Anorganski nemetalni materijali Sij Stijene

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Anorganski nemetalni materijali Sij Stijene"

Transcript

1 Anorganski nemetalni materijali Sij Stijene Stijene Stijene su prirodni mineralni agregati, ulaze u sastav zemljine kore kao samostalne i jasno ograničene mase Minerali izgrađuju stijene Stijene izgrađuju Zemljinu koru Stanislav Kurajica Fakultet kemijskog inženjerstva i tehnologije Sastav stijena Stijena može biti monomineralna ili složena, vezana ili rastresita, polikristalne ili amorfne građe. Većina stijena su polimineralni agregati (primjerice granit se sastoji od kvarca, feldspata i liskuna + akcesorni minerali: cirkon, ik magnetit, apatit). Međutim, đ postoje i monomineralne stijene (primjerice vapnenac se sastoji samo od kalcita). Mali broj minerala izgrađuje većinu zemljine kore najviše: kvarc,, feldspati (ortoklasi i plagioklasi), tinjci (biotit i muskovit), amfiboli (hornblenda), pirokseni (augit) i olivin Nastanak stijena Stijene nastaju kristalizacijom iz magme (magmatske stijene), prekristalizacijom u čvrstom stanju postojećih stijena (metamorfne stijene), te taloženjem materijala nastalog od drugih stijena (sedimentne stijene) Hlađenje i skrutnjavanje magme magmatske stijene. Površina trošenje i mrvljenje (fizikalni, kemijskiii biološki procesi) Transport, depozicija sediment, zbijanje sedimentne stijene Promjene T i p modifikacija kemijskog sastavai strukture metamorfne stijene

2 Ciklus izmjene stijena Još godine James Hutton predložio je hipotezu da se stijene kontinuirano transformiraju jedne u druge. Ciklus izmjene stijena rezultat je izmjene tvari i energije između unutrašnjosti i površine Zemlje, j, oceana i atmosfere. Tijek ciklusa Subducirana ploča setali magma se uzdiže i prodire u koru Magma se hladi u dubini Zemljine kore ili pri izlasku na površinu nastaju magmatske stijene Planine koje su se uzdigle prisiljavaju zrak zasićen vlagom da se diže i hladi kondenzira i precipitira voda Djelovanjem kiše i leda dolazi do erozije i otapanja Tijek ciklusa Vodotocima se sediment transportira u oceane deponira se obliku pijeska ili mulja litificira stvara se sedimentna stijena tone sve dublje u zemljinu koru Povećanjem dubine raste T i p Dolazi do metamorfoze Rekristalizacije i nastanka metamorfnih stijena Ponovno subdukcija Danas još i metosomatoza Proces izmjena kemijskih elemenata između đ morske vode i stijena na srednjeoceanskim hrptovima Magmatske stijene nastaju kristalizacijom magme, prirodne silikatne taline Magma nastaje taljenjem stijena za što temperatura mora premašiti temperaturu taljenja stijene Litosfera hladna i kruta Astenosfera toplija i mekša Geotermalni gradijent Geotermalni gradijent T raste približno 22 C po km dubine Na 6400 km: 5380 ±600 C Magmatske stijene

3 Geotermalni gradijent vs. T taljenja Na granici litosfere i astenosfere T~1280 C Unutarlitosfere geotermalni gradijent ne siječe krivulju taljenja T litosfere na svim je dubinama manja od T pri kojoj bi došlo do parcijalnog taljenja stijena Krivulje su u donjem dijelu kore i gornjem dijelu plašta blizu Sniženje tališta stijena izazvalo bi taljenje Čimbenici koji utječu na T taljenja 3 čimbenika: tlak, prisutnost vode te sastavstijena. Sniženjem tlaka dolazi i do sniženja temperature taljenja. Prisutnost vode pod visokim tlakom izaziva sniženje temperature taljenja Promjena sastava može izazvati sniženje tališta Sij Stijene bogate Si tale se pri nižim T Četiri geomagmatska okoliša Sniženje p, prisutnost vode i promjene u kemijskom sastavu izazvat će taljenje Četiri različita geomagmatskaokoliša Hrptovi uzdizanje vrućih stijena iz astenosfere do litosfere. Snižava se p dekompresijsko taljenje Vruće točke Subdukcijske zone ispod oceanske kore izlazak vode iz subducirane ploče taljenje bazična magma se uzdiže do baze kore erupcija Subdukcijske zone ispod kontinentalne kore parcijalno taljenje kisele kore erupcija ili kristalizacija Sastav magme Izvorno bazična Miješanjem s rastaljenim materijalom kontinentalne kore veći sadržaj SiO 2 magma će postati kiselija Sastav se može se mijenjati j i magmatskom diferencijacijom j (frakcioniranjem) kristalizacijom minerala osiromašuje pojedinim komponentama Do promjene sastava može doći i miješanjem j dviju magmi različitog sastava Osim kapljevite komponente, taline, može se sastojatiii od čvrste i plinovite komponente Kemijski sastav magme, primarno udio SiO 2 presudno utječe i na mineraloški sastav magmatskih stijena

4 Bowenov niz Slijed kristalizacije magme NormanL L. Bowen tijekom hlađenja magme slijed kristalizacije minerala određen talištem Bowenov niz kristalizacije magme redoslijed kristalizacije minerala Dij Dvije serije: diskontinuirane i i i kontinuirane. i Diskontinuirana serija (olivin piroksen amfibol biotit) biotit) u određenom području T određeni mineral Kontinuirana (plagioklasi, prvo bogati Ca pa potom sve bogatiji Na) mijenja se sastav čvrste otopine Na kraju ortoklasi, muskovit i kvarc Kristalizacija minerala diskontinuirane i kontinuirane i serije zbiva se istodobno. Diferencijacija magme Rijetki kompletni nizovi Razlozi: različit sastavmagme i diferencijacija magme Diferencijacija magme: Bazični sastojci (visoka tališta) kristaliziraju prvi Kristali imaju veću gustoću od taline tonu Sastavmagmemijenja mijenja setijekom kristalizacije magma postaje siromašnija na bazičnim sastojcima (bogatija na SiO 2 ) Diferencijacija j magme utječe na sastav preostale magme Kvarc se pojavljuje samo u kiselim stijenama budući da ga samo u tom slučaju može preostati slobodnog. Klasifikcijamagmatskih stijena prema kemijskom sastavu Zbog utjecaja j udjela SiO 2 na mineraloški sastav i velike zastupljenosti SiO 2 jedana od klasifikacija temelji se na kemijskom sastavu, udjelu SiO 2 Kisele (>63% SiO 2 ), Neutralne (52 63% SiO 2 ), Bazične (45 52% SiO 2 ), Ultrabazične (<45% SiO 2 ) Kisele vs. bazične Kisele: veći udio Si, K i Na, niže Tm, manje ρ (~2,65 gcm 3 ), veća viskoznost, svjetlijih boja Bazične: više Ca, Fe i Mg, više Tm, veće ρ (3,3 gcm 3 ), manju viskoznost; tamnijih boja Kisele felsic feldspars + silica Bazične mafic magnesium + ferric Kemijski sastav ovisi o geološkom okolišu u kojem su nastale Hrptovi, vruće točke izvorna bazična magma bazične stijene U pojedinom geološkom okolišu izvorno bazične magme asimiliraju stijene bogatije na SiO 2 te postaju kiselije Oceanska margina neutralne do bazične Kontinentalna margina kisele

5 Klasifikacija magmatskih stijena prema mjestu pojave i mikrostrukturi k Po načinu (mjestu) pojavljivanja Dubinske (intruzivne, plutonske) nastaju kristalizacijom magme u dubini Površinske (ekstruzivne, vulkanske) nastaju ohlađivanjem magme na površini Način pojave utječe na brzinu hlađena brzina hlađenja utječe na mikrostrukturu (teksturu) stijene Mikrostruktura kt veličinu i međusobni đ odnos kristala i možebitne amorfne faze koji je izgrađuju. Veličina kristala ovisi o odnosu brzine nukleacijei rasta Odnos brzine hlađenjai mikrostrukture Hlađenje magme u dubini vrlo spor proces malo pothlađenje Spora nukleacija + brz rast Malo velikih kristala Hlađenje magme na površini znatno brže veliko pothlađenje Brza nukleacija + spor rast Puno finih kristala Još brži proces jako veliko pothlađenje (Tc) Nema ni nukleacije i kristalizacije staklasto skrutnjavanje Izmikrostrukture se može proniknuti brzina hlađenja te lokacija nastanka Mikrostrukture Granularna ili faneritna okom vidljivi kristali (intruzivne) Afanitna fini kristaliti ekstruzivne stijene Staklasta INTRUZIVNE Kemijska vs. mikrostrukturna klasifikacija KISELE NEUTRALNE BAZIČNE Peridotit Porfirna kombinacija uvjeta, različite T i brzine kristalizacije veliki kristali (fenokristali ili utrusci) u osnovi (matriksu) od finih kristala ili amorfnog materijala EKSTRUZIVNE

6 Sedimentne stijene su zbijene i povezane nakupine sedimenta Nastaju taloženjem povezivanjem materijala nastalog fizikalnim, kemijskim i biološkim procesima Stvaraju se samo na površini Zemlje Pločaste mase relativno malih debljina ali se prostiru na velikim površinama Svega 5 % ukupnog volumena Zemljine kore ali prekrivaju približno 75% površine Sedimentne stijene Nastanak i podjela sedimentnih stijena 3 osnovna načina: Depozicijom ostataka nastalih trošenjem magmatskih i metamorfnih stijena klastične sedimentne stijene Precipitacijom iz otopina kemijske sedimentne stijene Depozicijom materijala nastalog biogenom aktivnošću biogene sedimentne stijene (zoogene i fitogene) + piroklastične stijene (tufovi i vulkanski pepeo) + rezidualne stijene (boksit) Druga podjela: minerogene (mehanički i kemijski talozi) i organogene (zoogene i fitogene) Klastične Klastične sedimentne stijene nastaju slijedom procesa fizikalno kemijskog kemijskog raspada starijih stijena, transportom, taloženja ili sedimentacije te litifikacije (okamenjivanje) zbijanjem i cementacijom Trošenje je proces razaranja stijena na Zemljinoj površini koji mijenja fizikalna i kemijska svojstva stijena te može biti mehaničko, kemijsko i biološko. Trošenje Mehaničko razaranje stijene bez promjena njena kemijskog i mineraloškog sastava Posljedica smrzavanja, širenja i skupljanja pri temperaturnim promjenama, abrazivnog djelovanja vode i vjetra id itd. Čestica nastala trošenjem naziva se klast Kemijsko djelovanjem kemijskih agensa iz atmosfere i hidrosfere Mijenja se kemijski i mineraloški sastav stijena Otapanje, hidroliza, oksidacija, izluživanje, pretvorba Često se nadovezuje na mehaničko promjene odnosapovršine i volumena čestica Biološko posljedica djelovanja raslinja bakterija Biološko posljedica djelovanja raslinja, bakterija, gljivica i lišajeva, huminskih kiselina

7 Transport Produkti trošenja transportiraju se najčešće vodom, vjetrom, ledom i gravitacijom Najvažniji j transportni medij voda veće čestice, suspendirane fine čestice i otopljene tvari Duljina i način transporta klastičnog sedimenta utječe na zaobljenost i sortiranost Prestankom djelovanja sila koje omogućavaju transport ili promjenom kemijskih kih uvjeta (koncentracija, sastav, ph) Okoliš taloženja: kontinentalni (rijeke, jezera, nizine, pustinje) prijelaznom (delte ili estuariji ljevkasto riječno ušće) marinskom okolišu (uz obalu ili duboko) Taloženje Dijageneza Prirodno očvršćivanje sedimentnih stijena Obuhvaća sve mehaničke i kemijske promjene u sedimentu Najvažniji dijagenetski proces litifikacija (okamenjivanje) od nevezanog taloga nastaje čvrsta stijena. Litifikacija se sastoji od zbijanja i cementacije Zbijanje j prekrivanjem novim slojevima sedimenta istiskivanje vode sloj postaje kompaktniji, manja poroznost Cementacija u vodi kojom je rastresiti sediment potopljen nalaze se otopljeni ioni i kemijska k precipitacija i ij materijala između zrna povezuje sediment u stijenu Najčešći klastisukvarc su kvarc, glinenci i tinjci dok je najčešće vezivo kalcit. Mikrostrukturasedimentnih stijena Klastične i neklastične Klastične sastavljene od čestica nastalih razaranjem drugih stijena Mogu biti vezane i nevezane Vezane se sastoje se od klasta (grubih čestica) ) i matriksa (finih čestica) ) od alotigenih minerala (nastalih fizičkim trošenjem stijena) te cementa od autigenih minerala (nastalih kristalizacijom iz otopine) Vezane klastične stijene dijele se prema vezanosti (vezane i nevezane), obliku zrna (koji može biti angularan ili sferičan) i veličini klasta (>2 mm, 2 mm 63 μm, <63 μm)

8 Klastiti Krupno zrnati klastiti (ruditi) klasti >2 mm Šljunak (nevezani zaobljeni klasti), konglomerati (vezana stijena sa zaobljenim klastima), kršje (nevezani angularni klasti), breče č (vezana stijena s angularnim klastima). Srednje zrnati klastiti i (areniti) ii) 63 m 2 mm Pijesak (nevezan), pješčenjak (vezan) Kvarc i glinenci i cementirani iglinom Neklastične Neklastične kemogene, nastale kristalizacijom i taloženjem iz otopine i organogene g nastale taloženjem organskih tvari ili anorganskih skeletnih dijelova organizama Kemogene precipitacija zbog smanjenja volumena otapala isparavanjem plitke vodene mase gips, anhidrit, halit, vapnenac, dolomit, čert (kriptokristalinični kvarc) Biogene od ostataka organizama Vapnenac, dijatomejska zemlja, ugljen i nafta Sitno zrnati i klastiti i (lutiti) i) klasti < 63 m Silt, siltiti feldspati, kvarc i tinjci vezani amorfnim opalom i kriptokristaliničnim kalcedonom Glina, šejlovi glina i kvarc Mulj, muljnjaci glina Stratifikacija Osnovna značajka sedimentnih stijena je slojevitost, t stratifikacija tifik ij Slojevi se sastoje od ploča č moguće ć ih razlikovati zbog promjena u boji Najčešće suplanparalelne ali mogu biti i nepravilne Iako su slojevi izvorno vodoravni i ravni, djelovanjem j geoloških procesa nerijetko postaju kosi i valoviti Metamorfne stijene, postanak Metamorfoza promjene koje nastaju povećanjem temperature i tlaka te djelovanjem mineralnih otopina na stijene Dolazi do mijenjanja strukture stijena, sastava ili oboje Promjene se zbivaju unutar Zemljine kore. Glavni čimbenici b i imetamorfoze: Sastav ishodišne stijene Temperatura (zbog (b geotermalnog gradijenta, utiskivanja magme u stijenu i trenja duž rasjednih linija. Tlak litostatski (jednako u svim smjerovima), usmjereni (pretežito u određenom smjeru) i smični. Kemijski aktivan fluid (H 2 O, CO 2, CH 4, H 2 S) magmatskog podrijetla dij vrsta metasomatoze

9 Tipovi metamorfoze Prema prevladavajućem čimbeniku: Kataklastični (prevladavajući p) termalni (prevladavajuća T) Dinamotermalni (oba čimbenika značajna) Prema obimu i mjestu metamorfoze: Regionalni i p & T (20000 At & C) Kontaktni (termalni) metamorfizam T (intruzije, lokalnog karaktera C) Podjela metamorfnih stijena: regionalne i kontaktne Regionalne pokretima u dubini Zemljine kore, veća područja Kontaktne ubrizgavanju magme u okolne stijene Stupanj metamorfoze Osim o izvornoj stijeni vrsta metamorfne stijene ovisi i o stupnju metamorfoze Šejl slejt filt šist gnajs Mikrostruktura Tlak se odražava i na mikrostrukturu Tlak jednak u svim smjerovima nasumična orijentacija štapićastih i listićavih minerala Tlak usmjeren prekristalizacija pod utjecajem kompresijskog naprezanja štapićasti i listićavi minerali rastu u smjeru okomitom na tlak pa su orijentirani jednoliko Folijacijska ili škriljava mikrostruktura Kontaktni metamorfizam nasumična orijentacija Regionalni metamorfizam folijacijska mikrostruktura Najvažnije metamorfne stijene Mramor stijena niskog stupnja metamorfoze vapnenca (nastaje kontaktnom metamorfozom) Kvarcit stijena srednjeg do visokog stupnja metamorfoze pješčenjaka Gnajs, stijena visokog stupnja metamorfoze granita, andezita ili šejla

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

OSNOVE MINERALOGIJE I PETROLOGIJE OPĆA MINERALOGIJA SISTEMATSKA MINERALOGIJA PETROLOGIJA. Bazalt Ca-plagioklas, pirokseni.

OSNOVE MINERALOGIJE I PETROLOGIJE OPĆA MINERALOGIJA SISTEMATSKA MINERALOGIJA PETROLOGIJA. Bazalt Ca-plagioklas, pirokseni. OSNOVE MINERALOGIJE I PETROLOGIJE Metamorfne stijene nastaju metamorfozom iz starijih magmatskih, metamorfnih ili sedimentnih stijena, bez otapanja ili taljenja. KRISTALOGRAFIJA OPĆA MINERALOGIJA KEMIJSKA

Διαβάστε περισσότερα

Treće predavanje. Hemija životne sredine I (T. Anđelković)

Treće predavanje. Hemija životne sredine I (T. Anđelković) Treće predavanje 1 CILJEVI PREDAVANJA Građa litosfere. Sastav Zemljine kore. Hemijski sastav i tipovi magme. Diferencijacija magme. Bovenova serija. Tipovi stena. Ciklus transformacije stena. ISHODI PREDAVANJA

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

REGIONALNO-METAMORFNE STENE ( ºC; 2-10 kbar)

REGIONALNO-METAMORFNE STENE ( ºC; 2-10 kbar) REGIONALNO-METAMORFNE STENE (200-800ºC; 2-10 kbar) PODELA PREMA TEKSTURI 1. ŠKRILJAVE I 2. MASIVNE METAMORFNE STENE PODELA PREMA STEPENU KRISTALINITETA (NE ZAVISI OD STEPENA METAMORFIZMA) 1. STENE VISOKOG

Διαβάστε περισσότερα

PT ISPITIVANJE PENETRANTIMA

PT ISPITIVANJE PENETRANTIMA FSB Sveučilišta u Zagrebu Zavod za kvalitetu Katedra za nerazorna ispitivanja PT ISPITIVANJE PENETRANTIMA Josip Stepanić SADRŽAJ kapilarni učinak metoda ispitivanja penetrantima uvjeti promatranja SADRŽAJ

Διαβάστε περισσότερα

6 SREDNJEZRNATI KLASTITI (PJEŠČENJACI)

6 SREDNJEZRNATI KLASTITI (PJEŠČENJACI) 62 6 SREDNJEZRNATI KLASTITI (PJEŠČENJACI) veličina čestica: 2mm - 63μm 6.1 UVOD vrlo krupni pijesak krupni pijesak srednji pijesak sitni pijesak vrlo sitni pijesak litifikacija pijesak pješčenjak klastična

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

2 PROCESI POSTANKA SEDIMENATA I SEDIMENTNIH STIJENA

2 PROCESI POSTANKA SEDIMENATA I SEDIMENTNIH STIJENA 2 PROCESI POSTANKA SEDIMENATA I SEDIMENTNIH STIJENA sedimentne stijene nastaju djelovanjem fizičkih, kemijskih i bioloških procesa na površini ili plitko ispod površine Zemlje pri niskim temperaturama

Διαβάστε περισσότερα

Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom

Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom Kolegij: Obrada industrijskih otpadnih voda Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom Zadatak: Ispitati učinkovitost procesa koagulacije/flokulacije na obezbojavanje

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Što je sediment? Što je sedimentna stijena? OSNOVE MINERALOGIJE I PETROLOGIJE OPĆA MINERALOGIJA SISTEMATSKA PETROLOGIJA PETROLOGIJA

Što je sediment? Što je sedimentna stijena? OSNOVE MINERALOGIJE I PETROLOGIJE OPĆA MINERALOGIJA SISTEMATSKA PETROLOGIJA PETROLOGIJA Što je sediment? OSNOVE MINERALOGIJE I PETROLOGIJE OPĆA MINERALOGIJA SISTEMATSKA MINERALOGIJA PETROLOGIJA KRISTALOGRAFIJA KEMIJSKA I FIZIKALNA SVOJSTVA MINERALA GENEZA MINERALA NESILIKATI SILIKATI PETROLOGIJA

Διαβάστε περισσότερα

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

OSNOVI GEOFIZIČKOG KAROTAŽA

OSNOVI GEOFIZIČKOG KAROTAŽA OSNOVI GEOFIZIČKOG KAROTAŽA Prvo predavanje Uvod Nastavnik dr Ivana Vasiljević docent Saradnik dipl. inž. Dragana Petrović student doktorslih studija Osnovi geofizičkog karotaža - statistika Školska godina

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

METAMORFNE STENE. Charles Luell - definisao pojam metamorfizma na osnovu promena u sedimentnim stenama sa promenom dubine.

METAMORFNE STENE. Charles Luell - definisao pojam metamorfizma na osnovu promena u sedimentnim stenama sa promenom dubine. METAMORFNE STENE Charles Luell - definisao pojam metamorfizma na osnovu promena u sedimentnim stenama sa promenom dubine. Metamorfizam - skup fizičko-hemijskih procesa u steni u uslovima koji se razlikuju

Διαβάστε περισσότερα

AGREGAT. Asistent: Josip Crnojevac, mag.ing.aedif. SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU

AGREGAT. Asistent: Josip Crnojevac, mag.ing.aedif.   SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU AGREGAT Asistent: Josip Crnojevac, mag.ing.aeif. jcrnojevac@gmail.com SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU JOSIP JURAJ STROSSMAYER UNIVERSITY OF OSIJEK 1 Pojela agregata PODJELA AGREGATA - PREMA

Διαβάστε περισσότερα

PRERADA GROŽðA. Sveučilište u Splitu Kemijsko-tehnološki fakultet. Zavod za prehrambenu tehnologiju i biotehnologiju. Referati za vježbe iz kolegija

PRERADA GROŽðA. Sveučilište u Splitu Kemijsko-tehnološki fakultet. Zavod za prehrambenu tehnologiju i biotehnologiju. Referati za vježbe iz kolegija Sveučilište u Splitu Kemijsko-tehnološki fakultet Zavod za prehrambenu tehnologiju i biotehnologiju Referati za vježbe iz kolegija PRERADA GROŽðA Stručni studij kemijske tehnologije Smjer: Prehrambena

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Heterogene ravnoteže taloženje i otapanje. u vodi u prisustvu zajedničkog iona u prisustvu kompleksirajućegreagensa pri različitim ph vrijednostima

Heterogene ravnoteže taloženje i otapanje. u vodi u prisustvu zajedničkog iona u prisustvu kompleksirajućegreagensa pri različitim ph vrijednostima Heterogene ravnoteže taloženje i otapanje u vodi u prisustvu zajedničkog iona u prisustvu kompleksirajućegreagensa pri različitim ph vrijednostima Ako je BA teško topljiva sol (npr. AgCl) dodatkom

Διαβάστε περισσότερα

DINAMIČKA MEHANIČKA ANALIZA (DMA)

DINAMIČKA MEHANIČKA ANALIZA (DMA) Karakterizacija materijala DINAMIČKA MEHANIČKA ANALIZA (DMA) Dr.sc.Emi Govorčin Bajsić,izv.prof. Zavod za polimerno inženjerstvo i organsku kemijsku tehnologiju Da li je DMA toplinska analiza ili reologija?

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Opšte KROVNI POKRIVAČI I

Opšte KROVNI POKRIVAČI I 1 KROVNI POKRIVAČI I FASADNE OBLOGE 2 Opšte Podela prema zaštitnim svojstvima: Hladne obloge - zaštita hale od atmosferskih padavina, Tople obloge - zaštita hale od atmosferskih padavina i prodora hladnoće

Διαβάστε περισσότερα

Dimenzioniranje nosaa. 1. Uvjeti vrstoe

Dimenzioniranje nosaa. 1. Uvjeti vrstoe Dimenzioniranje nosaa 1. Uvjeti vrstoe 1 Otpornost materijala prouava probleme 1. vrstoe,. krutosti i 3. elastine stabilnosti konstrukcija i dijelova konstrukcija od vrstog deformabilnog materijala. Moraju

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

MINERALOGIJA KRISTAL MINERAL. Definicija: - kristalna vrsta, nastala v naravi (tudi umetno)

MINERALOGIJA KRISTAL MINERAL. Definicija: - kristalna vrsta, nastala v naravi (tudi umetno) MINERALOGIJA KRISTAL Definicija: - trdno telo - periodična prostorska razvrstitev kemičnih sestavin - ravne ploskve - stalni koti - nastanek: naravni, umetni procesi - anorganske, organske spojine MINERAL

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Periodičke izmjenične veličine

Periodičke izmjenične veličine EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike

Διαβάστε περισσότερα

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) (Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

MINERAL? nema jedinstvenih kriterijuma za odgovor

MINERAL? nema jedinstvenih kriterijuma za odgovor Predavanje 1. MINERALI, MINERALOGIJA NAUKA O MINERALIMA minerals (lat.) rudni logos (grč.) nauka Izučava prirodu supstanci koje su vezane za rudnike, rudne žile i Zemljinu koru. MINERAL? nema jedinstvenih

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

Zavod za tehnologiju, Katedra za alatne strojeve: GLODANJE

Zavod za tehnologiju, Katedra za alatne strojeve: GLODANJE Glodanje je postupak obrade odvajanjem čestica (rezanjem) obradnih površina proizvoljnih oblika. Izvodi se na alatnim strojevima, glodalicama, pri čemu je glavno (rezno) gibanje kružno kontinuirano i pridruženo

Διαβάστε περισσότερα

konst. Električni otpor

konst. Električni otpor Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

GLAZBENA UMJETNOST. Rezultati državne mature 2010.

GLAZBENA UMJETNOST. Rezultati državne mature 2010. GLAZBENA UJETNOST Rezultati državne mature 2010. Deskriptivna statistika ukupnog rezultata PARAETAR VRIJEDNOST N 112 k 61 72,5 St. pogreška mjerenja 5,06 edijan 76,0 od 86 St. devijacija 15,99 Raspon 66

Διαβάστε περισσότερα

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan

Διαβάστε περισσότερα

FAZNI DIJAGRAMI TERMIČKA ANALIZA

FAZNI DIJAGRAMI TERMIČKA ANALIZA Vježba 1. FAZNI DIJAGRAMI TERMIČKA ANALIZA Tvari se, ovisno od veza koje atomi međusobno ostvaruju, pojavljuju u nekoliko različitih stanja. Oblik u kojem može postojati neka tvar naziva se agregatno stanje

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

IZVORI, SASTAV I DINAMIKA MINERALNE SASTAVNICE TLA MINERALI - MINERALI I STIJENE - petrogeni minerali

IZVORI, SASTAV I DINAMIKA MINERALNE SASTAVNICE TLA MINERALI - MINERALI I STIJENE - petrogeni minerali 1 IZVORI, SASTAV I DINAMIKA MINERALNE SASTAVNICE TLA - MINERALI I STIJENE - petrogeni minerali MINERALI 2 primarni minerali sekundarni minerali pedogeni minerali postojanost minerala 3 minerali prema prozirnosti:

Διαβάστε περισσότερα

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno. JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti MEHANIKA FLUIDA Isticanje kroz otvore sa promenljivim nivoom tečnosti zadatak Prizmatična sud podeljen je vertikalnom pregradom, u kojoj je otvor prečnika d, na dve komore Leva komora je napunjena vodom

Διαβάστε περισσότερα

( ) p a. poklopac. Rješenje:

( ) p a. poklopac. Rješenje: 5 VJEŽB - RIJEŠENI ZDI IZ MENIKE LUID 1 1 Treb odrediti silu koj drži u rvnoteži poklopc B jedinične širine, zlobno vezn u točki, u položju prem slici Zdno je : =0,84 m; =0,65 m; =5,5 cm; =999 k/m B p

Διαβάστε περισσότερα

Gauss, Stokes, Maxwell. Vektorski identiteti ( ),

Gauss, Stokes, Maxwell. Vektorski identiteti ( ), Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i

Διαβάστε περισσότερα

Postupak rješavanja bilanci energije

Postupak rješavanja bilanci energije Postupak rješavanja bilanci energije 1. Postaviti procesnu shemu 2. Riješiti bilancu tvari 3. Napisati potreban oblik jednadžbe za bilancu energije (zatvoreni otvoreni sustav) 4. Odabrati referentno stanje

Διαβάστε περισσότερα

MEHANIKA FLUIDA HIDROSTATIKA 5. Osnovna jednadžba gibanja (II. Newtonov zakon) čestice idealnog fluida i realnog fluida u relativnom mirovanju

MEHANIKA FLUIDA HIDROSTATIKA 5. Osnovna jednadžba gibanja (II. Newtonov zakon) čestice idealnog fluida i realnog fluida u relativnom mirovanju MENIK LUID IDTTIK 5. IDTTIK snovna jednadžba ibanja (II. Newtonov akon) čestice idealno fluida i realno fluida u relativnom mirovanju σ d av d fdv+ σd n V V t av d fdv+ ( pn+ σ ) V V d U anemarenje viskoni

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120 Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno

Διαβάστε περισσότερα

Knauf zvučna zaštita. Knauf ploče Knauf sistemi Knauf detalji izvođenja. Dipl.inž.arh. Goran Stojiljković Rukovodilac tehnike suve gradnje

Knauf zvučna zaštita. Knauf ploče Knauf sistemi Knauf detalji izvođenja. Dipl.inž.arh. Goran Stojiljković Rukovodilac tehnike suve gradnje Knauf zvučna zaštita Knauf ploče Knauf sistemi Knauf detalji izvođenja Dipl.inž.arh. Goran Stojiljković Rukovodilac tehnike suve gradnje Knauf ploče Gipsana Gipskartonska Gipsano jezgro obostrano ojačano

Διαβάστε περισσότερα

Uvod. dr.sc. M. Cetina, doc. Tekstilno-tehnološki fakultet, Zavod za primijenjenu kemiju. Što je kemija i što izučava kemija

Uvod. dr.sc. M. Cetina, doc. Tekstilno-tehnološki fakultet, Zavod za primijenjenu kemiju. Što je kemija i što izučava kemija Uvod Što je kemija i što izučava kemija Znanost koja se bavi proučavanjem prirode, tj. prirodnih pojava nazivamo prirodnom znanošću. Kemija je prirodna znanost koja proučava tvari od kojih je sastavljen

Διαβάστε περισσότερα

Impuls i količina gibanja

Impuls i količina gibanja FAKULTET ELEKTROTEHNIKE, STROJARSTVA I BRODOGRADNJE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba 4 Impuls i količina gibanja Ime i prezime prosinac 2008. MEHANIKA

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja: Anene Transformacija EM alasa u elekrični signal i obrnuo Osnovne karakerisike anena su: dijagram zračenja, dobiak (Gain), radna učesanos, ulazna impedansa,, polarizacija, efikasnos, masa i veličina, opornos

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

EMISIJA ŠTETNIH SASTOJAKA U ATMOSFERU IZ PROCESA IZGARANJA IZGARANJE - IZVOR EMISIJE

EMISIJA ŠTETNIH SASTOJAKA U ATMOSFERU IZ PROCESA IZGARANJA IZGARANJE - IZVOR EMISIJE Prof. dr. sc. Z. Prelec INŽENJERSTO ZAŠTITE OKOLIŠA Poglavlje: (Emisija u atmosferu) List: 1 EMISIJA ŠTETNIH SASTOJAKA U ATMOSFERU IZ PROCESA IZGARANJA IZGARANJE - IZOR EMISIJE Izgaranje - najveći uzrok

Διαβάστε περισσότερα

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom:

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom: Otporost mterijl. Zdtk ZDTK: U točki čeliče kostrukije postvlje su tri osjetil z mjereje deformij prem slii. ri opterećeju kostrukije izmjeree su reltive ormle (dužiske deformije: b ( - b 3 - -6 - ( b

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Repetitorij-Dinamika. F i Zakon očuvanja impulsa (ZOI): i p i = j p j. Zakon očuvanja energije (ZOE):

Repetitorij-Dinamika. F i Zakon očuvanja impulsa (ZOI): i p i = j p j. Zakon očuvanja energije (ZOE): Repetitorij-Dinamika Dinamika materijalne točke Sila: F p = m a = lim t 0 t = d p dt m a = i F i Zakon očuvanja impulsa (ZOI): i p i = j p j i p ix = j p jx te i p iy = j p jy u 2D sustavu Zakon očuvanja

Διαβάστε περισσότερα

A B C D. v v k k. k k

A B C D. v v k k. k k Brzina kemijske reakcije proporcionalna je aktivnim masama reagirajućih tvari!!! 1 A B C D v2 1 1 2 2 o C D m A B v m n o p v v k k m A B o C D p C a D n A a B A B C D 1 2 1 2 o m p n 1 2 n v v k k K a

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Utjecaj izgaranja biomase na okoliš

Utjecaj izgaranja biomase na okoliš 7. ZAGREBAČKI ENERGETSKI TJEDAN 2016 Utjecaj izgaranja biomase na okoliš Ivan Horvat, mag. ing. mech. prof. dr. sc. Damir Dović, dipl. ing. stroj. Sadržaj Uvod Karakteristike biomase Uporaba Prednosti

Διαβάστε περισσότερα

Ponašanje pneumatika pod dejstvom bočne sile

Ponašanje pneumatika pod dejstvom bočne sile Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

Sveučilište u Zagrebu Rudarsko geološko naftni fakultet

Sveučilište u Zagrebu Rudarsko geološko naftni fakultet Sveučilište u Zagrebu Rudarsko geološko naftni fakultet SEMINAR: TOPLJIVE STIJENE : VAPNENCI, DOLOMITI I EVAPORITI Zlatko Topić R 6 Zagreb, 2009 SADRŽAJ: 1. UVOD....2 2. VAPNENCI..3 2.1 SASTAV I KLASIFIKACIJA

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα