ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ"

Transcript

1 ΠΑΙ ΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ: ΓΕΩΜΕΤΡΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΝΟΤΗΤΑ: ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ [Κ. ΠΑΠΑΜΙΧΑΛΗΣ ρ ΦΥΣΙΚΗΣ] Τίτλος του Σεναρίου ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ Μελέτη των µετασχηµατισµών κατοπτρικής συµµετρίας ως προς ευθεία, στο επίπεδο. Σχηµατισµός του ειδώλου τροχιάς κατά την ανάκλαση σε επίπεδο κάτοπτρο. [ ύο διδακτικές ώρες] Ενδεικτικό σχήµα Τµήµα: Ονοµ/νυµο µαθητών: ΚΑΤΟΠΤΡΙΚΗ ΣΥΜΜΕΤΡΙΑ

2 Κεντρική ιδέα του σεναρίου Γνωρίζουµε ότι κατά την ανάκλαση του φωτός σε επίπεδα κάτοπτρα, σχηµατίζονται είδωλα που είναι συµµετρικά των φωτεινών αντικειµένων, ως προς το επίπεδο που ορίζεται από το κάτοπτρο. Εποµένως, για να κατασκευάσουµε το είδωλο ενός αντικειµένου, αρκεί να βρούµε πώς µετασχηµατίζονται οι συντεταγµένες κάθε σηµείου του, κάτω από ένα µετασχηµατισµό συµµετρίας ως προς το επίπεδο του κατόπτρου. Στο παρόν σενάριο εργαζόµαστε σε ένα δισδιάστατο χώρο. Οι καρτεσιανές συντεταγµένες των σηµείων του προσδιορίζονται ως προς ένα σύστηµα ορθογωνίων αξόνων x-y. Τοποθετούµε το επίπεδο κάτοπτρο κατά µήκος της ευθείας y = tan( θ) x όπου θ είναι η γωνία που σχηµατίζει το κάτοπτρο µε τον άξονα x. Μεταβάλλοντας τη γωνία θ µπορούµε να περιστρέφουµε το κάτοπτρο ως προς τους άξονες x-y. Για µια θέση του κατόπτρου (δηλαδή για µια τιµή της γωνίας θ), βρίσκουµε το µετασχηµατισµό των συντεταγµένων που απεικονίζει τυχαίο σηµείο (x,y) στο συµµετρικό του (X,Y), ως προς το κάτοπτρο. Η αναλυτική έκφραση του µετασχηµατισµού, δίνεται από τις σχέσεις: X= Y= (1 λ ) x+ λ y 1+λ λ x (1 λ ) y 1+λ Στη συνέχεια, θεωρούµε ότι τα σηµεία (x,y) διαγράφουν µία καµπύλη του επιπέδου, για παράδειγµα ένα κύκλο, και επιχειρούµε να απαντήσουµε στο ερώτηµα: Πώς απεικονίζεται η καµπύλη αυτή µέσω του µετασχηµατισµού κατοπτρικής συµµετρίας, που βρήκαµε στο προηγούµενο βήµα; είχνουµε θεωρητικά ότι το σχήµα της καµπύλης που διαγράφει το φωτεινό αντικείµενο διατηρείται αναλλοίωτο ως προς κάθε µετασχηµατισµό κατοπτρικής συµµετρίας. Η επιβεβαίωση των συµπερασµάτων που προέκυψαν από τη θεωρητική µελέτη των µετασχηµατισµών κατοπτρικής συµµετρίας και της δράσης τους πάνω σε καµπύλες του επιπέδου, γίνεται στο περιβάλλον του εκπαιδευτικού λογισµικού MODELLUS: Κατασκευάζουµε ένα µοντέλο, όπου σχηµατίζεται ο γεωµετρικός τόπος των εικόνων των σηµείων µιας τροχιάς (καµπύλης) µέσω του µετασχηµατισµού κατοπτρικής συµµετρίας, που αντιστοιχεί στη συγκεκριµένη θέση του κατόπτρου. Έχουµε τη δυνατότητα να αλλάζουµε τόσο τη µορφή της τροχιάς, όσο και τη θέση του κατόπτρου και σε κάθε περίπτωση να ελέγχουµε αν το σχήµα της τροχιάς διατηρείται αναλλοίωτο κάτω από τον αντίστοιχο µετασχηµατισµό κατοπτρικής συµµετρίας. ΚΑΤΟΠΤΡΙΚΗ ΣΥΜΜΕΤΡΙΑ

3 Τι χρειάζεται να γνωρίζεις από τη Φυσική και τα Μαθηµατικά. Φυσική: Ανάκλαση σε επίπεδο καθρέφτη 1) Θεώρησε µια σηµειακή φωτεινή πηγή (που ορίζεται ως φωτεινό αντικείµενο) και έναν επίπεδο καθρέφτη. Οι φωτεινές ακτίνες που εκπέµπονται από το φωτεινό σηµείο και συναντούν τον καθρέφτη, αλλάζουν κατεύθυνση: υφίσταται ανάκλαση. Η κατεύθυνση κάθε ανακλώµενης ακτίνας προσδιορίζεται από τους ακόλουθους δύο νόµους της ανάκλασης (σχήµα 1): a) Η ανακλώµενη και η προσπίπτουσα ακτίνα, µαζί µε την κάθετη ευθεία στην επιφάνεια του καθρέφτη που περνάει από το σηµείο πρόσπτωσης, βρίσκονται στο ίδιο επίπεδο. Εικόνα 1: Το Α είναι συµµετρικό του Α ως προς το επίπεδο του καθρέφτη. b) Η κάθετη ευθεία σχηµατίζει µε την προσπίπτουσα και την ανακλώµενη ακτίνα δύο γωνίες: τη γωνία πρόσπτωσης και τη γωνία ανάκλασης αντίστοιχα. Οι γωνίες αυτές είναι ίσες. ) Οι ανακλώµενες ακτίνες φαίνεται ότι προέρχονται από ένα φανταστικό φωτεινό σηµείο, που βρίσκεται πίσω από τον καθρέφτη. Το σηµείο αυτό ονοµάζεται (φανταστικό) είδωλο του φωτεινού αντικειµένου. Με βάση τους δύο νόµους της ανάκλασης, µπορούµε να δείξουµε εύκολα, ότι το είδωλο φωτεινού σηµείου ως προς κάθε επίπεδο καθρέφτη είναι συµµετρικό ως προς το επίπεδο του καθρέφτη (σχήµα 1). Αν το φωτεινό σηµείο - αντικείµενο διαγράφει µια τροχιά, τότε και το είδωλό του θα διαγράφει µια τροχιά. Η τροχιά του ειδώλου είναι συµµετρική της τροχιάς του αντικειµένου ως προς το επίπεδο του καθρέφτη. Μαθηµατικά: Μετασχηµατισµοί συµµετρίας του επιπέδου Κατοπτρική συµµετρία 1) Ο µετασχηµατισµός κατοπτρικής συµµετρίας στο επίπεδο, απεικονίζει τα σηµεία του επιπέδου στα συµµετρικά τους ως προς µια ορισµένη ευθεία (ε) του επιπέδου, που ονοµάζουµε άξονα συµµετρίας του µετασχηµατισµού. Αν (x,y) είναι οι συντεταγµένες τυχαίου σηµείου Α του επιπέδου, τότε ο µετασχηµατισµός κατοπτρικής συµµετρίας ως προς άξονα (ε), απεικονίζει τα x, y στις συντεταγµένες X, Y του συµµετρικού σηµείου (Α ) του Α, ως προς την (ε), µέσω µιας αναλυτικής έκφρασης της µορφής: X= f 1(x,y) (1) Y= f (x,y) Οι αναλυτικές εκφράσεις των συναρτήσεων f 1 και f προσδιορίζονται από την επιλογή (άρα και την εξίσωση) του άξονα συµµετρίας (ε). Ο µετασχηµατισµός (1) ισοδυναµεί µε ένα µαθηµατικό µοντέλο του φαινοµένου της ανάκλασης σε επίπεδο καθρέφτη, ο οποίος τοποθετείται στη θέση της ευθείας (ε). Αν γνωρίζουµε την αναλυτική έκφραση του µετασχηµατισµού κατοπτρικής συµµετρίας (1), για ορισµένη θέση του επίπεδου καθρέφτη, µπορούµε να βρούµε τις συντεταγµένες του ειδώλου οποιουδήποτε φωτεινού σηµείου Α(x,y). Επιπλέον, αν το φωτεινό σηµείο Α διαγράφει µια καµπύλη τροχιά, που περιγράφεται µε γνωστές παραµετρικές εξισώσεις, της µορφής: x= x(t) () y= y(t) τότε από τις σχέσεις (1) µπορούµε να βρούµε την αναλυτική έκφραση της τροχιάς που διαγράφει το είδωλο του Α: ΚΑΤΟΠΤΡΙΚΗ ΣΥΜΜΕΤΡΙΑ 3

