1 Millerovi indeksi. jer vektori

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1 Millerovi indeksi. jer vektori"

Transcript

1 Millerovi indeksi U kristalografiji redovno se koriste kosokutni koordinatni sustavi u euklidskom prostoru R 3. Matematički model kristala je kristalna rešetka definirana jediničnom ćelijom kristala. Jedinična ćelija je (po volumenu) najmanji podskup prostora (oblika prizme) čijom translacijom u tri linearno nezavisna smjera dobivamo čitav kristal (preciznija definicija bit će dana u poglavlju o recipročnom prostoru). U pravilu se radi o četverostranoj prizmi (iznimka je heksagonski kristalni sustav kojem je jedinična ćelija uspravna pravilna šesterostrana prizma). Uzmimo (zasad) da gledamo samo jedinične ćelije koje su četverostrane prizme i kojima se atomi nalaze isključivo u vrhovima. Neka su a, b i c (duljina redom a, b, c) vektori koji razapinju jediničnu ćeliju. U tom slučaju kristalnu rešetku čine sve točke prostora koje imaju cjelobrojne koordinate u bazi {a, b, c}. Za opis kristala najpogodniji koordinatni sustav odnosno baza {a, b, c} Ona općenito nije ortonormirana, pa čak ni ortogonalna. Stoga analitička geometrija koja opisuje podskupove prostora vezane za kristal ne može (direktno) koristiti sva svojstva euklidskih prostora, odnosno formule za izračunavanje udaljenosti i kuteva iz koordinata i jednadžbi pravaca i ravnina nisu direktno primjenjive osim u slučaju ortonormirane baze. Ipak, jednadžbe pravaca i ravnina, te za dijeljenje dužina u zadanom omjeru, ostaju nepromijenjene i za rad s koordinatama u tom kosokutnom koordinatnom sustavu. Potrebno je paziti na iduće činjenice u korištenju ovakvog sustava: - koordinate točke prostora (x, y, z) znače da točka ima radij-vektor xa + yb + zc; njena stvarna udaljenost do ishodišta nije x 2 + y 2 + z 2 s - kosinus kuta medu pravcima s vektorima smjera s i t nije t +s 2 t 2 +s 3 t 3 jer vektori s 2 +s 2 2 +s2 3 t 2 +t 2 2 +t2 3 spomenute baze nisu ortonormirani - duljina vektora s nije s 2 + s s 2 3 itd. U kristalografiji od zanimanja su samo odredene, tzv. mrežne ravnine: to su ravnine koje prolaze kroz, medusobno relativno bliske, točke rešetke (pojam rešetke bit će definiran u poglavlju o recipročnom prostoru). Pritom se medusobno paralelne mrežne ravnine smatraju ekvivalentnim (jer jesu ekvivalentne u smislu rasta kristala). Konkretan makroskopski kristal je poliedar omeden plohama (u smislu standardne stereometrijske terminologije: stranama) čije ravnine pripadaju pojedinom skupu medusobno ekvivalentnih mrežnih ravnina. Promotrimo prvo dvodimenzionalni analog kristalne rešetke odreden bazom {a, b}:

