Αποκατάσταση Εικόνας

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Αποκατάσταση Εικόνας"

Transcript

1 ΤΨΣ 50 Ψηφιακή Επεξεργασία Εικόνας Αποκατάσταση Εικόνας Τµήµα ιδακτικής της Τεχνολογίας και Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς Περιεχόµενα Βιβλιογραφία Περιεχόµενα Ενότητας Ορισµός & Παραδείγµατα Μοντέλο Υποβάθµισης Ποιότητας Αντίστροφο Φιλτράρισµα Φίλτρα Wiener Αποκατάσταση µε βάση τα Ελάχιστα Τετράγωνα Τυφλή Αποσυνέλιξη Γεωµετρικοί Μετασχηµατισµοί Βιβλιογραφία: Πήτας [999]: Κεφάλαιο 8 Gonzales [00]: Capter 5 Gonzales [004]: Capter 5

2 Ορισµός & Παραδείγµατα Η βελτίωση ποιότητας εικόνας και η αποκατάσταση εικόνας είναι συγγενικές περιοχές Οι βασικές τους διαφορές είναι: Στη βελτίωση ποιότητας εικόνας τα κριτήρια επιτυχούς βελτίωσης είναι καθαρά υποκειµενικά στοχεύουν στη δηµιουργία εικόνων οι οποίες είναι περισσότερο αρεστές στους ανθρώπους Στην αποκατάσταση εικόνας τα κριτήρια βελτίωσης είναι περισσότερο µαθηµατικοποιηµένα και εποµένως αντικειµενικά Στην αποκατάσταση εικόνας θεωρείται ότι έχουµε µια πρότερη γνώση για το φαινόµενο της υποβάθµισης της εικόνας κάτι το οποίο δεν ισχύει στη βελτίωση ποιότητας Παραδείγµατα χρήσης αποκατάστασης εικόνων: Αντιµετώπιση θολώµατος blur) εικόνων Ηµιτονοειδής θόρυβος σε ακτινογραφίες φαινόµενο Moire) Υποβάθµιση ποιότητας λόγω των χαρακτηριστικών των film Μοντέλο Υποβάθµισης Ποιότητας Εικόνας Το µοντέλο υποβάθµισης εικόνων αλλά και της αποκατάστασης εικόνας επιδεικνύεται στο παραπάνω σχήµα Η αρχική εικόνα fxy) υποβαθµίζεται εξαιτίας της επίδρασης µιας διεργασίας υποβάθµισης Η[fxy)]) η οποία µοντελοποιείται µέσω µιας συνάρτησης υποβάθµισης xy) Η σηµασία της ορθής µοντελοποίησης είναι τεράστια στην αποκατάσταση εικόνας Εκτός της διεργασίας υποβάθµισης στην εικόνα επενεργεί και αθροιστικός θόρυβος nxy)

3 Μοντέλο Υποβάθµισης Ποιότητας Εικόνας ΙΙ) Η διαδικασία της αποκατάστασης αφορά την εύρεση µιας σχετικά καλής εκτίµησης f ˆ x y) της εικόνας fxy) µε: εδοµένη την υποβαθµισµένη εικόνα gxy) ιαθέσιµη τη µοντελοποίηση της διεργασίας υποβάθµισης µέσω µιας συνάρτησης xy) ιαθέσιµα κάποια στατιστικά χαρακτηριστικά του θορύβου nxy) όπως µέση τιµή και διασπορά Στόχος είναι η ελαχιστοποίηση της διαφοράς ανάµεσα στην και την fxy) f ˆ x y) Μοντέλο Υποβάθµισης Ποιότητας Εικόνας ΙΙΙ) Στις ειδικές περιπτώσεις στις οποίες είναι εφικτή η µοντελοποίηση της διεργασίας υποβάθµισης µέσω µιας Γραµµικής Χωρικά Αναλλοίωτης συνάρτησης xy) η διαδικασία υποβάθµισης περιγράφεται από τη σχέση: gxy) = xy)*fxy)+nxy) όπου * δηλώνει τη διαδικασία της συνέλιξης Από τις ιδιότητες του Μετασχηµατισµού Fourier η παραπάνω σχέση στο χώρο της συχνότητας έχει τη µορφή: Gu = u Fu+Nu 3

4 Μοντέλο Υποβάθµισης Ποιότητας Εικόνας ΙV) Η σχέση Gu = u Fu+Nu αποτελεί τη βάση για τη υλοποίηση των περισσότερων από τις µεθοδολογίες αποκατάστασης εικόνας Η συνάρτηση xy) είναι γνωστή και ως Point Spread Function PSF) ενώ ο µετασχηµατισµός Fourier της συνάρτησης u ονοµάζεται συχνά Optical Transfer Function OTF) Εξαιτίας της περιγραφής της διαδικασίας υποβάθµισης µέσω µιας συνελικτικής διαδικασίας η αποκατάσταση ονοµάζεται συχνά και αποσυνέλιξη Γραµµικά Χωρικά Αναλλοίωτα Συστήµατα Ένα σύστηµα είναι γραµµικό όταν: Η[k f xy)+ k f xy)] = k Η[f xy)]+ k [f xy)] Η παραπάνω σχέση δηλώνει ότι η απόκριση ενός γραµµικού συστήµατος στο άθροισµα δύο εισόδων ισούται µε το άθροισµα των αποκρίσεων στις επιµέρους εισόδους Επίσης η απόκριση στο πολλαπλάσιο µε µια σταθερά) µιας εισόδου ισούται µε την απόκριση στην είσοδο πολλαπλασιασµένο µε µια σταθερά Ένα σύστηµα είναι χωρικά αναλλοίωτο όταν: Η[fx-ay-b)] = gx-ay-a) όπου gxy) είναι η απόκριση του συστήµατος) Η παραπάνω σχέση δηλώνει ότι η απόκριση του συστήµατος περιγράφεται από την ίδια σχέση σε όλα τα σηµεία pixel) της εισόδου 4

5 Αποκατάσταση στη παρουσία θορύβου µόνο Μια ειδική περίπτωση υποβάθµισης ποιότητας έχουµε όταν υπάρχει µόνο επίδραση θορύβου και όχι διεργασία υποβάθµισης Στη περίπτωση αυτή η σχέση υποβάθµισης διαµορφώνεται ως: gxy) = fxy) + nxy) και στο χώρο της συχνότητας Gu = Fu+Nu Στις παραπάνω περιπτώσεις η διαδικασία αποκατάστασης εφαρµόζεται µε βάση τα στατιστικά χαρακτηριστικά του θορύβου και συγκεκριµένα την συνάρτηση πυκνότητας πιθανότητας probability density function pdf) του θορύβου Υπάρχουν πολλές µοντελοποιήσεις θορύβων που βοηθούν στην αποκατάσταση εικόνας θόρυβος Gauss Rayleig gamma οµοιόµορφος κλπ) Προσθήκη θορύβου σε µια εικόνα και διάφορα µοντέλα θορύβου υλοποιούνται στη Matlab µε τη συνάρτηση imnoise Μοντελοποίηση Θορύβου Μερικές από τις συναρτήσεις πυκνότητας πιθανότητας θορύβου φαίνονται στο διπλανό σχήµα Με διαθέσιµες τις συναρτήσεις πυκνότητας πιθανότητας του θορύβου µπορούν εύκολα να εκτιµηθούν τα στατιστικά χαρακτηριστικά του θορύβου όπως µέση τιµή και διασπορά) τα οποία χρειάζονται για την αποκατάσταση εικόνας 5

6 Υποβάθµιση εικόνας και είδη θορύβου Θόρυβος Gauss => µοντελοποίηση αισθητήρων καταγραφής οι οποίοι λειτουργούν σε χαµηλά επίπεδα φωτισµού Θόρυβος salt & pepper => µοντελοποίηση κακής λειτουργίας διαφράγµατος συσκευών απεικόνισης Θόρυβος lognormal => µοντελοποίηση της συµπεριφοράς φωτογραφικού film Εκθετικός θόρυβος και θόρυβος gamma => µοντελοποίηση θορύβου καταγραφής εικόνας µε ακτίνες laser Εκτίµηση παραµέτρων θορύβου Ένας τρόπος εκτίµησης της πυκνότητας πιθανότητας του θορύβου σε µια εικόνα επιτυγχάνεται µε την λήψη ιστογραµµάτων σε οµοιόµορφες περιοχές της εικόνας εδοµένου ότι οι τιµές φωτεινότητας της εικόνας σε αυτές τις περιοχές είναι σταθερές οποιαδήποτε διακύµανση στα ιστογράµµατα οφείλεται στο θόρυβο 6