4 X= f 1(x(t),y(t)) Y= f (x(t),y(t)) (3) Οι µετασχηµατισµοί κατοπτρικής συµµετρίας έχουν τις ακόλουθες δύο ιδιότητες, που θα τις αποδείξουµε στο πλαίσιο του σεναρίου: α) διατηρούν αναλλοίωτο το σχήµα κάθε τροχιάς, β) αφήνουν αναλλοίωτα τα σηµεία του άξονα συµµετρίας (ε) του µετασχηµατισµού. ) Στο σενάριο θα βρούµε τις αναλυτικές εκφράσεις ελλειπτικών και κυκλικών τροχιών ως προς µετασχηµατισµούς κατοπτρικής συµµετρίας. Προς τούτο, χρειαζόµαστε τις παραµετρικές εκφράσεις των αντίστοιχων καµπύλων, ως προς ένα σύστηµα καρτεσιανών συντεταγµένων. Έστω έλλειψη µε ηµιάξονες a, b και κέντρο συµµετρίας το (x 0,y 0 ). Τα σηµεία (x,y) της έλλειψης ικανοποιούν την εξίσωση: (x x 0) (y y 0) + = 1 (4) a b Από την (4) προκύπτει ότι οι παραµετρικές εξισώσεις της έλλειψης µπορούν να εκφραστούν µε τις σχέσεις: x= x0 + a cos( ω t) y= y + b sin( ω t) (5) 0 π 0 t ω Για a=b=r, οι εξισώσεις (5) είναι παραµετρικές εξισώσεις κύκλου, κέντρου (x 0,y 0 ) και ακτίνας R. ΚΑΤΟΠΤΡΙΚΗ ΣΥΜΜΕΤΡΙΑ 4

5 Στόχοι του σεναρίου Τι θα κάνει ο µαθητής Ο βασικός στόχος του σεναρίου είναι η απόκτηση της ικανότητας διαµόρφωσης µαθηµατικών µοντέλων για την περιγραφή φυσικών συστηµάτων και η διερεύνησή τους στο πλαίσιο συγκεκριµένων εκπαιδευτικών λογισµικών. Οι στόχοι του σεναρίου µπορούν να εξειδικευτούν στους ακόλουθους: Εφαρµόζω τις γνώσεις µου στο φαινόµενο της ανάκλασης και υπολογίζω γεωµετρικά τη θέση του ειδώλου φωτεινού σηµείου, ως προς τυχαία θέση του επίπεδου καθρέφτη. Με βάση τη γεωµετρική κατασκευή του ειδώλου φωτεινού σηµείου ως προς επίπεδο καθρέφτη, και µε δεδοµένο σύστηµα συντεταγµένων, υπολογίζω τις συντεταγµένες του ειδώλου ως συναρτήσεις των συντεταγµένων του αντικειµένου. είχνω ότι οι µετασχηµατισµοί κατοπτρικής συµµετρίας του επιπέδου διατηρούν αναλλοίωτο το σχήµα κάθε ελλειπτικής τροχιάς. Χειρίζοµαι το σχετικό αρχείο του εκπαιδευτικού λογισµικού MODELLUS. Στο περιβάλλον του προγράµµατος διερευνώ την ισχύ των συµπερασµάτων που έχω διαµορφώσει για την κατοπτρική συµµετρία στο επίπεδο, καθώς και τη σχέση του µαθηµατικού µοντέλου µε το φυσικό σύστηµα (της ανάκλασης), που περιγράφει. Ο µαθητής µπορεί να αξιοποιήσει το σενάριο είτε µόνος του, είτε στην τάξη, µε την καθοδήγηση των καθηγητών του, είτε σε συνεργασία µε συµµαθητές του, είτε στο πλαίσιο κάποιας ευρύτερης συνθετικής εργασίας. εδοµένου ότι ο κεντρικός στόχος του σεναρίου αγγίζει τον πυρήνα της σύγχρονης µεθόδου της Φυσικής, δηλαδή τη σύνθεση µαθηµατικών µοντέλων για την περιγραφή φυσικών συστηµάτων, η αξιοποίησή του µπορεί να γίνει στο πλαίσιο της συνεργασίας των καθηγητών των Μαθηµατικών και της Φυσικής του Σχολείου. Στην περίπτωση αυτή, το σενάριο αποκτά ένα σαφή διαθεµατικό χαρακτήρα, µε στόχο συναφή µε τους θεµελιώδεις στόχους του Αναλυτικού Προγράµµατος Σπουδών Φυσικής του Λυκείου (βλέπε σχετική έκδοση του Π.Ι.: ιαθεµατικά Αναλυτικά Προγράµµατα Σπουδών Ε. Λυκείου). ΚΑΤΟΠΤΡΙΚΗ ΣΥΜΜΕΤΡΙΑ 5

6 Φύλλο εργασίας 1 1. είξε ότι ο µετασχηµατισµός κατοπτρικής συµµετρίας των σηµείων (x,y) του επιπέδου, ως προς την ευθεία: όπου λ= tanθ y =λ x (1) [θ είναι η γωνία που σχηµατίζει η ευθεία (1) µε τον άξονα x] δίνεται από τις σχέσεις: X= Y= (1 λ ) x+ λ y 1+λ λ x (1 λ ) y 1+λ () Υπόδειξη (x,y) (x, λ x) (X,Y) θ Ισχύουν οι σχέσεις: (x x, λ x y) i(x, λ x) = 0 (X, Y) = (x, y) + (x x, λ x y) Απόδειξη:. είξε ότι αν τα σηµεία (x,y) διαγράφουν τον κύκλο: x= x + R cos( ω t) 0 y= y + R sin( ω t) 0 π 0 t ω Τότε και τα σηµεία (X,Y), που προσδιορίζονται από το µετασχηµατισµό (), διαγράφουν ένα κύκλο ίσης ακτίνας R. Υπολόγισε τη θέση του κέντρου του κύκλου επί του οποίου βρίσκονται τα σηµεία (X,Y). Υπόδειξη Χρησιµοποίησε τις σχέσεις: 1 λ 1 (tan θ) = = cos( θ) 1+λ 1 + (tan θ) λ tanθ = = sin( θ) 1+λ 1 + (tan θ) cos( ωt)cos( θ+ ) sin( ωt)sin( θ= ) cos( ω t θ) Απόδειξη ΚΑΤΟΠΤΡΙΚΗ ΣΥΜΜΕΤΡΙΑ 6

