Η αβεβαιότητα στη μέτρηση.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Η αβεβαιότητα στη μέτρηση."

Transcript

1 Η αβεβαιότητα στη μέτρηση. 1. Εισαγωγή. Κάθε μέτρηση, όσο προσεκτικά και αν έχει γίνει, περικλείει κάποια αβεβαιότητα. Η ανάλυση των σφαλμάτων είναι η μελέτη και ο υπολογισμός αυτής της αβεβαιότητας στη μέτρηση. Οι δύο κύριοι λόγοι για τους οποίους χρειάζεται η ανάλυση των σφαλμάτων είναι, πρώτον να επιτρέψει στο μαθητή να εκτιμήσει πόσο μεγάλη είναι η αβεβαιότητα στη μέτρηση και δεύτερο να του επιτρέψει να την ελαχιστοποιήσει. Η πρόκληση να εκτιμήσει την αβεβαιότητα της μέτρησης του και να τη ελαχιστοποιήσει ώστε να του δώσει τη δυνατότητα να καταλήξει σε συμπέρασμα, οδηγεί το μαθητή από μια άχαρη επεξεργασία δεδομένων σε μια αληθινά ευχάριστη άσκηση. Πέραν από τα πιο πάνω, η ανάλυση σφαλμάτων είναι μια διαδικασία που αποτελεί μέρος του επιστημονικού πειράματος και ο μαθητής του Λυκείου θα πρέπει να κάνει τα πρώτα του βήματα στη διαδικασία αυτή. Θα δούμε λίγο πιο κάτω ένα παράδειγμα το οποίο δείχνει τη σημασία της αβεβαιότητας στη μέτρηση στην εξαγωγή συμπερασμάτων σε ένα πείραμα. 2. Σφάλμα και αβεβαιότητα. Στη Φυσική, η λέξη σφάλμα δεν έχει τη συνήθη σημασία του λάθους που δίνουμε στην καθημερινή μας ομιλία. Σφάλμα σε μια επιστημονική μέτρηση σημαίνει την αναπόφευκτη αβεβαιότητα που συνοδεύει κάθε μέτρηση. Τέτοια σφάλματα δεν είναι λάθη, δεν μπορείς να τα αποφύγεις όσο προσεκτικός και να είσαι. Το καλύτερο που μπορεί κάποιος να κάνει είναι να βεβαιωθεί ότι η αβεβαιότητα στη μέτρησή του είναι όσο το δυνατό πιο μικρή και να έχει μια καλή εκτίμηση για το πόσο μεγάλη είναι αυτή η αβεβαιότητα. Σε αυτό το κείμενο η λέξη σφάλμα χρησιμοποιείται ως η αβεβαιότητα που υπάρχει στη μέτρηση. Οι δύο λέξεις, σφάλμα και αβεβαιότητα θα χρησιμοποιούνται στο κείμενο έχοντας την ίδια σημασία. 3. Η σημασία του να γνωρίζουμε την αβεβαιότητα της μέτρησης. Για να γνωρίσουμε τη σημασία της αβεβαιότητας στη μέτρηση ας δούμε το εξής παράδειγμα. Ας υποθέσουμε ότι πρέπει να λύσουμε το πρόβλημα που είχε να λύσει πριν πολλά χρόνια ο Αρχιμήδης. Πρέπει να ανακαλύψουμε αν ένα στέμμα είναι φτιαγμένο από 18 καράτια χρυσό ή αν περικλείει μέσα του και κάποιο κράμα μετάλλων. Δίνεται η πυκνότητα του χρυσού ρ χρυσού =15.5 g/cm 3 και η πυκνότητα του κράματος ρ κράματος =13.8 g/cm 3. Αν μπορέσουμε να μετρήσουμε την πυκνότητα του υλικού του στέμματος τότε θα είμαστε σε θέση να γνωρίζουμε αν το στέμμα είναι από χρυσάφι μόνο, ή αν είναι από κράμα μετάλλων. Αυτό θα γίνει συγκρίνοντας την πυκνότητα του υλικού του στέμματος με τις δύο πυκνότητες που μας δόθηκαν και είναι 15.5 g/cm 3 και 13.8 g/cm 3.

2 Έστω ότι δύο επιστήμονες σπεύδουν για βοήθεια. Ο πρώτος, ο κ. Ανδρέου, μετά από μια σύντομη διαδικασία καταλήγει ότι η πυκνότητα του στέμματος είναι κατά προσέγγιση 15 g/cm 3 αλλά κυμαίνεται μεταξύ των τιμών 13.5 και 16.5 g/cm 3. Η κα Ιωάννου, με πιο προσεχτικό πείραμα βρίσκει κατά προσέγγιση την πυκνότητα να είναι 13.9 g/cm 3 και ότι η τιμή αυτή κυμαίνεται μεταξύ των τιμών 13.7 και 14.1 g/cm 3. κράμα χρυσός Ιωάννου Ανδρέου Πυκνότητα g/cm 3 Οι δύο μαύρες τελείες δείχνουν την καλύτερη τιμή για την πυκνότητα που βρήκε ο κάθε ένας από τους ειδικούς. Οι δύο οριζόντιες μπάρες σφάλματος δείχνουν τα όρια μέσα στα οποία πιστεύουν ότι βρίσκεται η τιμή της πυκνότητας. Το σφάλμα του κ. Ανδρέου είναι τόσο μεγάλο που και ο χρυσός και το κράμα βρίσκονται μέσα στην περιοχή της μέτρησής του, επομένως η μέτρηση αυτή δεν καθορίζει καθόλου ποιο μέταλλο χρησιμοποιήθηκε για το στέμμα. Το σφάλμα μέτρησης της κας Ιωάννου είναι αρκετά μικρό και η μέτρησή της δείχνει καθαρά ότι το στέμμα δεν ήταν από ατόφιο χρυσάφι. Το σφάλμα μέτρησης του κου Ανδρέου είναι τόσο μεγάλο που καλύπτει τόσο την τιμή της πυκνότητας για το κράμα όσο και την τιμή της πυκνότητας για το χρυσό (βλέπε το πιο πάνω σχήμα). Άρα δεν μας επιτρέπει να συμπεράνουμε από τι είναι φτιαγμένο το στέμμα. Η μέτρηση της κας Ιωάννου δείχνει ότι το στέμμα δεν είναι από ατόφιο χρυσάφι αφού η τιμή και το σφάλμα που κατέγραψε δεν συμπεριλαμβάνουν την πυκνότητα του χρυσού. Είναι φανερό ότι αν το σφάλμα μέτρησης είναι πολύ μεγάλο δεν μας επιτρέπει να φτάσουμε σε συμπέρασμα. Θα πρέπει όμως από την άλλη να σημειωθεί ότι, αν το σφάλμα μέτρησης είναι πολύ μικρό μπορεί να μας οδηγεί σε αχρείαστες ενέργειες. Ο κ. Ανδρέου δεν βοήθησε στο να δώσουμε με σιγουριά απάντηση στο πρόβλημα. Η κα Ιωάννου τώρα θα πρέπει να μας εξηγήσει το εύρος των τιμών που μας εισηγήθηκε. Χωρίς τεκμηρίωση του τρόπου που βρήκε το σφάλμα μέτρησης, η τιμή που μας δίνει είναι σχεδόν άχρηστη. Το σημαντικό συμπέρασμα από το παράδειγμά μας είναι ότι οι μετρήσεις των μαθητών μας (όπως και οι επιστημονικές μετρήσεις) θα είναι άχρηστες αν δεν περιλαμβάνουν σφάλμα μέτρησης. Οι τιμές 13.9 g/cm 3 και 15 g/cm 3 όχι μόνο δεν βοηθούν στο να δώσουμε απάντηση στο πρόβλημα που εξετάζαμε αλλά θα μας οδηγούσαν και σε λανθασμένο συμπέρασμα μια και η τιμή 15 g/cm 3 εισηγείται ότι το στέμμα είναι από χρυσό.

3 Στη Φυσική, όταν προταθεί μια νέα θεωρία θα πρέπει να δοκιμασθεί έναντι των παλαιότερων θεωριών μέσα από μια σειρά από πειράματα. Οι ερευνητές εκτελούν πειράματα και μέσα από τα αποτελέσματα η επιστημονική κοινότητα αποφασίζει για την ορθότητα κάποιας θεωρίας. Στην πράξη βέβαια, τα πράγματα είναι πιο πολύπλοκα εξ αιτίας των αναπόφευκτων πειραματικών σφαλμάτων. Η βαθύτερη κατανόηση της ανάλυσης των σφαλμάτων στις μετρήσεις αλλά και η ικανότητα του ερευνητή να πείσει την επιστημονική κοινότητα γι αυτή την κατανόηση θα οδηγήσει στην αποδοχή της μιας ή της άλλης θεωρίας. 4. Εκτίμηση της αβεβαιότητας όταν αναγιγνώσκεται μια κλίμακα. Με ποιο τρόπο υπολογίζεται η αβεβαιότητα σε μια μέτρηση; Στην απάντηση του ερωτήματος αυτού θα περιοριστούμε σε δύο απλά παραδείγματα τα οποία δίνουν το επίπεδο στο οποίο πρέπει να δουλέψουμε με τους μαθητές που επιλέγουν Φυσική στο Λύκειο (δεν αποκλείεται και η ποιοτική αναφορά στα σφάλματα μέτρησης και σε μαθητές άλλων τάξεων). Στο πρώτο παράδειγμα χρησιμοποιείται ένας χάρακας για να μετρηθεί το μήκος ενός μολυβιού mm Στο δεύτερο παράδειγμα χρησιμοποιείται ένα βολτόμετρο για τη μέτρηση διαφοράς δυναμικού. volts Στην περίπτωση του μολυβιού θα μπορούσαμε να πούμε ότι το μήκος του είναι πιο κοντά στο 47 mm παρά στα 46 mm ή στα 48 mm. Όμως περισσότερη ακρίβεια δεν μπορούμε να δώσουμε. Μπορούμε λοιπόν να πούμε ότι: Καλύτερη εκτίμηση του μήκους = 47 mm Εύρος: 46.5 mm μέχρι 47.5 mm. Μετρήσαμε το μήκος του μολυβιού στο πλησιέστερο mm.

4 Οι υποδιαιρέσεις στην κλίμακα του βολτομέτρου απέχουν περισσότερο μεταξύ τους παρά στην περίπτωση του χάρακα. Μπορούμε λοιπόν να δώσουμε περισσότερη ακρίβεια από ότι μια υποδιαίρεση της κλίμακας. Καλύτερη εκτίμηση της δ.δ = 5.3 V Εύρος: 5.2 V μέχρι 5.4 V. Στις πιο πάνω μετρήσεις μπορεί να μην συμφωνούν όλοι οι παρατηρητές που επιχειρούν να μετρήσουν το μήκος ή τη διαφορά δυναμικού. Παρόλα αυτά δεν θα υπάρξουν πολλοί που θα διαφωνήσουν ότι οι εκτιμήσεις αυτές βρίσκονται κοντά στην πραγματική τιμή του φυσικού μεγέθους που μετρούμε. Έτσι θα λέγαμε ότι η εύρεση της αβεβαιότητος σε μια μέτρηση είναι εύκολη όταν γίνεται ανάγνωση μιας κλίμακας. 5. Εκτίμηση της αβεβαιότητας σε επαναλαμβανόμενες μετρήσεις. Όταν επαναλαμβάνουμε τις μετρήσεις ενός φυσικού μεγέθους, όπως για παράδειγμα η περίοδος ενός ταλαντωτή, η δυσκολία στην εύρεση της αβεβαιότητας βρίσκεται στη δική μας ικανότητα να αντιδρούμε άμεσα στην εκκίνηση και σταμάτημα του χρονομέτρου. Επίσης υπάρχει αβεβαιότητα στο να διαπιστώσουμε πότε ο ταλαντωτής βρίσκεται σε μια συγκεκριμένη θέση. Μια σειρά από μετρήσεις μας βοηθά στο να καθορίσουμε την αβεβαιότητα. Για παράδειγμα αν 4 μετρήσεις της περιόδου είναι 2.3 s, 2.4 s, 2.4 s, 2.5s Τότε μπορούμε να θεωρήσουμε ότι η καλύτερη εκτίμηση είναι η μέση τιμή 2.4 s, και το εύρος είναι μεταξύ 2.3 s και 2.5 s. Καλύτερη εκτίμηση της περιόδου = 2.4 s Εύρος: 2.3 s μέχρι 2.5 s Η έκταση των τιμών δίνει μια καλή ένδειξη για την αβεβαιότητα στις επαναλαμβανόμενες μετρήσεις. Οι στατιστικές μέθοδοι για επεξεργασία των επαναλαμβανόμενων μετρήσεων δεν θα πρέπει να μας απασχολήσουν σε αυτό το στάδιο αφού πρώτα από όλα θα πρέπει να διδάξουμε τα στοιχειώδη για τα σφάλματα στις μετρήσεις. Στους μαθητές μας θα πρέπει να εξηγήσουμε ότι δεν είναι δυνατόν να στηριζόμαστε αποκλειστικά στις επαναλαμβανόμενες μετρήσεις για εύρεση της αβεβαιότητας. Αυτό γιατί σε κάθε επανάληψη του πειράματος η αβεβαιότητα επηρεάζεται και από άλλους παράγοντες εκτός από τον ανθρώπινο παράγοντα (τυχαίο σφάλμα). Τέτοια σφάλματα είναι τα συστηματικά σφάλματα τα οποία οφείλονται για παράδειγμα σε ατέλεια των οργάνων μέτρησης και ονομάζονται συστηματικά σφάλματα. Γενικεύοντας το πιο πάνω παράδειγμα θα λέγαμε ότι σε κάθε μέτρηση υπάρχει αβεβαιότητα η οποία καταδεικνύει πόσο απέχει η μέτρησή μας από την πραγματική τιμή. Από τη στιγμή που η πραγματική τιμή δεν είναι γνωστή, δεν είναι δυνατόν να γνωρίζουμε ακριβώς την αβεβαιότητα

5 στη μέτρηση. Το καλύτερο που μπορούμε να κάνουμε είναι να εκτιμήσουμε το μέγεθος της αβεβαιότητας. Μέθοδος 1. Βήματα: Βρίσκεται η μέση τιμή του σετ των μετρήσεων. Υπολογίζεται η διαφορά κάθε μέτρησης από τη μέση τιμή των μετρήσεων. Υπολογίζεται η μέση τιμή των διαφορών. Μέθοδος 2. Βήματα: Υπολογίζεται η τυπική απόκλιση με τη βοήθεια spreadsheet η υπολογιστικής μηχανής Για να υπολογισθεί η τυπική απόκλιση σε ένα spreadsheet της Excel χρησιμοποιείται η σχέση =STDEVP(number1,number2,..) Η τιμή που υπολογίζεται θα είναι και η αβεβαιότητα στη μέτρηση. Παράδειγμα: Μετρούμε τη μάζα 7 βαριδιών με ηλεκτρονική ζυγαριά για να υπολογίσουμε τη μέση τιμή και την αβεβαιότητα. μάζα βαριδιών (g) μέση τιμή διαφορά από μέση τιμή (g) μέση τιμή διαφορών (g) 0.44 (μέθοδος 1) τυπική απόκλιση (g) 0.52 (μέθοδος 2) εκτίμηση αβεβαιότητας 0.5 (στρογγυλοποιημένη αφού είναι απλώς εκτίμηση) (%)

6 6. Επί τοις εκατό αβεβαιότητα. Εκείνο που πρέπει να κατανοήσει ο μαθητής είναι η σύγκριση της αβεβαιότητας με τη τιμή της μέτρησης. Μια αβεβαιότητα 2 mm σε μια μέτρηση 2 m είναι 0.1%, αλλά 2 mm σε μια μέτρηση 20 cm είναι 1%, δέκα φορές πιο σημαντική. Για το σκοπό αυτό τα πειράματα πρέπει να σχεδιάζονται με τρόπο ώστε τα φυσικά μεγέθη που μετρούνται να είναι όσο το δυνατό πιο μεγάλα. 7. Κανόνας για την καταγραφή μιας μέτρησης. Η αβεβαιότητα στη μέτρηση δεν πρέπει να δίνεται με πολύ μεγάλη ακρίβεια. Αν για παράδειγμα μετρούσαμε την επιτάχυνση της βαρύτητας θα ήταν παράλογο να δίναμε το αποτέλεσμα ως g= 9.82 ± m/s 2 Ένας κανόνας που μπορεί να χρησιμοποιηθεί είναι ο εξής: Η αβεβαιότητα στη μέτρηση μπορεί να στρογγυλοποιείται σε ένα σημαντικό ψηφίο. Έτσι η πιο πάνω τιμή για την επιτάχυνση της βαρύτητας θα έπρεπε να γραφτεί ως g= 9.82 ± 0.02 m/s 2 Ο αριθμός των σημαντικών ψηφίων με τον οποίο θα καταγραφή το αποτέλεσμα της μέτρησης θα πρέπει να λαμβάνει υπόψη την αβεβαιότητα την οποία εκτίμησε ο πειραματιστής. Ο γενικός κανόνας είναι: Το τελευταίο σημαντικό ψηφίο που καταγράφεται στο αποτέλεσμα της μέτρησης είναι κατά κανόνα της ίδιας τάξης μεγέθους (στην ίδια θέση μετά την υποδιαστολή) όπως και η αβεβαιότητα. Για παράδειγμα, η απάντηση με αβεβαιότητα 0.3 θα πρέπει να στρογγυλοποιηθεί σε 95.8 ± 0.3. Αν η αβεβαιότητα είναι 3, τότε η απάντηση θα πρέπει να είναι 95 ± 3 και αν η αβεβαιότητα είναι 30, τότε η απάντηση είναι 90 ± 30. Στις περιπτώσεις κατά τις οποίες γίνονται ενδιάμεσοι υπολογισμοί οι οποίοι χρησιμοποιούνται για την εύρεση της τελικής απάντησης είναι καλό να διατηρείται στα ενδιάμεσα αποτελέσματα τουλάχιστον ένα σημαντικό ψηφίο περισσότερο από ότι δικαιολογεί η ακρίβεια στη μέτρηση. Για παράδειγμα, ας θεωρήσουμε ότι μετρήθηκε η μάζα ενός σώματος g και χρειάζεται να υπολογιστεί ο συντελεστής τριβής ολίσθησης. Η δύναμη της τριβής μετρήθηκε και βρέθηκε 1.2 Ν. Το βάρος είναι (502.3 x 10-3 ) x 9.81 = N (αν το βάρος ήταν η τελική μας απάντηση θα γράφαμε ως αποτέλεσμα 4.93 Ν). Για να βρεθεί ο συντελεστής της τριβής θα διατηρήσουμε τουλάχιστον και το τέταρτο σημαντικό ψηφίο στην ενδιάμεση τιμή, δηλαδή Έτσι ο συντελεστής είναι 1.2 / = 0.24.

7 8. Συμπερασματικά: Οι μαθητές μας είναι καλό να γνωρίζουν τη σημασία της αβεβαιότητας στη μέτρηση, τη σημασία των σημαντικών ψηφίων και τη σημασία της επί τοις εκατό αβεβαιότητας. Σε μερικές εργαστηριακές δραστηριότητες στις οποίες προσφέρεται η παρουσίαση της αβεβαιότητας στη μέτρηση είναι καλό οι μαθητές να δίνουν την τελική απάντηση χρησιμοποιώντας και την αβεβαιότητα. Για παράδειγμα στον πιο πάνω πίνακα η μέση τιμή της μάζας των 7 βαριδιών θα δοθεί ως ± 0.5 g. Την ελάχιστη αυτή γνώση για την ανάλυση των σφαλμάτων πρέπει να έχουν οι μαθητές μας όταν εισέρχονται στο Πανεπιστήμιο. Ανδρέας Παπαστυλιανού Επιθεωρητής Φυσικής Τηλ Σεπτέμβριος 2010 Βιβλιογραφία. John R. Taylor. An introduction to error analysis, the study of uncertainties in physical measurements. 2 nd edition (university science books 1997). Peter Warren. Advanced physics laboratory book. (John Murray Publishers 2003).

Για τη δραστηριότητα χρησιμοποιούνται τέσσερεις χάρακες του 1 m. Στο σχήμα φαίνεται το πρώτο δέκατο κάθε χάρακα.

Για τη δραστηριότητα χρησιμοποιούνται τέσσερεις χάρακες του 1 m. Στο σχήμα φαίνεται το πρώτο δέκατο κάθε χάρακα. Σημαντικά ψηφία Η ταχύτητα διάδοσης του φωτός είναι 2.99792458 x 10 8 m/s. Η τιμή αυτή είναι δοσμένη σε 9 σημαντικά ψηφία. Τα 9 σημαντικά ψηφία είναι 299792458. Η τιμή αυτή μπορεί να δοθεί και με 5 σημαντικά

Διαβάστε περισσότερα

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα

Διαβάστε περισσότερα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα q Θεωρία: Η απάντηση που ζητάτε είναι αποτέλεσμα μαθηματικών πράξεων και εφαρμογή τύπων. Το αποτέλεσμα είναι συγκεκριμένο q Πείραμα: Στηρίζεται

Διαβάστε περισσότερα

Μετρήσεις Αβεβαιότητες Μετρήσεων

Μετρήσεις Αβεβαιότητες Μετρήσεων Μετρήσεις Αβεβαιότητες Μετρήσεων 1. Σκοπός Σκοπός του μαθήματος είναι να εξοικειωθούν οι σπουδαστές με τις βασικές έννοιες που σχετίζονται με τη θεωρία Σφαλμάτων, όπως το σφάλμα, την αβεβαιότητα της μέτρησης

Διαβάστε περισσότερα

ΜΕΤΑΤΡΟΠΗ ΑΡΧΙΚΟΥ Κ ΤΟΥ ΕΛΑΤΗΡΙΟΥ ΜΗΧΑΝΗΣ ΣΕ Κ=1,1 kg/mm

ΜΕΤΑΤΡΟΠΗ ΑΡΧΙΚΟΥ Κ ΤΟΥ ΕΛΑΤΗΡΙΟΥ ΜΗΧΑΝΗΣ ΣΕ Κ=1,1 kg/mm ΜΕΤΑΤΡΟΠΗ ΑΡΧΙΚΟΥ Κ ΤΟΥ ΕΛΑΤΗΡΙΟΥ ΜΗΧΑΝΗΣ ΣΕ Κ=1,1 kg/mm ΑΓΓΕΛΙΚΗ ΛΕΒΑΝΤΗ ΖΑΝΝΕΙΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΤΜΗΜΑ Α 2 10 ΙΑΝΟΥΑΡΙΟΥ 2010 ΣΕΝΑΡΙΟ : Πρόκειται να μετατρέψουμε τα εμπρός ελατήρια μιας μοτοσυκλέτας

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ ΦΥΣ 114 ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ Φθινόπωρο 2014 Διδάσκων/Υπεύθυνος: Φώτης Πτωχός e-mail: fotis@ucy.ac.cy Τηλ: 22.89.2837 Γραφείο: B235 web-page: http://www2.ucy.ac.cy/~fotis/phy114/phy114.htm ΦΥΣ

Διαβάστε περισσότερα

ΕΚΦΕ Τρικάλων. Πειραματική Δοκιμασία στη Φυσική. Τοπικός Μαθητικός Διαγωνισμός. Τρίκαλα, Σάββατο, 8 Δεκεμβρίου 2012

ΕΚΦΕ Τρικάλων. Πειραματική Δοκιμασία στη Φυσική. Τοπικός Μαθητικός Διαγωνισμός. Τρίκαλα, Σάββατο, 8 Δεκεμβρίου 2012 1 Τοπικός Μαθητικός Διαγωνισμός 11η Ευρωπαϊκή Ολυμπιάδα Επιστημών EUSO 2013 11Η ΕΥΡΩΠΑΪΚΗ ΟΛΥΜΠΙΑΔΑ ΕΠΙΣΤΗΜΩΝ EUSO 2013 ΕΚΦΕ Τρικάλων Πειραματική Δοκιμασία στη Φυσική Τοπικός Μαθητικός Διαγωνισμός Τρίκαλα,

Διαβάστε περισσότερα

Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις

Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις 1. Σκοπός Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις Σκοπός της άσκησης είναι να εξοικειωθούν οι σπουδαστές με τη γραφική απεικόνιση των δεδομένων τους, την χρήση των γραφικών παραστάσεων για την εξαγωγή

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων ΘΕ1 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων 1. Σκοπός Πρόκειται για θεωρητική άσκηση που σκοπό έχει την περιληπτική αναφορά σε θεµατολογίες όπως : σφάλµατα, στατιστική

Διαβάστε περισσότερα

Επιτάχυνση της Βαρύτητας g = 10m/s 2

Επιτάχυνση της Βαρύτητας g = 10m/s 2 ΛΥΚΕΙΟ ΑΚΡΟΠΟΛΗΣ ΠΡΟΤΕΙΟΜΕΕΣ ΑΠΑΤΗΣΕΙΣ Σχολική Χρονιά:2014-2015 αθμός :. ΔΙΑΓΩΙΣΜΑ κατ. ΣΧΕΔΙΑΣΜΟΣ ΔΥΑΜΕΩ-ΚΙΗΜΑΤΙΚΗ-ΔΥΑΜΙΚΗ-ΤΡΙΗ Υπ. Κηδεμόνα :.. Μάθημα : ΦΥΣΙΚΗ Όνομα μαθητή/τριας: Ημερομηνία : Τμήμα

Διαβάστε περισσότερα

ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ. Μετρήσεις με Διαστημόμετρο και Μικρόμετρο

ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ. Μετρήσεις με Διαστημόμετρο και Μικρόμετρο ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ Σκοπός της άσκησης Σε αυτή την άσκηση θα μετρήσουμε διαστάσεις στερεών σωμάτων χρησιμοποιώντας όργανα ακριβείας και θα υπολογίσουμε την πυκνότητα τους. Θα κάνουμε εφαρμογή της θεωρίας

Διαβάστε περισσότερα

ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΟ-ΦΥΣΙΚΗ Ι, 2013-14

ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΟ-ΦΥΣΙΚΗ Ι, 2013-14 ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ Με τη λέξη σφάλμα στις θετικές επιστήμες αναφερόμαστε στην αβεβαιότητα που υπάρχει στην εύρεση του αποτελέσματος που προκύπτει από μια μέτρηση. Το να εκτιμήσουμε και να βρούμε τα σφάλμα

Διαβάστε περισσότερα

ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ. Θεωρία - Πείραμα Μετρήσεις - Σφάλματα

ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ. Θεωρία - Πείραμα Μετρήσεις - Σφάλματα ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ Θεωρία - Πείραμα Μετρήσεις - Σφάλματα ΟΜΑΔΑ:RADIOACTIVITY Τα μέλη της ομάδας μας: Γιώργος Παπαδόγιαννης Γεράσιμος Κουτσοτόλης Νώντας Καμαρίδης Κωνσταντίνος Πούτος Παναγιώτης Ξανθάκος

Διαβάστε περισσότερα

Συμπληρωματικό Φύλλο Εργασίας 3+ ( * ) Μετρήσεις Μάζας Τα Διαγράμματα

Συμπληρωματικό Φύλλο Εργασίας 3+ ( * ) Μετρήσεις Μάζας Τα Διαγράμματα Συμπληρωματικό Φύλλο Εργασίας 3+ ( * ) Μετρήσεις Μάζας Τα Διαγράμματα ( * ) + επιπλέον πληροφορίες, ιδέες και προτάσεις προαιρετικών πειραματικών δραστηριοτήτων, ερωτήσεις... Στην αρχαιότητα πίστευαν ότι

Διαβάστε περισσότερα

ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΤΩΝ ΣΩΜΑΤΩΝ: ΑΠΟ ΤΟΝ ΑΡΙΣΤΟΤΕΛΗ ΣΤΟ ΓΑΛΙΛΑΙΟ ΚΑΙ ΕΩΣ ΣΗΜΕΡΑ

ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΤΩΝ ΣΩΜΑΤΩΝ: ΑΠΟ ΤΟΝ ΑΡΙΣΤΟΤΕΛΗ ΣΤΟ ΓΑΛΙΛΑΙΟ ΚΑΙ ΕΩΣ ΣΗΜΕΡΑ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ Α ΤΕΤΡΑΜΗΝΟΥ ΣΧΟΛ. ΕΤΟΣ 2012-13 ΤΑΞΗ Α ΛΥΚΕΙΟΥ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΤΩΝ ΣΩΜΑΤΩΝ: ΑΠΟ ΤΟΝ ΑΡΙΣΤΟΤΕΛΗ ΣΤΟ ΓΑΛΙΛΑΙΟ ΚΑΙ ΕΩΣ ΣΗΜΕΡΑ ΥΠΕΥΘΥΝΟΣ ΕΚΠΑΙΔΕΥΤΙΚΟΣ ΦΥΤΤΑΣ ΓΕΩΡΓΙΟΣ Page1 ΤΟ ΘΕΩΡΗΤΙΚΟ ΠΛΑΙΣΙΟ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Α ΓΥΜΝΑΣΙΟΥ - ΑΞΙΟΛΟΓΗΣΗ

ΦΥΣΙΚΗ Α ΓΥΜΝΑΣΙΟΥ - ΑΞΙΟΛΟΓΗΣΗ ΦΥΣΙΚΗ Α ΓΥΜΝΑΣΙΟΥ - ΑΞΙΟΛΟΓΗΣΗ 1 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Επιδιώκεται οι μαθητές: 1. Να συζητούν και να προβληματίζονται για τα μετρήσιμα και τα μη μετρήσιμα μεγέθη. 2. Να πειραματιστούν και να καταλήξουν σε

Διαβάστε περισσότερα

1 η Δραστηριότητα Υπολογισμός της πυκνότητας στερεού σώματος

1 η Δραστηριότητα Υπολογισμός της πυκνότητας στερεού σώματος 7η ΗΜΕΡΙΔΑ ΠΕΙΡΑΜΑΤΙΚΩΝ ΔΡΑΣΤΗΡΙΟΤΗΤΩΝ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΒΙΟΛΟΓΙΑΣ ΟΜΑΔΑ... ΟΝΟΜΑΤΕΠΩΝΥΜΑ ΜΑΘΗΤΩΝ/ΤΡΙΩΝ: 1. 2. 3. 1 η Δραστηριότητα Υπολογισμός της πυκνότητας στερεού σώματος Ο Σκοπός της άσκησης Ο σκοπός

Διαβάστε περισσότερα

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua. Μέρος Β /Στατιστική Μέρος Β Στατιστική Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) Από τις Πιθανότητες στη Στατιστική Στα προηγούμενα, στο

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2005 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2005 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 005 Θεωρητικό Μέρος Θέμα 1 ο Α Λυκείου Α. Ο Αλέξης και η Χρύσα σκαρφάλωσαν σε ένα λόφο που είχε κλίση 0 ο. Επιβιβάστηκαν σε ένα έλκηθρο, και άρχισαν

Διαβάστε περισσότερα

Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου

Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου ΛΥΚΕΙΟ ΜΑΚΑΡΙΟΥ Γ ΛΑΡΝΑΚΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2014-15 Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου 1) Να γράψετε 3 διανυσματικά μεγέθη και 2 μονόμετρα μεγέθη καθώς και τις μονάδες μέτρησής τους (στο

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 6 Συνδεσμολογία Αντιστάσεων ΙI (αντιστάσεις σε παράλληλη σύνδεση) Σκοπός

ΑΣΚΗΣΗ 6 Συνδεσμολογία Αντιστάσεων ΙI (αντιστάσεις σε παράλληλη σύνδεση) Σκοπός ΑΣΚΗΣΗ 6 Συνδεσμολογία Αντιστάσεων ΙI (αντιστάσεις σε παράλληλη σύνδεση) Σκοπός Σκοπός της άσκησης αυτής είναι ο σπουδαστής να μπορέσει να σχεδιάζει κύκλωμα αντιστάσεων σε παράλληλη σύνδεση και να μετράει

Διαβάστε περισσότερα

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Πέτρος Ρούσσος, Τμήμα Ψυχολογίας, ΕΚΠΑ Η λογική της διαδικασίας Ο σάκος περιέχει έναν μεγάλο αλλά άγνωστο αριθμό (αρκετές χιλιάδες) λευκών και μαύρων βόλων: 1 Το

Διαβάστε περισσότερα

A Λυκείου 9 Μαρτίου 2013

A Λυκείου 9 Μαρτίου 2013 Θεωρητικό Μέρος A Λυκείου 9 Μαρτίου 2013 Θέμα 1 ο Στις ερωτήσεις A1, A2, A3, A4 και Β μία μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2012 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος A Λυκείου

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2012 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος A Λυκείου A Λυκείου Θεωρητικό Μέρος Θέμα 1 ο 10 Μαρτίου 2012 Στις ερωτήσεις A, B, Γ, Δ i), Δ ii) μια μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014 ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 013-014 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 09/03/014 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

Εργαστήριο 2008. Yπολογισμός της ταχύτητα διαστολής του Σύμπαντος, της ηλικίας του καθώς και της απόστασης μερικών κοντινών γαλαξιών.

Εργαστήριο 2008. Yπολογισμός της ταχύτητα διαστολής του Σύμπαντος, της ηλικίας του καθώς και της απόστασης μερικών κοντινών γαλαξιών. Υπολογισμός σταθεράς Hubble Εργαστήριο 2008 Yπολογισμός της ταχύτητα διαστολής του Σύμπαντος, της ηλικίας του καθώς και της απόστασης μερικών κοντινών γαλαξιών. Εισαγωγή Το 1929, ο Edwin Hubble (με βάση

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

11 η ΕΥΡΩΠΑΙΚΗ ΟΛΥΜΠΙΑ Α ΕΠΙΣΤΗΜΩΝ EUSO 2013

11 η ΕΥΡΩΠΑΙΚΗ ΟΛΥΜΠΙΑ Α ΕΠΙΣΤΗΜΩΝ EUSO 2013 11 η ΕΥΡΩΠΑΙΚΗ ΟΛΥΜΠΙΑ Α ΕΠΙΣΤΗΜΩΝ EUSO 2013 ΤΟΠΙΚΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΠΕΙΡΑΜΑΤΙΚΗ ΟΚΙΜΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ Σάββατο 8 ΕΚΕΜΒΡΙΟΥ 2012 ΕΚΦΕ ΑΧΑΪΑΣ (ΑΙΓΙΟΥ) (Διάρκεια εξέτασης 60 min) Μαθητές: Σχολική Μονάδα

Διαβάστε περισσότερα

ΣΥΝΤΑΞΗ ΕΞΕΤΑΣΤΙΚΟΥ ΔΟΚΙΜΙΟΥ ΣΤΗ ΦΥΣΙΚΗ.

ΣΥΝΤΑΞΗ ΕΞΕΤΑΣΤΙΚΟΥ ΔΟΚΙΜΙΟΥ ΣΤΗ ΦΥΣΙΚΗ. ΣΥΝΤΑΞΗ ΕΞΕΤΑΣΤΙΚΟΥ ΔΟΚΙΜΙΟΥ ΣΤΗ ΦΥΣΙΚΗ. Στο κείμενο που ακολουθεί γίνεται μια προσπάθεια να διευκρινιστούν οι έννοιες «μαθησιακοί στόχοι» και «στόχοι αξιολόγησης», να μελετηθεί η μεταξύ τους σχέση και

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα

ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα Σκοπός πειράµατος Στο πείραµα αυτό θα χρησιµοποιήσουµε βασικά όργανα του εργαστηρίου (διαστηµόµετρο, µικρόµετρο, χρονόµετρο) προκειµένου να: Να µετρήσουµε την πυκνότητα

Διαβάστε περισσότερα

ΔΙΔΑΣΚΟΝΤΕΣ Ε. Σπανάκης, Δ. Θεοδωρίδης, Δ. Στεφανάκης, Γ.Φανουργάκης & ΜΤΠΧ

ΔΙΔΑΣΚΟΝΤΕΣ Ε. Σπανάκης, Δ. Θεοδωρίδης, Δ. Στεφανάκης, Γ.Φανουργάκης & ΜΤΠΧ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΕΤΥ203 3 Ώρες εργαστηρίου την ημέρα Προαπαιτούμενo: Φυσική Ι (ΕΤΥ101) Βαθμός Μαθήματος: 0.1*(Μ.Ο. Βαθμών προφορικής εξέτασης) + 0.5*(Μ.Ο. Βαθμών Αναφορών) + 0.4*(Βαθμός Τελικής εξέτασης

Διαβάστε περισσότερα

Υπολογισμός της επιτάχυνσης από την κλίση της ευθείας

Υπολογισμός της επιτάχυνσης από την κλίση της ευθείας Υπολογισμός της επιτάχυνσης από την κλίση της ευθείας Στοιχεία άσκησης Τάξη: Α' Λυκείου Διάρκεια: Συγγραφέας: Έκδοση: Άδεια χρήσης: 2 διδακτικές ώρες Ιωάννης Σ. Κάτσενος, Φυσικός MSc, ikatsenos@gmail.com

Διαβάστε περισσότερα

G.U.N.T. Gerätebau GmbH P.O. Box 1125 D-22881 Barsbüttel Γερμάνια Τηλ (040) 670854-1 Fax (040) 670854-41

G.U.N.T. Gerätebau GmbH P.O. Box 1125 D-22881 Barsbüttel Γερμάνια Τηλ (040) 670854-1 Fax (040) 670854-41 Εξοπλισμός για την εκπαίδευση στην εφαρμοσμένη μηχανική Εγχειρίδιο Οδηγιών HM 135 Συσκευή Μέτρησης της Οπισθέλκουσας Δύναμης σε Σφαίρες G.U.N.T. Gerätebau GmbH P.O. Box 1125 D-22881 Barsbüttel Γερμάνια

Διαβάστε περισσότερα

Υπολογισμός της σταθεράς του ελατηρίου

Υπολογισμός της σταθεράς του ελατηρίου Άσκηση 5 Υπολογισμός της σταθεράς του ελατηρίου Σκοπός: Ο υπολογισμός της σταθεράς ενός ελατηρίου. Αυτό θα γίνει με δύο τρόπους: 1. Από την κλίση μιας πειραματικής καμπύλης 2. Από τον τύπο της περιόδου

Διαβάστε περισσότερα

Εξαρτάται η συχνότητα από τη µάζα στην Απλή Αρµονική Ταλάντωση;

Εξαρτάται η συχνότητα από τη µάζα στην Απλή Αρµονική Ταλάντωση; Εξαρτάται η συχνότητα από τη µάζα στην Απλή Αρµονική Ταλάντωση; Ξεκινώντας θα ήθελα να θυµίσω κάποια στοιχεία που σχετίζονται µε τον ορισµό της συχνότητας σε ένα περιοδικό φαινόµενο, άρα και στην ΑΑΤ.

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 3 ο, Τμήμα Α Ο πυρήνας των μαθηματικών είναι οι τρόποι με τους οποίους μπορούμε να συλλογιζόμαστε στα μαθηματικά. Τρόποι απόδειξης Επαγωγικός συλλογισμός (inductive)

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΧΡΟΝΟΥ ΜΑΖΑΣ ΔΥΝΑΜΗΣ

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΧΡΟΝΟΥ ΜΑΖΑΣ ΔΥΝΑΜΗΣ 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΧΡΟΝΟΥ ΜΑΖΑΣ ΔΥΝΑΜΗΣ Α. ΣΤΟΧΟΙ Η συνειδητή χρήση των κανόνων ασφαλείας στο εργαστήριο. Η εξοικείωση στη χρήση του υποδεκάμετρου και του διαστημόμετρου

Διαβάστε περισσότερα

Κεφάλαιο 1 Εισαγωγή, Μετρήσεις, Προσεγγίσεις. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 1 Εισαγωγή, Μετρήσεις, Προσεγγίσεις. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 1 Εισαγωγή, Μετρήσεις, Προσεγγίσεις Η Φύση της Επιστήµης Ενότητες Κεφαλαίου 1 Μοντέλα Θεωρίες και Νόµοι Μετρήσεις και αβεβαιότητα (σφάλµατα); Σηµαντικά ψηφία Μονάδες, Πρότυπα, και το Διεθνές Σύστηµα

Διαβάστε περισσότερα

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. 7 ο ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκοπός Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Προσδοκώμενα αποτελέσματα Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΚΑΙ ΕΛΕΓΧΟΣ ΤΗΣ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΣΩΜΑΤΟΣ

ΜΕΛΕΤΗ ΚΑΙ ΕΛΕΓΧΟΣ ΤΗΣ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΣΩΜΑΤΟΣ 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΜΕΛΕΤΗ ΚΑΙ ΕΛΕΓΧΟΣ ΤΗΣ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΣΩΜΑΤΟΣ Α. ΣΤΟΧΟΙ Η ικανότητα συναρμολόγησης μιας απλής πειραματικής διάταξης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Αθήνα 2014 1 ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ... 1. Η ΕΝΝΟΙΑ ΤΟΥ ΣΦΑΛΜΑΤΟΣ... 2. ΤΥΠΟΙ ΣΦΑΛΜΑΤΩΝ. ΣΥΣΤΗΜΑΤΙΚΑ ΚΑΙ ΤΥΧΑΙΑ ΣΦΑΛΜΑΤΑ... 3. ΕΚΤΙΜΗΣΗ ΣΦΑΛΜΑΤΟΣ ΚΑΤΑ

Διαβάστε περισσότερα

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Β ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. Επιτρεπόμενη διάρκεια γραπτού 2,5 ώρες (150 λεπτά)

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Β ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. Επιτρεπόμενη διάρκεια γραπτού 2,5 ώρες (150 λεπτά) ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Β ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 31/05/2010 ΤΑΞΗ: Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΧΡΟΝΟΣ: 07:30 10:00 π.μ. ΟΝΟΜΑΤΕΠΩΝΥΜΟ:... ΤΜΗΜΑ:...

Διαβάστε περισσότερα

Δυναμική στο επίπεδο. Ομάδα Γ.

Δυναμική στο επίπεδο. Ομάδα Γ. 1.3.21. Η τριβή και η κίνηση. στο επίπεδο. Ομάδα Γ. Ένα σώμα μάζας 2kg ηρεμεί σε οριζόντιο επίπεδο με το οποίο παρουσιάζει συντελεστές τριβής μ=μ s =0,2. Σε μια στιγμή t 0 =0 στο σώμα ασκείται μεταβλητή

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ( ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ( ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014 ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 013-014 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ( ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/014 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 28 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Κυριακή, 13 Απριλίου, 2014 Ώρα: 10:00-13:00 Παρακαλώ διαβάστε πρώτα τα πιο κάτω, πριν απαντήσετε οποιαδήποτε ερώτηση. Γενικές οδηγίες: 1.

Διαβάστε περισσότερα

Συμπληρωματικό Φύλλο Εργασίας 2+ ( * ) Μετρήσεις Χρόνου Η Ακρίβεια

Συμπληρωματικό Φύλλο Εργασίας 2+ ( * ) Μετρήσεις Χρόνου Η Ακρίβεια Συμπληρωματικό Φύλλο Εργασίας 2+ ( * ) Μετρήσεις Χρόνου Η Ακρίβεια ( * ) + επιπλέον πληροφορίες, ιδέες και προτάσεις προαιρετικών πειραματικών δραστηριοτήτων, ερωτήσεις... Ένας σημαντικός χρόνος περιορισμένης

Διαβάστε περισσότερα

Άσκηση 11 Υπολογισμός συντελεστών κινητικής και στατικής τριβής

Άσκηση 11 Υπολογισμός συντελεστών κινητικής και στατικής τριβής Άσκηση 11 Υπολογισμός συντελεστών κινητικής και στατικής τριβής Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι: Να υπολογιστεί ο συντελεστής κινητικής τριβής μ κ. Να υπολογιστεί ο συντελεστής στατικής τριβής

Διαβάστε περισσότερα

Βύθιση / Πλεύση (ΑΡ. ΝΙΚΟΛΑΟΥ)

Βύθιση / Πλεύση (ΑΡ. ΝΙΚΟΛΑΟΥ) Βύθιση / Πλεύση (ΑΡ. ΝΙΚΟΛΑΟΥ) Τίτλος Διερεύνησης : Ποιοι παράγοντες επηρεάζουν τη βύθιση ή την πλεύση σε ένα υγρό; Αφού γνωριστήκαμε με την Έλενα και είχαμε την ευκαιρία να συζητήσουμε για το πως διερευνούμε

Διαβάστε περισσότερα

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014)

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014) > Φυσική Β Γυμνασίου >> Αρχική σελίδα ΕΙΙΣΑΓΩΓΗ ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς χχωρρί ίςς ααππααννττήήσσεει ιςς (σελ. ) ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς μμεε ααππααννττήήσσεει ιςς (σελ. 4) ΙΑΒΑΣΕ

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ. Εισαγωγή στην έννοια της πυκνότητας ενός υλικού. Μέτρηση της πυκνότητας.

ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ. Εισαγωγή στην έννοια της πυκνότητας ενός υλικού. Μέτρηση της πυκνότητας. ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ 1. Τίτλος Εισαγωγή στην έννοια της πυκνότητας ενός υλικού. Μέτρηση της πυκνότητας. Θα γίνουν δύο σειρές μετρήσεων. Μία στο (πραγματικό) εργαστήριο (συνοδευόμενη από το αντίστοιχο φύλλο

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Εργαστήριο 3 Νόμος του Ohm, Κυκλώματα σε Σειρά και Παράλληλα Λευκωσία, 2010 Εργαστήριο 3 Νόμος

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΛΥΚΕΙΟ ΑΓΙΟΥ ΠΥΡΙΔΩΝΑ ΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕ ΠΡΟΑΓΩΓΙΚΕ ΕΞΕΤΑΕΙ ΦΥΙΚΗ ΚΑΤΕΥΘΥΝΗ Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 31-05-2012 ΔΙΑΡΚΕΙΑ: 07.45 10.15 Οδηγίες 1. Το εξεταστικό δοκίμιο αποτελείται από 9 σελίδες.

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΚΦΕ Α Αν. Αττικής - Υπεύθυνος Κ. Παπαμιχάλης Εργαστηριακές ασκήσεις Φυσικής Β Γυμνασίου ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 7 ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ Βασικές έννοιες: Θέση - μετατόπιση - χρόνος - χρονικό διάστημα - ταχύτητα

Διαβάστε περισσότερα

ΧΡΟΝΟΜΕΤΡΗΤΗΣ ΒΑΣΙΚΗ ΣΥΣΚΕΥΗ ΣΤΗΝ ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΓΝΩΡΙΜΙΑ ΜΕ ΤΟΝ ΧΡΟΝΟΜΕΤΡΗΤΗ

ΧΡΟΝΟΜΕΤΡΗΤΗΣ ΒΑΣΙΚΗ ΣΥΣΚΕΥΗ ΣΤΗΝ ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΓΝΩΡΙΜΙΑ ΜΕ ΤΟΝ ΧΡΟΝΟΜΕΤΡΗΤΗ ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ ΧΡΟΝΟΜΕΤΡΗΤΗΣ ΒΑΣΙΚΗ ΣΥΣΚΕΥΗ ΣΤΗΝ ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΓΝΩΡΙΜΙΑ ΜΕ ΤΟΝ ΧΡΟΝΟΜΕΤΡΗΤΗ Τι είναι ο χρονομετρητής ; Ο χρονομετρητής : αξιοποιείται στους

Διαβάστε περισσότερα

ΜΙΑ ΔΙΔΑΚΤΙΚΗ ΠΡΟΤΑΣΗ ΓΙΑ ΤΑ ΔΙΑΛΥΜΑΤΑ ΣΤΗ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ

ΜΙΑ ΔΙΔΑΚΤΙΚΗ ΠΡΟΤΑΣΗ ΓΙΑ ΤΑ ΔΙΑΛΥΜΑΤΑ ΣΤΗ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ 660 ΜΙΑ ΔΙΔΑΚΤΙΚΗ ΠΡΟΤΑΣΗ ΓΙΑ ΤΑ ΔΙΑΛΥΜΑΤΑ ΣΤΗ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ Ντότση Αικατερίνη Εκπαιδευτικός, Πρόγραμμα Μεταπτυχιακών σπουδών «Διδακτική της Χημείας και Νέες Εκπαιδευτικές Τεχνολογίες» ntontsi@chem.auth.gr

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÅÐÉËÏÃÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÅÐÉËÏÃÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 15 ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 1 Μαΐου 15 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθµό

Διαβάστε περισσότερα

Λήψη αποφάσεων κατά Bayes

Λήψη αποφάσεων κατά Bayes Λήψη αποφάσεων κατά Bayes Σημειώσεις μαθήματος Thomas Bayes (1701 1761) Στυλιανός Χατζηδάκης ECE 662 Άνοιξη 2014 1. Εισαγωγή Οι σημειώσεις αυτές βασίζονται στο μάθημα ECE662 του Πανεπιστημίου Purdue και

Διαβάστε περισσότερα

Γ Λυκείου 9 Μαρτίου 2013

Γ Λυκείου 9 Μαρτίου 2013 Θεωρητικό Μέρος Γ Λυκείου 9 Μαρτίου 2013 Θέμα 1 ο Α. Δύο πηγές Π 1 και Π 2 αρμονικών κυμάτων διεγείρουν τα σημεία επίπεδου ελαστικού μέσου. Έστω Α το πλάτος ταλάντωσης κάθε πηγής, f η συχνότητα ταλάντωσής

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2008 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2008 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. Θεωρητικό Μέρος Θέμα 1o A Λυκείου 22 Μαρτίου 28 Στις ερωτήσεις Α,Β,Γ,Δ,E μια μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής απάντησης.

Διαβάστε περισσότερα

Εργαστήριο Δομής της Ύλης και Φυσικής Λέιζερ

Εργαστήριο Δομής της Ύλης και Φυσικής Λέιζερ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Εργαστήριο Δομής της Ύλης και Φυσικής Λέιζερ Παρουσίαση οργάνωσης των Εργαστηρίων Φυσικής Ι Ακαδ. Έτους 2013-14 http://www.physicslab.tuc.gr physicslab@isc.tuc.gr

Διαβάστε περισσότερα

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για τον καθορισμό του καλύτερου υποσυνόλου από ένα σύνολο

Διαβάστε περισσότερα

Κίνηση σε Ηλεκτρικό Πεδίο.

Κίνηση σε Ηλεκτρικό Πεδίο. Κίνηση σε Ηλεκτρικό Πεδίο. 3.01. Έργο κατά την μετακίνηση φορτίου. Στις κορυφές Β και Γ ενόςισοπλεύρου τριγώνου ΑΒΓ πλευράς α= 2cm, βρίσκονται ακλόνητα δύο σηµειακά ηλεκτρικά φορτία q 1 =2µC και q 2 αντίστοιχα.

Διαβάστε περισσότερα

Οδηγός συγγραφής αναφοράς

Οδηγός συγγραφής αναφοράς ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Οδηγός συγγραφής αναφοράς Για τις εργαστηριακές ασκήσεις της Φυσικής Για τις Σχολές ΜΠΔ, ΜΗΧΟΠ και ΜΗΠΕΡ Επιμέλεια: Δρ. Ναθαναήλ Κορτσαλιουδάκης, Φυσικός ΕΡΓΑΣΤΗΡΙΟ

Διαβάστε περισσότερα

Η ΘΕΡΜΟΚΡΑΣΙΑ ΤΩΝ ΑΘΗΝΩΝ

Η ΘΕΡΜΟΚΡΑΣΙΑ ΤΩΝ ΑΘΗΝΩΝ 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 171 Η ΘΕΡΜΟΚΡΑΣΙΑ ΤΩΝ ΑΘΗΝΩΝ Νίκος Καμπράνης Μαθηματικός, Επιμορφωτής νέων τεχνολογιών http://www.geocities.com/kampranis ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΤΑΞΗ:.

Διαβάστε περισσότερα

Β Γυμνασίου 22/6/2015. Οι δείκτες Επιτυχίας και δείκτες Επάρκειας Β Γυμνασίου για το μάθημα της Φυσικής

Β Γυμνασίου 22/6/2015. Οι δείκτες Επιτυχίας και δείκτες Επάρκειας Β Γυμνασίου για το μάθημα της Φυσικής Β Γυμνασίου /6/05 Οι δείκτες Επιτυχίας και δείκτες Επάρκειας Β Γυμνασίου για το μάθημα της Φυσικής Β Γυμνασίου /6/05 Δείκτες Επιτυχίας (Γνώσεις και υπό έμφαση ικανότητες) Παρεμφερείς Ικανότητες (προϋπάρχουσες

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 7 ΤΡΙΧΟΕΙ ΙΚΟ ΦΑΙΝΟΜΕΝΟ- ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΕΠΙΦΑΝΕΙΑΚΗΣ ΤΑΣΗΣ

ΑΣΚΗΣΗ 7 ΤΡΙΧΟΕΙ ΙΚΟ ΦΑΙΝΟΜΕΝΟ- ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΕΠΙΦΑΝΕΙΑΚΗΣ ΤΑΣΗΣ ΑΣΚΗΣΗ 7 ΤΡΙΧΟΕΙ ΙΚΟ ΦΑΙΝΟΜΕΝΟ- ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΕΠΙΦΑΝΕΙΑΚΗΣ ΤΑΣΗΣ Οι ρίζες των δέντρων αποτελούνται απο τρία είδη ιστών ένα εκ των οποίων, (ο επιφανειακός ιστός) περιλαµβάνει ειδικά τροποποιηµένα

Διαβάστε περισσότερα

ΘΕΜΑ GI_A_FYS_0_5068

ΘΕΜΑ GI_A_FYS_0_5068 ΘΕΜΑ GI_A_YS_0_5068 ΘΕΜΑ Β Β1. Α) Να συμπληρώσετε τον παρακάτω πίνακα με τις τιμές της κινητικής, δυναμικής και μηχανικής ενέργειας σώματος που εκτελεί ελεύθερη πτώση. Η επίδραση του αέρα θεωρείται αμελητέα.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ A A. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι f g f g,. Μονάδες 7 Α. Σε ένα πείραμα με ισοπίθανα αποτελέσματα

Διαβάστε περισσότερα

Εργαστηριακή ή Άσκηση η 3

Εργαστηριακή ή Άσκηση η 3 Μιχάλης Καλογεράκης 9 ο Εξάμηνο ΣΕΜΦΕ ΑΜ:09101187 Υπεύθυνος Άσκησης: Μ. Κόκκορης Συνεργάτης: Κώστας Καραϊσκος Ημερομηνία Διεξαγωγής: 9/11/005 Εργαστήριο Πυρηνικής Φυσικής και Στοιχειωδών ν Σωματιδίων Εργαστηριακή

Διαβάστε περισσότερα

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Φυσική Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α, Β ΤΑΞΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ ΚΕΝΤΡΙΚΗ ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΠΙΤΡΟΠΗ ΤΡΑΠΕΖΑΣ

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Α Μέσο σφάλμα μεγέθους (που υπολογίζεται από σύνθετη συνάρτηση)

ΠΑΡΑΡΤΗΜΑ Α Μέσο σφάλμα μεγέθους (που υπολογίζεται από σύνθετη συνάρτηση) ΠΑΡΑΡΤΗΜΑ Α Μέσο σφάλμα μεγέθους (που υπολογίζεται από σύνθετη συνάρτηση) Όταν το πρωτοείδα, κι εγώ δεν το συμπάθησα. Είναι, όμως, λάθος μας, καθώς πρόκειται για κάτι πολύ απλό και σίγουρο ως μέθοδος υπολογισμού

Διαβάστε περισσότερα

Η Παράξενη Συμπεριφορά κάποιων Μη Νευτώνειων Ρευστών

Η Παράξενη Συμπεριφορά κάποιων Μη Νευτώνειων Ρευστών Η Παράξενη Συμπεριφορά κάποιων Μη Νευτώνειων Ρευστών Θεοχαροπούλου Ηλιάνα 1, Μπακιρτζή Δέσποινα 2, Οικονόμου Ευαγγελία, Σαμαρά Κατερίνα 3, Τζάμου Βασιλική 4 1 ο Πρότυπο Πειραματικό Λύκειο Θεσ/νίκης «Μανόλης

Διαβάστε περισσότερα

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς Εργαστηριακή Άσκηση 4 Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και του θεωρήματος μεταβολής της κινητικής ενέργειας με τη διάταξη της αεροτροχιάς Βαρσάμης Χρήστος Στόχος: Μελέτη της ευθύγραμμης

Διαβάστε περισσότερα

Πυκνότητα στερεών σωμάτων κυλινδρικού σχήματος

Πυκνότητα στερεών σωμάτων κυλινδρικού σχήματος Χρήση διαστημόμετρου για εύρεση πυκνότητας στερεών σωμάτων γεωμετρικού σχήματος Προκειμένου να υπολογιστεί η πυκνότητα σε στερεά σώματα γεωμετρικού σχήματος πραγματοποιούνται μετρήσεις α) της μάζας τους

Διαβάστε περισσότερα

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Α ΣΧΟΛΙΚΟ ΕΤΟΣ 2010-2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΑΡ.:...

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Α ΣΧΟΛΙΚΟ ΕΤΟΣ 2010-2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΑΡ.:... ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Α ΣΧΟΛΙΚΟ ΕΤΟΣ 2010-2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΜΑΘΗΜΑ: Φυσική ΤΑΞΗ: Α ΗΜΕΡΟΜΗΝΊΑ: 27 Μαίου 2011 ΧΡΟΝΟΣ: 2 ώρες ΩΡΑ: 11.00 1.00 ΒΑΘΜΟΣ: Αριθμητικά:... Ολογράφως:...

Διαβάστε περισσότερα

Εισαγωγή στις Ηλεκτρικές Μετρήσεις

Εισαγωγή στις Ηλεκτρικές Μετρήσεις Εισαγωγή στις Ηλεκτρικές Μετρήσεις Σφάλματα Μετρήσεων Συμβατικά όργανα μετρήσεων Χαρακτηριστικά μεγέθη οργάνων Παλμογράφος Λέκτορας Σοφία Τσεκερίδου 1 Σφάλματα μετρήσεων Επιτυχημένη μέτρηση Σωστή εκλογή

Διαβάστε περισσότερα

Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ

Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ ΟΜΑΔΑ ΟΝΟΜΑΤΕΠΩΝΥΜΑ ΜΑΘΗΤΩΝ 1)... 2)... 3)... ΗΜΕΡΟΜΗΝΙΑ : Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ Με το πείραµα αυτό θα προσδιορίσουµε: Σκοπός

Διαβάστε περισσότερα

Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών

Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών Μ7 Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών 1. Σκοπός Τα διαστημόμετρα, τα μικρόμετρα και τα σφαιρόμετρα είναι όργανα που χρησιμοποιούνται για την μέτρηση της διάστασης του μήκους, του

Διαβάστε περισσότερα

ΜΕΡΟΣ Α (μονάδες 30) Το μέρος Α αποτελείται από έξι (6) θέματα. Να απαντήσετε και στα έξι (6). Κάθε θέμα βαθμολογείται με πέντε (5) μονάδες.

ΜΕΡΟΣ Α (μονάδες 30) Το μέρος Α αποτελείται από έξι (6) θέματα. Να απαντήσετε και στα έξι (6). Κάθε θέμα βαθμολογείται με πέντε (5) μονάδες. ΠΕΡΙΦΕΡΕΙΑΚΟ ΛΥΚΕΙΟ ΑΠ. ΛΟΥΚΑ ΚΟΛΟΣΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 211-212 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 212 Μάθημα: ΦΥΣΙΚΗ Ημερομηνία: 3/5/212 Τάξη: Α ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ Διάρκεια εξέτασης: 2 ώρες Ονοματεπώνυμο:

Διαβάστε περισσότερα

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ.

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Σάλαρης Πολλές φορές μας δίνεται να λύσουμε ένα πρόβλημα που από την πρώτη

Διαβάστε περισσότερα

Μαθηματικά Ε Δημοτικού

Μαθηματικά Ε Δημοτικού Μαθηματικά Ε Δημοτικού Πέτρος Κλιάπης 2014 Πέτρος Κλιάπης 12η Περιφέρεια Θεσσαλονίκης Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΕΝΟΤΗΤΕΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ (One-Way Analyss of Varance) Η ανάλυση

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη και την επιστημονική μέθοδο

Εισαγωγή στην επιστήμη και την επιστημονική μέθοδο Εισαγωγή στην επιστήμη και την επιστημονική μέθοδο I. Τι είναι η επιστήμη; A. Ο στόχος της επιστήμης είναι να διερευνήσει και να κατανοήσει τον φυσικό κόσμο, για να εξηγήσει τα γεγονότα στο φυσικό κόσμο,

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΓΙΑΝΝΗΣ ΦΑΝΟΥΡΓΙΑΚΗΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΣΥΝΕΡΓΑΤΗΣ ΤΕΙ ΚΡΗΤΗΣ ΔΟΜΗ ΠΑΡΟΥΣΙΑΣΗΣ 1. Εισαγωγή

Διαβάστε περισσότερα

20 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ

20 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 20 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Αφιερωµένη στη µνήµη της Φυσικού Σύλβιας Γιασουµή Κυριακή, 19 Μαρτίου, 2006 Ώρα: 10:30-13:30 Οδηγίες: 1) Το δοκίµιο αποτελείται από έξι

Διαβάστε περισσότερα

Το πρόγραμμα συγχρηματοδοτείται 75% από το Ευρωπαϊκό κοινωνικό ταμείο και 25% από εθνικούς πόρους.

Το πρόγραμμα συγχρηματοδοτείται 75% από το Ευρωπαϊκό κοινωνικό ταμείο και 25% από εθνικούς πόρους. «Nέες Tεχνολογίες στο Εργαστήριο Φυσικής: Ανάπτυξη Εκπαιδευτικού Υλικού με την χρήση του Ηλεκτρονικού Υπολογιστή και διαμόρφωση κατάλληλων και σύγχρονων διδακτικών προσεγγίσεων» Ερευνητικό πρόγραμμα Αρχιμήδης

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr

Διαβάστε περισσότερα

ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ

ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ Environmental Fluid Mechanics Laboratory University of Cyprus Department Of Civil & Environmental Engineering ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ ΕΓΧΕΙΡΙΔΙΟ ΟΔΗΓΙΩΝ HM 134 ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ Εγχειρίδιο

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

ΑΝΤΙΣΤΡΟΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΑΝΤΙΣΤΡΟΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1 ΑΝΔΡΕΑΣ Λ. ΠΕΤΡΑΚΗΣ ΑΡΙΣΤΟΥΧΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΔΙΔΑΚΤΩΡ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΝΤΙΣΤΡΟΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΤΑ ΚΟΙΝΑ ΣΗΜΕΙΑ ΤΩΝ ΓΡΑΦΙΚΩΝ ΤΟΥΣ ΠΑΡΑΣΤΑΣΕΩΝ, ΑΝ ΥΠΑΡΧΟΥΝ, ΒΡΙΣΚΟΝΤΑΙ ΜΟΝΟ ΠΑΝΩ ΣΤΗΝ ΕΥΘΕΙΑ y = x ΔΕΥΤΕΡΗ

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.1 Ευθύγραμμη κίνηση 1. Να αναφέρετε ποια από τα σώματα που φαίνονται στην εικόνα κινούνται. Α. Ως προς τη Γη B. Ως προς το αυτοκίνητο. Α. Ως προς τη Γη κινούνται το αυτοκίνητο, το αεροπλάνο και ο γλάρος.

Διαβάστε περισσότερα

Η οικολογία μάθησης για τους υπολογιστές ΙII: Η δική σας οικολογία μάθησης

Η οικολογία μάθησης για τους υπολογιστές ΙII: Η δική σας οικολογία μάθησης Η οικολογία μάθησης για τους υπολογιστές ΙII: Η δική σας οικολογία μάθησης Παλαιγεωργίου Γιώργος Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων Πανεπιστήμιο Θεσσαλίας Ιανουάριος 2011 Ψυχομετρία Η κατασκευή

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 28 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 15 Δεκεμβρίου, 2013 Ώρα: 10:00-13:00 Οδηγίες: 1) Το δοκίμιο αποτελείται από πέντε (5) σελίδες και πέντε (5) θέματα. 2) Να απαντήσετε σε

Διαβάστε περισσότερα

Θεμελιώδεις αρχές επιστήμης και μέθοδοι έρευνας

Θεμελιώδεις αρχές επιστήμης και μέθοδοι έρευνας A. Montgomery Θεμελιώδεις αρχές επιστήμης και μέθοδοι έρευνας Καρολίνα Δουλουγέρη, ΜSc Υποψ. Διαδάκτωρ Σήμερα Αναζήτηση βιβλιογραφίας Επιλογή μεθοδολογίας Ερευνητικός σχεδιασμός Εγκυρότητα και αξιοπιστία

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Θέμα: «Μελέτη της βολής με κατασκευή και εκτόξευση χάρτινων πυραύλων με χρήση εκτοξευτή που λειτουργεί με πιεσμένο αέρα»

ΦΥΣΙΚΗ. Θέμα: «Μελέτη της βολής με κατασκευή και εκτόξευση χάρτινων πυραύλων με χρήση εκτοξευτή που λειτουργεί με πιεσμένο αέρα» ΦΥΣΙΚΗ Θέμα: «Μελέτη της βολής με κατασκευή και εκτόξευση χάρτινων πυραύλων με χρήση εκτοξευτή που λειτουργεί με πιεσμένο αέρα» Τάξη Γ : Λεμπιδάκης Αποστόλης, Καπετανάκης Δημήτρης, Κοπιδάκης Γιώργος, Ζαμπετάκης

Διαβάστε περισσότερα