7 Εκτίµηση παραµέτρων θορύβου ΙΙ) ΦιλτράρισµαΘορύβου Το φιλτράρισµα του θορύβου µπορεί να γίνει είτε στο χώρο της εικόνας όταν υπάρχει µοντελοποίηση του θορύβου µέσω της αντίστοιχης pdf και κατά συνέπεια εκτίµηση των στατιστικών του θορύβου κυρίως της µέσης τιµής και της διασποράς) µε βάση της σχέσεις: gxy) = fxy) + nxy) αθροιστικός θόρυβος) gxy) = fxy) + nxy) fxy) πολλαπλασιαστικός θόρυβος) Είτε στο χώρο της συχνότητας κυρίως για απαλοιφή περιοδικού θορύβου µε πεπερασµένο φάσµα συχνοτήτων µε βάση τη σχέση: Gu = u+nu 7

8 ΦιλτράρισµαΘορύβου στο χώρο της εικόνας Υπάρχουν υλοποιηµένα πάρα πολλά φίλτρα για την απαλοιφή του θορύβου στο χώρο της εικόνας κατάλληλα για συγκεκριµένα είδη θορύβου Μερικά παραδείγµατα φίλτρων δίνονται στη συνέχεια: Αριθµητικού µέσου γραµµικό δηµιουργία µέσω της συνάρτησης fspecial average [mn])) Γεωµετρικού µέσου µη γραµµικό δεν υπάρχει συγκεκριµένη υλοποίηση στη Matlab) Αρµονικού µέσου µη γραµµικό δεν υπάρχει συγκεκριµένη υλοποίηση στη Matlab) Αντιαρµονικού µέσου µη γραµµικό δεν υπάρχει συγκεκριµένη υλοποίηση στη Matlab) Τάξης median min max - µη γραµµικά συναρτήσεις medfilt ordfilt) Ενδιάµεσου σηµείου µη γραµµικό δεν υπάρχει συγκεκριµένη υλοποίηση στη Matlab) ΦιλτράρισµαΘορύβου στο χώρο της συχνότητας Εφαρµόζεται σε περιπτώσεις περιοδικού θορύβου ο οποίος αναλύεται σε λίγες συχνότητες οι οποίες µπορούν να εντοπιστούν από το µετασχηµατισµό Fourier Gu της υποβαθµισµένης εικόνας gxy) Απαλοιφή θορύβου τέτοιας µορφής επιτυγχάνεται µε ζωνοφρακτικά φίλτρα και φίλτρα εγκοπής 8

9 Η συνάρτηση µεταφοράς µετασχηµατισµός Fourier) ενός ζωνοφρακτικού φίλτρου Butterwort δίνεται από τη σχέση: br u = D u W + D u D 0 ΦιλτράρισµαΕγκοπής Notc Filtering) n Η συνάρτηση µεταφοράς φίλτρου εγκοπής βλέπε διπλανό σχήµα) δίνεται από τη σχέση: br u = D 0 + D u D u n ΦιλτράρισµαΕγκοπής II) br u = D 0 + D u D u n D u και D u είναι οι αποστάσεις της συχνότητας u από τη συχνότητα που πρέπει να αποκοπεί και τη συµµετρική της υπενθυµίζεται ότι στο µετασχηµατισµό Fourier υπάρχει συµµετρία ως προς την αρχή των αξόνων) D 0 είναι η ακτίνα της εγκοπής µε κέντρο τη συχνότητα που αποκόπτεται 9

10 Αποκατάσταση µε θόρυβο & διεργασίας υποβάθµισης Στις περισσότερες περιπτώσεις η υποβάθµιση της εικόνας προέρχεται από συνδυασµό µιας διεργασίας υποβάθµισης που µπορεί να οφείλεται στο χρησιµοποιούµενο εξοπλισµό αλλά και στη παρουσία θορύβου Σε αυτές τις περιπτώσεις απαλοιφή του θορύβου µέσω της µοντελοποίησης του δεν είναι αρκετή Απαιτείται µοντελοποίηση της διεργασίας υποβάθµισης και εφαρµογή µεθόδων αποκατάστασης που την απαλείφουν ή τουλάχιστον την περιορίζουν Αποκατάσταση µε θόρυβο & διεργασίας υποβάθµισης ΙΙ) Η απαλοιφή των προβληµάτων που προκαλεί η διεργασία υποβάθµισης µπορεί να γίνει: Πειραµατισµό στις ρυθµίσεις του εξοπλισµού ώστε να περιοριστούν τα προβλήµατα αυτό στις περισσότερες περιπτώσεις δεν είναι εφικτό πχ Ακτινογραφίες ή όταν η πρόσβαση στον εξοπλισµό κοστίζει ή είναι δύσκολή) ηµιουργία µιας συνάρτησης xy) συχνά επονοµαζόµενης και ως PSF Point Spread Function) η οποία µοντελοποιεί τη διεργασία υποβάθµισης και εφαρµογή τεχνικών αποκατάστασης εικόνων image restoration) Αν η διεργασία υποβάθµισης δεν είναι γνωστή ή δεν µπορεί να µοντελοποιηθεί εύκολα τότε εφαρµόζεται µια µεθοδολογία αποκατάστασης εικόνων µε ταυτόχρονη εκτίµηση της xy) Η τεχνική αυτή είναι γνωστή και ως τυφλή αποσυνέλιξη blind deconvolution) 0

11 Μοντέλο Θολώµατος blurring function) Μια από της πιο συνηθισµένες διεργασίες υποβάθµισης της εικόνας είναι το θόλωµα blur) Το θόλωµα µπορεί να προέρχεται από δύο αιτίες: Συνθήκες λήψης της εικόνας πχ Ατµοσφαιρικές συνθήκες σε αεροφωτογράφηση ή κακή εστίαση φακού) Κίνηση είτε του αντικειµένου που απεικονίζεται είτε της κάµερας Τόσο στη µία όσο και στην άλλη περίπτωση η συνάρτηση η οποία µοντελοποιεί το θόλωµα έχει την τάση να διασκορπίζει µια φωτεινή σηµειακή πηγή όπως φαίνεται στο επόµενο σχήµα) αιτιολογώντας την ονοµασία Point Spread Function Μοντέλο Θολώµατος II) Η µοντελοποίηση της σε περιπτώσεις στατικής λήψης γίνεται µέσω ενός χαµηλοπερατού φίλτρου Gauss Βλέπε συνάρτηση fspecial gaussian size sigma) στη Matlab Η µοντελοποίηση της κίνησης µπορεί επίσης να προσοµοιαστεί µε εφαρµογή κατάλληλου φίλτρου Βλέπε συνάρτηση fspecial motion len teta) στη Matlab

12 Μοντέλο Θολώµατος IIΙ) Μοντέλο Θολώµατος IV) Στη διπλανή εικόνα το θόλωµα έχει µοντελοποιηθεί ως συνδυασµός διαγώνιας κίνησης αλλά και Γκαουσιανού φιλτραρίσµατος

13 Μοντέλο Θολώµατος V) Original Image Motion Blurred Image Blurred Image Sarpened Image Αντίστροφο Φιλτράρισµα Όταν η διεργασία υποβάθµισης µπορεί να µοντελοποιηθεί µέσω µιας συνάρτησης xy) η οποία είναι ΓΧΑ Γραµµική Χρονικά Αναλλοίωτη) τότε το µοντέλο υποβάθµισης δίνεται από τη σχέση: gxy)= xy)*fxy) + nxy) Από τις ιδιότητες του Μετασχηµατισµού Fourier προκύπτει ότι ισχύει η σχέση: Gu = u Fu+Νu Εποµένως αν γνωρίζουµε την xy) µπορούµε να σχηµατίσουµε µια εκτίµηση f ˆ x y) της fxy) από τη σχέση: f ˆ x y) = IDFT{ Fˆ u } όπου IDFT{} δηλώνει τον αντίστροφο Μετασχηµατισµό Fourier και ˆ N u F u = F u + u 3

14 Αντίστροφο Φιλτράρισµα ΙΙ) Η τεχνική του αντίστροφου φιλτραρίσµατος θα µπορούσε να είναι αποτελεσµατική αν: ˆ N u F u = F u + u εν υπήρχε θόρυβος στην υποβαθµισµένη εικόνα ή Ο µετασχηµατισµός Fourier του θορύβου Νu) ήταν γνωστός Ακόµα και στις παραπάνω περιπτώσεις όµως και επειδή ο πίνακας u περιέχει συνήθως πολλά µηδενικά ιδιαίτερα στις υψηλές συχνότητες και δεν είναι εν γένει αντιστρέψιµος η Fˆ u δεν προσεγγίζει ικανοποιητικά την Fu και εποµένως ούτε η fˆ x y) προσεγγίζει την fxy) Αντίστροφο Φιλτράρισµα III) 4

15 Φίλτρα Wiener Η αποκατάσταση µε φίλτρα Wiener προσπαθεί να απαλείψει τα µειονεκτήµατα και τα προβλήµατα της αποκατάστασης µε βάση το αντίστροφο φιλτράρισµα Για το σκοπό αυτό η εικόνα f ˆ x y) υπολογίζεται µε ελαχιστοποίηση του στατιστικού σφάλµατος: f ) e = E ˆf όπου Ε{ } δηλώνει την αναµενόµενη τιµή της ποσότητας εντός των αγκυλών Από την ελαχιστοποίηση της παραπάνω ποσότητας e = E f ˆf ) ) προκύπτει η σχέση στο πεδίο της συχνότητας: ˆ u F u = G u u Sn u u + S f u όπου: Φίλτρα Wiener ΙΙ) ˆ u F u = G u u Sn u u + S f u Ηu = µετασχηµατισµός Fourier της συνάρτησης υποβάθµισης * u = u u και Η*u ο αναστροφοσυζυγής του Ηu S f u = F u το φάσµα ισχύος της µη υποβαθµισµένης εικόνας fxy) S n u = N u το φάσµα ισχύος του θορύβου nxy) Το πρόβληµα µε τη χρήση της παραπάνω σχέσης είναι ότι στις περισσότερες περιπτώσεις δεν υπάρχει γνώση του S n u και σχεδόν ποτέ του S f u 5

16 Φίλτρα Wiener ΙΙI) Στην πράξη εφαρµόζεται η σχέση: ˆ u F u = G u u u R + όπου R είναι είτε: µια σταθερά ανάλογη της µέσης ισχύος του θορύβου προς τη µέση ισχύ της εικόνας ένας πίνακας που αντιπροσωπεύει τους λόγους ισχύος θορύβου προς εικόνα στις διάφορες συχνότητες Στη πράξη η τιµή του R υπολογίζεται µετά από διάφορες δοκιµές µια τεχνική που είναι γνωστή ως παραµετρικό φιλτράρισµα Wiener Φίλτρα Wiener ΙV) Για την υλοποίηση σε Matlab της αποκατάστασης µε βάση τα φίλτρα Wiener χρησιµοποιείται η συνάρτηση deconvwnr και αποτελεί υλοποίηση του παραµετρικού φιλτραρίσµατος Wiener 6

17 7 Φίλτρα Wiener V) Στην αποκατάσταση µε βάση τα ελάχιστα τετράγωνα η σχέση: εκφράζεται σε µορφή γινοµένου πινάκων ως: όπου τα g f n είναι διανύσµατα στήλες διάστασης MNx και έχουν προκύψει µε λεξικογραφική σάρωση των γραµµών των εικόνων πινάκων µεγέθους ΜxN) gxy) fxy) και nxy) Ο πίνακας Η έχει διαστάσεις MNxMN και έχει την παρακάτω µορφή: Αποκατάσταση µε βάση τα Ελάχιστα Τετράγωνα ) ) ) ) ) ) 0 0 y x n y i x m n f N M y x n y x f y x M i N + = + = = n f g + = = 0 3 M M M M 0 M M 0 µε = 0) 3) ) ) ) ) 0) ) ) ) ) 0) N N N N N N

18 Η εύρεση της f ˆ x y) γίνεται µε κριτήριο τη βελτιστοποίηση της οµοιοµορφίας της ελαχιστοποίηση της ποσότητα C): C = M N f x y) ) x= 0 y= 0 Αποκατάσταση µε βάση τα Ελάχιστα Τετράγωνα ΙΙ) υποκείµενης στον περιορισµό: τετράγωνα) ελάχιστα Από τις παραπάνω σχέσεις προκύπτει η σχέση στο πεδίο της συχνότητας µετασχηµατισµοί Fourier) * ˆ u F u = u + γ P u G u g fˆ = n Αποκατάσταση µε βάση τα Ελάχιστα Τετράγωνα ΙΙI) όπου Η*u ο αναστροφοσυζυγής του Ηu γ µια παράµετρος που ρυθµίζεται έτσι ώστε να ικανοποιείται ο περιορισµός: g fˆ = n και Pu ο µετασχηµατισµός Fourier του επεκταµένου µε µηδενικά) διδιάστατου διακριτού τελεστή Laplace: 0 p x y) = Για την υλοποίηση σε Matlab της αποκατάστασης µε βάση τα ελάχιστα τετράγωνα χρησιµοποιείται η συνάρτηση deconvreg 8

19 Αποκατάσταση µε βάση τα Ελάχιστα Τετράγωνα ΙV) Για την επιτυχή αποκατάσταση της εικόνας µε βάση τα ελάχιστα τετράγωνα είναι κρίσιµα να υπάρχει γνώση της ισχύος του θορύβου που έχει επιδράσει στην εικόνα ποσότητα n = T n n) διότι βάσει αυτής ρυθµίζεται η παράµετρος γ Στο επόµενο σχήµα επιδεικνύεται η σηµασία της χρήσης µιας σχετικά σωστής εκτίµησης για την ισχύ του θορύβου που έχει επιδράσει στην εικόνα Τυφλή Αποσυνέλιξη Σε πολλές περιπτώσεις η γνώση της διαδικασίας υποβάθµισης της εικόνας δεν είναι γνωστή ή δεν είναι εύκολο να προσοµοιωθεί µε κάποια συνάρτηση Στις περιπτώσεις αυτές εφαρµόζεται µια επαναληπτική διαδικασία αποκατάστασης της εικόνας στην οποία σε κάθε επανάληψη έχουµε µια νέα εκτίµηση της xy) µε βάση την αρχή βελτιστοποίησης της µέγιστης πιθανοφάνειας maximum likeliood estimation) Παρόλο που στις παραπάνω περιπτώσεις δεν υπάρχει άλλη επιλογή για την αποκατάσταση της εικόνας µε βάση κάποια αντικειµενικά κριτήρια η τυφλή αποσυνέλιξη παρουσιάζει και µειονεκτήµατα: εν είναι εύκολο να γνωρίζεις πότε η επαναληπτική διαδικασία πρέπει να σταµατήσει Σχετικά χρονοβόρα µεθοδολογία λόγω των πολλών επαναλήψεων που µπορεί να χρειαστούν για να επιτευχθεί το επιθυµητό αποτέλεσµα 9

20 Τυφλή Αποσυνέλιξη ΙΙ) A = Blurred and Noisy True PSF Εφαρµογή της συνάρτησης deconvblind Deblured Image Recovered PSF Βασικές Γεωµετρικές Λειτουργίες Εικόνας Οι γεωµετρικές λειτουργίες εικόνας είναι αντίθετες των λειτουργιών σηµείου: αλλάζουν την τοποθεσία των pixel αλλά όχι την τιµή τους Μια γεωµετρική λειτουργία γενικά χρειάζεται δυο βήµατα: Μια ταύτιση χώρου των συντεταγµένων της εικόνας µας δίνει µια νέα συνάρτηση εικόνας J: Ji ) = Ii ) = I[ai ) bi )] Οι συντεταγµένες ai ) and bi ) δεν είναι γενικά ή συνήθως ακέραιοι! Για παράδειγµα: ai ) = i/35 bi ) = /45 Τότε Ji ) = Ii/35 /45) το οποίο έχει απροσδιόριστες συντεταγµένες! Έτσι συνεπάγεται η ανάγκη δεύτερης λειτουργίας: Μετατρέπουµε τις µη-ακεραίες συντεταγµένες ai ) και bi ) σε ακέραιες τιµές έτσι ώστε το J να µπορεί να παραστεί σε µορφή σειρών-στηλών πίνακα) 0

21 Παρεµβολή Πλησιέστερου Γείτονα Με απλή σκέψη: Οι γεωµετρικά µετασχηµατισµένες συντεταγµένες ταυτίζονται στις πλησιέστερες ακέραιες συντεταγµένες: Ji ) = I{INT[ai )+05] INT[bi )+05]} Σοβαρό µειονέκτηµα: Ξαφνικές αλλαγές της φωτεινότητας έχουν σαν αποτέλεσµα τις σπασµένές ακµές Για κάποια συντεταγµένη i ) είτε INT[ai )+05] < 0 ή INT[bi )+05] < 0 είτε INT[ai )+05] > N- ή INT[bi )+05] > N- τότε Ji ) = I{INT[ai )+05] INT[bi )+05]} δεν µπορεί να προσδιοριστεί Συνήθως θέτουµε το Ji ) = 0 για αυτές τις τιµές ιγραµµική Παρεµβολή ηµιουργία µιας πιο οµαλής παρεµβολής από την προσέγγιση του πλησιέστερου γείτονα ίδονται τέσσερις συντεταγµένες Ii 0 0 ) Ii ) Ii ) και Ii 3 3 ) η νέα εικόνα Ji ) υπολογίζεται ως ακολούθως: Ji ) = A 0 + A i + A + A 3 i όπου τα διγραµµικά βάρη A 0 A A και A 3 είναι το αποτέλεσµα της λύσης του πιο κάτω συστήµατος εξίσωσεων: A0 A = A A3 i i i i i0 0 i i i3 3 I i0 0) I i ) I i ) I i3 3) Ένας γραµµικός συνδυασµός των τεσσάρων πλησιέστερων τιµών Το πιο καλό ταίριασµα επιπέδου στις τέσσερις πλησιέστερες τιµές

22 Βασικοί Γεωµετρικοί Μετασχηµατισµοί Με τον όρο µετασχηµατισµοί αναφερόµαστε στο χειρισµό των θέσεων των pixels µε συγκεκριµένους τρόπους οι οποίοι τη χωροταξική διάταξη τους Οι κυριότεροι γεωµετρικοί µετασχηµατισµοί είναι: Μετατόπιση translation) γραµµική κίνηση Κλιµάκωση scaling) αλλαγή µεγέθους Αντικατοπτρισµός reflection) σχηµατισµός ειδώλου Περιστροφή rotation) Κύρτωση searing - skewing) Οι µετασχηµατισµοί µπορεί να εφαρµοστούν αριθµητικά µε εφαρµογή µαθηµατικών συναρτήσεων στις θέσεις των pixel Ένας γεωµετρικός µετασχηµατισµός απεικονίζει κάθε σηµείο Α x A y A ) του επιπέδου σε ένα άλλο σηµείο Β x B y B ) µέσω µίας συνάρτησης Τ έτσι ώστε: Τx A y A ) = x B y B ) ή πιο συνοπτικά: ΤΑ) = Β Οµοπαραλληλικοί affine) µετασχηµατισµοί Οι µετασχηµατισµοί αυτοί έχουν µια αρκετά απλή µορφή βλέπε συνάρτηση maketform στη Matlab Αν ένας τέτοιος µετασχηµατισµός απεικονίζει το σηµείο Α που αναφέραµε προηγουµένως σε ένα σηµείο Β τότε οι συντεταγµένες των δύο σηµείων θα συνδέονται µε τους τύπους: x B = a χ Α + c y A + l x y B = b χ Α + d y A + l y όπου a b c d l x l y σταθερές και a d διάφορο του b c Η µορφή που γράψαµε µπορεί να εκφραστεί σε µορφή πινάκων ως: x B y B ) = x A y A ) M + l x l y ) όπου ο Μ είναι ένας x πίνακας µε τη µορφή: a M = c c d

23 Μετατόπιση Η µετατόπιση είναι η πιο απλή γεωµετρική λειτουργία και δεν χρειάζεται παρεµβολή Η µετατόπιση ενός σηµείου σε ένα γεωµετρικό µετασχηµατισµό περιγράφεται από τις παραµέτρους l x l y ) Στον συγκεκριµένο µετασχηµατισµό ο πίνακας Μ έχει τη µορφή: 0 M = 0 Το αποτέλεσµα της εφαρµογής ενός τέτοιου µετασχηµατισµού σε ένα σηµείο Α είναι η µετατόπιση του A κατά l x και κατά l y αντίστοιχα στους άξονες x και y Κλιµάκωση Αλλαγή µεγέθους) Η µεγέθυνση / σµίκρυνση ενός σχήµατος κατά S x και S y αντίστοιχα στους άξονες x και y επιτυγχάνεται µε τον πολλαπλασιασµό των αντίστοιχων συντεταγµένων κάθε σηµείου του µε τα δύο αυτά ποσοστά µεγέθυνσης / σµίκρυνσης Για την υλοποίηση της παραπάνω λειτουργίας ο πίνακας Μ έχει τη µορφή: Sx M = 0 0 S y και το l x l y ) έχει τη µορφή 0 0) Θα πρέπει να σηµειώσουµε ότι αν κάποιο από τα S x S y είναι αρνητικό τότε ο συγκεκριµένος µετασχηµατισµός πέρα από τη µεταβολή των διαστάσεων του σχήµατος το µετατοπίζει στο συµµετρικό του σχήµατος κατά τους άξονες y και x αντίστοιχα 3

24 Κλιµάκωση ΙΙ) Για µεγάλη µεγέθυνση η µεγεθυσµένη εικόνα θα φαίνεται θολή αν χρησιµοποιηθεί απλή παρεµβολή πλησιέστερου γείτονα Η διγραµµική παρεµβολή δίνει καλύτερα αποτελέσµατα Η κλιµάκωση είναι και γνωστή ως ψηφιακό zoom Περιστροφή Στη περιστροφή ενός σηµείου κατά γωνία θ ως προς το κέντρο των αξόνων του συστήµατος συντεταγµένων ο πίνακας Μ έχει τη µορφή: cos θ ) M = sin θ ) sin θ ) cos θ ) και το l x l y ) έχει τη µορφή 0 0) Περιστροφή κατά 30 0 θ= 30 0 ) 4

25 Κύρτωση Η κύρτωση περιλαµβάνει τη µεταβολή των συντεταγµένων στον άξονα των x ενός σηµείου κατά ένα ποσό που είναι ανάλογο της συντεταγµένης του ίδιου σηµείου κατά τον άξονα των y Ένα παράδειγµα ενός τέτοιου µετασχηµατισµού αποτελεί η µετατροπή ορθής γραφής σε πλάγια italics) Κατά το µετασχηµατισµό αυτό η γενική µορφή του πίνακα Μ είναι: M = g και το l x l y ) έχει τη µορφή 0 0) Κύρτωση ΙΙ) Κάθετη κύρτωση g = = 0) Οριζόντια κύρτωση g=0 =5) 5

26 Σύνοψη Το υλικό που παρουσιάστηκε σε αυτή την ενότητα αναφέρεται στη αποκατάσταση ποιότητας εικόνας µε τεχνικές τόσο στο πεδίο της συχνότητας όσο και στο πεδίο του χώρου Στην αποκατάσταση εικόνας θεωρείται ότι υπάρχει γνώση της διαδικασίας υποβάθµισης της εικόνας και των στατιστικών του θορύβου Τα κριτήρια της αποκατάστασης είναι µαθηµατικές σχέσεις και αυτό διαφοροποιεί τις τεχνικές αποκατάστασης από τις τεχνικές βελτίωσης ποιότητας 6

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 3 : Αποκατάσταση εικόνας (Image Restoration) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη 7 Nicolas sapatsoulis Βιβλιογραφία Ενότητας Benvenuto []: Κεφάλαιo Wirow

Διαβάστε περισσότερα

Digital Image Processing

Digital Image Processing Digital Image Processing Αποκατάσταση εικόνας Αφαίρεση Θορύβου Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Αποκατάσταση

Διαβάστε περισσότερα

Κατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση

Κατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση ΤΨΣ 50 Ψηφιακή Επεξεργασία Εικόνας Κατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση Τµήµα ιδακτικής της Τεχνολογίας και Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς Περιεχόµενα Βιβλιογραφία

Διαβάστε περισσότερα

Ακαδηµαϊκό Έτος 2005 2006, Χειµερινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδηµαϊκό Έτος 2005 2006, Χειµερινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ Ι ΑΚΤΙΚΗΣ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΨΣ 5: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ακαδηµαϊκό Έτος 5 6 Χειµερινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Το

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 2 : Βελτιστοποίηση εικόνας (Image enhancement) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...

Διαβάστε περισσότερα

Περιεχόµενα. ΕΠΛ 422: Συστήµατα Πολυµέσων. Γραφικά Υπολογιστών. Βιβλιογραφία

Περιεχόµενα. ΕΠΛ 422: Συστήµατα Πολυµέσων. Γραφικά Υπολογιστών. Βιβλιογραφία Περιεχόµενα ΕΠΛ 422: Συστήµατα Πολυµέσων Γραφικά Υπολογιστών Γραφικά και Εικόνα Μοντέλα γραφικών Επεξεργασία Γραφικών Τύποι (format) γραφικών Γραφικά και WWW Βιβλιογραφία Καγιάφας [2000]: Κεφάλαιο 5, [link]

Διαβάστε περισσότερα

Digital Image Processing

Digital Image Processing Digital Image Processing Intensity Transformations Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Image Enhancement: είναι

Διαβάστε περισσότερα

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό ΗΜΥ 429 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 1 (i) Βασική στατιστική 2 Στατιστική Vs Πιθανότητες Στατιστική: επιτρέπει μέτρηση και αναγνώριση θορύβου και

Διαβάστε περισσότερα

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 5 η Παρουσίαση : Ψηφιακή Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Σύνθεση Χρωμάτων Αφαιρετική Παραγωγή Χρώματος Χρωματικά

Διαβάστε περισσότερα

Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB )

Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB ) Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB ) Μια πρώτη ιδέα για το μάθημα χωρίς καθόλου εξισώσεις!!! Περίγραμμα του μαθήματος χωρίς καθόλου εξισώσεις!!! Παραδείγματα από πραγματικές εφαρμογές ==

Διαβάστε περισσότερα

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας Τεχνικές Μείωσης Διαστάσεων Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας 1 Εισαγωγή Το μεγαλύτερο μέρος των δεδομένων που καλούμαστε να επεξεργαστούμε είναι πολυδιάστατα.

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΤΙΚΗ FOURIER. Γ. Μήτσου

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΤΙΚΗ FOURIER. Γ. Μήτσου ΕΡΓΑΣΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΙΚΗΣ - ΟΠΟΗΛΕΚΡΟΝΙΚΗΣ & LASER ΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & /Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΙΚΗ FOURIER Γ. Μήτσου Μάρτιος 8 Α. Θεωρία. Εισαγωγή Η επεξεργασία οπτικών δεδοµένων, το φιλτράρισµα χωρικών συχνοτήτων

Διαβάστε περισσότερα

Συµπίεση Ψηφιακών Εικόνων: Συµπίεση µε Απώλειες. Πρότυπα Συµπίεσης Εικόνων

Συµπίεση Ψηφιακών Εικόνων: Συµπίεση µε Απώλειες. Πρότυπα Συµπίεσης Εικόνων ΤΨΣ 5: Ψηφιακή Επεξεργασία Εικόνας ΤΨΣ 5 Ψηφιακή Επεξεργασία Εικόνας Συµπίεση Ψηφιακών Εικόνων: Συµπίεση µε απώλειες Πρότυπα Συµπίεσης Εικόνων Τµήµα ιδακτικής της Τεχνολογίας και Ψηφιακών Συστηµάτων Πανεπιστήµιο

Διαβάστε περισσότερα

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. 3. ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. Ορίσουµε το µετασχηµατισµό Fourier ενός µη περιοδικού

Διαβάστε περισσότερα

Ανακατασκευή εικόνας από προβολές

Ανακατασκευή εικόνας από προβολές Ανακατασκευή εικόνας από προβολές Μέθοδος ανακατασκευής με χρήση χαρακτηριστικών δειγμάτων προβολής Αναστάσιος Κεσίδης Δρ. Ηλεκτρολόγος Μηχανικός Θέματα που θα αναπτυχθούν Εισαγωγή στις τομογραφικές μεθόδους

Διαβάστε περισσότερα

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων.

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων. 2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ Γενικά τι είναι - Ορισµός. Τρόποι σύνδεσης συστηµάτων. Κατηγορίες των συστηµάτων ανάλογα µε τον αριθµό και το είδος των επιτρεποµένων εισόδων και εξόδων. Ιδιότητες των

Διαβάστε περισσότερα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα Περιεχόμενα Κεφάλαιο - Ενότητα σελ 1. Ειδικές συναρτήσεις 1.0 Εισαγωγή 1.1 Εξίσωση του Laplace Συστήματα συντεταγμένων 1.2 Συνάρτηση δ του Dirac 1.3 Συνάρτηση του Heaviside 1.4 Οι συναρτήσεις Β, Γ και

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ ΠΑΙ ΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ: ΓΕΩΜΕΤΡΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΝΟΤΗΤΑ: ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ [Κ. ΠΑΠΑΜΙΧΑΛΗΣ ρ ΦΥΣΙΚΗΣ] Τίτλος του Σεναρίου ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ Μελέτη των µετασχηµατισµών

Διαβάστε περισσότερα

Kalman Filter Γιατί ο όρος φίλτρο;

Kalman Filter Γιατί ο όρος φίλτρο; Kalman Filter Γιατί ο όρος φίλτρο; Συνήθως ο όρος φίλτρο υποδηλώνει µια διαδικασία αποµάκρυνσης µη επιθυµητών στοιχείων Απότολατινικόόροfelt : το υλικό για το φιλτράρισµα υγρών Στη εποχή των ραδιολυχνίων:

Διαβάστε περισσότερα

Επεξεργασία Έγχρωµων Εικόνων

Επεξεργασία Έγχρωµων Εικόνων ΤΨΣ 150 Ψηφιακή Επεξεργασία Εικόνας Επεξεργασία Έγχρωµων Εικόνων Τµήµα ιδακτικής της Τεχνολογίας και Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς Περιεχόµενα Βιβλιογραφία Περιεχόµενα Ενότητας Εισαγωγή - Βασικά

Διαβάστε περισσότερα

Απεικόνιση Υφής. Μέρος Α Υφή σε Πολύγωνα

Απεικόνιση Υφής. Μέρος Α Υφή σε Πολύγωνα Απεικόνιση Γραφικά ΥφήςΥπολογιστών Απεικόνιση Υφής Μέρος Α Υφή σε Πολύγωνα Γ. Γ. Παπαϊωάννου, - 2008 Τι Είναι η Υφή; Η υφή είναι η χωρική διαμόρφωση των ποιοτικών χαρακτηριστικών της επιφάνειας ενός αντικειμένου,

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας

Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας ΚΕΣ Αυτόµατος Έλεγχος Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας 6 Ncola Tapaoul Βιβλιογραφία Ενότητας Παρασκευόπουλος [5]: Κεφάλαιο 4 Παρασκευόπουλος

Διαβάστε περισσότερα

Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου

Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [5]: Κεφάλαιο 3, Ενότητες 3. 3.8 Παρασκευόπουλος [5]:

Διαβάστε περισσότερα

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1) ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (22 Σεπτεµβρίου) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ 1ο ΘΕΜΑ 1. Αφού ορίσετε ακριβώς τι σηµαίνει πίσω ευσταθής υπολογισµός, να εξηγήσετε αν ο υ- πολογισµός του εσωτερικού γινοµένου δύο διανυσµάτων

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες,

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες, ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες, παριστάνεται με την εξής ορθογώνια διάταξη: α11 α12 α1n α21 α22 α2n A = αm1 αm2 αmn Ορισμός 2: Δύο πίνακες Α και Β είναι ίσοι, και γράφουμε

Διαβάστε περισσότερα

6-Aνίχνευση. Ακμών - Περιγράμματος

6-Aνίχνευση. Ακμών - Περιγράμματος 6-Aνίχνευση Ακμών - Περιγράμματος Ανίχνευση ακμών Μετατροπή 2 εικόνας σε σύνολο ακμών Εξαγωγή βασικών χαρακτηριστικών της εικόνας Πιο «συμπαγής» αναπαράσταση Ανίχνευση ακμών Στόχος: ανίχνευση ασυνεχειών

Διαβάστε περισσότερα

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Σ.Α.Ε στο χώρο 6 Nicola Tapaouli Λύση εξισώσεων ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [4]: Κεφάλαιο 5: Ενότητες 5.-5. Παρασκευόπουλος

Διαβάστε περισσότερα

Βελτίωση Ποιότητας Εικόνας: Επεξεργασία στο πεδίο της Εικόνας

Βελτίωση Ποιότητας Εικόνας: Επεξεργασία στο πεδίο της Εικόνας ΤΨΣ 15 Ψηφιακή Επεξεργασία Εικόνας Βελτίωση Ποιότητας Εικόνας: Επεξεργασία στο πεδίο της Εικόνας Τµήµα ιδακτικής της Τεχνολογίας και Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς Περιεχόµενα Βιβλιογραφία Περιεχόµενα

Διαβάστε περισσότερα

Κεφάλαιο M3. Διανύσµατα

Κεφάλαιο M3. Διανύσµατα Κεφάλαιο M3 Διανύσµατα Διανύσµατα Διανυσµατικά µεγέθη Φυσικά µεγέθη που έχουν τόσο αριθµητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούµε µε τις µαθηµατικές πράξεις των

Διαβάστε περισσότερα

n. Έστω αποτελείται από όλους τους πίνακες που αντιμετατίθενται με ένα συγκεκριμένο μη μηδενικό nxn πίνακα Τ:

n. Έστω αποτελείται από όλους τους πίνακες που αντιμετατίθενται με ένα συγκεκριμένο μη μηδενικό nxn πίνακα Τ: Η ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ καθώς είναι από τα σημαντικότερα κομμάτια της Άλγεβρας με τις περισσότερες εφαρμογές ΔΕΝ πρέπει να αποστηθίζεται και κυρίως ΔΕΝ πρέπει να γίνεται αντιπαθητική. Για τη σωστή εκμάθηση

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER Ανάλυση σημάτων και συστημάτων Ο μετασχηματισμός Fourier (DTFT και DFT) είναι σημαντικότατος για την ανάλυση σημάτων και συστημάτων Εντοπίζει

Διαβάστε περισσότερα

Κεφάλαιο Η2. Ο νόµος του Gauss

Κεφάλαιο Η2. Ο νόµος του Gauss Κεφάλαιο Η2 Ο νόµος του Gauss Ο νόµος του Gauss Ο νόµος του Gauss µπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού του ηλεκτρικού πεδίου. Ο νόµος του Gauss βασίζεται στο γεγονός ότι η ηλεκτρική

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων ΘΕ ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων 1. Σκοπός Πρόκειται για θεωρητική άσκηση που σκοπό έχει την περιληπτική αναφορά σε θεµατολογίες που αφορούν την

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

. (1) , lim να υπάρχουν και να είναι πεπερασμένα, δηλαδή πραγματικοί αριθμοί.

. (1) , lim να υπάρχουν και να είναι πεπερασμένα, δηλαδή πραγματικοί αριθμοί. O μετασχηματισμός Laplace αποτελεί περίπτωση ολοκληρωτικού μετασχηματισμού, κατά τον οποίο κατάλληλη συνάρτηση (χρονικό σήμα) μετατρέπεται σε συνάρτηση της «συχνότητας» μέσω της σχέσης. (1) Γενικότερα

Διαβάστε περισσότερα

Διάλεξη 10. Σχεδιασμός Φίλτρων. Κεφ. 7.0-7.2. Φίλτρο Διαφοροποιεί το φάσμα ενός σήματος Π.χ. αφήνει να περάσουν ή σταματά κάποιες συχνότητες

Διάλεξη 10. Σχεδιασμός Φίλτρων. Κεφ. 7.0-7.2. Φίλτρο Διαφοροποιεί το φάσμα ενός σήματος Π.χ. αφήνει να περάσουν ή σταματά κάποιες συχνότητες University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 10 Κεφ. 7.0-7.2 Φίλτρο Διαφοροποιεί το φάσμα ενός σήματος Π.χ. αφήνει να περάσουν ή σταματά κάποιες συχνότητες Σχεδιασμός Φίλτρου Καθορίζονται

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1 ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 00 ΘΕΜΑ : (α) Ταχύτητα ΚΜ: u KM = mu + mu m = u + u Εποµένως u = u u + u = u u, u = u u + u = u u (β) Διατήρηση ορµής στο ΚΜ: mu + mu = mv + mv u + u = V + V = 0 V = V

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

Ολοκληρωµένο Περιβάλλον Σχεδιασµού Και Επίδειξης Φίλτρων

Ολοκληρωµένο Περιβάλλον Σχεδιασµού Και Επίδειξης Φίλτρων Ψηφιακή Επεξεργασία Σηµάτων 20 Ολοκληρωµένο Περιβάλλον Σχεδιασµού Και Επίδειξης Φίλτρων Α. Εγκατάσταση Αφού κατεβάσετε το συµπιεσµένο αρχείο µε το πρόγραµµα επίδειξης, αποσυµπιέστε το σε ένα κατάλογο µέσα

Διαβάστε περισσότερα

Κυκλώματα με ημιτονοειδή διέγερση

Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση ονομάζονται εκείνα στα οποία επιβάλλεται τάση της μορφής: = ( ω ϕ ) vt V sin t όπου: V το πλάτος (στιγμιαία μέγιστη τιμή) της τάσης ω

Διαβάστε περισσότερα

Έγχρωµο και Ασπρόµαυρο Φως

Έγχρωµο και Ασπρόµαυρο Φως Έγχρωµο και Ασπρόµαυρο Φως Χρώµα: κλάδος φυσικής, φυσιολογίας, ψυχολογίας, τέχνης. Αφορά άµεσα τον προγραµµατιστή των γραφικών. Αν αφαιρέσουµε χρωµατικά χαρακτηριστικά, λαµβάνουµε ασπρόµαυρο φως. Μόνο

Διαβάστε περισσότερα

ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ

ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ ΝΙΚΟΣ ΤΑΣΟΣ Αλγ ε β ρ α Β Λυ κ ε ί ο υ Γενικής Παιδειασ Α Τό μ ο ς 3η Εκ δ ο σ η Πρόλογος Το βιβλίο αυτό έχει σκοπό και στόχο αφενός μεν να βοηθήσει τους μαθητές της Β Λυκείου να κατανοήσουν καλύτερα την

Διαβάστε περισσότερα

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Η πλέον γνωστή και περισσότερο χρησιµοποιηµένη µέθοδος για την επίλυση ενός γενικού προβλήµατος γραµµικού προγραµµατισµού, είναι η µέθοδος Simplex η οποία αναπτύχθηκε

Διαβάστε περισσότερα

Μετασχηµατισµός Ζ (z-tranform)

Μετασχηµατισµός Ζ (z-tranform) Μετασχηµατισµός Ζ (-traform) Εργαλείο ανάλυσης σηµάτων και συστηµάτων διακριτού χρόνου ιεργασία ανάλογη του Μετ/σµού Laplace Απόκριση συχνότητας Εφαρµογές επίλυση γραµµικών εξισώσεων διαφορών µε σταθερούς

Διαβάστε περισσότερα

ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ.

ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. Ν. Ε. Ηλιού Επίκουρος Καθηγητής Τµήµατος Πολιτικών Μηχανικών Πανεπιστηµίου Θεσσαλίας Γ.. Καλιαµπέτσος Επιστηµονικός

Διαβάστε περισσότερα

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού

Διαβάστε περισσότερα

Γραφικά με Η/Υ / Εισαγωγή

Γραφικά με Η/Υ / Εισαγωγή Γραφικά με Η/Υ Εισαγωγή Πληροφορίες μαθήματος (1/4) Υπεύθυνος μαθήματος: Μανιτσάρης Αθανάσιος, Καθηγητής ιδάσκοντες: Μανιτσάρης Αθανάσιος: email: manits@uom.gr Μαυρίδης Ιωάννης: email: mavridis@uom.gr

Διαβάστε περισσότερα

Απαντησεις στις ερωτησεις της εξετασης της 24 ης Ιουνιου 2005

Απαντησεις στις ερωτησεις της εξετασης της 24 ης Ιουνιου 2005 ΑΤΜΟΦ Απαντησεις στις ερωτησεις της εξετασης της 4 ης Ιουνιου 005. Ερωτηση που αφορα στις ασκησεις του εργαστηριου. Α) Με βάση τη σχέση που συνδέει τις αποστάσεις α και b με την εστιακή απόσταση του σφαιρικού

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ ΜΕΡΟΣ ΙΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ 36 ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Πολλές από τις αποφάσεις

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

ρ. Ευστρατία Μούρτου

ρ. Ευστρατία Μούρτου ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΕΞΑΜΗΝΟ : Ε ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ : - ΜΑΘΗΜΑ «ΒΙΟΣΤΑΤΙΣΤΙΚΗ» ΚΕΦ. ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ρ. Ευστρατία Μούρτου

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 4 : Δειγματοληψία και κβάντιση (Sampling and Quantization) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες

Διαβάστε περισσότερα

2. ΤΟΜΟΓΡΑΦΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΜΕ ΙΣΟΤΟΠΑ

2. ΤΟΜΟΓΡΑΦΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΜΕ ΙΣΟΤΟΠΑ . ΤΟΜΟΓΡΑΦΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΜΕ ΙΣΟΤΟΠΑ . Αναπαράσταση ψηφιακής εικόνας y Μονόχρωµη εικόνα ή απλά εικόνα : διδιάστατη συνάρτηση φωτεινότητας f (x, y, όπου x, y είναι οι συντεταγµένες στο επίπεδο και η τιµή

Διαβάστε περισσότερα

Διακριτός Μετασχηματισμός Fourier

Διακριτός Μετασχηματισμός Fourier Διακριτός Μετασχηματισμός Fourier 1 Διακριτός Μετασχηματισμός Fourier Ο μετασχηματισμός Fourier αποτελεί τον ακρογωνιαίο λίθο της επεξεργασίας σήματος αλλά και συχνή αιτία πονοκεφάλου για όσους πρωτοασχολούνται

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

Βελτίωση - Φιλτράρισμα εικόνας

Βελτίωση - Φιλτράρισμα εικόνας Βελτίωση - Φιλτράρισμα εικόνας /7 Βελτίωση εικόνας με φιλτράρισμα Το φιλτράρισμα εικόνας είναι ουσιαστικά η πράξη συνέλιξης μεταξύ της αρχικής εικόνας και ενός συνόλου συντελεστών που συνήθως ονομάζονται

Διαβάστε περισσότερα

Μαθηματικά μοντέλα συστημάτων

Μαθηματικά μοντέλα συστημάτων Μαθηματικά μοντέλα συστημάτων 1. Γενικά Για να κατανοήσουμε και να ελέγξουμε διάφορα πολύπλοκα συστήματα πρέπει να καταφύγουμε σε κάποιο ποσοτικό μοντέλο των συστημάτων αυτών. Έτσι, είναι απαραίτητο να

Διαβάστε περισσότερα

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 15 Κίνηση Κυµάτων Περιεχόµενα Κεφαλαίου 15 Χαρακτηριστικά των Κυµάτων Είδη κυµάτων: Διαµήκη και Εγκάρσια Μεταφορά ενέργειας µε κύµατα Μαθηµατική Περιγραφή της Διάδοσης κυµάτων Η Εξίσωση του Κύµατος

Διαβάστε περισσότερα

ΑΞΙΟΠΙΣΤΙΑ ΥΛΙΚΟΥ ΚΑΙ ΛΟΓΙΣΜΙΚΟΥ

ΑΞΙΟΠΙΣΤΙΑ ΥΛΙΚΟΥ ΚΑΙ ΛΟΓΙΣΜΙΚΟΥ ΑΞΙΟΠΙΣΤΙΑ ΥΛΙΚΟΥ ΚΑΙ ΛΟΓΙΣΜΙΚΟΥ Εισαγωγή Ηεµφάνιση ηλεκτρονικών υπολογιστών και λογισµικού σε εφαρµογές µε υψηλές απαιτήσεις αξιοπιστίας, όπως είναι διαστηµικά προγράµµατα, στρατιωτικές τηλεπικοινωνίες,

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Κεφάλαιο. Για να δημιουργήσουμε τρισδιάστατα αντικείμενα, που μπορούν να παρασταθούν στην οθόνη του υπολογιστή ως ένα σύνολο από γραμμές, επίπεδες πολυγωνικές επιφάνειες ή ακόμη και από ένα συνδυασμό από

Διαβάστε περισσότερα

4.3. Γραµµικοί ταξινοµητές

4.3. Γραµµικοί ταξινοµητές Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων

Διαβάστε περισσότερα

Η ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ. 11/4/2005 Βασιλεία Καραθαναση Λέκτορας Ε.Μ.Π

Η ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ. 11/4/2005 Βασιλεία Καραθαναση Λέκτορας Ε.Μ.Π Η ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ Επεξεργασία και φιλτράρισμα Λέκτορας Ε.Μ.Π 1 Η ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ Η εικόνα αποτελεί μία πηγή πληροφορίας. Τη συναντάμε ως : εικόνα ακίνητη (φωτογραφία) κινούμενη(τηλεόραση) Επίσης : ασπρόμαυρη

Διαβάστε περισσότερα

Κεφάλαιο 33 ΦακοίκαιΟπτικάΣτοιχεία. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 33 ΦακοίκαιΟπτικάΣτοιχεία. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 33 ΦακοίκαιΟπτικάΣτοιχεία ΠεριεχόµεναΚεφαλαίου 33 Λεπτοί Φακοί- ιάδοση Ακτίνας Εξίσωση Λεπτού Φακού-Μεγέθυνση Συνδυασµός Φακών ΟιεξίσωσητουΟπτικού Φωτογραφικές Μηχανές : Ψηφιακές και Φιλµ ΤοΑνθρώπινοΜάτι;

Διαβάστε περισσότερα

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή.

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή. Η Αριθµητική Ανάλυση χρησιµοποιεί απλές αριθµητικές πράξεις για την επίλυση σύνθετων µαθηµατικών προβληµάτων. Τις περισσότερες φορές τα προβλήµατα αυτά είναι ή πολύ περίπλοκα ή δεν έχουν ακριβή αναλυτική

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: 5 Οκτωβρίου 006 Ηµεροµηνία παράδοσης της Εργασίας: 0 Νοεµβρίου 006.

Διαβάστε περισσότερα

Κεφάλαιο 2 Πίνακες - Ορίζουσες

Κεφάλαιο 2 Πίνακες - Ορίζουσες Κεφάλαιο Πίνακες - Ορίζουσες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο 3 ο Τρίμηνο ο Τρίμηνο Είδος

Διαβάστε περισσότερα

Ευστάθεια Συστηµάτων Αυτοµάτου Ελέγχου: Αλγεβρικά κριτήρια

Ευστάθεια Συστηµάτων Αυτοµάτου Ελέγχου: Αλγεβρικά κριτήρια ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ευστάθεια Συστηµάτων Αυτοµάτου Ελέγχου: Αλγεβρικά κριτήρια 6 Nicol Tptouli Ευστάθεια και θέση πόλων Σ.Α.Ε ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος

Διαβάστε περισσότερα

Μαθηματική Ανάλυση ΙI

Μαθηματική Ανάλυση ΙI Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση ΙI Ενότητα 8: Διπλά ολοκληρώματα Επίκουρος Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss

Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss Γραµµική Άλγεβρα Εισαγωγικά Υπάρχουν δύο βασικά αριθµητικά προβλήµατα στη Γραµµική Άλγεβρα. Το πρώτο είναι η λύση γραµµικών συστηµάτων Aλγεβρικών εξισώσεων και το δεύτερο είναι η εύρεση των ιδιοτιµών και

Διαβάστε περισσότερα

Σήµατα και Συστήµατα ΗΜΥ220 24/1/2007. of them occurring as the solution of a problem indicates some inconsistency or absurdity.

Σήµατα και Συστήµατα ΗΜΥ220 24/1/2007. of them occurring as the solution of a problem indicates some inconsistency or absurdity. Σήµατα και Συστήµατα ΗΜΥ0 //007 Μιγαδικοί Αριµοί Παναγιώτης Παναγή, ppanagi@ucy.ac.cy ηµήτρης Ηλιάδης, eldemet@ucy.ac.cy The imaginary expression a and the negative expression b, have this resemblance,

Διαβάστε περισσότερα

Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση Γεωµετρική θεώρηση του Φωτός Ανάκλαση ηµιουργίαειδώλουαπόκάτοπτρα. είκτης ιάθλασης Νόµος του Snell Ορατό Φάσµα και ιασπορά Εσωτερική ανάκλαση Οπτικές ίνες ιάθλαση σε

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ ΧΩΡΟ Στη συνέχεια θα δοθούν ορισμένες βασικές έννοιες μαθηματικών και φυσικήςμηχανικής που είναι απαραίτητες για την κατανόηση του μαθήματος

Διαβάστε περισσότερα

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ)

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) ΜΙΧΑΛΗΣ ΤΖΟΥΜΑΣ ΕΣΠΟΤΑΤΟΥ 3 ΑΓΡΙΝΙΟ. ΠΕΡΙΛΗΨΗ Η έννοια της συνάρτησης είναι στενά συνυφασµένη µε τον πίνακα τιµών και τη γραφική παράσταση.

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 1 Δύο επιχειρήσεις Α και Β, μοιράζονται το μεγαλύτερο μερίδιο της αγοράς για ένα συγκεκριμένο προϊόν. Καθεμία σχεδιάζει τη νέα της στρατηγική για τον επόμενο χρόνο, προκειμένου να αποσπάσει πωλήσεις

Διαβάστε περισσότερα

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Γιώργος Αλογοσκούφης, Θέµατα Δυναµικής Μακροοικονοµικής, Αθήνα 0 Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης των εξισώσεων

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46

Ψηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46 Ψηφιακή Επεξεργασία Εικόνας Σ. Φωτόπουλος ΨΕΕ ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46 Περιλαμβάνει: Βελτίωση (Enhancement) Ανακατασκευή (Restoration) Κωδικοποίηση (Coding) Ανάλυση, Κατανόηση Τμηματοποίηση

Διαβάστε περισσότερα

Ε.Α.Υ. Υπολογιστική Όραση. Κατάτμηση Εικόνας

Ε.Α.Υ. Υπολογιστική Όραση. Κατάτμηση Εικόνας Ε.Α.Υ. Υπολογιστική Όραση Κατάτμηση Εικόνας Γεώργιος Παπαϊωάννου 2015 ΚΑΤΩΦΛΙΩΣΗ Κατωφλίωση - Γενικά Είναι η πιο απλή μέθοδος segmentation εικόνας Χωρίζουμε την εικόνα σε 2 (binary) ή περισσότερες στάθμες

Διαβάστε περισσότερα

Στην ενότητα αυτή παρατίθενται δεξιότητες που αφορούν στη χρήση των πιο διαδεδομένων λογισμικών Γεωγραφικών Συστημάτων Πληροφοριών (GIS).

Στην ενότητα αυτή παρατίθενται δεξιότητες που αφορούν στη χρήση των πιο διαδεδομένων λογισμικών Γεωγραφικών Συστημάτων Πληροφοριών (GIS). Ενότητα 3η: Χρήση Λογισμικού GIS Το παρακάτω αναλυτικό γνωστικό περιεχόμενο, αποτελεί την τρίτη ενότητα της εξεταστέας ύλης για την πιστοποίηση GISPro και παρέχει το υπόβαθρο της πρακτικής εξέτασης στο

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

Τηλεπικοινωνίες. Ενότητα 2.1: Ανάλυση Fourier. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ

Τηλεπικοινωνίες. Ενότητα 2.1: Ανάλυση Fourier. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Τηλεπικοινωνίες Ενότητα 2.1: Ανάλυση Fourier Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

3-Φεβ-2009 ΗΜΥ 429. 4. Σήματα

3-Φεβ-2009 ΗΜΥ 429. 4. Σήματα 3-Φεβ-2009 ΗΜΥ 429 4. Σήματα 1 Σήματα Σήματα είναι: σχήματα αλλαγών που αντιπροσωπεύουν ή κωδικοποιούν πληροφορίες σύνολο πληροφορίας ή δεδομένων σχήματα αλλαγών στο χρόνο, π.χ. ήχος, ηλεκτρικό σήμα εγκεφάλου

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράγωγος

Κεφάλαιο 6 Παράγωγος Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της

Διαβάστε περισσότερα

Επανάληψη Μιγαδικών Αριθμών

Επανάληψη Μιγαδικών Αριθμών Σήματα και Συστήματα ΗΜΥ0 //006 Επανάληψη Μιγαδικών Αριμών Δημήτρης Ηλιάδης, eldemet@ucy.ac.cy Που χρησιμεύει: Από τη εωρία των Σειρών Fourier, γνωρίζουμε πως οποιοδήποτε περιοδικό σήμα ανεξαρτήτως πολυπλοκότητας,

Διαβάστε περισσότερα

Εισαγωγή ΕΙΣΑΓΩΓΗ ΣΤΑ ΓΣΠ

Εισαγωγή ΕΙΣΑΓΩΓΗ ΣΤΑ ΓΣΠ ΕΙΣΑΓΩΓΗ ΣΤΑ ΓΣΠ Τα τελευταία 25 χρόνια, τα προβλήµατα που σχετίζονται µε την διαχείριση της Γεωγραφικής Πληροφορίας αντιµετωπίζονται σε παγκόσµιο αλλά και εθνικό επίπεδο µε την βοήθεια των Γεωγραφικών

Διαβάστε περισσότερα

εύτερη διάλεξη. Η Γεωµετρία στα αναλυτικά προγράµµατα.

εύτερη διάλεξη. Η Γεωµετρία στα αναλυτικά προγράµµατα. εύτερη διάλεξη. Η στα αναλυτικά προγράµµατα. Η Ευκλείδεια αποτελούσε για χιλιάδες χρόνια µέρος της πνευµατικής καλλιέργειας των µορφωµένων ατόµων στο δυτικό κόσµο. Από τις αρχές του 20 ου αιώνα, καθώς

Διαβάστε περισσότερα

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ Κοίταξε τις µεθόδους, τις λυµένες ασκήσεις και τις ασκήσεις προς λύση των ενοτήτων 6, 7 του βοηθήµατος Μεθοδολογία Άλγεβρας και Στοιχείων Πιθανοτήτων Α Γενικού Λυκείου των Ευσταθίου Μ. και Πρωτοπαπά Ελ.

Διαβάστε περισσότερα

Ενισχυτές Μετρήσεων. 3.1 Ο διαφορικός Ενισχυτής

Ενισχυτές Μετρήσεων. 3.1 Ο διαφορικός Ενισχυτής 3 Ενισχυτές Μετρήσεων 3.1 Ο διαφορικός Ενισχυτής Πολλές φορές ένας ενισχυτής σχεδιάζεται ώστε να αποκρίνεται στη διαφορά µεταξύ δύο σηµάτων εισόδου. Ένας τέτοιος ενισχυτής ονοµάζεται ενισχυτής διαφοράς

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΠΟΚΑΤΑΣΤΑΣΗ ΘΟΡΥΒΟΠΟΙΗΜΕΝΩΝ ΕΙΚΟΝΩΝ ΑΠΟ ΠΡΟΣΘΕΤΙΚΟ ΘΟΡΥΒΟ ΜΕ ΧΡΗΣΗ ΧΩΡΙΚΩΝ ΦΙΛΤΡΩΝ

Διαβάστε περισσότερα

ΤΕΙ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ & ΘΡΑΚΗΣ

ΤΕΙ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ & ΘΡΑΚΗΣ ΤΕΙ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ & ΘΡΑΚΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε Πτυχιακή εργασία ΜΕΛΕΤΗ ΣΥΣΤΗΜΑΤΟΣ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΘΕΣΗΣ ΓΡΑΦΙΔΑΣ ΕΚΤΥΠΩΤΗ ΕΚΠΟΝΗΣΗ: ΚΟΛΙΩΤΣΑ ΜΑΡΙΑ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΤΣΙΡΙΓΩΤΗΣ

Διαβάστε περισσότερα