7 3. Στο περιβάλλον του εκπαιδευτικού λογισµικού MODELLUS, άνοιξε το αρχείο reflection a.mdl. Με το αρχείο αυτό µπορούµε να σχεδιάσουµε κυκλικές ή ελλειπτικές τροχιές και να βρούµε τις εικόνες τους µέσω του κατοπτρικού µετασχηµατισµού (), για διάφορες τιµές της γωνίας θ που σχηµατίζει το κάτοπτρο (δηλαδή η ευθεία (1): y=λx) µε το θετικό ηµιάξονα x. Με τον τρόπο αυτό µπορούµε να ελέγξουµε και να γενικεύσουµε το αποτέλεσµα της ερώτησης : Σηµειώσεις 1) Στο µοντέλο µπορούµε να σχεδιάζουµε ελλειπτικές τροχιές της µορφής: π x= x0 + R cos( t) Τ π y= y0 + R sin( t) Τ Ο κατοπτρικός µετασχηµατισµός () διατηρεί αναλλοίωτο το σχήµα κάθε καµπύλης του επιπέδου, για κάθε τιµή της γωνίας 0<θ<π/. Άνοιξε το παράθυρο «Αρχικές Συνθήκες». Στις τέσσερις «περιπτώσεις» που εµφανίζονται, όρισε ένα κύκλο κέντρου (x 0,y 0 )=(10,10) και ακτίνας R=5. Προς τούτο θέσε x 0 =10, y 0 =10 και a=b=5. Στην 1η «περίπτωση θέσε τη γωνία του κατόπτρου ως προς τον άξονα x, θ=10 µοίρες, στη η θ=30 µοίρες, στην 3η θ=0 µοίρες και στην 4η θ=80 µοίρες. Από το παράθυρο «Έλεγχος» τρέξε το πρόγραµµα. Παρατήρησε την εικόνα της τροχιάς, που σχηµατίζεται µέσω του µετασχηµατισµού κατοπτρικής συµµετρίας. Συµφωνεί το αποτέλεσµα µε τις απαντήσεις των ερωτήσεων 1 και ; Εξήγησε. Στο Τ έχει δοθεί η τιµή του ολικού χρόνου λειτουργίας του µοντέλου, ώστε η έλλειψη να διαγραφεί µια φορά. Για τις ρυθµίσεις που έχουν γίνει είναι t max =Τ=0 ) Η ορατή περιοχή του επιπέδου x- y εκτείνεται για: -0<x<50 και -0<y<0 (1pixel=0.1µονάδες µήκους) Η θέση και οι διαστάσεις της τροχιάς πρέπει να επιλέγονται έτσι ώστε η ίδια και το είδωλό της να εµπίπτουν στην ορατή περιοχή σχεδίασης. ΚΑΤΟΠΤΡΙΚΗ ΣΥΜΜΕΤΡΙΑ 7

8 Φύλλο εργασίας 4. Στο περιβάλλον το MODELLUS, άνοιξε το αρχείο reflection a.mdl. Άνοιξε το παράθυρο «Αρχικές Συνθήκες». Στις τέσσερις «περιπτώσεις» που εµφανίζονται, όρισε ως αντικείµενο, κύκλο κέντρου (x 0,y 0 )=(10,10) και ακτίνας R=5, όπως έκανες στην ερώτηση 3 του φύλλο εργασίας 1. Υπολόγισε τις συντεταγµένες του κέντρου του ειδώλου του κύκλου, σύµφωνα µε τις σχέσεις που απέδειξες κατά την επεξεργασία της ερώτησης. Χρησιµοποίησε το εργαλείο µέτρησης συντεταγµένων και προσδιόρισε γραφικά τη θέση του κέντρου του ειδώλου, σύµφωνα µε τους υπολογισµούς σου. Στη συνέχεια, µε τη βοήθεια του εργαλείου της µέτρησης αποστάσεων, µέτρησε την απόσταση του κέντρου από δύο ή τρία σηµεία της περιµέτρου. Ταυτίζεται το αποτέλεσµα µε την τιµή της ακτίνας του αρχικού κύκλου; Αν ΝΑΙ, διατύπωσε ένα γενικευµένο συµπέρασµα. Αν ΟΧΙ συζήτησε τους υπολογισµούς σου, όσον αφορά στην παραγωγή της αναλυτικής έκφρασης των µετασχηµατισµών κατοπτρικής συµµετρίας, καθώς και τους χειρισµούς που έκανες στο περιβάλλον του µοντέλου, µε τον καθηγητή σου. 5. Όρισε ένα νέο κύκλο µε κέντρο στο σηµείο (8,1) και ακτίνα R=6. Επανάλαβε τα βήµατα 3 έως Όρισε µια έλλειψη µε κέντρο το σηµείο (8,10) και ηµιάξονες a=6, b=4. Επανάλαβε τα βήµατα 3 έως 5. Αξιολόγηση του σεναρίου A) Βρήκες την αναλυτική έκφραση των µετασχηµατισµών κατοπτρικής συµµετρίας του επίπέδου, ως προς την ευθεία y=λx; ΝΑΙ ΟΧΙ B) Αν ΝΑΙ έλεγξες θεωρητικά αν οι µετασχηµατισµοί αυτοί διατηρούν αναλλοίωτο το σχήµα ενός κύκλου; ΝΑΙ ΟΧΙ C) Πώς κατέληξες στο αντίστοιχο συµπέρασµα της προηγούµενης ερώτησης; ΚΑΤΟΠΤΡΙΚΗ ΣΥΜΜΕΤΡΙΑ 8

9 D) Έκανες τους κατάλληλους χειρισµούς στο µικρόκοσµο του αρχείου του MODELLUS, για να ελέγξεις τα θεωρητικά συµπεράσµατα τα σχετικά µε τους µετασχηµατισµούς κατοπτρικής συµµετρίας και τα αναλλοίωτά τους, που έχουν προηγηθεί; ΝΑΙ ΟΧΙ E) Αν ΟΧΙ, προσδιόρισε αναλυτικά τα προβλήµατα που αντιµετώπισες. ΚΑΤΟΠΤΡΙΚΗ ΣΥΜΜΕΤΡΙΑ 9

10 Ο ΗΓΙΕΣ-ΠΡΟΤΑΣΕΙΣ ΠΡΟΣ ΤΟΝ Ι ΑΣΚΟΝΤΑ Για την προετοιµασία των µαθητών Οι µαθητές πρέπει να έχουν διδαχθεί τις παραµετρικές εξισώσεις κωνικών τοµών και στοιχεία µετασχηµατισµών του επιπέδου. Η εξοικείωσή τους µε το περιβάλλον του MODELLUS είναι ένα ακόµα προαπαιτούµενο. Μπορεί να επιτευχθεί µε την καθοδηγούµενη σύνθεση απλών µοντέλων, και το χειρισµό των εργαλείων του προγράµµατος, όπως µέτρηση συντεταγµένων σε γράφηµα «Παρουσίασης», µέτρηση γωνιών ή αποστάσεων σηµείων κλπ. Βασική προϋπόθεση για την επίτευξη των στόχων του σεναρίου είναι η κατανόηση της φιλοσοφίας του λογισµικού και µια σχετική εξοικείωση µε τη λειτουργία του. Για την διαχείριση των εργαλείων του µικρόκοσµου: Ζητήστε από τους µαθητές να περιηγηθούν στις διάφορες συνιστώσες του µοντέλου: Να διαβάσουν τον κώδικα του µοντέλου. Να δουν πώς ορίζεται η κλίµακα, των γεωµετρικών αντικειµένων στο παράθυρο «Παρουσίαση»: Σχέση pixel µήκους. Να µετράνε συντεταγµένες και µήκη στο παράθυρο «Παρουσίαση». Να εισάγουν δεδοµένα στο παράθυρο «Αρχικές Συνθήκες», συµβατές µε τον τρόπο κατασκευής του µοντέλου και της «Παρουσίασης». Να ελέγχουν το µέγιστο χρόνο εκτέλεσης του µοντέλου και το αντίστοιχο βήµα, στο παράθυρο «Έλεγχος». Να επιλέγουν µοίρες ή ακτίνια για τη µέτρηση των γωνιών. Για τις ερωτήσεις διερευνήσεις - απαντήσεις: Ζητήστε από τους µαθητές να προβλέψουν την απάντηση κάθε ερώτησης και στη συνέχεια να τη διαπραγµατευθούν διεξοδικά. Βασικός στόχος είναι να αποκτήσουν την ικανότητα να συνδέουν, να ανιχνεύουν και να ανακαλύπτουν τα αναλλοίωτα µεγέθη ή σχέσεις, που συνδέονται µε συγκεκριµένες οµάδες µετασχηµατισµών. Το εκπαιδευτικό λογισµικό µπορεί να βοηθήσει σηµαντικά στην αισθητοποίηση της έννοιας του αναλλοίωτου, που συνοδεύει µια µεταβολή και κατ επέκταση στην αφοµοίωση της δύσκολης και αφηρηµένης αυτής σχέσης. Στο προκείµενο σενάριο, η εµπέδωση του αναλλοίωτου του σχήµατος µιας καµπύλης, κάτω από τη δράση µετασχηµατισµών κατοπτρικής συµµετρίας, επιτυγχάνεται µε την αξιοποίηση των αντίστοιχων γραφηµάτων και µεγεθών που µετράµε επί αυτών. Οι µαθητές, κατά τη διεκπεραίωση του σεναρίου στην τάξη, λειτουργούν κατά οµάδες, όπως στο εργαστήριο. Ο διδάσκων πρέπει να ελέγχει την πορεία της εργασίας κάθε οµάδας χωριστά. Για το ξεπέρασµα ενδιάµεσων δυσκολιών µεταφέρει σε κάθε οµάδα την απολύτως αναγκαία πληροφορία (και µόνο), µε σκοπό τη διεκπεραίωση του σεναρίου από το σύνολο των µαθητών. Επέκταση ή διαφοροποίηση της δραστηριότητας: Η επέκταση της δραστηριότητας µπορεί να γίνει στο σπίτι µε την επεξεργασία ερωτήσεων, όπως οι 5 και 6 του φύλλου εργασίας. Η επέκταση αφορά στη διερεύνηση του αναλλοίωτου ελλειπτικών, ευθύγραµµων ή άλλων τροχιών, κάτω από τη δράση των µετασχηµατισµών κατοπτρικής συµµετρίας. Μια διαφοροποίηση της δραστηριότητας, που απευθύνεται σε µαθητές µε αρκετή εξοικείωση µε τα µαθηµατικά, αλλά και µε το MODELLUS, θα µπορούσε να είναι η εξής: ίνεται σταθερό σηµείο Α=(x 0,y 0 ) του επιπέδου. Να βρεθεί ο γεωµετρικός τόπος των συµµετρικών του σηµείου Α ως προς κάτοπτρο που περιστρέφεται µε σταθερή γωνιακή ταχύτητα γύρω από την αρχή των αξόνων. ΚΑΤΟΠΤΡΙΚΗ ΣΥΜΜΕΤΡΙΑ 10

Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα. Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ

Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα. Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ Πουλιάσης Αντώνης Φυσικός M.Sc. 2 Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα Γεωμετρική

Διαβάστε περισσότερα

Σενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων.

Σενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Σενάριο 5. Μετασχηµατισµοί στο επίπεδο Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Απόλυτη τιµή πραγµατικών αριθµών. Συµµεταβολή σηµείων. Θέµα: Στο περιβάλλον

Διαβάστε περισσότερα

lim είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο x 0. β) Να εξετάσετε τη συνέχεια της συνάρτησης f (x) =

lim είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο x 0. β) Να εξετάσετε τη συνέχεια της συνάρτησης f (x) = Ερωτήσεις ανάπτυξης. ** α) Να αποδείξετε ότι αν τα όρια lim - f () - f - είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο. ( ) και β) Να εξετάσετε τη συνέχεια της συνάρτησης f () = lim + στο σηµείο

Διαβάστε περισσότερα

Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων. Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ. Γραφική παράσταση τριωνύµου

Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων. Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ. Γραφική παράσταση τριωνύµου Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ Γραφική παράσταση τριωνύµου Εξισώσεις κίνησης. Θέµα: To προτεινόµενο θέµα αφορά την µελέτη της µεταβολής

Διαβάστε περισσότερα

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙ 3 ο : KΩΝΙΚΕΣ ΤΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΥ ( 3.) ΚΥΚΛΣ Γνωρίζουµε ότι ένας κύκλος (, ρ) είναι ο γεωµετρικός τόπος των σηµείων του επιπέδου τα οποία απέχουν µια ορισµένη απόσταση ρ από ένα

Διαβάστε περισσότερα

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα Πανεπιστηµιο Ιωαννινων σχολη θετικων επιστηµων τµηµα µαθηµατικων τοµεας αλγεβρας και γεωµετριας αναλυτικη γεωµετρια διδασκων : χρηστος κ. τατακης υποδειξεις λυσεων των θεµατων της 7.06.016 ΘΕΜΑ 1. µονάδες

Διαβάστε περισσότερα

Μεθοδολογία Έλλειψης

Μεθοδολογία Έλλειψης Μεθοδολογία Έλλειψης Έλλειψη ονομάζεται ο γεωμετρικός τόπος των σημείων, των οποίων το άθροισμα των αποστάσεων από δύο σταθερά σημεία Ε και Ε είναι σταθερό και μεγαλύτερο από την απόσταση (ΕΕ ). Στη Φύση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΕΙΓΜΑΤΙΚΗ Ι ΑΣΚΑΛΙΑ «ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΕ ΤΗ ΜΕΘΟ Ο ΤΩΝ ΟΡΙΖΟΥΣΩΝ ΚΑΙ ΠΑΡΑΜΕΤΡΙΚΕΣ ΕΥΘΕΙΕΣ» 1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΟΡΙΣΜΟΣ 1 : Γραµµική εξίσωση λέγεται κάθε

Διαβάστε περισσότερα

Επαναληπτικά Θέµατα Εξετάσεων

Επαναληπτικά Θέµατα Εξετάσεων Επαναληπτικά Θέµατα Εξετάσεων Καθηγητής : Νικόλαος. Κατσίπης 19 Απριλίου 2013 Στόχος του παρόντος ϕυλλαδίου είναι να αποτελέσει µια αφορµή για επανάληψη πριν τις εξετάσεις. Σας εύχοµαι καλό διάβασµα και...

Διαβάστε περισσότερα

Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση Γεωµετρική θεώρηση του Φωτός Ανάκλαση ηµιουργίαειδώλουαπόκάτοπτρα. είκτης ιάθλασης Νόµος του Snell Ορατό Φάσµα και ιασπορά Εσωτερική ανάκλαση Οπτικές ίνες ιάθλαση σε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :

Διαβάστε περισσότερα

Η λογαριθµική συνάρτηση και οι ιδιότητές της

Η λογαριθµική συνάρτηση και οι ιδιότητές της ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ Η λογαριθµική συνάρτηση και οι ιδιότητές της Η διδασκαλία της λογαριθµικής συνάρτησης, στο σχολικό εγχειρίδιο της Β Λυκείου, έχει σαν βάση την εκθετική συνάρτηση και την ιδιότητα

Διαβάστε περισσότερα

Επαναληπτικά Θέµατα Εξετάσεων

Επαναληπτικά Θέµατα Εξετάσεων Επαναληπτικά Θέµατα Εξετάσεων Καθηγητές : Νικόλαος Κατσίπης 25 Απριλίου 2014 Στόχος του παρόντος ϕυλλαδίου είναι να αποτελέσει µια αφορµή για επανάληψη πριν τις εξετάσεις. Σας ευχόµαστε καλό διάβασµα και...

Διαβάστε περισσότερα

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός Γεωμετρική Οπτική Φύση του φωτός Θεωρούμε ότι το φως έχει διττή φύση: ΚΥΜΑΤΙΚΗ Βασική ιδέα Το φως είναι μια Η/Μ διαταραχή που διαδίδεται στο χώρο Βασική Εξίσωση Φαινόμενα που εξηγεί καλύτερα (κύμα) μήκος

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ»

ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ» 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 217 ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ» Λουκία Μαρνέλη Εκπαιδευτικός Δευτεροβάθμιας Εκπαίδευσης Διεύθυνση: Μονής Κύκκου 1, 15669 Παπάγου

Διαβάστε περισσότερα

ΑΝΑΚΛΑΣΗ ΕΠΙΠΕΔΟΙ ΚΑΘΡΕΦΤΕΣ ΕΙΔΩΛΟ

ΑΝΑΚΛΑΣΗ ΕΠΙΠΕΔΟΙ ΚΑΘΡΕΦΤΕΣ ΕΙΔΩΛΟ 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΑΝΑΚΛΑΣΗ ΕΠΙΠΕΔΟΙ ΚΑΘΡΕΦΤΕΣ ΕΙΔΩΛΟ Α. ΣΤΟΧΟΙ Η ικανότητα συναρμολόγησης μιας απλής πειραματικής διάταξης. Η ικανότητα χρήσης καθρέφτη και πηγής laser. Η κατανόηση

Διαβάστε περισσότερα

Πειραματική μελέτη λεπτών σφαιρικών φακών

Πειραματική μελέτη λεπτών σφαιρικών φακών Πειραματική μελέτη λεπτών σφαιρικών φακών Τάξη - Τµήµα: Ονόµατα µαθητών οµάδας: ) 2).. 3) 4) Πειραματική μελέτη λεπτών σφαιρικών φακών Στόχοι της εργαστηριακής άσκησης ) Μέτρηση των γεωµετρικών χαρακτηριστικών

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1.

1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1. 1. Κινηµατική Βιβλιογραφία C. Kittel W. D. Knight M. A. Rueman A. C. Helmholz και B. J. Moe Μηχανική. Πανεπιστηµιακές Εκδόσεις Ε.Μ.Π. 1998. Κεφ.. {Μαθηµατικό Συµπλήρωµα Μ1 Παράγωγος} {Μαθηµατικό Συµπλήρωµα

Διαβάστε περισσότερα

ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ

ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ ΣΕΝΑΡΙΟ του Κύπρου Κυπρίδηµου, µαθηµατικού ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ Περίληψη Στη δραστηριότητα αυτή οι µαθητές καλούνται να διερευνήσουν το πρόσηµο του τριωνύµου φ(x) = αx 2 + βx + γ. Προτείνεται να διδαχθεί

Διαβάστε περισσότερα

Περίθλαση από µία σχισµή.

Περίθλαση από µία σχισµή. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 71 7. Άσκηση 7 Περίθλαση από µία σχισµή. 7.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε την συµπεριφορά των µικροκυµάτων

Διαβάστε περισσότερα

ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ

ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ 1. Α. Έστω x, y και x, y δύο διανύσματα του καρτεσιανού επιπέδου Οxy. i. Να εκφράσετε (χωρίς απόδειξη) το εσωτερικό γινόμενο των διανυσμάτων και συναρτήσει των συντεταγμένων τους.

Διαβάστε περισσότερα

Κεφάλαιο 4 ΜΕΤΑΒΟΛΗ ΚΕΝΤΡΟΥ ΑΝΤΩΣΗΣ ΚΑΙ ΜΕΤΑΚΕΝΤΡΟΥ ΛΟΓΩ ΕΓΚΑΡΣΙΑΣ ΚΛΙΣΗΣ

Κεφάλαιο 4 ΜΕΤΑΒΟΛΗ ΚΕΝΤΡΟΥ ΑΝΤΩΣΗΣ ΚΑΙ ΜΕΤΑΚΕΝΤΡΟΥ ΛΟΓΩ ΕΓΚΑΡΣΙΑΣ ΚΛΙΣΗΣ Κεφάλαιο 4 ΜΕΤΑΒΟΛΗ ΚΕΝΤΡΟΥ ΑΝΤΩΣΗΣ ΚΑΙ ΜΕΤΑΚΕΝΤΡΟΥ ΛΟΓΩ ΕΓΚΑΡΣΙΑΣ ΚΛΙΣΗΣ Σύνοψη Αυτό το κεφάλαιο έχει επίσης επαναληπτικό χαρακτήρα. Σε πρώτο στάδιο διερευνάται η μορφή της καμπύλης την οποία γράφει το

Διαβάστε περισσότερα

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή.

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή. Σενάριο 6. Συµµεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

Σενάριο 1. Σκιτσάροντας µε παραλληλόγραµµα. (χρήση λογισµικού Χελωνόκοσµος)

Σενάριο 1. Σκιτσάροντας µε παραλληλόγραµµα. (χρήση λογισµικού Χελωνόκοσµος) Σενάριο 1 Σκιτσάροντας µε παραλληλόγραµµα (χρήση λογισµικού Χελωνόκοσµος) Βασική ιδέα του σεναρίου Οι µαθητές σκιτσάρουν παραλληλόγραµµα και τα «ζωντανεύουν» κινώντας τα δυναµικά µε χρήση της Logo. Με

Διαβάστε περισσότερα

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα Σενάριο 3. Τα µέσα των πλευρών τριγώνου Γνωστική περιοχή: Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα τριγώνων, τριγωνοµετρικοί αριθµοί περίµετρος και εµβαδόν.

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

ΣΥΝΕΧΕΙΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΙ ΣΥΝΕΧΕΙΣ ΣΥΜΜΕΤΡΙΕΣ

ΣΥΝΕΧΕΙΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΙ ΣΥΝΕΧΕΙΣ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΕΧΕΙΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΙ ΣΥΝΕΧΕΙΣ ΣΥΜΜΕΤΡΙΕΣ Για ένα φυσικό σύστηµα που περιγράφεται από τις συντεταγµένες όπου συνεχής συµµετρία είναι ένας συνεχής µετασχηµατισµός των συντεταγµένων που αφήνει αναλλοίωτη

Διαβάστε περισσότερα

Στροφορµή. υο παρατηρήσεις: 1) Η στροφορµή ενός υλικού σηµείου, που υπολογίζουµε µε βάση τα προηγούµενα, αναφέρεται. σε µια ορισµένη χρονική στιγµή.

Στροφορµή. υο παρατηρήσεις: 1) Η στροφορµή ενός υλικού σηµείου, που υπολογίζουµε µε βάση τα προηγούµενα, αναφέρεται. σε µια ορισµένη χρονική στιγµή. Στροφορµή Έστω ένα υλικό σηµείο που κινείται µε ταχύτητα υ και έστω ένα σηµείο Ο. Ορίζουµε στροφορµή του υλικού σηµείου ως προς το Ο, το εξωτερικό γινόµενο: L= r p= m r υ Όπου r η απόσταση του υλικού σηµείου

Διαβάστε περισσότερα

ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ

ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1. Μετασχηματισμοί συντεταγμένων και συμμετρίες. 1α. Στροφές στο επίπεδο. Θεωρείστε δύο καρτεσιανά συστήματα συντεταγμένων στο επίπεδο, στραμμένα

Διαβάστε περισσότερα

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε.

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. «Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Μπολοτάκης Γιώργος Μαθηματικός, Επιμορφωτής Β επιπέδου, Διευθυντής Γυμνασίου Αγ. Αθανασίου Δράμας, Τραπεζούντος 7, Άγιος Αθανάσιος,

Διαβάστε περισσότερα

Σύγχρονη Φυσική 1, Διάλεξη 12, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Διαγράμματα Minkowski

Σύγχρονη Φυσική 1, Διάλεξη 12, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Διαγράμματα Minkowski 1 Διαγράμματα Minkowski Σκοποί της διάλεξης 12: Να εισάγει τα διαγράμματα Minkowski. 18.1.2012 Να περιγράψει την ιδέα του ταυτοχρονισμού στην θεωρία της σχετικότητας με μεθόδους γεωμετρίας. Να εισάγει

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Κεφάλαιο. Για να δημιουργήσουμε τρισδιάστατα αντικείμενα, που μπορούν να παρασταθούν στην οθόνη του υπολογιστή ως ένα σύνολο από γραμμές, επίπεδες πολυγωνικές επιφάνειες ή ακόμη και από ένα συνδυασμό από

Διαβάστε περισσότερα

Παιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx

Παιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx Παιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx Στόχος: Το παιδαγωγικό σενάριο αναφέρεται στη μελέτη της συνάρτησης y=αx και στη κατανόηση της κλίσης ευθείας. Λογισμικό: Για την εφαρμογή του σεναρίου

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΟΜΕΝΗ ΚΙΝΗΣΗ. Κινητική του υλικού σηµείου Ερωτήσεις Ασκήσεις

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΟΜΕΝΗ ΚΙΝΗΣΗ. Κινητική του υλικού σηµείου Ερωτήσεις Ασκήσεις ΕΡΓΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΟΜΕΝΗ ΚΙΝΗΣΗ Κινητική του υλικού σηµείου Ερωτήσεις Ασκήσεις Α. Ερωτήσεις Πολλαπλής Επιλογής Να γράψετε στο φύλλο των απαντήσεών

Διαβάστε περισσότερα

Ζάντζος Ιωάννης. Περιληπτικά το σενάριο διδασκαλίας (Β Γυμνασίου)

Ζάντζος Ιωάννης. Περιληπτικά το σενάριο διδασκαλίας (Β Γυμνασίου) Ζάντζος Ιωάννης Οι έννοιες του 'μήκους κύκλου' και της 'καμπυλότητας του κύκλου' μέσα από τη διαδικασία προσέγγισης του κύκλου με περιγεγραμμένα κανονικά πολύγωνα. Περιληπτικά το σενάριο διδασκαλίας (Β

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα. Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών).

Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα. Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών). Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών). Θέµα: Η διερεύνηση µερικών βασικών ιδιοτήτων των παραλληλογράµµων από τους µαθητές µε χρήση

Διαβάστε περισσότερα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα 5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα Θέμα της δραστηριότητας Η δραστηριότητα εισάγει τους μαθητές στο ολοκλήρωμα Riemann μέσω του υπολογισμού του εμβαδού ενός παραβολικού χωρίου. Στόχοι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης 999-000) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό -

Διαβάστε περισσότερα

To σενάριο προτείνεται να υλοποιηθεί µε το λογισµικό Function probe.

To σενάριο προτείνεται να υλοποιηθεί µε το λογισµικό Function probe. Σενάριο 7. Η Οµοιότητα Τριγώνων ως Λόγος Πλευρών Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η γραµµική συνάρτηση ψ= αχ. Συντελεστής διεύθυνσης ευθείας. Γεωµετρία Α' Λυκείου Οµοιότητα τριγώνων Θέµα: To προτεινόµενο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1Ο : ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Διάνυσμα Θέσης ενός σημείου Αν θεωρήσουμε ένα οποιοδήποτε σημείο Ο του επιπέδου ως σημείο αναφοράς (ακόμα

Διαβάστε περισσότερα

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ Κοίταξε τις µεθόδους, τις λυµένες ασκήσεις και τις ασκήσεις προς λύση των ενοτήτων 6, 7 του βοηθήµατος Μεθοδολογία Άλγεβρας και Στοιχείων Πιθανοτήτων Α Γενικού Λυκείου των Ευσταθίου Μ. και Πρωτοπαπά Ελ.

Διαβάστε περισσότερα

1)Βρείτε την εξίσωση για το επίπεδο που περιέχει το σηµείο (1,-1,3) και είναι παράλληλο προς το επίπεδο 3x+y+z=a όπου a ένας αριθµός.

1)Βρείτε την εξίσωση για το επίπεδο που περιέχει το σηµείο (1,-1,3) και είναι παράλληλο προς το επίπεδο 3x+y+z=a όπου a ένας αριθµός. 1)Βρείτε την εξίσωση για το επίπεδο που περιέχει το σηµείο (1,-1,3) και είναι παράλληλο προς το επίπεδο 3x+y+z=a όπου a ένας αριθµός. ( Καρτεσιανή ) επιλέχθηκε για το σχήµα. Ο αριθµός a δεν επιρρεάζει

Διαβάστε περισσότερα

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΚΑΙ

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΚΑΙ 1.1.. ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΚΑΙ ΕΜΑ ΟΝ ΤΡΙΓΩΝΟΥ ΘΕΩΡΙΑ 1. Εξίσωση γραµµής C Μια εξίσωση µε δύο αγνώστους x, y λέγεται εξίσωση µιας γραµµής C, όταν οι συντεταγµένες των σηµείων της C, και µόνον αυτές, την επαληθεύουν..

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑ 7.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων. Να βρείτε το γεωµετρικό τόπο των µιγαδικών z, για τους οποίους οι εικόνες των µιγαδικών z, i, iz είναι συνευθειακά σηµεία. Έστω z = x + i,

Διαβάστε περισσότερα

Π Ρ Ο Σ Ε Γ Γ Ι Σ Η Μ Ι Α Σ Ι Α Φ Ο Ρ Ε Τ Ι Κ Η Σ Γ Ε Ω Μ Ε Τ Ρ Ι Α Σ

Π Ρ Ο Σ Ε Γ Γ Ι Σ Η Μ Ι Α Σ Ι Α Φ Ο Ρ Ε Τ Ι Κ Η Σ Γ Ε Ω Μ Ε Τ Ρ Ι Α Σ Π Ρ Ο Σ Ε Γ Γ Ι Σ Η Μ Ι Α Σ Ι Α Φ Ο Ρ Ε Τ Ι Κ Η Σ Γ Ε Ω Μ Ε Τ Ρ Ι Α Σ Εκτός της Ευκλείδειας γεωµετρίας υπάρχουν και άλλες γεωµετρίες µη Ευκλείδιες.Οι γεω- µετρίες αυτές διαφοροποιούνται σε ένα ή περισσότερα

Διαβάστε περισσότερα

{ } S= M(x, y,z) : x= f (u,v), y= f (u,v), z= f (u,v), για u,v (1.1)

{ } S= M(x, y,z) : x= f (u,v), y= f (u,v), z= f (u,v), για u,v (1.1) ΚΕΦΑΛΑΙΟ 1 ΕΠΙΦΑΝΕΙΕΣ ΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 1. Γενικά Επειδή οι επιφάνειες δευτέρου βαθµού συναντώνται συχνά στη µελέτη των συναρτήσεων πολλών µεταβλητών θεωρούµε σκόπιµο να τις περιγράψουµε στην αρχή του βιβλίου

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999 Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 999 Ζήτηµα ο Α. Έστω a, ) και β, ) δύο διανύσµατα του καρτεσιανού επιπέδου Ο. α) Να εκφράσετε χωρίς απόδειξη) το εσωτερικό γινόµενο των διανυσµάτων a και

Διαβάστε περισσότερα

Ερωτήσεις σωστού-λάθους

Ερωτήσεις σωστού-λάθους ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Α ΜΕΡΟΣ (ΑΛΓΕΒΡΑ) ΚΕΦ ο : Μιγαδικοί Αριθμοί Φυλλάδιο ο Κεφ..: Η Έννοια του Μιγαδικού Αριθμού Κεφ..: Πράξεις στο Σύνολο C των Mιγαδικών Κεφ..: Πράξεις στο Σύνολο

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ΕΥΘΕΙΑ ΑΣΚΗΣΕΙΣ Πηγή: KEE

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ΕΥΘΕΙΑ ΑΣΚΗΣΕΙΣ Πηγή: KEE 1. Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: α) ω = 3 π β) ω = π 3 γ) ω = π. Να βρείτε τη γωνία ω που σχηµατίζει µε τον άξονα x x µια ευθεία ε, η οποία

Διαβάστε περισσότερα

Μεθοδολογία Υπερβολής

Μεθοδολογία Υπερβολής Μεθοδολογία Υπερβολής Υπερβολή ονομάζεται ο γεωμετρικός τόπος των σημείων, των οποίων η απόλυτη τιμή της διαφοράς των αποστάσεων από δύο σταθερά σημεία Ε και Ε είναι σταθερή και μικρότερη από την απόσταση

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µεγάλες τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Αξονική συµµετρία» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης.

Διαβάστε περισσότερα

1. * Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: 2π 3

1. * Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: 2π 3 Ερωτήσεις ανάπτυξης 1. * Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: α) ω = 3 π β) ω = 2π 3 γ) ω = π 2. * Να βρείτε τη γωνία ω που σχηµατίζει µε τον άξονα

Διαβάστε περισσότερα

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα).

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα). τάξης είναι ένα από τα στοιχεία που το καθιστούν σηµαντικό. Ο εκπαιδευτικός πρέπει να λάβει σοβαρά υπόψη του αυτές τις παραµέτρους και να προσαρµόσει το σενάριο ανάλογα. Ιδιαίτερα όταν εφαρµόσει το σενάριο

Διαβάστε περισσότερα

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ Παρουσίαση ΙΑΝΥΣΜΑΤΑ Παρουσίαση η Κάθετες συνιστώσες διανύσµατος Παράδειγµα Θα αναλύσουµε το διάνυσµα v (, ) σε δύο κάθετες µεταξύ τους συνιστώσες από τις οποίες η µία να είναι παράλληλη στο α (3,) Πραγµατικά

Διαβάστε περισσότερα

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις Κεφάλαιο M4 Κίνηση σε δύο διαστάσεις Κινηµατική σε δύο διαστάσεις Θα περιγράψουµε τη διανυσµατική φύση της θέσης, της ταχύτητας, και της επιτάχυνσης µε περισσότερες λεπτοµέρειες. Θα µελετήσουµε την κίνηση

Διαβάστε περισσότερα

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Η πρώτη οθόνη μετά την εκτέλεση του προγράμματος διαφέρει κάπως από τα προηγούμενα λογισμικά, αν και έχει αρκετά κοινά στοιχεία. Αποτελείται

Διαβάστε περισσότερα

Φύλλο Εργασίας Μαθητών

Φύλλο Εργασίας Μαθητών Φύλλο Εργασίας Μαθητών Ονοµατεπώνυµα (οµάδας):...... Τάξη:.. Ηµεροµηνία:. Πρόβληµα Ένας πωλητής, είναι υπεύθυνος για την πώληση τριών προϊόντων Α, Β, Γ τα οποία διαθέτει σε διαφορετικές τιµές το καθένα.

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΕΚΦΩΝΗΣΕΙΣ. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Επαναληπτικά Θέµατα ΟΕΦΕ 008 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ ΘΕΜΑ 1 ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που

Διαβάστε περισσότερα

Σύνολα. 1) Με αναγραφή των στοιχείων π.χ. 2) Με περιγραφή των στοιχείων π.χ.

Σύνολα. 1) Με αναγραφή των στοιχείων π.χ. 2) Με περιγραφή των στοιχείων π.χ. Σύνολα Ορισµός συνόλου (κατά Cantor): Σύνολο είναι κάθε συλλογή αντικειµένων, που προέρχεται από το µυαλό µας ή την εµπειρία µας, είναι καλά ορισµένο και τα αντικείµενα ξεχωρίζουν το ένα από το άλλο, δηλαδή

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ ιάθλαση µέσω πρίσµατος Φασµατοσκοπικά χαρακτηριστικά πρίσµατος

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ ιάθλαση µέσω πρίσµατος Φασµατοσκοπικά χαρακτηριστικά πρίσµατος Ο1 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ ιάθλαση µέσω πρίσµατος Φασµατοσκοπικά χαρακτηριστικά πρίσµατος 1. Εισαγωγή Όταν δέσµη λευκού φωτός προσπέσει σε ένα πρίσµα τότε κάθε µήκος κύµατος διαθλάται σύµφωνα µε τον αντίστοιχο

Διαβάστε περισσότερα

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου.

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου. Να διατηρηθεί µέχρι... ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ENIAIOΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α' Αν. Παπανδρέου 37, 15180 Μαρούσι Πληροφορίες : Αν. Πασχαλίδου Τηλέφωνο

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 2000

Θέµατα Μαθηµατικών Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 2000 Θέµατα Μαθηµατικών Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 000 Ζήτηµα ο Α.. Να γράψετε την εξίσωση του κύκλου που έχει κέντρο Κ(x 0,y 0 ) και ακτίνα ρ. (Μονάδες ) Α.. Πότε η εξίσωση x + y + Ax + By + Γ 0

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

Εικόνα 31. To σενάριο προτείνεται να διεξαχθεί µε τη χρήση του λογισµικού Geogebra.

Εικόνα 31. To σενάριο προτείνεται να διεξαχθεί µε τη χρήση του λογισµικού Geogebra. Σενάριο 4. Η µέτρηση του εµβαδού ενός παραβολικού οικοπέδου Γνωστική περιοχή: Μαθηµατικά Γ' Λυκείου. Παραβολή. Τετραγωνική συνάρτηση. Εµβαδόν. Ορισµένο ολοκλήρωµα Θέµα: Οι τέσσερις πλευρές ενός οικοπέδου

Διαβάστε περισσότερα

ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ

ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ ΜΑΘΗΜΑ : ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ Πρώτα απ όλα θέλουμε να βρούμε και να εξηγήσουμε έναν ορισμό που να ταιριάζει όσο το δυνατό καλύτερα στα φυσικά φαινόμενα Και η πεποίθησή μας θα ενισχυθεί

Διαβάστε περισσότερα

Γεωμετρική Οπτική ΚΕΦΑΛΑΙΟ 34

Γεωμετρική Οπτική ΚΕΦΑΛΑΙΟ 34 Γεωμετρική Οπτική ΚΕΦΑΛΑΙΟ 34 Γεωμετρική Οπτική Γνωρίζουμε τα βασικά Δηλαδή, πως το φως διαδίδεται και αλληλεπιδρά με σώματα διαστάσεων πολύ μεγαλύτερων από το μήκος κύματος. Ανάκλαση: Προσπίπτουσα ακτίνα

Διαβάστε περισσότερα

Ευρωπαϊκή Ολυµπιάδα Φυσικών Επιστηµών 2009 Προκαταρκτικός διαγωνισµός στη Φυσική. Σχολείο: Επισηµάνσεις από τη θεωρία

Ευρωπαϊκή Ολυµπιάδα Φυσικών Επιστηµών 2009 Προκαταρκτικός διαγωνισµός στη Φυσική. Σχολείο: Επισηµάνσεις από τη θεωρία ΕΚΦΕ ΑΝΑΤΟΛΙΚΗΣ ΑΤΤΙΚΗΣ Ευρωπαϊκή Ολυµπιάδα Φυσικών Επιστηµών 2009 Προκαταρκτικός διαγωνισµός στη Φυσική Σχολείο: Ονόµατα των µαθητών της οµάδας 1) 2) 3) Επισηµάνσεις από τη θεωρία Παθητικό ηλεκτρικό δίπολο

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΥΝΑΜΗΣ ΣΕ ΥΟ ΚΑΘΕΤΕΣ ΜΕΤΑΞΥ ΤΟΥΣ ΣΥΝΙΣΤΩΣΕΣ

ΑΝΑΛΥΣΗ ΥΝΑΜΗΣ ΣΕ ΥΟ ΚΑΘΕΤΕΣ ΜΕΤΑΞΥ ΤΟΥΣ ΣΥΝΙΣΤΩΣΕΣ ΑΝΑΛΥΣΗ ΥΝΑΜΗΣ ΣΕ ΥΟ ΚΑΘΕΤΕΣ ΜΕΤΑΞΥ ΤΟΥΣ ΣΥΝΙΣΤΩΣΕΣ Στην σύνθεση δυνάµεων (δηλαδή πρόσθεση δυνάµεων), ενεργούµε µε τέτοιον τρόπο ώστε από πολλές δυνάµεις, οι οποίες ενεργούν σε ένα υλικό σηµείο ή σώµα,

Διαβάστε περισσότερα

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Μυλωνάκης Κων/νος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Σχολείο: Ημερομηνία: / / Α Λυκείου τμήμα.. Καθηγητής/τρια: Α) Το θέμα και το μαθησιακό περιβάλλον. 1) Το γνωστικό αντικείμενο της διδασκαλίας είναι

Διαβάστε περισσότερα

ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. 21 Μαίου Γράψτε το ονοµατεπώνυµο και αριθµό ταυτότητάς σας στο πάνω µέρος της αυτής της σελίδας.

ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. 21 Μαίου Γράψτε το ονοµατεπώνυµο και αριθµό ταυτότητάς σας στο πάνω µέρος της αυτής της σελίδας. ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική 21 Μαίου 2009 Γράψτε το ονοµατεπώνυµο και αριθµό ταυτότητάς σας στο πάνω µέρος της αυτής της σελίδας. Επίσης γράψετε το password σας. Στο τέλος της εξέτασης θα πρέπει

Διαβάστε περισσότερα

Διδακτική των Μαθηματικών

Διδακτική των Μαθηματικών Διδακτική των Μαθηματικών Ονοματεπώνυμο : Μαμτζέλλη Χρυσούλα Τάξη : Γ Δημοτικού Κεφάλαιο 43 : Η συμμετρία Πρόκειται για ένα εισαγωγικό μάθημα στην αξονική συμμετρία. Οι μαθητές θα μάθουν πότε δύο σχήματα

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών

Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή Γεωμετρικός Πυρήνας Γεωμετρικός Πυρήνας Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών Γεωμετρικός Πυρήνας Εξομάλυνση Σημεία Καμπύλες Επιφάνειες

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Μυλωνάκης Κων/νος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Σχολείο: Ημερομηνία: / / Α Λυκείου τμήμα.. Καθηγητής/τρια: Α) Το θέμα και το μαθησιακό περιβάλλον. 1) Το γνωστικό αντικείμενο της διδασκαλίας είναι

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Μ. Τρίτη 3 Απριλίου 3 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Σχολικό βιβλίο,

Διαβάστε περισσότερα

Μπερδέματα πάνω στην κεντρομόλο και επιτρόχια επιτάχυνση.

Μπερδέματα πάνω στην κεντρομόλο και επιτρόχια επιτάχυνση. Μπερδέματα πάνω στην κεντρομόλο και επιτρόχια επιτάχυνση. Τις προηγούµενες µέρες έγινε στο δίκτυο µια συζήτηση µε θέµα «Πόση είναι η κεντροµόλος επιτάχυνση;» Θεωρώ αναγκαίο να διατυπώσω µε απλό τρόπο κάποια

Διαβάστε περισσότερα

Απαντήσεις Διαγωνισµού Μηχανικής ΙΙ Ιουνίου Ερώτηµα 2

Απαντήσεις Διαγωνισµού Μηχανικής ΙΙ Ιουνίου Ερώτηµα 2 Απαντήσεις Διαγωνισµού Μηχανικής ΙΙ Ιουνίου 2000 Ερώτηµα 1 Βα), και, Οι εξισώσεις κίνησης είναι, Έχουµε δύο ασύζευκτους αρµονικούς ταλαντωτές συχνότητας Η Χαµιλτονιανή αυτή θα µπορούσε να περιγράφει µικρές

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος 2012

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος 2012 ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος ΘΕΜΑ α) Υλικό σημείο μάζας κινείται στον άξονα Ο υπό την επίδραση του δυναμικού V=V() Αν για t=t βρίσκεται στη θέση = με ενέργεια Ε δείξτε ότι η κίνησή του δίνεται από

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 19//013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 υ (m/s) Σώμα μάζας m = 1Kg κινείται σε ευθύγραμμη τροχιά

Διαβάστε περισσότερα

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Ενότητα 2 Γραμμικά Συστήματα Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Να ερμηνεύουμε γραφικά τη

Διαβάστε περισσότερα

Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0.

Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0. ΜΕΡΟΣ Α. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ,α 0 337. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ ME α 0 Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής = α + β + γ με α 0. Η συνάρτηση = α +β+γ με α > 0 Η γραφική παράσταση της συνάρτησης

Διαβάστε περισσότερα

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας Κεφάλαιο 5 Θεμελιώδη προβλήματα της Τοπογραφίας ΚΕΦΑΛΑΙΟ 5. 5 Θεμελιώδη προβλήματα της Τοπογραφίας. Στο Κεφάλαιο αυτό περιέχονται: 5.1 Γωνία διεύθυνσης. 5. Πρώτο θεμελιώδες πρόβλημα. 5.3 εύτερο θεμελιώδες

Διαβάστε περισσότερα

1. Η ευθεία y = 5 είναι κάθετη στον άξονα y y. Σ Λ. 2. Η ευθεία x = - 2 είναι παράλληλη προς τον άξονα x x. Σ Λ

1. Η ευθεία y = 5 είναι κάθετη στον άξονα y y. Σ Λ. 2. Η ευθεία x = - 2 είναι παράλληλη προς τον άξονα x x. Σ Λ ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ Ερωτήσεις του τύπου «σωστό-λάθος» 1. Η ευθεία y = 5 είναι κάθετη στον άξονα y y. Σ Λ 2. Η ευθεία x = - 2 είναι παράλληλη προς τον άξονα x x. Σ Λ 3. Οι ευθείες x = κ και y

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 8. B 2.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία

ΜΑΘΗΜΑ 8. B 2.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία ΜΑΘΗΜΑ 8. B.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία Θεωρία Ασκήσεις γ. τόπου και µεγιστο ελάχιστου Στις ασκήσεις αυτού του µαθήµατος χρησιµοποιούµε ανισωτικές σχέσεις από την Ευκλείδεια Γεωµετρία. Θυµίζουµε

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης

Διαβάστε περισσότερα

ιάθλαση. Ολική ανάκλαση. ιάδοση µέσα σε κυµατοδηγό.

ιάθλαση. Ολική ανάκλαση. ιάδοση µέσα σε κυµατοδηγό. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 91 9. Άσκηση 9 ιάθλαση. Ολική ανάκλαση. ιάδοση µέσα σε κυµατοδηγό. 9.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε τα φαινόµενα

Διαβάστε περισσότερα

HMY 333 Φωτονική Διάλεξη 12 Οπτικοί κυματοδηγοί

HMY 333 Φωτονική Διάλεξη 12 Οπτικοί κυματοδηγοί 4 Hsiu. Ha Ανάκλαση και μετάδοση του φωτός σε μια διηλεκτρική επαφή HMY 333 Φωτονική Διάλεξη Οπτικοί κυματοδηγοί i i i r i si c si v c hp://www.e.readig.ac.u/clouds/awell/ c 3 Γωνία πρόσπτωσης < κρίσιμη

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ

ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ ΜΑΘΗΜΑ 4: ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ Στη φύση δεν υπάρχει ίσως τίποτε παλαιότερο από την κίνηση και οι φιλόσοφοι έχουν γράψει για αυτήν βιβλία που δεν είναι ούτε λίγα ούτε μικρά ΓΑΛΙΛΑΪΚΟΙ

Διαβάστε περισσότερα

Τα είδη της κρούσης, ανάλογα µε την διεύθυνση κίνησης των σωµάτων πριν συγκρουστούν. (α ) Κεντρική (ϐ ) Εκκεντρη (γ ) Πλάγια

Τα είδη της κρούσης, ανάλογα µε την διεύθυνση κίνησης των σωµάτων πριν συγκρουστούν. (α ) Κεντρική (ϐ ) Εκκεντρη (γ ) Πλάγια 8 Κρούσεις Στην µηχανική µε τον όρο κρούση εννοούµε τη σύγκρουση δύο σωµάτων που κινούνται το ένα σχετικά µε το άλλο.το ϕαινόµενο της κρούσης έχει δύο χαρακτηριστικά : ˆ Εχει πολύ µικρή χρονική διάρκεια.

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ

ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Εκτίμηση και μέτρηση Μ3.6 Εκτιμούν, μετρούν, ταξινομούν και κατασκευάζουν γωνίες (με ή χωρίς τη χρήση της

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ IV Απλή κυκλική κίνηση. Κεντροµόλος Δύναµη

ΠΕΙΡΑΜΑ IV Απλή κυκλική κίνηση. Κεντροµόλος Δύναµη ΠΕΙΡΑΜΑ IV Απλή κυκλική κίνηση. Κεντροµόλος Δύναµη Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε την κυκλική κίνηση µίας σηµειακής µάζας και ιδιαίτερα την εξάρτηση της κεντροµόλου δύναµης από τη µάζα,

Διαβάστε περισσότερα

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή ΣΥΝΑΡΤΗΣΗ y=α/ Η ΥΠΕΡΒΟΛΗ.5 Η ΣΥΝΑΡΤΗΣΗ y=α/-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή Δύο ποσά λέγονται αντιστρόφως ανάλογα, όταν η τιμή του ενός πολλαπλασιαστεί επί έναν αριθµό, τότε η τιµή του

Διαβάστε περισσότερα

14 η εβδομάδα (26/01/2017) Έγιναν οι ασκήσεις 28, 29 και 30. Έγινε επανάληψη στη Θεωρία Καμπυλών και στη Θεωρία Επιφανειών.

14 η εβδομάδα (26/01/2017) Έγιναν οι ασκήσεις 28, 29 και 30. Έγινε επανάληψη στη Θεωρία Καμπυλών και στη Θεωρία Επιφανειών. 14 η εβδομάδα (26/01/2017) Έγιναν οι ασκήσεις 28, 29 και 30. Έγινε επανάληψη στη Θεωρία Καμπυλών και στη Θεωρία Επιφανειών. 13 η εβδομάδα (16/01/2017 & 19/01/2017) Ασυμπτωτική διεύθυνση και ασυμπτωτικό

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ Ευθύγραμμη Ομαλή Κίνηση Επιμέλεια: ΑΓΚΑΝΑΚΗΣ.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://physicscorses.wordpress.com/ Βασικές Έννοιες Ένα σώμα καθώς κινείται περνάει από διάφορα σημεία.

Διαβάστε περισσότερα