2 Na gornjoj slici ucrtana su dva od mogućih smjerova pravaca koji prolaze kroz točke rešetke. Kad bismo neku točku rešetke prozvali ishodištem, vidimo da zadani smjer pravaca ima jednadžbe u segmentnom obliku x m + y n = λ gdje su m, n, λ Z (uz fiksirane m i n za različite λ dobivamo različite, ali medusobno paralelne, mrežne ravnine). Analogno, u prostoru će odabrani smjer ravnina u kristalnoj rešetki biti opisan jednadžbama segmentnog oblika x m + y n + z p = λ s m, n, p, λ Z. Pritom treba misliti na ovo: λm, λn i λp nisu stvarne udaljenosti od ishodišta do sjecišta koordinatnih osi s ravninama, nego samo relativne (stvarne udaljenosti se dobiju kao λma, λnb i λpc). Vidimo da su s trojkom (m, n, p) karakterizirane sve medusobno paralelne mrežne ravnine jednog smjera. Načelno, ta se trojka može odabrati proizvoljno, no konvencija je iduća: (m, n, p) se bira tako da su m, n i p relativno prosti. Ti brojevi zovu se Weissovi parametri plohe na kristalu, točnije smjera njenih mrežnih ravnina. Pišemo i: ploha ima Weissove parametre ma : nb : pc. Primijetimo da je vektor normale za taj smjer dan kao [ m, n, ]. p U slučaju da je ravnina paralelna nekoj od koordinatnih osi, dogovorno se pripadni Weissov parametar označava s (i ignorira u uvjetu da Weissovi parametri trebaju biti relativno prosti). Primjer Ploha paralelna s a i b ima Weissove parametre a : b : pc. Ploha paralelna sa c ima Weissove parametre ma : nb : c. Kako se rijetko točno znaju duljine od a, b, c, obično se kao a : b : c ploha (tzv. jedinična ploha) odabire najveća ploha kristala koja siječe sve tri kristalografske osi. Millerovi indeksi (hkl) usporeduju osni odnos jedinične plohe s osnim odnosom promatrane plohe. Ako su Weissovi parametri plohe ma : nb : pc te ako je V najmanji zajednički višekratnik od m, n i p, onda je h = V m, k = V n, l = V p. Ako je neki od Weissovih parametara, on se ne uzima u obzir za računanje V, a odgovarajući Millerov indeks je po definiciji jednak 0. Geometrijski, Millerovi indeksi predstavljaju koordinate vektora normale na dani smjer ravnina, s tim da nisu proizvoljno odabrane. Zapravo se često kao Weissovi parametri dozvoljavaju i racionalni brojevi uz uvjet da je n =. 2

3 Primjer 2 Promotrimo ravninu x + y + z =. Njeni odsječci na kristalografskim osima su a, 0b, 20c. Kako Weissovi parametri trebaju biti maksimalno skraćeni, oni su 3a : 2b : 4c (isti za sve gornjoj ravnini paralelne ravnine). Najmanji zajednički višekratnik od 3, 2, 4 je 2 pa je h = 2 = 4, k = 2 = 6 i l = 2 = 3 pa je smjer ravnine x + y + z = opissan Millerovim indeksima (463). Primjer 3 Recimo da jedna ravnina danog smjera siječe koordinatne osi redom u točkama 2a, b, 3c. Tada je pripadni segmentni oblik jednadžbe te jedne ravnine x 2 + y + z 3 = Pomnožimo li jednadžbu s najmanjim zajedničkim višekratnikom 6 od 2,, 3 dobivamo 3x + 6y + 2z = 6 Vektor normale ove ravnine i svih njoj paralelnih je [3, 6, 2] (ili njemu proporcionalan vektor). Millerovi indeksi naše ravnine su (362). Primjer 4 Millerovi indeksi (0) pripadaju ravninama paralelnim vektoru c koje u jednakim (relativnim) odsječcima sijeku druge dvije kristalografske osi, a (00) su Millerovi indeksi ravnina paralelnih ravnini razapetoj s a i c. Jedinična ploha ima indekse (). Zgodno je uočiti: što je neki Millerov indeks veći u odnosu na druga dva indeksa (dakle, odgovarajući odsječak na pripadnoj osi je manji), ravnina je bliža okomitosti na odgovarajuću koordinatnu os. Primjer 5 Recimo da promatramo kristal rompskog sustava (jediniča ćelija je kvadar) na idućoj slici Odaberemo si smjerove koordinatnih osi. Najveća strana čija ravnina siječe sve tri osi na pozitivnoj strani je tamno osjenčana. Po definiciji stavljamo da su Millerovi indeksi svih toj strani paralelnih ravnina (). Recimo da želimo odrediti Millerov indeks još tamnije osjenčane strane na idućoj slici 3

4 Produljenjem njenih bridova vidimo da je sjecište na a-osi dvaput udaljenije od ishodišta nego što je to sjecište () ravnine, s b-osi takoder, a s c-osi sjecište je pak na 2 3 udaljenosti na kojoj () ravnina siječe c-os. Stoga je segmentni oblik jednadžbe te ravnine x 2 + y 2 + z 2 3 Množenjem jednadžbe sa 2 dobivamo oblik = x + y + 3z = 2 s relativno prostim cjelobrojnim koordinatama vektora normale. Stoga su Millerovi indeksi ove ravnine (3). Često je potrebno znati medusobnu udaljenost d hkl dvije susjedne mrežne ravnine s Millerovim indeksima (hkl): d hkl jednaka je udaljenosti ishodišta do ishodištu najbliže (hkl) ravnine (koja ne prolazi ishodištem). Za rompske rešetke se d hkl može lako odrediti iz Millerovih indeksa formulom d 2 hkl = h2 a 2 + k2 b 2 + l2 c 2 Izvod te formule je posljedica Pitagorinog teorema (trodimenzionalna verzija), kojeg u rompskom sustavu možemo koristiti jer imamo ortogonalnu bazu. Primjer 6 Recimo da je rompska jedinična ćelija zadana parametrima a = 4, 830Å, b = 0, 896Å, c = 6, 288Å. Želimo li znati razmak ravnina (2), imamo d 2 2 = 4 23, , = 0, , pa je d 2 = 2, 2077Å. 2 Recipročni prostor i recipročna rešetka Da bi imalo smisla govoriti o recipročnom prostoru i rešetci, treba prvo definirati pojmove direktnog prostora i direktne rešetke. I direktni i recipročni prostor su zapravo vektorski prostor R 3 ; razlika je u interpretaciji njihovih točaka. S druge strane, direktna i recipročna rešetka su specijalno odabrane rešetke u direktnom odnosno recipročnom prostoru. Pojednostavljeno rečeno, direktan prostor je onaj u kojem živi promatrani kristal, a recipročni prostor je onaj u kojem se nalazi njegov difraktogram. Definicija Prostor R 3 zove se direktan prostor ako njegove točke interpretiramo kao stvarne pozicije točaka u kristalu (npr. pozicije atoma u kristalu). Kao baza pripadnog vektorskog prostora fiksira se neka baza koju ćemo označavati s {a, b, c}. Direktna rešetka je 4

5 skup svih točaka prostora koje imaju cjelobrojne koordinate 2 u koordinatnom sustavu koji se sastoji od kristalografskih osi, tj. obzirom na bazu {a, b, c}. U danoj rešetki mrežna ravnina je ravnina u prostoru koja sadrži tri točke rešetke. Baza {a, b, c} se bira tako da tim vektorima odredeni paralelepiped bude jediniča ćelija, a cijeli (beskonačni) kristal bude jednak svim translacijama jedinične ćelije za cjelobrojne linearne kombinacije vektora te baze. Uočimo da je volumen jedinične ćelije V = (a, b, c) = a (b c) Primijetimo da je V = d 00 b c = d 00 c a = d 00 a b. Periodičnost kristalne strukture odražava se u invarijantnosti obzirom na translacije za cjelobrojne linearne kombinacije vektora (za taj kristal pogodno odabrane) baze: usporedite to sa svojstvom sinusoide koja je periodična jer se cijela može dobiti kao skup svih translacija restrikcije na [0, 2π ( jedinična ćelija ) za cjelobrojne višekratnike vektora 2π i. Recipročni prostor ponekad se zove i fazni ili Fourier-ov prostor. To je skup zamišljenih točaka koje se konstruiraju tako da se vektori od jedne do druge točke poklapaju s normalama mrežnih ravnina u direktnom prostoru, a duljine vektora su jednake recipročne vrijednosti udaljenosti odgovarajućih ravnina u realnom prostoru 3. Difrakcija na smjeru ravnina s Millerovim indeksom (hkl) rezultira točkom recipročnog prostora s koordinatama (h, k, l) u odgovarajućoj bazi. Definicija 2 Recipročna rešetka definira se isto kao i direktna, ali obzirom na bazu a, b, c definiranu s a = b c V, b = c a V, c = a b V. Prostor R 3 se u slučaju da analiziramo vektore i točke iz recipročne rešetke zove recipročni prostor. Vektori a, b, c imaju iduća svojstva: a a = b b = c c =, a b = a c = b a = b c = c a = c c = 0. (medusobna ortogonalnost baznih vektora direktnog i recipročnog prostora). 2 Ovo je zapravo definicija za slučaj da {a, b, c} čine tzv. primitivnu bazu; općenito bi trebalo dozvoliti racionalne koordinate. Npr. za volumno centriranu kubičnu rešetku točke rešetke dobiju se translacijama vrhova i središta jedinične ćelije koja je oblika kocke. Recimo da je {a, b, c} pripadna ortogonormirana baza (normirana u smislu da su sva tri vektora iste duljine). Ta baza jest kristalografska baza, ali nije primitivna jer su koordinate središta jedinične ćelije u toj bazi ( 2, 2, ) 2. Primjer primitivne baze bio bi {a, b, 2 (a + b + c)}. Vrijedi: Za svaku rešetku postoji odgovarajuća primitivna baza. 3 Zapravo se iz praktičnih razloga vezanih za Fourier-ovu transformaciju uzima da su te duljine jednake 2π d hkl. 5

6 Iz definicije je vidljivo da je bazni vektor recipročnog prostora koji odgovara jednom od baznih vektora direktnog prostora okomit na druga dva bazna vektora direktnog prostora; npr. b je okomit na a i c. Ako je baza direktnog prostora bila ortogonalna, onda je i odgovarajuća baza recipročnog prostora ortogonalna. Duljine baznih vektora recipročnog prostora jednake su recipročnim duljinama visina jedinične ćelije tj. a =, b =, c =. d 00 d 00 d 00 Primjer 7 Pretpostavimo da promatramo kristal kubičnog sustava (i to s primitivnom jediničnom ćelijom tj. točke rešetke su samo translati vrhova jedinične ćelije). Neka je baza a = a i, b = a j,c = a k. Tada je a = a i, b = a j, c = a k, tj. jedinična ćelija recipročne rešetke je takoder kocka, ali s duljinom brida recipročnim duljini brida jedinične ćelije u direktnom prostoru. Može se pokazati da su samo za kubični, tetragonski i ortorombski sustav vektori baze recipročnog prostora paralelni vektorima pripadne baze direktnog prostora. Vrijedi i Propozicija Recipročna rešetka rešetke nekog kristalnog sustava je rešetka istog kristalnog sustava. Napomenimo još jednom: točke recipročne rešetke reprezentiraju smjerove mrežnih ravnina u direktnoj rešetki: ravnina (hkl) je u recipročnom prostoru reprezentirana točkom s radij-vektorom ha + kb + lc. Primjer 8 Promotrimo idući dvodimenzionalni analog direktne i recipročne rešetke 4. Direktna rešetka odredena je vektorima a i b koji zatvaraju kut γ. Razmak d 00 izmedu dvije (00) ravnine (tj. dvije susjedne mrežne ravnine paralelne vektoru b) jednak je visini paralelograma (jedinične ćelije) okomite na b. Razmak d 00 dvije (00) ravnine jednak je visini paralelograma (jedinične ćelije) okomite na a. 4 Možemo zamisliti da se radi o rešetki monoklinskog sustava gledanoj odozgo tj. uzduž c-osi. 6

7 Pripadnu bazu recipročnog prostora čine a i b. Pritom je a okomit na (00) ravnine i ima duljinu /d 00, a b okomit na (00) ravnine i ima duljinu /d 00. U trodimenzionalnom slučaju dobivamo: vektori baze recipročnog prostora su okomiti na koordinatne ravnine direktnog prostora. Ako su jedinice duljina koordinata u direktnom prostoru Å, onda vidimo da su jedinice duljina koordinata u recipročnom prostoru Å (tj. jedinice u recipročnom prostoru su recipročne jedinicama u direktnom prostoru). Volumen jedinične ćelije u recipročnom prostoru (definirane analogno kao one u direktnom) je /V. Zadatak: ako su kutevi izmedu baznih vektora direktnog prostora redom α, β i γ, izvedite formule za kuteve medu odgovarajućim baznim vektorima recipročnog prostora. Nadalje, vektorski produkt dva vektora iz direktnog prostora je vektor iz recipročnog prostora (i obrnuto): r r 2 = (u a + v b + w c) (u 2 a + v 2 b + w 2 c) = = V (v w 2 v 2 w )a + V (w u 2 w 2 u )b + V (u v 2 u 2 v )c Skalarni produkt vektora r s koordinatama [u, v, w] u direktnom prostoru i vektora r s koordinatama [h, k, l] u recipročnom prostoru iznosi r r = uh + vk + wl. 7

8 To slijedi iz medusobne ortogonalnosti baznih vektora direktnog i recipročnog prostora (izvodi se jednako kao i formula za skalarni produkt dva vektora prikazana koordinatno u jednoj ortonormiranoj bazi). Ako je T (h, k, l) točka recipročne rešetke s cjelobrojnim i medusobno relativno prostim koordinatama, njoj je pridružen smjer (hkl) ravnina u direktnoj rešetci. Ako uzmemo da je r radij-vektor od T i promatramo skup svih točaka P = (x, y, z) u direktnoj rešetci takvih da za njihove radij-vektore r vrijedi r r = hx + ky + lz = n (gdje je n Z neka konstanta 5 ), vidimo da se radi o jednadžbi ravnine u direktnom prostoru kojoj je vektor normale n = ha+kb+lc. Stoga je skup svih točaka P za koje je r r konstantno jednak skupu svih ravnina direktnog prostora s vektorom normale n. Označimo sad s N hkl stvarnu duljinu vektora r, koji je normalna na ravninu hx + ky + lz n = 0. Udaljenost pojedine ravnine hx+ky +lz = n do ishodišta dana s h 0+k 0+l 0 n r = n N hkl. Ishodištu najbliža ravnina hx + ky + lz = n se dobije za n = pa je d hkl = N hkl tj. d hkl N hkl =. Posljednja jednakost zove se temeljnim zakonom recipročne rešetke. Gledamo li sve ravnine hx + ky + lz = n (tj. sve n), udaljenosti ishodišta su im nd hkl ). Kako je d n hkl nn hkl =, vidimo da točki T = (h, k, l) iz recipročne rešetke odgovara skup mrežnih ravnina direktnog prostora kojima je razmak n puta manji od stvarnog razmaka medu odgovarajućim ravninama kroz točke rešetke. Za kraj, osvrnimo se još malo na difrakciju. Neka je s 0 vektor upadnog zračenja (duljine, gdje je λ valna duljina zračenja), a s na kristalu difraktirani vektor (iste duljine). Neka λ je θ upadni kut (kut s 0 prema mrežnim ravninama obzirom na koje dolazi do difrakcije). Označimo: K = s s0 (tzv. vektor raspršenja). Iz jednakokračnog trokuta odredenog vektorima s 0, s i K lako se dobije K = 2 sin θ λ. Recimo da se radi o difrakciji obzirom na smjer (hkl) te neka je N hkl = ha + kb + lc pripadni vektor recipročnog prostora; prema već opisanom je njegova duljina N hkl = /d hkl. Tada je K okomit na smjer (hkl) te je kao takav jednak K = 2 sin θ λ n, gdje je n vektor normale na (hkl) koji je jedinične duljine. Takav n je recimo n = N hkl N hkl pa imamo 2d hkl sin θ K = N hkl. λ Uzevši u obzir Braggov zakopn (2d hkl sin θ = λ) dobivamo von Laue-ov uvjet K = Nhkl 5 Ako baza direktnog prostora nije primitivna, onda n Q. 8

9 tj. do konstruktivne interferencije dolazi samo kad se vektor raspršenja podudara s nekim vektorom recipročne rešetke. Ta se veza najlakše vizualizira pomoću Ewaldove sfere. Radi se o sferi polumjera r = čije središte je pozicionirano u ishodište O recipročne λ rešetke. Odaberemo reprezentant AO vektora k 0 (zamišljamo da zračenje upada u smjeru horizontalne osi odredene s a ). Neka je Y dijametralno suprotna A, a OX reprezentant vektora k. Pogledajmo sliku: Vidi se da je K = Y X i ako je kut XAY jednak θ, onda je XOY jednak 2θ, a kut AXY je po Talesovom teoremu pravi. Slijedi sin θ = XY 2r = λ 2 K. Do difrakcije prema von Laue-ovom uvjetu dolazi samo kad je K vektor recipročnog prostora tj. kad je X točka recipročne rešetke. U tom je slučaju K = d hkl pa je sin θ = λ 2d hkl tj. zadovoljen je Bragg-ov zakon. Ukratko: do difrakcije dolazi na smjerovima za koje se pripadne točke recipročne rešetke nalaze na Ewaldovoj sferi. 9

Analitička geometrija prostora

Analitička geometrija prostora Analitička geometrija prostora Franka Miriam Brückler U analitičkog geometriji u ravnini se pomoću koordinata (uredenih parova realnih brojeva) proučavaju točke ravnine i njihovi jednodimenzionalni skupovi:

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

Matematičke metode u kemiji Primjene linearne algebre

Matematičke metode u kemiji Primjene linearne algebre Matematičke metode u kemiji Primjene linearne algebre 1 Kristalne rešetke Definicija 1 Rešetka u afinom prostoru A s koordinatnim sustavom (O; a 1,..., a n ) je skup svih točaka prosotora sa cjelobrojnim

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

Franka Miriam Brückler. Listopad 2008.

Franka Miriam Brückler. Listopad 2008. Rešetke Franka Miriam Brückler PMF-MO, Zagreb Listopad 2008. Franka Miriam Brückler (PMF-MO, Zagreb) Rešetke Listopad 2008. 1 / 22 Vanjska simetrija kristâla navela je ljude na zaključak da joj je uzrok

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

Analitička geometrija i linearna algebra

Analitička geometrija i linearna algebra 1. VEKTORI POJAM VEKTORA Svakodnevno se susrećemo s veličinama za čije je određivanje potrean samo jedan roj. Na primjer udaljenost, površina, volumen,. Njih zovemo skalarnim veličinama. Međutim, postoje

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi

Διαβάστε περισσότερα

ISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule)

ISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule) FORMULE Implicitni oblik jednadžbe pravca A, B i C koeficijenti (barem jedan A ili B različiti od nule) Eksplicitni oblik jednadžbe pravca ili Pravci paralelni s koordinatnim osima - Kada je u općoj jednadžbi

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA. Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.

Διαβάστε περισσότερα

M086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima.

M086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima. M086 LA 1 M106 GRP Tema:.. 5. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 2 M086 LA 1, M106 GRP.. 2/17 P 1 www.fizika.unios.hr/grpua/

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Vanjska simetrija kristâla

Vanjska simetrija kristâla Vanjska simetrija kristâla Franka Miriam Brückler PMF-MO, Zagreb Listopad 2008. Franka Miriam Brückler (PMF-MO, Zagreb) Vanjska simetrija kristâla Listopad 2008. 1 / 16 Vizualna simetrija Što je simetrija?

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Analitička geometrija Zadaci. 13. siječnja 2014.

Analitička geometrija Zadaci. 13. siječnja 2014. Analitička geometrija Zadaci 13. siječnja 2014. 2 Sadržaj 1 Poglavlje 5 1.1 Ponavljanje. Uvod............................ 5 1.2 Koordinatizacija............................. 6 1.3 Skalarni produkt.............................

Διαβάστε περισσότερα

Analitička geometrija afinog prostora

Analitička geometrija afinog prostora Analitička geometrija afinog prostora Linearno zavisan i linearno nezavisan skup točaka U realnom afinom prostoru A n dane točke A i (r i ), i =,,, k, k +, k + pripadaju istoj s ravnini π s, s k, ako i

Διαβάστε περισσότερα

RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA. Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

AB rab xi y j. Formule. rt OT xi y j. xi y j. a x1 i y1 j i b x2 i y 2 j. Jedinični vektor vektora O T točke T(x,y)

AB rab xi y j. Formule. rt OT xi y j. xi y j. a x1 i y1 j i b x2 i y 2 j. Jedinični vektor vektora O T točke T(x,y) Formule Jedinični vektor vektora O T točke T(x,y) r xi y j r T0 T rt x y 1 x y xi y j Radijvektor u koordinatnoj ravnini koji pripada točki T(x,y) rt OT xi y j Vektor AB ako su: AB rab ( x x1 )i ( y y1

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Analitička geometrija u ravnini

Analitička geometrija u ravnini Analitička geometrija u ravnini September 5, 2008 1 Vektori u koordinatnom sustavu 1.1 Udaljenost točaka u koordinatnom sustavu pravokutni koordinatni sustav potpuno je odred en ishodištem jediničnim vektorima

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

Poglavlje 1 GRAM-SCHMIDTOV POSTUPAK ORTOGONALIZACIJE. 1.1 Ortonormirani skupovi

Poglavlje 1 GRAM-SCHMIDTOV POSTUPAK ORTOGONALIZACIJE. 1.1 Ortonormirani skupovi Poglavlje 1 GRAM-SCHMIDTOV POSTUPAK ORTOGONALIZACIJE 1.1 Ortonormirani skupovi Prije nego krenemo na sami algoritam, uvjerimo se koliko je korisno raditi sa ortonormiranim skupovima u unitarnom prostoru.

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

Uvod u teoriju brojeva

Uvod u teoriju brojeva Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)

Διαβάστε περισσότερα

Linearna algebra I, zimski semestar 2007/2008

Linearna algebra I, zimski semestar 2007/2008 Linearna algebra I, zimski semestar 2007/2008 Predavanja: Nenad Bakić, Vježbe: Luka Grubišić i Maja Starčević 22. listopada 2007. 1 Prostor radijvektora i sustavi linearni jednadžbi Neka je E 3 trodimenzionalni

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

6 Primjena trigonometrije u planimetriji

6 Primjena trigonometrije u planimetriji 6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Geometrija (I smer) deo 1: Vektori

Geometrija (I smer) deo 1: Vektori Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo

Διαβάστε περισσότερα

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka 1 Afina geometrija 11 Afini prostor Definicija 11 Pod afinim prostorom nad poljem K podrazumevamo svaku uređenu trojku (A, V, +): A - skup taqaka V - vektorski prostor nad poljem K + : A V A - preslikavanje

Διαβάστε περισσότερα

7.1 Međusobni položaji točaka, pravaca i ravnina

7.1 Međusobni položaji točaka, pravaca i ravnina Poglavlje 7 Stereometrija Stereometrijom nazovamo geometriju (trodimenzionalnog euklidskog) prostora. Osnovni elementi prostora su točke, pravci i ravnine. Aksiome geometrije prostora nećemo navoditi.

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

Vektori. 28. studenoga 2017.

Vektori. 28. studenoga 2017. Vektori 28. studenoga 2017. 1 / 42 Skalarna veličina: veličina odredena samo jednim (realnim) brojem ili skalarom npr. skalarne veličine su udaljenost, masa, površina, volumen,... Vektorska veličina: veličina

Διαβάστε περισσότερα

Prostorni spojeni sistemi

Prostorni spojeni sistemi Prostorni spojeni sistemi K. F. (poopćeni) pomaci i stupnjevi slobode tijela u prostoru: 1. pomak po pravcu (translacija): dva kuta kojima je odreden orijentirani pravac (os) i orijentirana duljina pomaka

Διαβάστε περισσότερα

Gauss, Stokes, Maxwell. Vektorski identiteti ( ),

Gauss, Stokes, Maxwell. Vektorski identiteti ( ), Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

Algebra Vektora. pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske

Algebra Vektora. pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske Algebra Vektora 1 Algebra vektora 1.1 Definicija vektora pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske veličine za opis skalarne veličine trebamo zadati samo njezin iznos (npr.

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Parabola Definicija parabole Parabola u koordinatnom sustavu Parabola i pravac Uvjet dodira pravca i parabole Jednadžba tangente u točki parabole

Parabola Definicija parabole Parabola u koordinatnom sustavu Parabola i pravac Uvjet dodira pravca i parabole Jednadžba tangente u točki parabole Parabola Definicija parabole Parabola u koordinatnom sustavu Parabola i pravac Uvjet dodira pravca i parabole Jednadžba tangente u točki parabole 5. 1. Definicija parabole...............................

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

0 = 5x 20 => 5x = 20 / : 5 => x = 4.

0 = 5x 20 => 5x = 20 / : 5 => x = 4. Zadatak 00 (Denis, ekonomska škola) U kojoj točki pravac s jednadžbom = 8 siječe os? Rješenje 00 Svaka točka koja pripada osi ima koordinate T(0, ). Budući da točka pripada i pravcu = 8, uvrstit ćemo njezine

Διαβάστε περισσότερα

LINEARNA ALGEBRA 1, ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ, VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ

LINEARNA ALGEBRA 1, ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ, VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ LINEARNA ALGEBRA 1 ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ 2. VEKTORSKI PROSTORI - LINEARNA (NE)ZAVISNOST SISTEM IZVODNICA BAZA Definicija 1. Neka je F

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum

16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum 16 Lokalni ekstremi Važna primjena Taylorovog teorema odnosi se na analizu lokalnih ekstrema (minimuma odnosno maksimuma) relanih funkcija (više varijabli). Za n = 1 i f : a,b R ako funkcija ima lokalni

Διαβάστε περισσότερα

Matrice linearnih operatora i množenje matrica. Franka Miriam Brückler

Matrice linearnih operatora i množenje matrica. Franka Miriam Brückler Matrice linearnih operatora i množenje matrica Franka Miriam Brückler Kako je svaki vektorski prostor konačne dimenzije izomorfan nekom R n (odnosno C n ), pri čemu se ta izomorfnost očituje odabirom baze,

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

4. MONGEOVO PROJICIRANJE

4. MONGEOVO PROJICIRANJE 4. MONGEOVO PROJICIRANJE 4.1. Projiciranje točke Niti centralno ni paralelno projiciranje točaka prostora na ravninu nije bijekcija. Stoga se pri takvim preslikavanjima suočavamo s problemom nejednoznačnog

Διαβάστε περισσότερα

Skalarni umnozak vektora je skalar: a b = a b cos ϕ ; ϕ kut izmedju vektor a i b.

Skalarni umnozak vektora je skalar: a b = a b cos ϕ ; ϕ kut izmedju vektor a i b. 5. VEKTORI U PROSTORU 5. Opcenito o vektorima a Jedinicni vektor (ort) je vektor sa intenzitetom. a a a Zbroj dva vektora je vektor: a+ b c. Graficki, zbroj se dobije ulancavanjem dva vektora. Na kraj

Διαβάστε περισσότερα

Linearna algebra za fizičare, zimski semestar Mirko Primc

Linearna algebra za fizičare, zimski semestar Mirko Primc Linearna algebra za fizičare, zimski semestar 006. Mirko Primc Sadržaj Poglavlje 1. Vektorski prostor R n 5 1. Vektorski prostor R n 6. Geometrijska interpretacija vektorskih prostora R i R 3 11 3. Linearne

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Udaljenosti karakterističnih točaka trokuta

Udaljenosti karakterističnih točaka trokuta Udaljenosti karakterističnih točaka trokuta Kristijan Kilassa Kvaternik U trokutu postoje četiri karakteristične točke: težište G, ortocentar H, središte upisane kružnice I i središte opisane kružnice

Διαβάστε περισσότερα

II. ANALITIČKA GEOMETRIJA PROSTORA

II. ANALITIČKA GEOMETRIJA PROSTORA II. NLITIČK GEMETRIJ RSTR I. I (Točka. Ravia.) d. sc. Mia Rodić Lipaović 9./. Točka u postou ( ; i, j, k ) Kateijev pavokuti koodiati sustav k i j T T (,, ) oložaj točke u postou je jedoačo odeñe jeim

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

k a k = a. Kao i u slučaju dimenzije n = 1 samo je jedan mogući limes niza u R n :

k a k = a. Kao i u slučaju dimenzije n = 1 samo je jedan mogući limes niza u R n : 4 Nizovi u R n Neka je A R n. Niz u A je svaka funkcija a : N A. Označavamo ga s (a k ) k. Na primjer, jedan niz u R 2 je dan s ( 1 a k = k, 1 ) k 2, k N. Definicija 4.1. Za niz (a k ) k R n kažemo da

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE 1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos . KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..

Διαβάστε περισσότερα

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a. Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a

Διαβάστε περισσότερα

Pošto se trebaju napisati sve nastavne cjeline i gradivo sva četiri razreda (opće i jezično) potrajati će duži vremenski period.

Pošto se trebaju napisati sve nastavne cjeline i gradivo sva četiri razreda (opće i jezično) potrajati će duži vremenski period. Zadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine. Tako da će u slijedećem vremenskom periodu nastati mala zbirka koja će biti popraćena s teorijom. Pošto

Διαβάστε περισσότερα

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom:

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom: Otporost mterijl. Zdtk ZDTK: U točki čeliče kostrukije postvlje su tri osjetil z mjereje deformij prem slii. ri opterećeju kostrukije izmjeree su reltive ormle (dužiske deformije: b ( - b 3 - -6 - ( b

Διαβάστε περισσότερα

Matematika 1 { fiziqka hemija

Matematika 1 { fiziqka hemija UNIVERZITET U BEOGRADU MATEMATIQKI FAKULTET Matematika 1 { fiziqka hemija Vektori Tijana Xukilovi 29. oktobar 2015 Definicija vektora Definicija 1.1 Vektor je klasa ekvivalencije usmerenih dui koje imaju

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA STATIČKI MOMENTI I MOMENTI INERCIJE RAVNIH PLOHA Kao što pri aksijalnom opterećenju štapa apsolutna vrijednost naprezanja zavisi, između ostalog,

Διαβάστε περισσότερα

Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana.

Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana. Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana. Zadatak 2 Dokazati da se visine trougla seku u jednoj tački ortocentar. 1 Dvostruki vektorski proizvod Važi

Διαβάστε περισσότερα