Η αβεβαιότητα στη μέτρηση.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Η αβεβαιότητα στη μέτρηση."

Transcript

1 Η αβεβαιότητα στη μέτρηση. 1. Εισαγωγή. Κάθε μέτρηση, όσο προσεκτικά και αν έχει γίνει, περικλείει κάποια αβεβαιότητα. Η ανάλυση των σφαλμάτων είναι η μελέτη και ο υπολογισμός αυτής της αβεβαιότητας στη μέτρηση. Οι δύο κύριοι λόγοι για τους οποίους χρειάζεται η ανάλυση των σφαλμάτων είναι, πρώτον να επιτρέψει στο μαθητή να εκτιμήσει πόσο μεγάλη είναι η αβεβαιότητα στη μέτρηση και δεύτερο να του επιτρέψει να την ελαχιστοποιήσει. Η πρόκληση να εκτιμήσει την αβεβαιότητα της μέτρησης του και να τη ελαχιστοποιήσει ώστε να του δώσει τη δυνατότητα να καταλήξει σε συμπέρασμα, οδηγεί το μαθητή από μια άχαρη επεξεργασία δεδομένων σε μια αληθινά ευχάριστη άσκηση. Πέραν από τα πιο πάνω, η ανάλυση σφαλμάτων είναι μια διαδικασία που αποτελεί μέρος του επιστημονικού πειράματος και ο μαθητής του Λυκείου θα πρέπει να κάνει τα πρώτα του βήματα στη διαδικασία αυτή. Θα δούμε λίγο πιο κάτω ένα παράδειγμα το οποίο δείχνει τη σημασία της αβεβαιότητας στη μέτρηση στην εξαγωγή συμπερασμάτων σε ένα πείραμα. 2. Σφάλμα και αβεβαιότητα. Στη Φυσική, η λέξη σφάλμα δεν έχει τη συνήθη σημασία του λάθους που δίνουμε στην καθημερινή μας ομιλία. Σφάλμα σε μια επιστημονική μέτρηση σημαίνει την αναπόφευκτη αβεβαιότητα που συνοδεύει κάθε μέτρηση. Τέτοια σφάλματα δεν είναι λάθη, δεν μπορείς να τα αποφύγεις όσο προσεκτικός και να είσαι. Το καλύτερο που μπορεί κάποιος να κάνει είναι να βεβαιωθεί ότι η αβεβαιότητα στη μέτρησή του είναι όσο το δυνατό πιο μικρή και να έχει μια καλή εκτίμηση για το πόσο μεγάλη είναι αυτή η αβεβαιότητα. Σε αυτό το κείμενο η λέξη σφάλμα χρησιμοποιείται ως η αβεβαιότητα που υπάρχει στη μέτρηση. Οι δύο λέξεις, σφάλμα και αβεβαιότητα θα χρησιμοποιούνται στο κείμενο έχοντας την ίδια σημασία. 3. Η σημασία του να γνωρίζουμε την αβεβαιότητα της μέτρησης. Για να γνωρίσουμε τη σημασία της αβεβαιότητας στη μέτρηση ας δούμε το εξής παράδειγμα. Ας υποθέσουμε ότι πρέπει να λύσουμε το πρόβλημα που είχε να λύσει πριν πολλά χρόνια ο Αρχιμήδης. Πρέπει να ανακαλύψουμε αν ένα στέμμα είναι φτιαγμένο από 18 καράτια χρυσό ή αν περικλείει μέσα του και κάποιο κράμα μετάλλων. Δίνεται η πυκνότητα του χρυσού ρ χρυσού =15.5 g/cm 3 και η πυκνότητα του κράματος ρ κράματος =13.8 g/cm 3. Αν μπορέσουμε να μετρήσουμε την πυκνότητα του υλικού του στέμματος τότε θα είμαστε σε θέση να γνωρίζουμε αν το στέμμα είναι από χρυσάφι μόνο, ή αν είναι από κράμα μετάλλων. Αυτό θα γίνει συγκρίνοντας την πυκνότητα του υλικού του στέμματος με τις δύο πυκνότητες που μας δόθηκαν και είναι 15.5 g/cm 3 και 13.8 g/cm 3.

2 Έστω ότι δύο επιστήμονες σπεύδουν για βοήθεια. Ο πρώτος, ο κ. Ανδρέου, μετά από μια σύντομη διαδικασία καταλήγει ότι η πυκνότητα του στέμματος είναι κατά προσέγγιση 15 g/cm 3 αλλά κυμαίνεται μεταξύ των τιμών 13.5 και 16.5 g/cm 3. Η κα Ιωάννου, με πιο προσεχτικό πείραμα βρίσκει κατά προσέγγιση την πυκνότητα να είναι 13.9 g/cm 3 και ότι η τιμή αυτή κυμαίνεται μεταξύ των τιμών 13.7 και 14.1 g/cm 3. κράμα χρυσός Ιωάννου Ανδρέου Πυκνότητα g/cm 3 Οι δύο μαύρες τελείες δείχνουν την καλύτερη τιμή για την πυκνότητα που βρήκε ο κάθε ένας από τους ειδικούς. Οι δύο οριζόντιες μπάρες σφάλματος δείχνουν τα όρια μέσα στα οποία πιστεύουν ότι βρίσκεται η τιμή της πυκνότητας. Το σφάλμα του κ. Ανδρέου είναι τόσο μεγάλο που και ο χρυσός και το κράμα βρίσκονται μέσα στην περιοχή της μέτρησής του, επομένως η μέτρηση αυτή δεν καθορίζει καθόλου ποιο μέταλλο χρησιμοποιήθηκε για το στέμμα. Το σφάλμα μέτρησης της κας Ιωάννου είναι αρκετά μικρό και η μέτρησή της δείχνει καθαρά ότι το στέμμα δεν ήταν από ατόφιο χρυσάφι. Το σφάλμα μέτρησης του κου Ανδρέου είναι τόσο μεγάλο που καλύπτει τόσο την τιμή της πυκνότητας για το κράμα όσο και την τιμή της πυκνότητας για το χρυσό (βλέπε το πιο πάνω σχήμα). Άρα δεν μας επιτρέπει να συμπεράνουμε από τι είναι φτιαγμένο το στέμμα. Η μέτρηση της κας Ιωάννου δείχνει ότι το στέμμα δεν είναι από ατόφιο χρυσάφι αφού η τιμή και το σφάλμα που κατέγραψε δεν συμπεριλαμβάνουν την πυκνότητα του χρυσού. Είναι φανερό ότι αν το σφάλμα μέτρησης είναι πολύ μεγάλο δεν μας επιτρέπει να φτάσουμε σε συμπέρασμα. Θα πρέπει όμως από την άλλη να σημειωθεί ότι, αν το σφάλμα μέτρησης είναι πολύ μικρό μπορεί να μας οδηγεί σε αχρείαστες ενέργειες. Ο κ. Ανδρέου δεν βοήθησε στο να δώσουμε με σιγουριά απάντηση στο πρόβλημα. Η κα Ιωάννου τώρα θα πρέπει να μας εξηγήσει το εύρος των τιμών που μας εισηγήθηκε. Χωρίς τεκμηρίωση του τρόπου που βρήκε το σφάλμα μέτρησης, η τιμή που μας δίνει είναι σχεδόν άχρηστη. Το σημαντικό συμπέρασμα από το παράδειγμά μας είναι ότι οι μετρήσεις των μαθητών μας (όπως και οι επιστημονικές μετρήσεις) θα είναι άχρηστες αν δεν περιλαμβάνουν σφάλμα μέτρησης. Οι τιμές 13.9 g/cm 3 και 15 g/cm 3 όχι μόνο δεν βοηθούν στο να δώσουμε απάντηση στο πρόβλημα που εξετάζαμε αλλά θα μας οδηγούσαν και σε λανθασμένο συμπέρασμα μια και η τιμή 15 g/cm 3 εισηγείται ότι το στέμμα είναι από χρυσό.

3 Στη Φυσική, όταν προταθεί μια νέα θεωρία θα πρέπει να δοκιμασθεί έναντι των παλαιότερων θεωριών μέσα από μια σειρά από πειράματα. Οι ερευνητές εκτελούν πειράματα και μέσα από τα αποτελέσματα η επιστημονική κοινότητα αποφασίζει για την ορθότητα κάποιας θεωρίας. Στην πράξη βέβαια, τα πράγματα είναι πιο πολύπλοκα εξ αιτίας των αναπόφευκτων πειραματικών σφαλμάτων. Η βαθύτερη κατανόηση της ανάλυσης των σφαλμάτων στις μετρήσεις αλλά και η ικανότητα του ερευνητή να πείσει την επιστημονική κοινότητα γι αυτή την κατανόηση θα οδηγήσει στην αποδοχή της μιας ή της άλλης θεωρίας. 4. Εκτίμηση της αβεβαιότητας όταν αναγιγνώσκεται μια κλίμακα. Με ποιο τρόπο υπολογίζεται η αβεβαιότητα σε μια μέτρηση; Στην απάντηση του ερωτήματος αυτού θα περιοριστούμε σε δύο απλά παραδείγματα τα οποία δίνουν το επίπεδο στο οποίο πρέπει να δουλέψουμε με τους μαθητές που επιλέγουν Φυσική στο Λύκειο (δεν αποκλείεται και η ποιοτική αναφορά στα σφάλματα μέτρησης και σε μαθητές άλλων τάξεων). Στο πρώτο παράδειγμα χρησιμοποιείται ένας χάρακας για να μετρηθεί το μήκος ενός μολυβιού mm Στο δεύτερο παράδειγμα χρησιμοποιείται ένα βολτόμετρο για τη μέτρηση διαφοράς δυναμικού. volts Στην περίπτωση του μολυβιού θα μπορούσαμε να πούμε ότι το μήκος του είναι πιο κοντά στο 47 mm παρά στα 46 mm ή στα 48 mm. Όμως περισσότερη ακρίβεια δεν μπορούμε να δώσουμε. Μπορούμε λοιπόν να πούμε ότι: Καλύτερη εκτίμηση του μήκους = 47 mm Εύρος: 46.5 mm μέχρι 47.5 mm. Μετρήσαμε το μήκος του μολυβιού στο πλησιέστερο mm.

4 Οι υποδιαιρέσεις στην κλίμακα του βολτομέτρου απέχουν περισσότερο μεταξύ τους παρά στην περίπτωση του χάρακα. Μπορούμε λοιπόν να δώσουμε περισσότερη ακρίβεια από ότι μια υποδιαίρεση της κλίμακας. Καλύτερη εκτίμηση της δ.δ = 5.3 V Εύρος: 5.2 V μέχρι 5.4 V. Στις πιο πάνω μετρήσεις μπορεί να μην συμφωνούν όλοι οι παρατηρητές που επιχειρούν να μετρήσουν το μήκος ή τη διαφορά δυναμικού. Παρόλα αυτά δεν θα υπάρξουν πολλοί που θα διαφωνήσουν ότι οι εκτιμήσεις αυτές βρίσκονται κοντά στην πραγματική τιμή του φυσικού μεγέθους που μετρούμε. Έτσι θα λέγαμε ότι η εύρεση της αβεβαιότητος σε μια μέτρηση είναι εύκολη όταν γίνεται ανάγνωση μιας κλίμακας. 5. Εκτίμηση της αβεβαιότητας σε επαναλαμβανόμενες μετρήσεις. Όταν επαναλαμβάνουμε τις μετρήσεις ενός φυσικού μεγέθους, όπως για παράδειγμα η περίοδος ενός ταλαντωτή, η δυσκολία στην εύρεση της αβεβαιότητας βρίσκεται στη δική μας ικανότητα να αντιδρούμε άμεσα στην εκκίνηση και σταμάτημα του χρονομέτρου. Επίσης υπάρχει αβεβαιότητα στο να διαπιστώσουμε πότε ο ταλαντωτής βρίσκεται σε μια συγκεκριμένη θέση. Μια σειρά από μετρήσεις μας βοηθά στο να καθορίσουμε την αβεβαιότητα. Για παράδειγμα αν 4 μετρήσεις της περιόδου είναι 2.3 s, 2.4 s, 2.4 s, 2.5s Τότε μπορούμε να θεωρήσουμε ότι η καλύτερη εκτίμηση είναι η μέση τιμή 2.4 s, και το εύρος είναι μεταξύ 2.3 s και 2.5 s. Καλύτερη εκτίμηση της περιόδου = 2.4 s Εύρος: 2.3 s μέχρι 2.5 s Η έκταση των τιμών δίνει μια καλή ένδειξη για την αβεβαιότητα στις επαναλαμβανόμενες μετρήσεις. Οι στατιστικές μέθοδοι για επεξεργασία των επαναλαμβανόμενων μετρήσεων δεν θα πρέπει να μας απασχολήσουν σε αυτό το στάδιο αφού πρώτα από όλα θα πρέπει να διδάξουμε τα στοιχειώδη για τα σφάλματα στις μετρήσεις. Στους μαθητές μας θα πρέπει να εξηγήσουμε ότι δεν είναι δυνατόν να στηριζόμαστε αποκλειστικά στις επαναλαμβανόμενες μετρήσεις για εύρεση της αβεβαιότητας. Αυτό γιατί σε κάθε επανάληψη του πειράματος η αβεβαιότητα επηρεάζεται και από άλλους παράγοντες εκτός από τον ανθρώπινο παράγοντα (τυχαίο σφάλμα). Τέτοια σφάλματα είναι τα συστηματικά σφάλματα τα οποία οφείλονται για παράδειγμα σε ατέλεια των οργάνων μέτρησης και ονομάζονται συστηματικά σφάλματα. Γενικεύοντας το πιο πάνω παράδειγμα θα λέγαμε ότι σε κάθε μέτρηση υπάρχει αβεβαιότητα η οποία καταδεικνύει πόσο απέχει η μέτρησή μας από την πραγματική τιμή. Από τη στιγμή που η πραγματική τιμή δεν είναι γνωστή, δεν είναι δυνατόν να γνωρίζουμε ακριβώς την αβεβαιότητα

5 στη μέτρηση. Το καλύτερο που μπορούμε να κάνουμε είναι να εκτιμήσουμε το μέγεθος της αβεβαιότητας. Μέθοδος 1. Βήματα: Βρίσκεται η μέση τιμή του σετ των μετρήσεων. Υπολογίζεται η διαφορά κάθε μέτρησης από τη μέση τιμή των μετρήσεων. Υπολογίζεται η μέση τιμή των διαφορών. Μέθοδος 2. Βήματα: Υπολογίζεται η τυπική απόκλιση με τη βοήθεια spreadsheet η υπολογιστικής μηχανής Για να υπολογισθεί η τυπική απόκλιση σε ένα spreadsheet της Excel χρησιμοποιείται η σχέση =STDEVP(number1,number2,..) Η τιμή που υπολογίζεται θα είναι και η αβεβαιότητα στη μέτρηση. Παράδειγμα: Μετρούμε τη μάζα 7 βαριδιών με ηλεκτρονική ζυγαριά για να υπολογίσουμε τη μέση τιμή και την αβεβαιότητα. μάζα βαριδιών (g) μέση τιμή διαφορά από μέση τιμή (g) μέση τιμή διαφορών (g) 0.44 (μέθοδος 1) τυπική απόκλιση (g) 0.52 (μέθοδος 2) εκτίμηση αβεβαιότητας 0.5 (στρογγυλοποιημένη αφού είναι απλώς εκτίμηση) (%)

6 6. Επί τοις εκατό αβεβαιότητα. Εκείνο που πρέπει να κατανοήσει ο μαθητής είναι η σύγκριση της αβεβαιότητας με τη τιμή της μέτρησης. Μια αβεβαιότητα 2 mm σε μια μέτρηση 2 m είναι 0.1%, αλλά 2 mm σε μια μέτρηση 20 cm είναι 1%, δέκα φορές πιο σημαντική. Για το σκοπό αυτό τα πειράματα πρέπει να σχεδιάζονται με τρόπο ώστε τα φυσικά μεγέθη που μετρούνται να είναι όσο το δυνατό πιο μεγάλα. 7. Κανόνας για την καταγραφή μιας μέτρησης. Η αβεβαιότητα στη μέτρηση δεν πρέπει να δίνεται με πολύ μεγάλη ακρίβεια. Αν για παράδειγμα μετρούσαμε την επιτάχυνση της βαρύτητας θα ήταν παράλογο να δίναμε το αποτέλεσμα ως g= 9.82 ± m/s 2 Ένας κανόνας που μπορεί να χρησιμοποιηθεί είναι ο εξής: Η αβεβαιότητα στη μέτρηση μπορεί να στρογγυλοποιείται σε ένα σημαντικό ψηφίο. Έτσι η πιο πάνω τιμή για την επιτάχυνση της βαρύτητας θα έπρεπε να γραφτεί ως g= 9.82 ± 0.02 m/s 2 Ο αριθμός των σημαντικών ψηφίων με τον οποίο θα καταγραφή το αποτέλεσμα της μέτρησης θα πρέπει να λαμβάνει υπόψη την αβεβαιότητα την οποία εκτίμησε ο πειραματιστής. Ο γενικός κανόνας είναι: Το τελευταίο σημαντικό ψηφίο που καταγράφεται στο αποτέλεσμα της μέτρησης είναι κατά κανόνα της ίδιας τάξης μεγέθους (στην ίδια θέση μετά την υποδιαστολή) όπως και η αβεβαιότητα. Για παράδειγμα, η απάντηση με αβεβαιότητα 0.3 θα πρέπει να στρογγυλοποιηθεί σε 95.8 ± 0.3. Αν η αβεβαιότητα είναι 3, τότε η απάντηση θα πρέπει να είναι 95 ± 3 και αν η αβεβαιότητα είναι 30, τότε η απάντηση είναι 90 ± 30. Στις περιπτώσεις κατά τις οποίες γίνονται ενδιάμεσοι υπολογισμοί οι οποίοι χρησιμοποιούνται για την εύρεση της τελικής απάντησης είναι καλό να διατηρείται στα ενδιάμεσα αποτελέσματα τουλάχιστον ένα σημαντικό ψηφίο περισσότερο από ότι δικαιολογεί η ακρίβεια στη μέτρηση. Για παράδειγμα, ας θεωρήσουμε ότι μετρήθηκε η μάζα ενός σώματος g και χρειάζεται να υπολογιστεί ο συντελεστής τριβής ολίσθησης. Η δύναμη της τριβής μετρήθηκε και βρέθηκε 1.2 Ν. Το βάρος είναι (502.3 x 10-3 ) x 9.81 = N (αν το βάρος ήταν η τελική μας απάντηση θα γράφαμε ως αποτέλεσμα 4.93 Ν). Για να βρεθεί ο συντελεστής της τριβής θα διατηρήσουμε τουλάχιστον και το τέταρτο σημαντικό ψηφίο στην ενδιάμεση τιμή, δηλαδή Έτσι ο συντελεστής είναι 1.2 / = 0.24.

7 8. Συμπερασματικά: Οι μαθητές μας είναι καλό να γνωρίζουν τη σημασία της αβεβαιότητας στη μέτρηση, τη σημασία των σημαντικών ψηφίων και τη σημασία της επί τοις εκατό αβεβαιότητας. Σε μερικές εργαστηριακές δραστηριότητες στις οποίες προσφέρεται η παρουσίαση της αβεβαιότητας στη μέτρηση είναι καλό οι μαθητές να δίνουν την τελική απάντηση χρησιμοποιώντας και την αβεβαιότητα. Για παράδειγμα στον πιο πάνω πίνακα η μέση τιμή της μάζας των 7 βαριδιών θα δοθεί ως ± 0.5 g. Την ελάχιστη αυτή γνώση για την ανάλυση των σφαλμάτων πρέπει να έχουν οι μαθητές μας όταν εισέρχονται στο Πανεπιστήμιο. Ανδρέας Παπαστυλιανού Επιθεωρητής Φυσικής Τηλ Σεπτέμβριος 2010 Βιβλιογραφία. John R. Taylor. An introduction to error analysis, the study of uncertainties in physical measurements. 2 nd edition (university science books 1997). Peter Warren. Advanced physics laboratory book. (John Murray Publishers 2003).

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα. Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι

Διαβάστε περισσότερα

ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ, ΑΒΕΒΑΙΟΤΗΤΑ ΚΑΙ ΔΙΑΔΟΣΗ ΣΦΑΛΜΑΤΩΝ. 1. Στρογγυλοποίηση Γενικά Κανόνες Στρογγυλοποίησης... 2

ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ, ΑΒΕΒΑΙΟΤΗΤΑ ΚΑΙ ΔΙΑΔΟΣΗ ΣΦΑΛΜΑΤΩΝ. 1. Στρογγυλοποίηση Γενικά Κανόνες Στρογγυλοποίησης... 2 ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ, ΑΒΕΒΑΙΟΤΗΤΑ ΚΑΙ ΔΙΑΔΟΣΗ ΣΦΑΛΜΑΤΩΝ Περιεχόμενα 1. Στρογγυλοποίηση.... 2 1.1 Γενικά.... 2 1.2 Κανόνες Στρογγυλοποίησης.... 2 2. Σημαντικά ψηφία.... 2 2.1 Γενικά.... 2 2.2 Κανόνες για την

Διαβάστε περισσότερα

Για τη δραστηριότητα χρησιμοποιούνται τέσσερεις χάρακες του 1 m. Στο σχήμα φαίνεται το πρώτο δέκατο κάθε χάρακα.

Για τη δραστηριότητα χρησιμοποιούνται τέσσερεις χάρακες του 1 m. Στο σχήμα φαίνεται το πρώτο δέκατο κάθε χάρακα. Σημαντικά ψηφία Η ταχύτητα διάδοσης του φωτός είναι 2.99792458 x 10 8 m/s. Η τιμή αυτή είναι δοσμένη σε 9 σημαντικά ψηφία. Τα 9 σημαντικά ψηφία είναι 299792458. Η τιμή αυτή μπορεί να δοθεί και με 5 σημαντικά

Διαβάστε περισσότερα

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα

Διαβάστε περισσότερα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα q Θεωρία: Η απάντηση που ζητάτε είναι αποτέλεσμα μαθηματικών πράξεων και εφαρμογή τύπων. Το αποτέλεσμα είναι συγκεκριμένο q Πείραμα: Στηρίζεται

Διαβάστε περισσότερα

Μετρήσεις Αβεβαιότητες Μετρήσεων

Μετρήσεις Αβεβαιότητες Μετρήσεων Μετρήσεις Αβεβαιότητες Μετρήσεων 1. Σκοπός Σκοπός του μαθήματος είναι να εξοικειωθούν οι σπουδαστές με τις βασικές έννοιες που σχετίζονται με τη θεωρία Σφαλμάτων, όπως το σφάλμα, την αβεβαιότητα της μέτρησης

Διαβάστε περισσότερα

Σφάλματα Είδη σφαλμάτων

Σφάλματα Είδη σφαλμάτων Σφάλματα Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα μετράμε την

Διαβάστε περισσότερα

Γενικό Εργαστήριο Φυσικής

Γενικό Εργαστήριο Φυσικής http://users.auth.gr/agelaker Γενικό Εργαστήριο Φυσικής Γενικό Εργαστήριο Φυσικής Σφάλματα Μελέτη φυσικού φαινομένου Ποσοτική σχέση παραμέτρων Πείραμα Επαλήθευση Καθιέρωση ποσοτικής σχέσης Εύρεση τιμής

Διαβάστε περισσότερα

Κεφάλαιο 5 Κριτήρια απόρριψης απόμακρων τιμών

Κεφάλαιο 5 Κριτήρια απόρριψης απόμακρων τιμών Κεφάλαιο 5 Κριτήρια απόρριψης απόμακρων τιμών Σύνοψη Στο κεφάλαιο αυτό παρουσιάζονται δύο κριτήρια απόρριψης απομακρυσμένων από τη μέση τιμή πειραματικών μετρήσεων ενός φυσικού μεγέθους και συγκεκριμένα

Διαβάστε περισσότερα

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΑΕΙ ΠΕΙΡΑΙΑ ΤΤ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ Σκοπός της άσκησης 1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Σκοπός αυτής της άσκησης είναι η εξοικείωση των σπουδαστών με τα σφάλματα που

Διαβάστε περισσότερα

Θέματα Παγκύπριων Εξετάσεων

Θέματα Παγκύπριων Εξετάσεων Θέματα Παγκύπριων Εξετάσεων 2009 2014 Σελίδα 1 από 24 Ταλαντώσεις 1. Το σύστημα ελατήριο-σώμα εκτελεί απλή αρμονική ταλάντωση μεταξύ των σημείων Α και Β. (α) Ο χρόνος που χρειάζεται το σώμα για να κινηθεί

Διαβάστε περισσότερα

1. Πειραματικά Σφάλματα

1. Πειραματικά Σφάλματα . Πειραματικά Σφάλματα Σκοπός της εκτέλεσης ενός πειράματος στη Φυσική είναι ο προσδιορισμός ποσοτικός ή/και ποιοτικός- κάποιων φυσικών μεγεθών που περιγράφουν ένα συγκεκριμένο φαινόμενο. Ο ποιοτικός προσδιορισμός

Διαβάστε περισσότερα

Όργανα μέτρησης διαστάσεων-μάζας. Υπολογισμός πυκνότητας μεταλλικών σωμάτων

Όργανα μέτρησης διαστάσεων-μάζας. Υπολογισμός πυκνότητας μεταλλικών σωμάτων Όργανα μέτρησης διαστάσεων-μάζας. Υπολογισμός πυκνότητας μεταλλικών σωμάτων Συγγραφείς:. Τμήμα, Σχολή Εφαρμοσμένων Επιστημών, ΤΕΙ Κρήτης Περίληψη Στην παρούσα εργαστηριακή άσκηση μετρήσαμε τη διάμετρο

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ ΦΥΣ 114 ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ Φθινόπωρο 2014 Διδάσκων/Υπεύθυνος: Φώτης Πτωχός e-mail: fotis@ucy.ac.cy Τηλ: 22.89.2837 Γραφείο: B235 web-page: http://www2.ucy.ac.cy/~fotis/phy114/phy114.htm ΦΥΣ

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 2 Θεωρία Σφαλμάτων

ΑΣΚΗΣΗ 2 Θεωρία Σφαλμάτων ΑΣΚΗΣΗ 2 Θεωρία Σφαλμάτων Σκοπός Σκοπός είναι να κατανοηθεί η έννοια των σφαλμάτων, η σπουδαιότητά τους και η αναγκαιότητα υπολογισμού τους. Δίνονται επίσης οι βασικοί μαθηματικοί τύποι που επιτρέπουν

Διαβάστε περισσότερα

ΜΕΤΑΤΡΟΠΗ ΑΡΧΙΚΟΥ Κ ΤΟΥ ΕΛΑΤΗΡΙΟΥ ΜΗΧΑΝΗΣ ΣΕ Κ=1,1 kg/mm

ΜΕΤΑΤΡΟΠΗ ΑΡΧΙΚΟΥ Κ ΤΟΥ ΕΛΑΤΗΡΙΟΥ ΜΗΧΑΝΗΣ ΣΕ Κ=1,1 kg/mm ΜΕΤΑΤΡΟΠΗ ΑΡΧΙΚΟΥ Κ ΤΟΥ ΕΛΑΤΗΡΙΟΥ ΜΗΧΑΝΗΣ ΣΕ Κ=1,1 kg/mm ΑΓΓΕΛΙΚΗ ΛΕΒΑΝΤΗ ΖΑΝΝΕΙΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΤΜΗΜΑ Α 2 10 ΙΑΝΟΥΑΡΙΟΥ 2010 ΣΕΝΑΡΙΟ : Πρόκειται να μετατρέψουμε τα εμπρός ελατήρια μιας μοτοσυκλέτας

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων ΘΕ1 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων 1. Σκοπός Πρόκειται για θεωρητική άσκηση που σκοπό έχει την περιληπτική αναφορά σε θεµατολογίες όπως : σφάλµατα, στατιστική

Διαβάστε περισσότερα

Μερικές σκέψεις σχετικά με το αποτέλεσμα μιας μέτρησης ή παρατήρησης

Μερικές σκέψεις σχετικά με το αποτέλεσμα μιας μέτρησης ή παρατήρησης 1 ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΠΑΝ/ΜΙΟ ΠΑΤΡΩΝ ΣΩΤ. ΣΑΚΚΟΠΟΥΛΟΣ Μερικές σκέψεις σχετικά με το αποτέλεσμα μιας μέτρησης ή παρατήρησης (Θεωρία σφαλμάτων, Σημαντικά ψηφία) ΠΑΤΡΑ 2016 2 Εισαγωγή Στη Φυσική, όπως αυτή εκτίθεται

Διαβάστε περισσότερα

Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις

Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις 1. Σκοπός Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις Σκοπός της άσκησης είναι να εξοικειωθούν οι σπουδαστές με τη γραφική απεικόνιση των δεδομένων τους, την χρήση των γραφικών παραστάσεων για την εξαγωγή

Διαβάστε περισσότερα

ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ. Εισαγωγή Έννοια του σφάλματος...3. Συστηματικά και τυχαία σφάλματα...4

ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ. Εισαγωγή Έννοια του σφάλματος...3. Συστηματικά και τυχαία σφάλματα...4 ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ Εισαγωγή... 2 Έννοια του σφάλματος...3 Συστηματικά και τυχαία σφάλματα...4 Εκτίμηση του σφάλματος κατά την ανάγνωση κλίμακας...8 Πολλαπλές μετρήσεις... 10 Περί του αριθμού των σημαντικών

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΕΜΒΑΔΟΥ ΟΓΚΟΥ ΕΠΙΣΗΜΑΝΣΕΙΣ ΠΡΟΣ ΤΟΝ ΚΑΘΗΓΗΤΗ

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΕΜΒΑΔΟΥ ΟΓΚΟΥ ΕΠΙΣΗΜΑΝΣΕΙΣ ΠΡΟΣ ΤΟΝ ΚΑΘΗΓΗΤΗ ΕΚΦΕ Αν. Αττικής Υπεύθυνος: Κ. Παπαμιχάλης ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΕΜΒΑΔΟΥ ΟΓΚΟΥ ΕΠΙΣΗΜΑΝΣΕΙΣ ΠΡΟΣ ΤΟΝ ΚΑΘΗΓΗΤΗ Κεντρική επιδίωξη των εργαστηριακών ασκήσεων φυσικής στην Α Γυμνασίου, είναι οι μαθητές να οικοδομήσουν

Διαβάστε περισσότερα

Επιτάχυνση της Βαρύτητας g = 10m/s 2

Επιτάχυνση της Βαρύτητας g = 10m/s 2 ΛΥΚΕΙΟ ΑΚΡΟΠΟΛΗΣ ΠΡΟΤΕΙΟΜΕΕΣ ΑΠΑΤΗΣΕΙΣ Σχολική Χρονιά:2014-2015 αθμός :. ΔΙΑΓΩΙΣΜΑ κατ. ΣΧΕΔΙΑΣΜΟΣ ΔΥΑΜΕΩ-ΚΙΗΜΑΤΙΚΗ-ΔΥΑΜΙΚΗ-ΤΡΙΗ Υπ. Κηδεμόνα :.. Μάθημα : ΦΥΣΙΚΗ Όνομα μαθητή/τριας: Ημερομηνία : Τμήμα

Διαβάστε περισσότερα

Πανεπιστήμιο Θεσσαλίας

Πανεπιστήμιο Θεσσαλίας Πανεπιστήμιο Θεσσαλίας Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Ανάλυση Κυκλωμάτων Εργαστηριακές Ασκήσεις Εργαστήριο 4 Ορθότητα, Ακρίβεια και Θόρυβος (Accuracy, Precision and Noise) Φ. Πλέσσας

Διαβάστε περισσότερα

ΕΚΦΕ Τρικάλων. Πειραματική Δοκιμασία στη Φυσική. Τοπικός Μαθητικός Διαγωνισμός. Τρίκαλα, Σάββατο, 8 Δεκεμβρίου 2012

ΕΚΦΕ Τρικάλων. Πειραματική Δοκιμασία στη Φυσική. Τοπικός Μαθητικός Διαγωνισμός. Τρίκαλα, Σάββατο, 8 Δεκεμβρίου 2012 1 Τοπικός Μαθητικός Διαγωνισμός 11η Ευρωπαϊκή Ολυμπιάδα Επιστημών EUSO 2013 11Η ΕΥΡΩΠΑΪΚΗ ΟΛΥΜΠΙΑΔΑ ΕΠΙΣΤΗΜΩΝ EUSO 2013 ΕΚΦΕ Τρικάλων Πειραματική Δοκιμασία στη Φυσική Τοπικός Μαθητικός Διαγωνισμός Τρίκαλα,

Διαβάστε περισσότερα

Πειράματα Φυσικής Β Γυμνασίου

Πειράματα Φυσικής Β Γυμνασίου ΕΚΦΕ Α Αν. Αττικής - Υπεύθυνος Κ. Παπαμιχάλης Εργαστηριακές ασκήσεις Φυσικής Β Γυμνασίου - Εισαγωγή ΕΙΣΑΓΩΓΗ 1. Πείραμα και θεωρία Πειράματα Φυσικής Β Γυμνασίου Η Φυσική είναι η επιστήμη που διαμόρφωσε

Διαβάστε περισσότερα

ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ. Μετρήσεις με Διαστημόμετρο και Μικρόμετρο

ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ. Μετρήσεις με Διαστημόμετρο και Μικρόμετρο ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ Σκοπός της άσκησης Σε αυτή την άσκηση θα μετρήσουμε διαστάσεις στερεών σωμάτων χρησιμοποιώντας όργανα ακριβείας και θα υπολογίσουμε την πυκνότητα τους. Θα κάνουμε εφαρμογή της θεωρίας

Διαβάστε περισσότερα

Κεφάλαιο 6 Διάδοση αβεβαιοτήτων

Κεφάλαιο 6 Διάδοση αβεβαιοτήτων Κεφάλαιο 6 Διάδοση αβεβαιοτήτων Σύνοψη Στο κεφάλαιο αυτό περιγράφεται ο τρόπος με τον οποίο μπορούμε να υπολογίσουμε την αβεβαιότητα σε μία σύνθετη μέτρηση. Αρχικά δίνονται προσεγγιστικοί τρόποι υπολογισμού

Διαβάστε περισσότερα

ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΟ-ΦΥΣΙΚΗ Ι, 2013-14

ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΟ-ΦΥΣΙΚΗ Ι, 2013-14 ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ Με τη λέξη σφάλμα στις θετικές επιστήμες αναφερόμαστε στην αβεβαιότητα που υπάρχει στην εύρεση του αποτελέσματος που προκύπτει από μια μέτρηση. Το να εκτιμήσουμε και να βρούμε τα σφάλμα

Διαβάστε περισσότερα

ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ

ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Μαρία Κατσικίνη E-mal: katsk@auth.gr Web: users.auth.gr/katsk Τηλ: 0 99800 Γραφείο : Β όροφος, Τομέας Φυσικής Στερεάς Κατάστασης Σειρά των ασκήσεων Θεωρία : Σφάλματα Θεωρία :

Διαβάστε περισσότερα

Πειράματα Φυσικής Β Γυμνασίου

Πειράματα Φυσικής Β Γυμνασίου ΕΚΦΕ Α Αν. Αττικής - Υπεύθυνος Κ. Παπαμιχάλης Εργαστηριακές ασκήσεις Φυσικής Β - Εισαγωγή ΕΙΣΑΓΩΓΗ 1. Πείραμα και θεωρία Πειράματα Φυσικής Β Γυμνασίου Η Φυσική είναι η επιστήμη που διαμόρφωσε και συνεχίζει

Διαβάστε περισσότερα

Συμπληρωματικό Φύλλο Εργασίας 3+ ( * ) Μετρήσεις Μάζας Τα Διαγράμματα

Συμπληρωματικό Φύλλο Εργασίας 3+ ( * ) Μετρήσεις Μάζας Τα Διαγράμματα Συμπληρωματικό Φύλλο Εργασίας 3+ ( * ) Μετρήσεις Μάζας Τα Διαγράμματα ( * ) + επιπλέον πληροφορίες, ιδέες και προτάσεις προαιρετικών πειραματικών δραστηριοτήτων, ερωτήσεις... Στην αρχαιότητα πίστευαν ότι

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ. ΜΕΛΕΤΗ 2ου ΝΟΜΟΥ ΝEWTON ME TH BΟΗΘΕΙΑ ΤΗΣ ΜΗΧΑΝΗΣ ΑΤWOOD

ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ. ΜΕΛΕΤΗ 2ου ΝΟΜΟΥ ΝEWTON ME TH BΟΗΘΕΙΑ ΤΗΣ ΜΗΧΑΝΗΣ ΑΤWOOD ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΜΕΛΕΤΗ 2ου ΝΟΜΟΥ ΝEWTON ME TH BΟΗΘΕΙΑ ΤΗΣ ΜΗΧΑΝΗΣ ΑΤWOOD Επιμέλεια: Μπίλιας Κων/νος Φυσικός. ΒΑΡΗ 2012-2013

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ

ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΣΧΟΛ. ΕΤΟΣ 2014-15 1. Εισαγωγή ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ Οι γραφικές παραστάσεις (ή διαγράμματα) χρησιμεύουν για την απεικόνιση της εξάρτησης

Διαβάστε περισσότερα

Μετρήσεις και Σφάλματα/Measurements and Uncertainties

Μετρήσεις και Σφάλματα/Measurements and Uncertainties Μετρήσεις και Σφάλματα/Measurements and Uncertainties Κατά την καταγραφή δεδοµένων, σε κάθε εγγραφή δεδοµένου θα πρέπει να δίδεται µαζί και το αντίστοιχο εκτιµώµενο σφάλµα ή αβεβαιότητα. Ο όρος σφάλµα

Διαβάστε περισσότερα

ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΤΩΝ ΣΩΜΑΤΩΝ: ΑΠΟ ΤΟΝ ΑΡΙΣΤΟΤΕΛΗ ΣΤΟ ΓΑΛΙΛΑΙΟ ΚΑΙ ΕΩΣ ΣΗΜΕΡΑ

ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΤΩΝ ΣΩΜΑΤΩΝ: ΑΠΟ ΤΟΝ ΑΡΙΣΤΟΤΕΛΗ ΣΤΟ ΓΑΛΙΛΑΙΟ ΚΑΙ ΕΩΣ ΣΗΜΕΡΑ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ Α ΤΕΤΡΑΜΗΝΟΥ ΣΧΟΛ. ΕΤΟΣ 2012-13 ΤΑΞΗ Α ΛΥΚΕΙΟΥ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΤΩΝ ΣΩΜΑΤΩΝ: ΑΠΟ ΤΟΝ ΑΡΙΣΤΟΤΕΛΗ ΣΤΟ ΓΑΛΙΛΑΙΟ ΚΑΙ ΕΩΣ ΣΗΜΕΡΑ ΥΠΕΥΘΥΝΟΣ ΕΚΠΑΙΔΕΥΤΙΚΟΣ ΦΥΤΤΑΣ ΓΕΩΡΓΙΟΣ Page1 ΤΟ ΘΕΩΡΗΤΙΚΟ ΠΛΑΙΣΙΟ

Διαβάστε περισσότερα

Α u. u cm. = ω 1 + α cm. cm cm

Α u. u cm. = ω 1 + α cm. cm cm ΕΚΦΕ Ν.ΚΙΛΚΙΣ η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΕΞΕΡΓΑΣΙΑ : Κ. ΚΟΥΚΟΥΛΑΣ, ΦΥΣΙΚΟΣ - ΡΑΔΙΟΗΛΕΚΤΡΟΛΟΓΟΣ [ Ε.Λ. ΠΟΛΥΚΑΣΤΡΟΥ ] ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΚΥΛΙΝΔΡΟΥ

Διαβάστε περισσότερα

Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό.

Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό. Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό. Φυσική 1. Επεξεργασία πειραματικών δεδομένων: α) Καταγραφή δεδομένων σε πίνακα μετρήσεων, β) Επιλογή συστήματος αξόνων με τις κατάλληλες κλίμακες και

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΠΟΛΟΓΙΣΜΟΣ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΚΥΛΙΝΔΡΟΥ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΠΟΛΟΓΙΣΜΟΣ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΚΥΛΙΝΔΡΟΥ ΜΙΝΟΠΕΤΡΟΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΦΥΣΙΚΟΣ - Ρ/Η ΚΑΘΗΓΗΤΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ου ΥΠΕΥΘΥΝΟΣ ΣΕΦΕ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΡΑΜΑΤΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΠΟΛΟΓΙΣΜΟΣ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΚΥΛΙΝΔΡΟΥ ΚΕΡΑΤΣΙΝΙ

Διαβάστε περισσότερα

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Πέτρος Ρούσσος, Τμήμα Ψυχολογίας, ΕΚΠΑ Η λογική της διαδικασίας Ο σάκος περιέχει έναν μεγάλο αλλά άγνωστο αριθμό (αρκετές χιλιάδες) λευκών και μαύρων βόλων: 1 Το

Διαβάστε περισσότερα

Κεφάλαιο 3 Παρουσίαση πειραματικών αποτελεσμάτων

Κεφάλαιο 3 Παρουσίαση πειραματικών αποτελεσμάτων Κεφάλαιο 3 Παρουσίαση πειραματικών αποτελεσμάτων Σύνοψη Πέραν από την ιδιαίτερη προσοχή που θα πρέπει να επιδείξουμε κατά τη λήψη μετρήσεων σε ένα πείραμα, μεγάλη σημασία έχει ο τρόπος που θα παρουσιάσουμε

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2012 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος A Λυκείου

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2012 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος A Λυκείου A Λυκείου Θεωρητικό Μέρος Θέμα 1 ο 10 Μαρτίου 2012 Στις ερωτήσεις A, B, Γ, Δ i), Δ ii) μια μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής

Διαβάστε περισσότερα

ΦΕ1. Περιεχόμενα. Η φυσική. Υπόθεση και φυσικό μέγεθος

ΦΕ1. Περιεχόμενα. Η φυσική. Υπόθεση και φυσικό μέγεθος Περιεχόμενα ΦΕ1 ΤΑ ΦΥΣΙΚΑ ΜΕΓΕΘΗ ΚΑΙ Η ΜΕΤΡΗΣΗ ΤΟΥΣ ΤΟ ΜΗΚΟΣ 2015-16 6 ο ΓΥΜΝΑΣΙΟ ΑΘΗΝΑΣ Τα φυσικά μεγέθη Η Μέτρηση των φυσικών μεγεθών Μια μονάδα μέτρησης για όλους Το φυσικό μέγεθος Μήκος Όργανα μέτρησης

Διαβάστε περισσότερα

ΤΡΙΒΗ ΟΛΙΣΘΗΣΗΣ ΣΕ ΚΕΚΛΙΜΕΝΟ ΚΑΙ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕΔΟ ( ΜΕ ΤΗΝ ΚΛΑΣΣΙΚΗ ΜΕΘΟΔΟ )

ΤΡΙΒΗ ΟΛΙΣΘΗΣΗΣ ΣΕ ΚΕΚΛΙΜΕΝΟ ΚΑΙ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕΔΟ ( ΜΕ ΤΗΝ ΚΛΑΣΣΙΚΗ ΜΕΘΟΔΟ ) 1 ο ΕΚΦΕ (. ΣΜΥΡΗΣ) Δ Δ/ΣΗΣ Δ. Ε. ΑΘΗΑΣ 1 ΤΡΙΒΗ ΟΛΙΣΘΗΣΗΣ ΣΕ ΚΕΚΛΙΜΕΟ ΚΑΙ ΟΡΙΖΟΤΙΟ ΕΠΙΠΕΔΟ ( ΜΕ ΤΗ ΚΛΑΣΣΙΚΗ ΜΕΘΟΔΟ ) Α. ΣΤΟΧΟΙ Η εφαρμογή των νόμων της Μηχανικής στη μελέτη της κίνησης σώματος, που ολισθαίνει

Διαβάστε περισσότερα

Συντελεστής επαναφοράς ή αποκατάστασης

Συντελεστής επαναφοράς ή αποκατάστασης Συντελεστής επαναφοράς ή αποκατάστασης (Coefficient of restitution ή bounciness) Μία έννοια εξαιρετικά σημαντική για όσους φτιάχνουν ασκήσεις στις στιγμιαίες κρούσεις (με ορμές ή/και στροφορμές για την

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Α ΓΥΜΝΑΣΙΟΥ - ΑΞΙΟΛΟΓΗΣΗ

ΦΥΣΙΚΗ Α ΓΥΜΝΑΣΙΟΥ - ΑΞΙΟΛΟΓΗΣΗ ΦΥΣΙΚΗ Α ΓΥΜΝΑΣΙΟΥ - ΑΞΙΟΛΟΓΗΣΗ 1 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Επιδιώκεται οι μαθητές: 1. Να συζητούν και να προβληματίζονται για τα μετρήσιμα και τα μη μετρήσιμα μεγέθη. 2. Να πειραματιστούν και να καταλήξουν σε

Διαβάστε περισσότερα

A Λυκείου 9 Μαρτίου 2013

A Λυκείου 9 Μαρτίου 2013 Θεωρητικό Μέρος A Λυκείου 9 Μαρτίου 2013 Θέμα 1 ο Στις ερωτήσεις A1, A2, A3, A4 και Β μία μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ. Περιεχόμενα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ. Περιεχόμενα ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ Περιεχόμενα 1) Γενικές Πληροφορίες ) Ανάλυση σφαλμάτων 3) Γραφικές παραστάσεις 4) Υπόδειγμα Εργαστηριακής Άσκησης 5) Εργαστηριακές Ασκήσεις Άσκηση 1 Μέτρηση

Διαβάστε περισσότερα

1 η Δραστηριότητα Υπολογισμός της πυκνότητας στερεού σώματος

1 η Δραστηριότητα Υπολογισμός της πυκνότητας στερεού σώματος 7η ΗΜΕΡΙΔΑ ΠΕΙΡΑΜΑΤΙΚΩΝ ΔΡΑΣΤΗΡΙΟΤΗΤΩΝ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΒΙΟΛΟΓΙΑΣ ΟΜΑΔΑ... ΟΝΟΜΑΤΕΠΩΝΥΜΑ ΜΑΘΗΤΩΝ/ΤΡΙΩΝ: 1. 2. 3. 1 η Δραστηριότητα Υπολογισμός της πυκνότητας στερεού σώματος Ο Σκοπός της άσκησης Ο σκοπός

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση Β Λυκείου Θετικής ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ

Εργαστηριακή Άσκηση Β Λυκείου Θετικής ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Εργαστηριακή Άσκηση Β Λυκείου Θετικής ΕΠΙΒΕΒΑΙΩΣΗ ΤΗΣ ΑΡΧΗΣ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΜΕ ΑΝΑΚΥΚΛΩΣΗ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΤΜΗΜΑ: ΟΜΑΔΑ: ΗΜΕΡ/ΝΙΑ:. ΟΝΟΜΑΤΕΠΩΝΥΜΟ: Σκοπός της άσκησης Στα πλαίσια της διδασκαλίας

Διαβάστε περισσότερα

ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO Ε.Κ.Φ.Ε. Νέας Σμύρνης

ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO Ε.Κ.Φ.Ε. Νέας Σμύρνης ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 14-15 Ε.Κ.Φ.Ε. Νέας Σμύρνης Εξέταση στη Φυσική ΛΥΚΕΙΟ: Τριμελής ομάδα μαθητών: 1.. 3. Αναπληρωματικός: Θέματα: Ηλ. Μαυροματίδης Β Σειρά Θεμάτων (Φυσική) Μέτρηση της

Διαβάστε περισσότερα

Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου

Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου ΛΥΚΕΙΟ ΜΑΚΑΡΙΟΥ Γ ΛΑΡΝΑΚΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2014-15 Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου 1) Να γράψετε 3 διανυσματικά μεγέθη και 2 μονόμετρα μεγέθη καθώς και τις μονάδες μέτρησής τους (στο

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2005 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2005 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 005 Θεωρητικό Μέρος Θέμα 1 ο Α Λυκείου Α. Ο Αλέξης και η Χρύσα σκαρφάλωσαν σε ένα λόφο που είχε κλίση 0 ο. Επιβιβάστηκαν σε ένα έλκηθρο, και άρχισαν

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Χειμερινό Εξάμηνο 007 1 Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Μετρήσεις Τεχνικών Μεγεθών Χειμερινό Εξάμηνο 007 Πρόβλημα 1 Προσδιορίστε ποια από τα παρακάτω

Διαβάστε περισσότερα

Σχεδιασμός και Διεξαγωγή Πειραμάτων

Σχεδιασμός και Διεξαγωγή Πειραμάτων Σχεδιασμός και Διεξαγωγή Πειραμάτων Πρώτο στάδιο: λειτουργικοί ορισμοί της ανεξάρτητης και της εξαρτημένης μεταβλητής Επιλογή της ανεξάρτητης μεταβλητής Επιλέγουμε μια ανεξάρτητη μεταβλητή (ΑΜ), την οποία

Διαβάστε περισσότερα

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua. Μέρος Β /Στατιστική Μέρος Β Στατιστική Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) Από τις Πιθανότητες στη Στατιστική Στα προηγούμενα, στο

Διαβάστε περισσότερα

ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ. Θεωρία - Πείραμα Μετρήσεις - Σφάλματα

ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ. Θεωρία - Πείραμα Μετρήσεις - Σφάλματα ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ Θεωρία - Πείραμα Μετρήσεις - Σφάλματα ΟΜΑΔΑ:RADIOACTIVITY Τα μέλη της ομάδας μας: Γιώργος Παπαδόγιαννης Γεράσιμος Κουτσοτόλης Νώντας Καμαρίδης Κωνσταντίνος Πούτος Παναγιώτης Ξανθάκος

Διαβάστε περισσότερα

ΚΥΚΛΟΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΡΕΥΝΑΣ

ΚΥΚΛΟΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΡΕΥΝΑΣ ΚΥΚΛΟΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΡΕΥΝΑΣ Βασίλης Καραγιάννης Η παρέμβαση πραγματοποιήθηκε στα τμήματα Β2 και Γ2 του 41 ου Γυμνασίου Αθήνας και διήρκησε τρεις διδακτικές ώρες για κάθε τμήμα. Αρχικά οι μαθητές συνέλλεξαν

Διαβάστε περισσότερα

Εισαγωγή Μια απλοποιημένη θεωρία σφαλμάτων Γραφικές παραστάσεις

Εισαγωγή Μια απλοποιημένη θεωρία σφαλμάτων Γραφικές παραστάσεις Εισαγωγή Μια απλοποιημένη θεωρία σφαλμάτων Γραφικές παραστάσεις Ο άνθρωπος αρχίζει να αποκτά γνώση για τον φυσικό κόσμο γύρω του, από τη στιγμή που αρχίζει να καταγράφει τα φυσικά φαινόμενα και να τα επεξεργάζεται

Διαβάστε περισσότερα

ΣΥΓΚΡΙΣΗ ΜΕΤΑΞΥ ΑΝΑΛΥΤΙΚΩΝ ΚΑΙ ΑΡΙΘΜΗΤΙΚΩΝ ΜΕΘΟΔΩΝ ΥΠΟΛΟΓΙΣΜΟΥ ΤΗΣ ΑΒΕΒΑΙΟΤΗΤΑΣ ΜΕΤΡΗΣΗΣ

ΣΥΓΚΡΙΣΗ ΜΕΤΑΞΥ ΑΝΑΛΥΤΙΚΩΝ ΚΑΙ ΑΡΙΘΜΗΤΙΚΩΝ ΜΕΘΟΔΩΝ ΥΠΟΛΟΓΙΣΜΟΥ ΤΗΣ ΑΒΕΒΑΙΟΤΗΤΑΣ ΜΕΤΡΗΣΗΣ ΣΥΓΚΡΙΣΗ ΜΕΤΑΞΥ ΑΝΑΛΥΤΙΚΩΝ ΚΑΙ ΑΡΙΘΜΗΤΙΚΩΝ ΜΕΘΟΔΩΝ ΥΠΟΛΟΓΙΣΜΟΥ ΤΗΣ ΑΒΕΒΑΙΟΤΗΤΑΣ ΜΕΤΡΗΣΗΣ Χρήστος Μπαντής Ελληνικό Ινστιτούτο Μετρολογίας Βιομηχανική Περιοχή Θεσσαλονίκης, Οικ. Τετρ. 45 57022 Σίνδος, Θεσσαλονίκη

Διαβάστε περισσότερα

Εργαστήριο 2008. Yπολογισμός της ταχύτητα διαστολής του Σύμπαντος, της ηλικίας του καθώς και της απόστασης μερικών κοντινών γαλαξιών.

Εργαστήριο 2008. Yπολογισμός της ταχύτητα διαστολής του Σύμπαντος, της ηλικίας του καθώς και της απόστασης μερικών κοντινών γαλαξιών. Υπολογισμός σταθεράς Hubble Εργαστήριο 2008 Yπολογισμός της ταχύτητα διαστολής του Σύμπαντος, της ηλικίας του καθώς και της απόστασης μερικών κοντινών γαλαξιών. Εισαγωγή Το 1929, ο Edwin Hubble (με βάση

Διαβάστε περισσότερα

ΠΕΡΙΘΛΑΣΗ ΗΛΕΚΤΡΟΝΙΩΝ

ΠΕΡΙΘΛΑΣΗ ΗΛΕΚΤΡΟΝΙΩΝ ΠΕΡΙΘΛΑΣΗ ΗΛΕΚΤΡΟΝΙΩΝ Αποδείξαμε πειραματικά, με τη βοήθεια του φαινομένου της περίθλασης, ότι τα ηλεκτρόνια έχουν εκτός από τη σωματιδιακή και κυματική φύση. Υπολογίσαμε τις σταθερές πλέγματος του γραφίτη

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

Κεφάλαιο 1 Εισαγωγή στις μετρήσεις

Κεφάλαιο 1 Εισαγωγή στις μετρήσεις Κεφάλαιο 1 Εισαγωγή στις μετρήσεις Σύνοψη Στο εισαγωγικό αυτό κεφάλαιο παρουσιάζονται οι έννοιες των φυσικών μεγεθών και των μετρήσεών τους, τα συστήματα μονάδων μέτρησης που χρησιμοποιούνται καθώς και

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014 ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 013-014 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 09/03/014 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το

Διαβάστε περισσότερα

Μέτρηση πυκνότητας. Βασικός στόχος:

Μέτρηση πυκνότητας. Βασικός στόχος: Μέτρηση πυκνότητας Η πυκνότητα είναι παράγωγο φυσικό μέγεθος -από τα πρώτα παράγωγα μεγέθη που ορίζονται στη Φυσική και στη Χημεία- στο Γυμνάσιο και στο Λύκειο. Είναι το μέγεθος που εκφράζει την μ ά ζ

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα

ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα Σκοπός πειράµατος Στο πείραµα αυτό θα χρησιµοποιήσουµε βασικά όργανα του εργαστηρίου (διαστηµόµετρο, µικρόµετρο, χρονόµετρο) προκειµένου να: Να µετρήσουµε την πυκνότητα

Διαβάστε περισσότερα

Εισαγωγή στη θεωρία σφαλμάτων. Μαθηματικός ορισμός του σφάλματος : σφάλμα=x-x όπου x & X είναι η μετρούμενη και η πραγματική τιμή αντίστοιχα.

Εισαγωγή στη θεωρία σφαλμάτων. Μαθηματικός ορισμός του σφάλματος : σφάλμα=x-x όπου x & X είναι η μετρούμενη και η πραγματική τιμή αντίστοιχα. Ε. Κ. Παλούρα 00 Ε. Κ. Παλούρα 00 Εισαγωγή στη θεωρία σφαλμάτων Εισαγωγή στη θεωρία σφαλμάτων Πείραμα Συστηματική παρατήρηση & μέτρηση φυσικών φαινομένων Επαλήθευση απλών νόμων Εκπαίδευση στον υπολογισμό

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Θέμα Α Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθμό της

Διαβάστε περισσότερα

A Λυκείου 9 Μαρτίου 2013

A Λυκείου 9 Μαρτίου 2013 Θεωρητικό Μέρος A Λυκείου 9 Μαρτίου 2013 Θέμα 1 ο Στις ερωτήσεις A1, A2, A3, A4 και Β μία μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής

Διαβάστε περισσότερα

Εισαγωγικά Παραδείγματα: Παρατηρήσεις:

Εισαγωγικά Παραδείγματα: Παρατηρήσεις: 1 Εισαγωγικά Η έννοια του συνόλου είναι πρωταρχική στα Μαθηματικά, δεν μπορεί δηλ. να οριστεί από άλλες έννοιες. Γενικά, μπορούμε να πούμε ότι σύνολο είναι μια συλλογή αντικειμένων. υτά λέμε ότι περιέχονται

Διαβάστε περισσότερα

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΝΤΑΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ ΑΠΛΟΥ ΕΚΚΡΕΜΟΥΣ

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΝΤΑΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ ΑΠΛΟΥ ΕΚΚΡΕΜΟΥΣ 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΝΤΑΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ ΑΠΛΟΥ ΕΚΚΡΕΜΟΥΣ Α. ΣΤΟΧΟΙ Η εξοικείωση με τη χρήση απλών πειραματικών διατάξεων. Η εξοικείωση με

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΠΑΛΟΥΡΙΩΤΙΣΣΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑÏΟΥ- ΙΟΥΝΙΟΥ 2014

ΛΥΚΕΙΟ ΠΑΛΟΥΡΙΩΤΙΣΣΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑÏΟΥ- ΙΟΥΝΙΟΥ 2014 ΛΥΚΕΙΟ ΠΑΛΟΥΡΙΩΤΙΣΣΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014 ΒΑΘΜΟΣ...... ΟΛΟΓΡΑΦΩΣ... ΥΠΟΓΡΑΦΗ... ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑÏΟΥ- ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΗΜΕΡΟΜΗΝΙΑ: 26/05/2014 ΧΡΟΝΟΣ: 2 ΩΡΕΣ ΩΡΑ: 7.45-9.45

Διαβάστε περισσότερα

Φυσική: Ασκήσεις. Β Γυμνασίου. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Φυσική: Ασκήσεις. Β Γυμνασίου. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 0 Β Γυμνασίου Φυσική: Ασκήσεις Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 0 1 Ασκήσεις στο 1 ο Κεφάλαιο Ασκήσεις με κενά 1. Να συμπληρώσεις τα κενά στις παρακάτω προτάσεις:

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 6 Συνδεσμολογία Αντιστάσεων ΙI (αντιστάσεις σε παράλληλη σύνδεση) Σκοπός

ΑΣΚΗΣΗ 6 Συνδεσμολογία Αντιστάσεων ΙI (αντιστάσεις σε παράλληλη σύνδεση) Σκοπός ΑΣΚΗΣΗ 6 Συνδεσμολογία Αντιστάσεων ΙI (αντιστάσεις σε παράλληλη σύνδεση) Σκοπός Σκοπός της άσκησης αυτής είναι ο σπουδαστής να μπορέσει να σχεδιάζει κύκλωμα αντιστάσεων σε παράλληλη σύνδεση και να μετράει

Διαβάστε περισσότερα

Εισαγωγή ΚΕΦΑΛΑΙΟ 1 Β ΓΥΜΝΑΣΙΟΥ

Εισαγωγή ΚΕΦΑΛΑΙΟ 1 Β ΓΥΜΝΑΣΙΟΥ Εισαγωγή ΚΕΦΑΛΑΙΟ Β ΓΥΜΝΑΣΙΟΥ . Οι Φυσικές επιστήμες και η μεθοδολογία τους. Τι ονομάζουμε φαινόμενα; Φαινόμενα ονομάζουμε τις μεταβολές που συμβαίνουν γύρω μας, π.χ. το λιώσιμο των πάγων, η βροχή, ο κεραυνός

Διαβάστε περισσότερα

ΖΥΓΟΣ ΡΕΥΜΑΤΟΣ Επαλήθευση βασικών σχέσεων του ηλεκτρομαγνητισμού

ΖΥΓΟΣ ΡΕΥΜΑΤΟΣ Επαλήθευση βασικών σχέσεων του ηλεκτρομαγνητισμού 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΖΥΓΟΣ ΡΕΥΜΑΤΟΣ Επαλήθευση βασικών σχέσεων του ηλεκτρομαγνητισμού Α. ΣΤΟΧΟΙ Η εξοικείωση με τη δημιουργία μικρών βαρών από λεπτό σύρμα μετρώντας το μήκος του.

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

Εργαστηριακές Ασκήσεις Φυσικής - Α Λυκείου. Δύναμη και κίνηση. Όργανα, συσκευές, υλικά: Θεωρία. v = v αρχ + α Δt Δx = v αρχ Δt +1/2 α Δt 2

Εργαστηριακές Ασκήσεις Φυσικής - Α Λυκείου. Δύναμη και κίνηση. Όργανα, συσκευές, υλικά: Θεωρία. v = v αρχ + α Δt Δx = v αρχ Δt +1/2 α Δt 2 Δύναμη και κίνηση Όργανα, συσκευές, υλικά: Ένα εργαστηριακό αμαξάκι + πλάκες βαριδιών. Τροχαλία+ βάση χυτοσίδηρου για stp στο αμαξίδιο. Νήμα (70-80cm). Μάζα (50gr.) Δυναμόμετρο. Χρονομετρητής. Μετροταινία

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2011 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2011 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. Θεωρητικό Μέρος Γ Λυκείου 1 Μαρτίου 11 Θέμα 1 ο Α. Η οκτάκωπος είναι μια μακρόστενη λέμβος κωπηλασίας με μήκος 18 m. Στα κωπηλατοδρόμια, κάποιες φορές, κύματα τα οποία δεν έχουν μεγάλο πλάτος μπορεί να

Διαβάστε περισσότερα

ΣΥΝΤΑΞΗ ΕΞΕΤΑΣΤΙΚΟΥ ΔΟΚΙΜΙΟΥ ΣΤΗ ΦΥΣΙΚΗ.

ΣΥΝΤΑΞΗ ΕΞΕΤΑΣΤΙΚΟΥ ΔΟΚΙΜΙΟΥ ΣΤΗ ΦΥΣΙΚΗ. ΣΥΝΤΑΞΗ ΕΞΕΤΑΣΤΙΚΟΥ ΔΟΚΙΜΙΟΥ ΣΤΗ ΦΥΣΙΚΗ. Στο κείμενο που ακολουθεί γίνεται μια προσπάθεια να διευκρινιστούν οι έννοιες «μαθησιακοί στόχοι» και «στόχοι αξιολόγησης», να μελετηθεί η μεταξύ τους σχέση και

Διαβάστε περισσότερα

Θέματα Παγκύπριων Εξετάσεων

Θέματα Παγκύπριων Εξετάσεων Θέματα Παγκύπριων Εξετάσεων 2009-2015 Σελίδα 1 από 13 Μηχανική Στερεού Σώματος 1. Στο πιο κάτω σχήμα φαίνονται δύο όμοιες πλατφόρμες οι οποίες μπορούν να περιστρέφονται χωρίς τριβές, γύρω από κατακόρυφο

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : Φυσικη Α ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 28/02

ΜΑΘΗΜΑ / ΤΑΞΗ : Φυσικη Α ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 28/02 ΜΑΘΗΜΑ / ΤΑΞΗ : Φυσικη Α ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 28/02 ΘΕΜΑ Α Να γράψετε στο τετραδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Η επιτάχυνση

Διαβάστε περισσότερα

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Β ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. Επιτρεπόμενη διάρκεια γραπτού 2,5 ώρες (150 λεπτά)

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Β ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. Επιτρεπόμενη διάρκεια γραπτού 2,5 ώρες (150 λεπτά) ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Β ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 31/05/2010 ΤΑΞΗ: Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΧΡΟΝΟΣ: 07:30 10:00 π.μ. ΟΝΟΜΑΤΕΠΩΝΥΜΟ:... ΤΜΗΜΑ:...

Διαβάστε περισσότερα

Σχήμα 1 Διαστημόμετρο (Μ Κύρια κλίμακα, Ν Βερνιέρος)

Σχήμα 1 Διαστημόμετρο (Μ Κύρια κλίμακα, Ν Βερνιέρος) Άσκηση Μ1 Θεωρητικό μέρος Μήκος και μάζα (βάρος) Όργανα μέτρησης μήκους Διαστημόμετρο Με το διαστημόμετρο μετράμε μήκη μέχρι και μερικά μέτρα, σε χαμηλές απαιτήσεις ως προς την ακρίβεια. Το κύριο μέρος

Διαβάστε περισσότερα

Σχεδιασμός Ψηφιακών Εκπαιδευτικών Εφαρμογών ΙI

Σχεδιασμός Ψηφιακών Εκπαιδευτικών Εφαρμογών ΙI Σχεδιασμός Ψηφιακών Εκπαιδευτικών Εφαρμογών ΙI Εργασία 1 ΣΤΟΙΧΕΙΑ ΦΟΙΤΗΤΡΙΑΣ: Τσελίγκα Αρετή, 1312009161, Στ εξάμηνο, κατεύθυνση: Εκπαιδευτική Τεχνολογία και Διαπολιτισμική Επικοινωνία Το γνωστικό αντικείμενο

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 24 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Κυριακή, 25 Απριλίου, 2010 Ώρα: 11:00-14:00 Οδηγίες: 1) Το δοκίμιο αποτελείται από οκτώ (8) θέματα. 2) Να απαντήσετε σε όλα τα θέματα. 3)

Διαβάστε περισσότερα

11 η ΕΥΡΩΠΑΙΚΗ ΟΛΥΜΠΙΑ Α ΕΠΙΣΤΗΜΩΝ EUSO 2013

11 η ΕΥΡΩΠΑΙΚΗ ΟΛΥΜΠΙΑ Α ΕΠΙΣΤΗΜΩΝ EUSO 2013 11 η ΕΥΡΩΠΑΙΚΗ ΟΛΥΜΠΙΑ Α ΕΠΙΣΤΗΜΩΝ EUSO 2013 ΤΟΠΙΚΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΠΕΙΡΑΜΑΤΙΚΗ ΟΚΙΜΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ Σάββατο 8 ΕΚΕΜΒΡΙΟΥ 2012 ΕΚΦΕ ΑΧΑΪΑΣ (ΑΙΓΙΟΥ) (Διάρκεια εξέτασης 60 min) Μαθητές: Σχολική Μονάδα

Διαβάστε περισσότερα

Υπολογισμός της επιτάχυνσης από την κλίση της ευθείας

Υπολογισμός της επιτάχυνσης από την κλίση της ευθείας Υπολογισμός της επιτάχυνσης από την κλίση της ευθείας Στοιχεία άσκησης Τάξη: Α' Λυκείου Διάρκεια: Συγγραφέας: Έκδοση: Άδεια χρήσης: 2 διδακτικές ώρες Ιωάννης Σ. Κάτσενος, Φυσικός MSc, ikatsenos@gmail.com

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΛΕΥΚΩΣΙΑ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΛΥΚΕΙΑΚΟΣ ΚΥΚΛΟΣ Β ΣΕΙΡΑ ΕΞΕΤΑΣΕΩΝ

ΥΠΟΥΡΓΕΙΟ ΠΑΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΛΕΥΚΩΣΙΑ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΛΥΚΕΙΑΚΟΣ ΚΥΚΛΟΣ Β ΣΕΙΡΑ ΕΞΕΤΑΣΕΩΝ ΥΠΟΥΡΓΕΙΟ ΠΑΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΛΕΥΚΩΣΙΑ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΛΥΚΕΙΑΚΟΣ ΚΥΚΛΟΣ Β ΣΕΙΡΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑ: ΧΡΟΝΟΣ: ΦΥΣΙΚΗ 3 ΩΡΕΣ ΗΜΕΡΟΜΗΝΙΑ: 27/05/2014 ΩΡΑ ΕΝΑΡΞΗΣ:

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ ΓΥΜΝΑΣΙΟΥ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ ΓΥΜΝΑΣΙΟΥ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. A Γυμνασίου 29 Μαρτίου 2014 Όνομα και Επώνυμο:.. Όνομα Πατέρα: Όνομα Μητέρας:... Σχολείο:... Τάξη/Τμήμα:. Εξεταστικό Κέντρο:. Πειραματικό Μέρος Θέμα 1 ο H μέτρηση του μήκους γίνεται, συνήθως, με μετροταινία

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 28 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Κυριακή, 13 Απριλίου, 2014 Ώρα: 10:00-13:00 Παρακαλώ διαβάστε πρώτα τα πιο κάτω, πριν απαντήσετε οποιαδήποτε ερώτηση. Γενικές οδηγίες: 1.

Διαβάστε περισσότερα

ΗΥ118 Διακριτά Μαθηματικά. Εαρινό Εξάμηνο 2016

ΗΥ118 Διακριτά Μαθηματικά. Εαρινό Εξάμηνο 2016 ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2016 6 η Σειρά Ασκήσεων - Λύσεις Άσκηση 6.1 [1 μονάδα] Πόσοι 3ψήφιοι αριθμοί σχηματίζονται από τα ψηφία 2,3,5,6,7 και 9, τέτοιοι που να διαιρούνται με το 5 και

Διαβάστε περισσότερα

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι ο υπολογισμός του μέτρου της στιγμιαίας ταχύτητας και της επιτάχυνσης ενός υλικού σημείου

Διαβάστε περισσότερα

Γρηγόρης Δρακόπουλος. Φυσικός Ελληνογαλλική Σχολή Καλαμαρί. Επιλεγμένες ασκήσεις στη. Μηχανική Ρευστών. νω ν Φυσικών.

Γρηγόρης Δρακόπουλος. Φυσικός Ελληνογαλλική Σχολή Καλαμαρί. Επιλεγμένες ασκήσεις στη. Μηχανική Ρευστών. νω ν Φυσικών. Γρηγόρης Δρακόπουλος Φυσικός Ελληνογαλλική Σχολή Καλαμαρί Επιλεγμένες ασκήσεις στη Μηχανική Ρευστών Έ ν ω σ η Ε λ λ ή νω ν Φυσικών Θεσσαλονίκη 06 Ισορροπία υγρού Α. Στο διπλανό σχήμα, φαίνεται δοχείο που

Διαβάστε περισσότερα

G.U.N.T. Gerätebau GmbH P.O. Box 1125 D-22881 Barsbüttel Γερμάνια Τηλ (040) 670854-1 Fax (040) 670854-41

G.U.N.T. Gerätebau GmbH P.O. Box 1125 D-22881 Barsbüttel Γερμάνια Τηλ (040) 670854-1 Fax (040) 670854-41 Εξοπλισμός για την εκπαίδευση στην εφαρμοσμένη μηχανική Εγχειρίδιο Οδηγιών HM 135 Συσκευή Μέτρησης της Οπισθέλκουσας Δύναμης σε Σφαίρες G.U.N.T. Gerätebau GmbH P.O. Box 1125 D-22881 Barsbüttel Γερμάνια

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Isaac Newton: Θεωρείται πατέρας της Κλασικής Φυσικής, καθώς ξεκινώντας από τις παρατηρήσεις του Γαλιλαίου αλλά και τους νόμους του Κέπλερ για την κίνηση των πλανητών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Αθήνα 2014 1 ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ... 1. Η ΕΝΝΟΙΑ ΤΟΥ ΣΦΑΛΜΑΤΟΣ... 2. ΤΥΠΟΙ ΣΦΑΛΜΑΤΩΝ. ΣΥΣΤΗΜΑΤΙΚΑ ΚΑΙ ΤΥΧΑΙΑ ΣΦΑΛΜΑΤΑ... 3. ΕΚΤΙΜΗΣΗ ΣΦΑΛΜΑΤΟΣ ΚΑΤΑ

Διαβάστε περισσότερα

Υπολογισμός της σταθεράς του ελατηρίου

Υπολογισμός της σταθεράς του ελατηρίου Άσκηση 5 Υπολογισμός της σταθεράς του ελατηρίου Σκοπός: Ο υπολογισμός της σταθεράς ενός ελατηρίου. Αυτό θα γίνει με δύο τρόπους: 1. Από την κλίση μιας πειραματικής καμπύλης 2. Από τον τύπο της περιόδου

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΧΡΟΝΟΥ ΜΑΖΑΣ ΔΥΝΑΜΗΣ

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΧΡΟΝΟΥ ΜΑΖΑΣ ΔΥΝΑΜΗΣ 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΧΡΟΝΟΥ ΜΑΖΑΣ ΔΥΝΑΜΗΣ Α. ΣΤΟΧΟΙ Η συνειδητή χρήση των κανόνων ασφαλείας στο εργαστήριο. Η εξοικείωση στη χρήση του υποδεκάμετρου και του διαστημόμετρου

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα