασ 1 1 λασ n n 1 μ ασ κ ασ λ ασ κ n 1 t n α σ 1 λασ t GIFPOWAJ n w α 1,α 2,...,α m 1 m w 1/η 1 μ η J 1 κα n α σ,λα σ σ, 1 1 m η w 1/η 1 1 λ n α 1 σ ν ασ where μ J n κασ,λα σ α σ μ ασ + 1 μ ασ 1 1 κ ασ n n 1 ν ασ κ ασ λ n 1 t α σ 1 κ ασ n t GIFPOWAJ w α 1,α 2,...,α m 1 m w 1/η 1 μ η 1 J, 1 1 m η w 1/η α κα σ,λα σ 1 1 λ n α σ 1 σ ν ασ where μ J κα σ,λα σ α σ μ ασ + 1 μ ασ 1 1 κ ασ n n 1 ν ασ κ ασ λ ασ λ n 1 t α σ 1 κ ασ n t0 20

15 GENERALIZED POINT OPERATORS AND FUZZY INFORMATION GIFPOWAP n w α 1,α 2,...,α m 1 m 1 maxκασ,μ ασ 1/η η w, 1 1 1/η 1 m 1 1 minλ ασ,ν ασ η w 1 where κ ασ + λ ασ 1, 1, 2,...,m. 9 GIFPOWAQ n w α 1,α 2,...,α m 1/η 1 m 1 minκ ασ,μ ασ η w, 1 1 1/η 1 m 1 1 maxλ ασ,ν ασ η w 1 where κ ασ + λ ασ 1, 1, 2,...,m. THEOREM 8. Let α μ α,ν α 1, 2,...,m be a collection of IFVs, n be a positive integer, κ α,λ α [0, 1], 1, 2,...,m, η>0, w w 1,w 2,...,w m T be the weight vector related to the GIFPOWA operators, with w 0, 1, 2,...,m, and m 1 w 1. If all α 1, 2,...,m are equal, that is, α α, for all, then 1 GIFPOWAD n w α 1,α 2,...,α m Dκ n α α. 2 GIFPOWAF n w α 1,α 2,...,α m Fκ n α,λ α α,whereκ α + λ α 1, 1, 2,...,m. 3 GIFPOWAG n w α 1,α 2,...,α m G n κ α,λ α α. 4 GIFPOWAH n w α 1,α 2,...,α m Hκ n α,λ α α. 5 GIFPOWAH w α 1,α 2,...,α m H κ α,λ α α. 6 GIFPOWAJ n w α 1,α 2,...,α m Jκ n α,λ α α. 7 GIFPOWAJ w α 1,α 2,...,α m J κ α,λ α α. 8 GIFPOWAP n w α 1,α 2,...,α m Pκ n α,λ α α,whereκ α + λ α 1, 1, 2,...,m. 9 GIFPOWAQ n w α 1,α 2,...,α m Q n κ α,λ α α,whereκ α + λ α 1, 1, 2,...,m. THEOREM 9. Let α μ α,ν α 1, 2,...,m be a collection of IFVs, n be a positive integer, κ α,λ α [0, 1], 1, 2,...,m, η>0, w w 1,w 2,...,w m T be the weight vector related to the GIFPOWA operators, with w 0, 1, 2,...,m, and m 1 w 1, then 1 α D n GIFPOWAD n w α 1,α 2,...,α m α + D n. 2 α F n GIFPOWAF n w α 1,α 2,...,α m α + F n,whereκ α + λ α 1, 1, 2,...,m. 3 α G n GIFPOWAG n w α 1,α 2,...,α m α + G n. 4 α H n GIFPOWAH n w α 1,α 2,...,α m α + H n. 5 α H n GIFPOWAH w α 1,α 2,...,α m α + H n.

16 1076 XIA AND XU 6 α J n GIFPOWAJ n w α 1,α 2,...,α m α + J n. 7 α Jn GIFPOWAJ w α 1,α 2,...,α m α + Jn. 8 α P n GIFPOWAP n w α 1,α 2,...,α m α + P n,whereκ α + λ α 1, 1, 2,...,m. 9 α Q n GIFPOWAQ n w α 1,α 2,...,α m α + Q n,whereκ α + λ α 1, 1, 2,...,m. THEOREM 10. Let α μ α,ν α 1, 2,...,m, α μ α,ν α 1, 2,...,m be two collections of IFVs, n be a positive integer, κ α,λ α [0, 1], 1, 2,...,m, η>0, w w 1,w 2,...,w m T be the weight vector related to the GIFPOWA operators, with w 0, 1, 2,...,m, and m 1 w 1, then 1 If μ D n κα α μ D n α and ν D n κα α ν D n α, for all,then GIFPOWAD n w α 1,α 2,...,α m GIFPOWAD n w α 1,α 2,...,α m. 2 If μ F n κα,λα α μ F n α and ν F n κα,λα α ν F n α, for all,then GIFPOWAF n w α 1,α 2,...,α m GIFPOWAF n w α 1,α 2,...,α m where κ α + λ α 1, 1, 2,...,m. 3 If μ G n κα α,λα μ G n,λ α α and ν G n κα α,λα ν G n,λ α α, for all,then GIFPOWAG n w α 1,α 2,...,α m GIFPOWAG n w α 1,α 2,...,α m. 4 If μ H n κα,λα α μ H n α and ν H n κα,λα α ν H n α, for all,then GIFPOWAH n w α 1,α 2,...,α m GIFPOWAH n w α 1,α 2,...,α m. 5 If μ H κα,λα α μ H κ α α and ν H κα,λα α ν H κ α α, for all,then GIFPOWAH w α 1,α 2,...,α m GIFPOWAH w α 1,α 2,...,α m. 6 If μ J n κα,λα α μ J n α and ν J n κα,λα α ν J n α, for all,then GIFPOWAJ n w α 1,α 2,...,α m GIFPOWAJ n w α 1,α 2,...,α m. 7 If μ J κα,λα α μ J κ α α and ν J κα,λα α ν J κ α α, for all,then GIFPOWAJ w α 1,α 2,...,α m GIFPOWAJ w α 1,α 2,...,α m. 8 If μ P n κα,λα α μ P n α and ν P n κα,λα α ν P n α, for all,then GIFPOWAP n w α 1,α 2,...,α m GIFPOWAP n w α 1,α 2,...,α m

17 GENERALIZED POINT OPERATORS AND FUZZY INFORMATION 1077 where κ α + λ α 1, 1, 2,...,m. 9 If μ Q n κα α,λα μ Q n,λ α α and ν Q n κα α,λα ν Q n,λ α α, for all,then GIFPOWAQ n w α 1,α 2,...,α m GIFPOWAQ n w α 1,α 2,...,α m where κ α + λ α 1, 1, 2,...,m. THEOREM 11. Let α μ α,ν α 1, 2,...,m and α μ α,ν α 1, 2,...,m be two collections of IFVs, n be a positive integer, κ α,λ α [0, 1], 1, 2,...,m, η>0, w w 1,w 2,...,w m T be the weight vector related to the GIF- POWA operators, with w 0, 1, 2,...,m, m 1 w 1, and α 1,α 2...,α m be any permutation of α 1,α 2...,α m, then 1 GIFPOWAD n w α 1,α 2...,α m GIFPOWAD n w α 1,α 2...,α m. 2 GIFPOWAF n w α 1,α 2...,α m GIFPOWAF n w α 1,α 2...,α m,whereκ α + λ α 1, 1, 2,...,m. 3 GIFPOWAG n w α 1,α 2...,α m GIFPOWAG n w α 1,α 2...,α m. 4 GIFPOWAH n w α 1,α 2...,α m GIFPOWAH n w α 1,α 2...,α m. 5 GIFPOWAH w α 1,α 2...,α m GIFPOWAD w α 1,α 2...,α m. 6 GIFPOWAJ n w α 1,α 2...,α m GIFPOWAJ n w α 1,α 2...,α m. 7 GIFPOWAJ w α 1,α 2...,α m GIFPOWAJ w α 1,α 2...,α m. 8 GIFPOWAP n w α 1,α 2...,α m GIFPOWAP n w α 1,α 2...,α m,whereκ α + λ α 1, 1, 2,...,m. 9 GIFPOWAQ n w α 1,α 2...,α m GIFPOWAQ n w α 1,α 2...,α m,whereκ α + λ α 1, 1, 2,...,m We now look at some special cases obtained by using different choices of the parameters n, w, and η: THEOREM 12. Let α μ α,ν α 1, 2,...,m be a collection of IFVs, n be a positive integer, κ α,λ α [0, 1], 1, 2,...,m, η>0, and w w 1,w 2,...,w m T be the weight vector related to the GIFPOWA operators, with w 0, 1, 2,...,m, and m 1 w 1, then 1 If n 0, then the GIFPOWA operators reduce to the GIFOWA operator If η 1,n 0, then the GIFPOWA operators reduce to the IFOWA operator If w 1/m,1/m,...,1/m T, n 0,η 1, then the GIFPOWA operators reduce to the IFA operator If w 1, 0,...,0 T,n 0, then the GIFPOWA operator reduce to the intuitionistic fuzzy maximum operator. 4 5 If w 0, 0,...,1 T,n 0, then the GIFPOWA operators reduce to the intuitionistic fuzzy minimum operator The GIFPHA Operators Consider that the GIFPWA operators weight only the IFVs, while the GIF- POWA operators weight only the ordered positions of the IFVs instead of weighting

18 1078 XIA AND XU the IFVs themselves. To overcome this limitation, motivated by the idea of combining the weighted averaging operator and the OWA operators, 10,18 in what follows, we develop the generalized intuitionistic fuzzy point hybrid aggregation GIFPHA operators, which weight each given IFV and its ordered position. DEFINITION 7. Let α μ α,ν α 1, 2,...,m be a collection of IFVs, and n be a positive integer, taking κ α,λ α [0, 1], 1, 2,...,m, η>0. Letω ω 1,ω 2,...,ω m T be the weight vector of α with ω 0, m 1 ω 1, and m be the balancing coefficient, which plays a role of balance, then the GIFPHA operators of dimension m is a mapping GIFPHA: V m V, which has an associated vector w w 1,w 2,...,w m T, with w 0, 1, 2,...,m, and m 1 w 1, such that 1 GIFPHAD n w,ω α 1,α 2,...,α m η η η 1/η w 1 D n κ ασ α σ 1 w2 D n 1 κ ασ α σ 2 wm D n 2 κ ασ α σ m m where D n κ ασ α σ is the th largest of mω i D n κ αi α i i 1, 2,...,m. 2 GIFPHAF n w,ω α 1,α 2,...,α m η η η 1/η w 1 F n κ ασ 1 α σ 1 w2 F n 1 κ ασ 2 α σ 2 wm F n 2 κ ασ m α σ m m where κ ασ + λ ασ 1, 1, 2,...,m, F n κ ασ α σ is the th largest of mω i F n κ αi,λ αi α i i 1, 2,...,m. 3 GIFPHAG n w,ω α 1,α 2,...,α m η η 1/η η w 1 G n κ ασ 1 α σ 1 w2 G n 1 κ ασ α σ 2 w m G n 2 2 κ ασ m α σ m m where G n κ ασ α σ is the th largest of mω i G n κ αi,λ αi α i i 1, 2,...,m. 4 GIFPHAH n w,ω α 1,α 2,...,α m η η η 1/η w 1 H n κ σ 1,λ σ 1 α σ 1 w2 H n κ σ 2,λ σ 2 α σ 2 wm H n κ ασ m α m m where H n κ ασ α σ is the th largest of mω i H n κ αi,λ αi α i i 1, 2,...,m. 5 GIFPHAH w,ω α 1,α 2,...,α m η η η 1/η w 1 H κ ασ 1 α σ 1 w2 H 1 κ ασ 2 α σ 2 wm H 2 κ ασ m α σ m m where H κ ασ α σ is the th largest of mω i H κ αi,λ αi α i i 1, 2,...,m. 6 GIFPHAJ n w,ω α 1,α 2,...,α m η η η 1/η w 1 J n κ ασ 1 α σ 1 w2 J n 1 κ ασ 2 α σ 2 wm J n 2 κ ασ m α σ m m

19 GENERALIZED POINT OPERATORS AND FUZZY INFORMATION 1079 where J n κ ασ α σ is the th largest of mω i J n κ αi,λ αi α i i 1, 2,...,m. 7 GIFPHAJ w,ω α 1,α 2,...,α m η η η 1/η w 1 J κ ασ 1 α σ 1 w2 J 1 κ ασ 2 α σ 2 wm J 2 κ ασ m α σ m m where J κ ασ α σ is the th largest of mω i J κ αi,λ αi α i i 1, 2,...,m. 8 GIFPHAP n w,ω α 1,α 2,...,α m η η η 1/η w 1 P n κ ασ 1 α σ 1 w2 P n 1 κ ασ 2 α σ 2 wm P n 2 κ ασ m α σ m m where κ ασ + λ ασ 1, 1, 2,...,m, P n κ ασ α σ is the th largest of mω i P n κ αi,λ αi α i i 1, 2,...,m. 9 GIFPHAQ n w,ω α 1,α 2,...,α m η η η 1/η w 1 Q n κ ασ 1 α σ 1 w2 Q n 1 κ ασ 2 α σ 2 wm Q n 2 κ ασ m α σ m m where κ ασ + λ ασ 1, 1, 2,...,m, Q n κ ασ α σ is the th largest of mω i Q n κ αi,λ αi α i i 1, 2,...,m. THEOREM 13. Let α μ α,ν α 1, 2,...,m be a collection of IFVs, ω ω 1,ω 2,...,ω m T be the weight vector of α with ω 0, m 1 ω 1, m be the balancing coefficient, which plays a role of balance, and m be a positive integer. Let κ α,λ α [0, 1], 1, 2,...,m, η>0, and w w 1,w 2,...,w m T be the weight vector related to the GIFPHA operators, with w 0, 1, 2,...,m, and m 1 w 1, then 1 If w 1/m,1/m,...,1/m T, n 0, then the GIFPHA operators reduce to the GIFWA operators If ω 1/m,1/m,...,1/m T, n 0, then the GIFPHA operators reduce to the GIFOWA operator If η 1, n 0, then GIFPHA operators reduce to the following: IFHA w,ω α 1,α 2,...,α m 1 m 1 μ ασ w, m ν w α σ 1 1 which is called an IFHA operator CONCLUDING REMARKS In this article, we have developed some new point aggregating operators for IFVs, which can raise the certainty degree of the IFVs. Based on the point operators, we have developed a new class of aggregation operators including the GIFPWA, GIFPOWA, and GIFPHA operators which can control the membership degree and

20 1080 XIA AND XU the nonmembership degree with some parameters. Then we have studied the properties of these developed operators and discussed their specific forms. With different choices of the parameters n, η, and w, we can get some special cases of the developed aggregation operators. It is worth noting that all the GOWA operators defined by Yager 16 and the generalized intuitionistic fuzzy aggregation operators introduced by Zhao et al. 15 are also the special cases of our operators. Moreover, the results in this article can be further extended to accommodate interval-valued intuitionsitic fuzzy environments. Acknowledgments The work was supported by the National Science Fund for Distinguished Young Scholars of China No References 1. Atanassov K. Intuitionistic fuzzy sets. Fuzzy Sets Syst 1986;20: Gau WL, Buehrer DL. Vague sets. IEEE Trans Syst Man Cybern 1993;23: Bustince H, Burillo P. Vague sets are intuitionistic fuzzy sets. Fuzzy Sets Syst 1996;79: Chen SM, Tan JM. Handling multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets Syst 1994;67: Hong DH, Choi CH. Multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets Syst 2000;114: Atanassov K. Remark on the intuitionistic fuzzy sets-iii. Fuzzy Sets Syst 1995;75: Liu HW, Wang GJ. Multi-criteria decision making methods based on intuitionistic fuzzy sets. Eur J Oper Res 2007;197: Calvo T, Mayor G, Mesiar R. Aggregation operators: New trends and applications. Heidelberg, Germany: Kluwer, Yager RR, Kacprzyk J. The ordered weighted averaging operator: Theory and application. Norwell, MA: Kluwer, Xu ZS, Da QL. An overview of operators for aggregating information. Int J Intell Syst 2003;18: Xu ZS. An overview of methods for determining OWA weights. Int J Intell Syst 2005;20: Yager RR. On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Trans Syst Man Cybern 1988;18: Xu ZS. Intuitionistic fuzzy aggregation operators. IEEE Trans Fuzzy Syst 2007;15: Xu ZS, Yager RR. Some geometric aggregation operators based on intuitionistic fuzzy sets. Int J Gen Syst 2006;35: Zhao H, Xu ZS, Ni MF, Liu SS. Generalized aggregation operators for intuitionistic fuzzy sets. Int J Intell Syst 2010;25: Yager RR. Generalized OWA aggregation operators. Fuzzy Optim Decis Making 2004;3: Burillo P, Bustince H. Construction theorems of intuitionistic fuzzy sets. Fuzzy Sets Syst 1996;84: Torra V. The weighted OWA operator. Int J Intell Syst 1997;12:

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)

GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ) IFSCOM016 1 Proceeding Book No. 1 pp. 155-161 (016) ISBN: 978-975-6900-54-3 SOME RESULTS ON S α,β AND T α,β INTUITIONISTIC FUZZY MODAL OPERATORS GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)

Διαβάστε περισσότερα

New Operations over Interval Valued Intuitionistic Hesitant Fuzzy Set

New Operations over Interval Valued Intuitionistic Hesitant Fuzzy Set Mathematics and Statistics (): 6-7 04 DOI: 0.89/ms.04.000 http://www.hrpub.org New Operations over Interval Valued Intuitionistic Hesitant Fuzzy Set Said Broumi * Florentin Smarandache Faculty of Arts

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

SOME INTUITIONISTIC FUZZY MODAL OPERATORS OVER INTUITIONISTIC FUZZY IDEALS AND GROUPS

SOME INTUITIONISTIC FUZZY MODAL OPERATORS OVER INTUITIONISTIC FUZZY IDEALS AND GROUPS IFSCOM016 1 Proceeding Book No. 1 pp. 84-90 (016) ISBN: 978-975-6900-54-3 SOME INTUITIONISTIC FUZZY MODAL OPERATORS OVER INTUITIONISTIC FUZZY IDEALS AND GROUPS SINEM TARSUSLU(YILMAZ), GÖKHAN ÇUVALCIOĞLU,

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

A new modal operator over intuitionistic fuzzy sets

A new modal operator over intuitionistic fuzzy sets 1 st Int. Workshop on IFSs, Mersin, 14 Nov. 2014 Notes on Intuitionistic Fuzzy Sets ISSN 1310 4926 Vol. 20, 2014, No. 5, 1 8 A new modal operator over intuitionistic fuzzy sets Krassimir Atanassov 1, Gökhan

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Intuitionistic Fuzzy Ideals of Near Rings

Intuitionistic Fuzzy Ideals of Near Rings International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

A summation formula ramified with hypergeometric function and involving recurrence relation

A summation formula ramified with hypergeometric function and involving recurrence relation South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

The operators over the generalized intuitionistic fuzzy sets

The operators over the generalized intuitionistic fuzzy sets Int. J. Nonlinear Anal. Appl. 8 (2017) No. 1, 11-21 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2017.11099.1542 The operators over the generalized intuitionistic fuzzy sets Ezzatallah

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

EE101: Resonance in RLC circuits

EE101: Resonance in RLC circuits EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

The ε-pseudospectrum of a Matrix

The ε-pseudospectrum of a Matrix The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1) GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 5, 995, 535-545 PROPERTIES OF CERTAIN INTEGRAL OPERATORS SHIGEYOSHI OWA Abstract. Two integral operators P α and Q α for analytic functions in the open unit disk

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS Pa J Statist 2009 Vol 25(2), 135-140 ON NEGTIVE MOMENTS OF CERTIN DISCRETE DISTRIBUTIONS Masood nwar 1 and Munir hmad 2 1 Department of Maematics, COMSTS Institute of Information Technology, Islamabad,

Διαβάστε περισσότερα

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008 Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

n=2 In the present paper, we introduce and investigate the following two more generalized

n=2 In the present paper, we introduce and investigate the following two more generalized MATEMATIQKI VESNIK 59 (007), 65 73 UDK 517.54 originalni nauqni rad research paper SOME SUBCLASSES OF CLOSE-TO-CONVEX AND QUASI-CONVEX FUNCTIONS Zhi-Gang Wang Abstract. In the present paper, the author

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Lecture 10 - Representation Theory III: Theory of Weights

Lecture 10 - Representation Theory III: Theory of Weights Lecture 10 - Representation Theory III: Theory of Weights February 18, 2012 1 Terminology One assumes a base = {α i } i has been chosen. Then a weight Λ with non-negative integral Dynkin coefficients Λ

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras Annals of Pure and Applied athematics Vol. 8, No. 1, 2014, 93-104 ISSN: 2279-087X (P), 2279-0888(online) Published on 11 November 2014 www.researchmathsci.org Annals of Homomorphism and Cartesian Product

Διαβάστε περισσότερα

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a) hapter 5 xercise Problems X5. α β α 0.980 For α 0.980, β 49 0.980 0.995 For α 0.995, β 99 0.995 So 49 β 99 X5. O 00 O or n 3 O 40.5 β 0 X5.3 6.5 μ A 00 β ( 0)( 6.5 μa) 8 ma 5 ( 8)( 4 ) or.88 P on + 0.0065

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα