АНАЛИЗА ЗАМОРА МАТЕРИЈАЛА КОД ЧЕЛИЧНИХ ДРУМСКИХ МОСТОВА ПРЕМА ЕВРОКОДУ
|
|
- Ῥαχήλ Αγγελόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 АНАЛИЗА ЗАМОРА МАТЕРИЈАЛА КОД ЧЕЛИЧНИХ ДРУМСКИХ МОСТОВА ПРЕМА ЕВРОКОДУ Петар Кнежевић, Миливоје Милановић УДК: 9.4:6.7.6 OI: 0.44/zbornikGFS7.0 Резиме: У овом раду анализирана је носивост на замор карактеристичних детаља друмских мостова, према Еврокоду. Провера носивости на замор спроведена је на основу две различите методе које препоручује SRPS N 99--9, методом фактора еквивалентног оштећења и методом акумулације оштећења. Утицаји у карактеристичним детаљима одређени су на основу меродавних прорачунских модела, према одговарајућим стандардима. Поред величине напонског опсега, утицаји су дефинисани и њиховом учесталости током пројектованог животног века конструкције. Верификација замора методом фактора еквивалентног оштећења је спроведена на основу категоризације детаља, према SRPS N , док је код методе акумулације оштећења коришћена Miner-ова крива акумулације. На крају рада дато је поређење добијених резултата обе методе, коришћењем принципа еквивалентног напона. Кључне речи: Замор, друмски мостови, оштећење, категорија детаља. УВОД Замор материјала је појава која се састоји од формирања микропрслина и њиховог субкритичног раста све док у једном тренутку не дође до лома. Уобичајено се јавља код конструктивних елемената изложених цикличном оптерећењу. Поред корозије, замор материјала представља један од основних проблема трајности челичних конструкција. Друмски мостови представљају типичан пример конструкција изложених цикличном дејству спољашњих утицаја. Главни параметар ових утицаја је напонски опсег који се јавља у елементима конструкције и његова учесталост (број циклуса). Код конструктивних детаља изложених затезању током читавог сервисног века, напонски опсег се рачуна као алгебарска разлика екстремних вредности напона: max min () Верификација носивости на замор посматраног моста, спроведена је на основу две различите методе дате у []: Assist. Ph, State University of Novi Pazar,Novi Pazar,Serbia, petar.knezevic.dunp@gmail.com Assist. Ph, State University of Novi Pazar, Novi Pazar, Serbia, milanovicnp@gmail.com ЗБОРНИК РАДОВА ГРАЂЕВИНСКОГ ФАКУЛТЕТА 7 (0)
2 Метод еквивалентног оштећења приликом одређивања утицаја услед саобраћајног оптерећења, користи се модел оптерећења FLM, дефинисан према []. За дати модел оптерећења није потребно дефинисати број циклуса, већ се његова употреба везује за број циклуса од N= 0 6. Сва одступања прорачунског модела од стварне прорачунске ситуације се надомешћују употребом фактора еквивалентног оштећења λ. Метод акумулације оштећења - приликом одређивања утицаја услед саобраћајног оптерећења, користи се модел оптерећења FLM4, који се састоји од различитих врста тешких возила са европских путева. Поред димензија и осовинског оптерећења, дате моделе дефинише и њихова учесталост према []. Предпоставља се линеарна акумулација оштећења (Miner-ова крива).. УЛАЗНИ ПАРАМЕТРИ Анализа носивости на замор спроведена је за карактеристичне конструктивне детаље спрегнутог моста, чији је попречни пресек приказан на следећој слици. Мост је статичког система просте греде, распона 40м са две саобраћајне траке. Попречна укрућења су постављена на растојању оd L/0. Слика. - Попречни пресек моста Геометријске карактеристике пресека главног носача: I y,d =9700cm 4 A w =04.8cm e a,d =7cm Подаци о анализираним детаљима: Детаљ I веза између вертикалног укрућења и доње ножице главног носача у средини распона (x = 0м) 4 JOURNAL OF FAULTY OF IVIL NGINRING 7 (0)
3 Детаљ II веза између ребра и доње ножице главног носача у средини распона, остварена помоћу машинских шавова са стани-крени позицијама (x=0м). I Слика - Шематски приказ карактеристичних детаља Улазни подаци: Материјал: челик S; бетон 40/0 Метода провере: метода сигурног животног века Степен последица лома: висок Пројектовани животни век: t Ld = 00 година Категорија саобраћајнице: III Главни путеви са ниским протоком тешког саобраћаја N obs =000 ( Табела 4. [] ) Просечна нето тежина возила у спорој траци: Q M =40kN II. ВЕРИФИКАЦИЈА МЕТОДОМ ЕКВИВАЛЕНТНОГ ОШТЕЋЕЊА Провера носивости на замор карактеристичних детаља ће бити спроведена приближним поступком, помоћу кофицијената еквивалентног оштећења λ. При одређивању опсега напона користи се модел оптерећења FML, лоциран у средини траке за тешка возила. Одговарајући фактор попречне прерасподеле за главни носач износи η = Парцијални фактори: γ = γ =. rror! Reference source not found. Парцијални фактори еквивалентног оштећења: L () Q N m obs () Q N o o tld 00 (4) Ширина моста омогућава постојање две траке са тешким саобраћајем. Утицај друге траке се узима у обзир помоћу парцијалног фактора λ 4. Претпоставља се исти интензитет саобраћаја у обе траке N = N, Q m = Q m. Фактор прерасподеле утицаја за возило у траци, добијен преко утицајне линије, износи η = 0.7. ЗБОРНИК РАДОВА ГРАЂЕВИНСКОГ ФАКУЛТЕТА 7 (0)
4 m m N n Q m N n Qm () L 0 max. 0.. max (6) i max (7) (8), d Табела - Верификација носивости на замор методом еквивалентног оштећења etal d,, Komentar I < zadovolava II < zadovolava 4. ВЕРИФИКАЦИЈА МЕТОДОМ АКУМУЛАЦИЈЕ ОШТЕЋЕЊА Према дужини, саобраћајница се може сврстати у локалне путеве малих дужина (до 0км). Меродавни утицаји ће бити одређени помоћу утицајних линија и одговарајућег фактора попречне расподеле оптерећења η= =.988. За задати животни век (00 година) и категорију саобраћајнице (локални путеви), број циклуса услед саобраћајног оптерећења је дефинисан табелом Табела - Број циклуса саобраћајног оптерећења Камион % n i / година n i у 00 година Коначни критеријум за верификацију овом методом је дат на следећи начин: ni d i, где су: (9) N i Ri n - број циклуса са опсегом напона i N Ri - трајност детаља изражена преко броја циклуса, а добијена преко факторисане S-N криве N N Ri i m за опсег напона i i. R 6 0, где је: (0) i 6 JOURNAL OF FAULTY OF IVIL NGINRING 7 (0)
5 za i m нагиб S-N криве m za L p σ категорија детаља према [] σ граница носивости на замор при константној амплитуди оптерећења, у функцији категорије детаља σ L доња граница носивости на замор Табела Верификација носивости на замор методом акумулације оштећења Возило Детаљ I ( σ =80MPa) Детаљ II ( σ =MPa) M i σ i [knm] n i m N i i m N i i < 0.06<. ПОРЕЂЕЊЕ РЕЗУЛТАТА ПРИНЦИПОМ ЕКВИВАЛЕНТНОГ НАПОНА Иако је носивост на замор задовољена применом обе верификационе методе, компарација добијених резултата није могућа, због разлике у приступима. Међутим, применом принципа еквивалентног напона, према [], могуће је направити поређење. Резултати добијени методом акумулације оштећења се трансформишу у напонски облик, у виду еквивалентног напона σ и еквивалентног броја циклуса до колапса N : n n m m mi mi n mi i i () n i i - индекс који се односи на опсеге напона веће од σ - индекс који се односи на опсеге напона мање од σ m i = ; m = нагиби S-N кривих N 6 0 () ЗБОРНИК РАДОВА ГРАЂЕВИНСКОГ ФАКУЛТЕТА 7 (0) 7
6 Коначно поређење се врши за напоне σ Е, који одговарају броју циклуса до лома од N= 0 6 : ni, () 6 0 Табела 4 - Поређење резултата применом принципа еквивалентног напона etal N, Метода акумулације оштећења, > Метода еквивалентног оштећења, < I < 0.80 II < ЗАКЉУЧАК Независно од методе верификације, категорија детаља и одговарајућа логаритамска S-N kriva дефинишу његову носивост на замор, при цикличном оптерећењу. Верификација носивости на замор методом фактора оштећења представља приближну методу, којом се сва одступања прорачунског модела оптерећења од стварног оптерећења обухватају са четири парцијална коефицијента оштећења. Употреба само једног типа возила, наглашава ову методу као најпогоднију за решавање уобичајених проблема носивости на замор конструкција. Ова метода је конзервативнија пошто не занемарује опсеге напона испод доње границе σ L, који не утичу на носивост на замор. Метода акумулације оштећења је тачнија, али примена различитих модела тешких возила знатно усложава прорачун. Иако се заснива на принципу линеарне акумулације оштећења, могућа је конверзија коначних резултата верификације у напонски облик, чиме се може извршити компарација резултата и показати да метода акумулације оштећења даје мање конзервативна решења од методе еквивалентног оштећења. ЛИТЕРАТУРА [] SN N 99--9, уrocode : esign of steel strуctуres - Part -9: Fatigуe; [] SN N 99-, уrocode : Action on structures - Part : Trafic loads on bridges [] Mustafa A., Mohhamad A., Fatique design of steel and composite bridges (04). halmers university of technology, Sweden [4] Nussbauer A., Borges L., & avaine L. Fatique design of steel and composite structures (0) 8 JOURNAL OF FAULTY OF IVIL NGINRING 7 (0)
7 FATIGU ANALYSIS OF STL ROA BRIGS BY UROO Summary: The fatigue strength of the characteristic details of road bridges by urocode has been analysed in this paper. Verification of fatigue resistance has carried out by two different methods, recommended by SRPS N 99--9, the method of damage equivalent factor and the damage accumulation method. The action effects in characteristic details were calculated using load models defined in appropriate standards. Beside of stress range, fatigue effects are defined by stress frequency during designed lifetime of construction. Fatigue verification by method of equivalent damage factor has been performed using the detail categories defined in SRPS N 99--9, while fatigue verification according to damage accumulation method has been performed using the Miner s accumulation curve. omparison of results obtained by these two methods has been pressented at the end of the paper, using the concept of equivalent stress. Keywords: ompositecolumns, fireresistance, interactiondiagrams ЗБОРНИК РАДОВА ГРАЂЕВИНСКОГ ФАКУЛТЕТА 7 (0) 9
Врсте замора Нискоциклични замор Високоциклични замор
Замор Врсте замора Нискоциклични замор велике пластичне деформације (превијање) мали број циклуса (нпр. услед сеизмичких утицаја); Високоциклични замор еластично понашање (напрезања испод границе развлачења)
ДОЊА И ГОРЊА ГРАНИЦА ОПТЕРЕЋЕЊА ПРАВОУГАОНИХ И КРУЖНИХ ПЛОЧА
ДОЊА И ГОРЊА ГРАНИЦА ОПТЕРЕЋЕЊА ПРАВОУГАОНИХ И КРУЖНИХ ПЛОЧА Саша Ковачевић 1 УДК: 64.04 DOI:10.14415/zbornikGFS6.06 Резиме: Тема рада се односи на одређивање граничног оптерећења правоугаоних и кружних
Теорија електричних кола
др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола i i i Милка Потребић др Милка Потребић, ванредни професор,
налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm
1 Два тачкаста наелектрисања 1 400 p и 100p налазе се у диелектрику релативне диелектричне константе ε на међусобном растојању ( 1cm ) као на слици 1 Одредити силу на наелектрисање 3 100p када се оно нађе:
предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА
Висока техничка школа струковних студија у Нишу предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Садржај предавања: Систем
b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је:
Пример 1. III Савијање правоугаоних плоча За правоугаону плочу, приказану на слици, одредити: a) израз за угиб, b) вредност угиба и пресечних сила у тачки 1 ако се користи само први члан реда усвојеног
Писмени испит из Метода коначних елемената
Београд,.0.07.. За приказани билинеарни коначни елемент (Q8) одредити вектор чворног оптерећења услед задатог линијског оптерећења p. Користити природни координатни систем (ξ,η).. На слици је приказан
4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април Суботица, СРБИЈА
4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април 2016. Суботица, СРБИЈА ПРИКАЗ МЕТОДА ЗА ПРОРАЧУН ПЛОЧА ДИРЕКТНО ОСЛОЊЕНИХ НА СТУБОВЕ Никола Мирковић 1 Иван Милићевић 2 Драгослав
Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.
VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне
Предмет: Задатак 4: Слика 1.0
Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +
4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април Суботица, СРБИЈА
4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству. април 01. Суботица, СРБИЈА ПРОРАЧУН ПОМЕРАЊА ТАНКОЗИДНИХ НОСАЧА ПРИМЕНОМ МЕТОДА КОНАЧНИХ ТРАКА Смиља Живковић 1 УДК: 4.07. : 519.73 DOI:10.14415/konferencijaGFS
Универзитет у Крагујевцу Факултет за машинство и грађевинарство у Краљеву Катедра за основне машинске конструкције и технологије материјала
Теоријски део: Вежба број ТЕРМИЈСКА AНАЛИЗА. Термијска анализа је поступак који је 903.год. увео G. Tamman за добијање криве хлађења(загревања). Овај поступак заснива се на принципу промене топлотног садржаја
2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА
. колоквијум. Наставни колоквијум Задаци за вежбање У свим задацима се приликом рачунања добија само по једна вредност. Одступање појединачне вредности од тачне вредности је апсолутна грешка. Вредност
Писмени испит из Теорије површинских носача. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.
Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2. За плочу
КОЕФИЦИЈЕНТ αcc У ПРОРАЧУНСКОЈ ВРЕДНОСТИ ЧВРСТОЋЕ БЕТОНА ПРИ ПРИТИСКУ
КОЕФИЦИЈЕНТ α У ПРОРАЧУНСКОЈ ВРЕДНОСТИ ЧВРСТОЋЕ БЕТОНА ПРИ ПРИТИСКУ Даница Голеш УДК: 69.38 DOI:.445/zbornikGFS3.4 Резиме: Коефицијентом α уводе се ефекти брзине наношења и дужине трајања оптерећења на
МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА
Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два
1.2. Сличност троуглова
математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)
РАЧУНАРСКО МОДЕЛИРАЊЕ ДРУМСКОГ МОСТА ПРИ СИМУЛАЦИЈИ ПОКРЕТНОГ ОПТЕРЕЋЕЊА
РАЧУНАРСКО МОДЕЛИРАЊЕ ДРУМСКОГ МОСТА ПРИ СИМУЛАЦИЈИ ПОКРЕТНОГ ОПТЕРЕЋЕЊА Илија М. Миличић 1 Немања Браловић 2 УДК: 624.042.3 : 624.21.095 DOI: 10.14415/zbornikGFS30.02 Резиме: У овом истраживању приказано
СИМУЛАЦИЈА ПРОЦЕСА ОБРАДЕ ПЛАСТИЧНИМ ДЕФОРМИСАЊЕМ (МЕТОД КОНАЧНИХ ЕЛЕМЕНАТА)
ТЕХНОЛОГИЈА МАШИНОГРАДЊЕ ЛЕТЊИ СЕМЕСТАР 3. лабораторијска вежба СИМУЛАЦИЈА ПРОЦЕСА ОБРАДЕ ПЛАСТИЧНИМ ДЕФОРМИСАЊЕМ (МЕТОД КОНАЧНИХ ЕЛЕМЕНАТА) Дефиниција Метод коначних елемената (МКЕ) се заснива на одређеној
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки
Пешачки мостови. Метални мостови 1
Пешачки мостови Метални мостови 1 Особености пешачких мостова Мање оптерећење него код друмских мостова; Осетљиви су на вибрације. Неопходна је контрола SLS! Посебна динамичка анализа се захтева када је:
Mостови са косим затегама (кабловима) Метални мостови 1
Mостови са косим затегама (кабловима) Метални мостови 1 Основне карактеристике Почетак развоја шездесетих година 20. века. Примењују се за веће распоне L = 200 1000 m (у новије време и преко 1000 m); Основни
г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве
в) дијагонала dd и страница aa квадрата dd = aa aa dd = aa aa = није рац. бр. нису самерљиве г) страница aa и пречник RR описаног круга правилног шестоугла RR = aa aa RR = aa aa = 1 јесте рац. бр. јесу
Анализа Петријевих мрежа
Анализа Петријевих мрежа Анализа Петријевих мрежа Мере се: Својства Петријевих мрежа: Досежљивост (Reachability) Проблем досежљивости се састоји у испитивању да ли се може достићи неко, жељено или нежељено,
Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10
Tестирање хипотеза 5.час 30. март 2016. Боjана Тодић Статистички софтвер 2 30. март 2016. 1 / 10 Монте Карло тест Монте Карло методе су методе код коjих се употребљаваjу низови случаjних броjева за извршење
ПРОРАЧУН УГИБА УНАКРСНО ЛАМЕЛИРАНОГ ДРВЕНОГ МЕЂУСПРАТНОГ ПАНЕЛА
ПРОРАЧУН УГИБА УНАКРСНО ЛАМЕЛИРАНОГ ДРВЕНОГ МЕЂУСПРАТНОГ ПАНЕЛА Љиљана М. Козарић Александар. Прокић Мирослав Бешевић Мартина Војнић Пурчар 4 УДК: 69.5 : 69.6 DOI: 0.445/zbornikGFS0.06 Резиме: У раду су
6.5 Површина круга и његових делова
7. Тетива је једнака полупречнику круга. Израчунај дужину мањег одговарајућег лука ако је полупречник 2,5 сm. 8. Географска ширина Београда је α = 44 47'57", а полупречник Земље 6 370 km. Израчунај удаљеност
ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце
РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ ТРАПЕЗ Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце Ментор :Криста Ђокић, наставник математике Власотинце, 2011. године Трапез
7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ
7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7.1. ДИОФАНТОВА ЈЕДНАЧИНА ху = n (n N) Диофантова једначина ху = n (n N) има увек решења у скупу природних (а и целих) бројева и њено решавање није проблем,
4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април Суботица, СРБИЈА
4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април 2016. Суботица, СРБИЈА УПОРЕДНА АНАЛИЗА ЕЛАСТИЧНЕ И ЕЛАСТО- ПЛАСТИЧНЕ НОСИВОСТИ ПОПРЕЧНОГ ПРЕСЕКА Аљоша Филиповић 1 Љубо Дивац
Стручни рад ПРИМЕНА МЕТОДЕ АНАЛИТИЧКИХ ХИЕРАРХИJСКИХ ПРОЦЕСА (АХП) КОД ИЗБОРА УТОВАРНО -ТРАНСПОРТНЕ МАШИНЕ
ПОДЗЕМНИ РАДОВИ 15 (2006) 43-48 UDK 62 РУДАРСКО-ГЕОЛОШКИ ФАКУЛТЕТ БЕОГРАД YU ISSN 03542904 Стручни рад ПРИМЕНА МЕТОДЕ АНАЛИТИЧКИХ ХИЕРАРХИJСКИХ ПРОЦЕСА (АХП) КОД ИЗБОРА УТОВАРНО -ТРАНСПОРТНЕ МАШИНЕ ИЗВОД
6.2. Симетрала дужи. Примена
6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права
Стручни рад МОГУЋНОСТ ОПТИМИЗАЦИЈЕ И ВЕРИФИКАЦИЈЕ ПОПРЕЧНОГ ПРЕСЕКА ЧЕЛИЧНИХ УЖАДИ
ПОДЗЕМНИ РАДОВИ 14 (2005) 63-68 UDK 62 РУДАРСКО-ГЕОЛОШКИ ФАКУЛТЕТ БЕОГРАД YU ISSN 03542904 ИЗВОД Стручни рад МОГУЋНОСТ ОПТИМИЗАЦИЈЕ И ВЕРИФИКАЦИЈЕ ПОПРЕЧНОГ ПРЕСЕКА ЧЕЛИЧНИХ УЖАДИ Станова Евá 1, Молнар
Предизвици во моделирање
Предизвици во моделирање МОРА да постои компатибилност на јазлите од мрежата на КЕ на спојот на две површини Предизвици во моделирање Предизвици во моделирање Предизвици во моделирање Предизвици во моделирање
8.2 ЛАБОРАТОРИЈСКА ВЕЖБА 2 Задатак вежбе: Израчунавање фактора појачања мотора напонским управљањем у отвореној повратној спрези
Регулциј електромоторних погон 8 ЛАБОРАТОРИЈСКА ВЕЖБА Здтк вежбе: Изрчунвње фктор појчњ мотор нпонским упрвљњем у отвореној повртној спрези Увод Преносн функциј мотор којим се нпонски упрвљ Кд се з нулте
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 0/06. година ТЕСТ МАТЕМАТИКА
АНАЛИЗА ОПТЕРЕЋЕЊА РЕШЕТКАСТОГ ДАЛЕКОВОДНОГ СТУБА ПРЕМА ЕВРОПСКИМ СТАНДАРДИМА
АНАЛИЗА ОПТЕРЕЋЕЊА РЕШЕТКАСТОГ ДАЛЕКОВОДНОГ СТУБА ПРЕМА ЕВРОПСКИМ СТАНДАРДИМА Дијана Мајсторовић 1 Mирослав Бешевић Александар Прокић 3 УДК: 64.04.074.5 DOI: 10.14415/zbornikGFS30.03 Резиме: У раду се
ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису.
ЛИНЕАРНА ФУНКЦИЈА 5.. Функција = a + b Функционалне зависности су веома значајне и са њиховим применама често се сусрећемо. Тако, већ су нам познате директна и обрнута пропорционалност ( = k; = k, k ),
Писмени испит из Теорије плоча и љуски. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.
Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. = 0.2 dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2.
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска 016/017. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Тест Математика Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 00/0. година ТЕСТ МАТЕМАТИКА
Факултет организационих наука Центар за пословно одлучивање. PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation)
Факултет организационих наука Центар за пословно одлучивање PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation) Студија случаја D-Sight Консултантске услуге за Изградња брзе пруге
1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1
1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1 Метод разликовања случајева је један од најексплоатисанијих метода за решавање математичких проблема. У теорији Диофантових једначина он није свемогућ, али је сигурно
МАШИНЕ НЕПРЕКИДНОГ ТРАНСПОРТА. ttl. тракасти транспортери, капацитет - учинак, главни отпори кретања. Машине непрекидног транспорта. предавање 2.
МАШИНЕ НЕПРЕКИДНОГ ТРАНСПОРТА предавање.3 тракасти транспортери, капацитет учинак, главни отпори кретања Капацитет Капацитет представља полазни параметар при прорачуну транспортера задаје се пројектним
ПРОЈЕКТОВАЊЕ РАМПЕ. Слика А.1 - (а) приказ рампе у основи, (б) подужни пресек рампе
ПРОЈЕКТОВАЊЕ РАМПЕ Рампа представља косу подземну просторију која повезује хоризонте или откопне нивое, и тако је пројектована и изведена да омогућује кретање моторних возила. Приликом пројектовања рампе
8.5 ЛАБОРАТОРИЈСКА ВЕЖБА 5 Задатак вежбе: PI регулација брзине напонски управљаним микромотором једносмерне струје
Регулација електромоторних погона 8.5 ЛАБОРАТОРИЈСКА ВЕЖБА 5 Задатак вежбе: регулација брзине напонски управљаним микромотором једносмерне струје Увод Simulik модел На основу упрошћеног блок дијаграма
Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање. 1. вежба
Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање ОРГАНИЗАЦИЈА ПАРКИРАЛИШТА 1. вежба Место за паркирање (паркинг место) Део простора намењен, технички опремљен и уређен за паркирање једног
КРИТИЧНИ НАПОНИ И СТЕПЕН СИГУРНОСТИ
Машински факултет Универзитета у Београду/ Машински елементи / Предавање 3 КРИТИЧНИ НАПОНИ И СТЕПЕН СИГУРНОСТИ Критична стања машинских делова У критичном стањеу машински делови не могу да извршавају своју
TAЧКАСТА НАЕЛЕКТРИСАЊА
TЧКАСТА НАЕЛЕКТРИСАЊА Два тачкаста наелектрисања оптерећена количинама електрицитета и налазе се у вакууму као што је приказано на слици Одредити: а) Вектор јачине електростатичког поља у тачки А; б) Електрични
Семинарски рад из линеарне алгебре
Универзитет у Београду Машински факултет Докторске студије Милош Живановић дипл. инж. Семинарски рад из линеарне алгебре Београд, 6 Линеарна алгебра семинарски рад Дата је матрица: Задатак: a) Одредити
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 013/014. година ТЕСТ
ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ
ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ 1. Удео снаге и енергије ветра у производњи електричне енергије - стање и предвиђања у свету и Европи. 2. Навести називе најмање две међународне организације
Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе:
Њутнови закони 1 Динамика Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: када су објекти довољно велики (>димензија атома) када се крећу брзином много мањом
ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ
ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: ОСНОВИ МЕХАНИКЕ студијски програм: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 2. Садржај предавања: Систем сучељних сила у равни
Саобраћајна оптерећења на мостовима - према Еврокоду
Саобраћајна оптерећења на мостовима - према Еврокоду Област примене - прописи Саобраћајна оптерећења на мостовима су дефинисана у стандарду SRPS EN 1991-2 и његовом Националним прилогу (SRPS EN 1991-2/NA).
5.2. Имплицитни облик линеарне функције
математикa за VIII разред основне школе 0 Слика 6 8. Нацртај график функције: ) =- ; ) =,5; 3) = 0. 9. Нацртај график функције и испитај њен знак: ) = - ; ) = 0,5 + ; 3) =-- ; ) = + 0,75; 5) = 0,5 +. 0.
СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ
СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ 8.. Линеарна једначина с две непознате Упознали смо појам линеарног израза са једном непознатом. Изрази x + 4; (x 4) + 5; x; су линеарни изрази. Слично, линеарни
Ротационо симетрична деформација средње површи ротационе љуске
Ротационо симетрична деформација средње површи ротационе љуске слика. У свакој тачки посматране средње површи, у општем случају, постоје два компонентална померања: v - померање у правцу тангенте на меридијалну
ИЗВОД ИЗ ИЗВЕШТАЈА О ЦЕНАМА КОМУНАЛНИХ УСЛУГА - УДРУЖЕЊЕ ЗА КОМУНАЛНЕ ДЕЛАТНОСТИ -
ИЗВОД ИЗ ИЗВЕШТАЈА О ЦЕНАМА КОМУНАЛНИХ УСЛУГА - УДРУЖЕЊЕ ЗА КОМУНАЛНЕ ДЕЛАТНОСТИ - ЦЕНЕ ПРОИЗВОДЊЕ И ДИСТРИБУЦИЈЕ ВОДЕ И ЦЕНЕ САКУПЉАЊА, ОДВОђЕЊА И ПРЕЧИШЋАВАЊА ОТПАДНИХ ВОДА НА НИВОУ ГРУПАЦИЈЕ ВОДОВОДА
Универзитет у Београду МАТЕМАТИЧКИ ФАКУЛТЕТ. Огњановић В. Огњен
Универзитет у Београду МАТЕМАТИЧКИ ФАКУЛТЕТ Огњановић В. Огњен АНАЛИЗА НАПОНСКОГ СТАЊА ЕЛЕМЕНАТА АЕРО И КОСМИЧКИХ ЛЕТНИХ КОНСТРУКЦИЈА И ПРОЦЕНА ЊИХОВОГ ВЕКА ДО ИНИЦИЈАЛНОГ ОШТЕЋЕЊА Магистарски рад Београд
4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова
4 Троугао (II део) Хилберт Давид, немачки математичар и логичар Велики углед у свету Хилберту је донело дело Основи геометрије (1899), у коме излаже еуклидску геометрију на аксиоматски начин Хилберт Давид
ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА
ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА Стандардна девијација показује расподелу резултата мерења око средње вредности, али не указује на облик расподеле. У табели 1 су дате вредности за 50 поновљених одређивања
L кплп (Калем у кплу прпстпперипдичне струје)
L кплп (Калем у кплу прпстпперипдичне струје) i L u=? За коло са слике кроз калем ппзнате позната простопериодична струја: индуктивности L претпоставићемо да протиче i=i m sin(ωt + ψ). Услед променљиве
КОЛОВОЗНЕ КОНСТРУКЦИЈЕ шк. 2016/17 година в.проф.др Горан Младеновић, дипл.инж. 1
Димензионисање коловозних конструкција KОЛОВОЗНЕ КОНСТРУКЦИЈЕ VIII предавање Димензионисање коловозних конструкција Анализа саобраћајног оптерећења шк. 2016/17 год. Типови коловозних конструкција Флексибилне
ДИМЕНЗИОНИСАЊЕ ЧЕЛИЧНОГ СФЕРНОГ РЕЗЕРВОАРА ВИСИНЕ H=44m ПРЕМА ЕВРОКОДУ
ДИМЕНЗИОНИСАЊЕ ЧЕЛИЧНОГ СФЕРНОГ РЕЗЕРВОАРА ВИСИНЕ H=44m ПРЕМА ЕВРОКОДУ Мирослав Т. Бешевић 1 Смиља Живковић 2 Мартина Војнић Пурчар 3 УДК: 624.953 : 693.814 DOI: 10.14415/zbornikGFS30.05 Резиме: У овом
УТИЦАЈНИ ФАКТОРИ НА ЧВРСТОЋУ И ТРАЈНОСТ СТОЛИЦА
ГЛАСНИК ШУМАРСКОГ ФАКУЛТЕТА, БЕОГРАД, 2008, бр. 97, стр. 259-276 BIBLID: 0353-4537, (2008), 97, p 259-276 Džinčić I., Skakić D., Nestorović B. 2008. Factors affecting rigidity and durabillity of chairs.
Рад садржи основне једначине за димензионисање
Анализа прорачуна делова посуда под притиском према српским и светским стандардима, Део : Цилиндрични омотачи Александар Петровић, Никола Гверо Рад садржи основне једначине за димензионисање цилиндричних
Тест за 7. разред. Шифра ученика
Министарство просвете Републике Србије Српско хемијско друштво Окружно/градско/међуокружно такмичење из хемије 28. март 2009. године Тест за 7. разред Шифра ученика Пажљиво прочитај текстове задатака.
ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 2 (13Е013ЕП2) октобар 2016.
ЕНЕРГЕТСКИ ПРЕТВАРАЧИ (3Е03ЕП) октобар 06.. Батерија напона B = 00 пуни се преко трофазног полууправљивог мосног исправљача, који је повезан на мрежу 3x380, 50 Hz преко трансформатора у спрези y, са преносним
Једна од централних идеја рачунарства Метода која решавање проблема своди на решавање проблема мање димензије
Рекурзија Једна од централних идеја рачунарства Метода која решавање проблема своди на решавање проблема мање димензије Рекурзивна функција (неформално) је функција која у својој дефиницији има позив те
ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда
ОБЛАСТИ: ) Тачка ) Права Jov@soft - Март 0. ) Тачка Тачка је дефинисана (одређена) у Декартовом координатном систему са своје две коодринате. Примери: М(5, ) или М(-, 7) или М(,; -5) Jov@soft - Март 0.
Теорија електричних кола
Др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола Милка Потребић Др Милка Потребић, ванредни професор,
ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА
ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА 1. Допуни шта недостаје: а) 5m = dm = cm = mm; б) 6dm = m = cm = mm; в) 7cm = m = dm = mm. ПОЈАМ ПОВРШИНЕ. Допуни шта недостаје: а) 10m = dm = cm = mm ; б) 500dm = a
1. Модел кретања (1.1)
1. Модел кретања Кинематика, у најопштијој формулацији, може да буде дефинисана као геометрија кретања. Другим речима, применом основног апарата математичке анализе успостављају се зависности између елементарних
Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила.
Вектори 1 Вектори vs. скалари Векторске величине се описују интензитетом и правцем Примери: Померај, брзина, убрзање, сила. Скаларне величине су комплетно описане само интензитетом Примери: Температура,
ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ I група
ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ 21.11.2009. I група Име и презиме студента: Број индекса: Термин у ком студент ради вежбе: Напомена: Бира се и одговара ИСКЉУЧИВО на шест питања заокруживањем
Процена преосталог века структуралних елемената са иницијалним оштећењима под дејством спектра термомеханичких оптерећења
Универзитет у Београду Машински факултет Драги П. Стаменковић Процена преосталог века структуралних елемената са иницијалним оштећењима под дејством спектра термомеханичких оптерећења докторска дисертација
Школска 2010/2011 ДОКТОРСКЕ АКАДЕМСКЕ СТУДИЈЕ
Школска 2010/2011 ДОКТОРСКЕ АКАДЕМСКЕ СТУДИЈЕ Прва година ИНФОРМАТИЧКЕ МЕТОДЕ У БИОМЕДИЦИНСКИМ ИСТРАЖИВАЊИМА Г1: ИНФОРМАТИЧКЕ МЕТОДЕ У БИОМЕДИЦИНСКИМ ИСТРАЖИВАЊИМА 10 ЕСПБ бодова. Недељно има 20 часова
2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ
2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ 2.1. МАТЕМАТИЧКИ РЕБУСИ Најједноставније Диофантове једначине су математички ребуси. Метод разликовања случајева код ових проблема се показује плодоносним, јер је раздвајање
Нивелмански инструмент (нивелир) - конструкција и саставни делови, испитивање и ректификација нивелира, мерење висинских разлика техничким нивелманом
висинских техничким нивелманом Страна 1 Радна секција: 1.. 3. 4. 5. 6. Задатак 1. За нивелмански инструмент нивелир са компензатором серијски број испитати услове за мерење висинских : 1) Проверити правилност
АНАЛИЗА КВАЛИТЕТА САДРЖАЈА ДИГИТАЛНОГ ПЛАНА КАТАСТРА ВОДОВА
АНАЛИЗА КВАЛИТЕТА САДРЖАЈА ДИГИТАЛНОГ ПЛАНА КАТАСТРА ВОДОВА Горан Маринковић 1 Милан Трифковић 2 Јелена Лазић 3 Жарко Несторовић 4 UDK: 528.4 : 628.14 : 004 DOI: 10.14415/zbornikGFS29.09 Резиме: У овом
3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни
ТАЧКА. ПРАВА. РАВАН Талес из Милета (624 548. пре н. е.) Еуклид (330 275. пре н. е.) Хилберт Давид (1862 1943) 3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни Настанак геометрије повезује
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки
1. Функција интензитета отказа и век трајања система
f(t). Функција интензитета отказа и век трајања система На почетку коришћења неког система јављају се откази који као узрок имају почетне слабости или пропуштене дефекте у току производње и то су рани
Скупови (наставак) Релације. Професор : Рака Јовановић Асиситент : Јелена Јовановић
Скупови (наставак) Релације Професор : Рака Јовановић Асиситент : Јелена Јовановић Дефиниција дуалне скуповне формуле За скуповне формулу f, која се састоји из једног или више скуповних симбола и њихових
Слика бр.1 Површина лежишта
. Конвенционалне методе процене.. Параметри за процену рудних резерви... Површина лежишта Површине лежишта ограничавају се спајањем тачака у којима је истражним радом утврђен контакт руде са јаловином.
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2010/2011. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО
ПРОРАЧУН ЧЕЛИЧНОГ АНТЕНСКОГ СТУБА ПРЕМА ЕВРОКОДУ
ПРОРАЧУН ЧЕЛИЧНОГ АНТЕНСКОГ СТУБА ПРЕМА ЕВРОКОДУ Александар Панчић Mирослав Бешевић УДК: 64.97:6.396 DOI: 0.445/zbornikGFS7.0 Резиме: У раду се приказује прорачун челичног антенског стуба према Еврокоду
САНАЦИОНО РЕШЕЊЕ ПОВЕЋАНИХ ВИБРАЦИЈА НОСЕЋЕ КОНСТРУКЦИЈЕ ВЕНТИЛАТОРА
САНАЦИОНО РЕШЕЊЕ ПОВЕЋАНИХ ВИБРАЦИЈА НОСЕЋЕ КОНСТРУКЦИЈЕ ВЕНТИЛАТОРА Ђерђ Варју 1 Љиљана Тадић 2 Оливер Вајда 3 УДК: 624.042.3 : 621.63 DOI: 10.14415/zbornikGFS30.01 Резиме: У раду је приказано санационо
[1] [1] АГГ+ [1] [1] С. Ковачевић Спрегнути друмски мостови са префабрикованим коловозним
АГГ+ [1] 2013 1[1] С. Ковачевић Спрегнути друмски мостови са префабрикованим коловозним... 186 201 185 Архитектонско грађевински факултет I Универзитет у Бањој Луци Faculty of architecture and civil engineering
Осцилације система са једним степеном слободе кретања
03-ec-18 Осцилације система са једним степеном слободе кретања Опруга Принудна сила F(t) Вискозни пригушивач ( дампер ) 1 Принудна (пертурбациона) сила опруга Реституциона сила (сила еластичног отпора)
ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ ИСПИТ ЗА УЧЕНИКЕ СА ПОСЕБНИМ СПОСОБНОСТИМА ЗА ИНФОРМАТИКУ
КОЛОВОЗНЕ КОНСТРУКЦИЈЕ шк. 2015/16 година в.проф.др Горан Младеновић, дипл.инж. 1
Димензионисање коловозних конструкција KОЛОВОЗНЕ КОНСТРУКЦИЈЕ VIII предавање Димензионисање коловозних конструкција Анализа саобраћајног оптерећења шк. 2015/16 год. Типови коловозних конструкција Флексибилне
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 011/01. година ТЕСТ МАТЕМАТИКА УПУТСТВО
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 014/01. година ТЕСТ МАТЕМАТИКА
Вежба 17 Kарактеристикa транзистора
Вежба 17 Kарактеристикa транзистора Увод Проналазак транзистора означава почетак нове ере у електроници. Проналазачи транзистора Бардин (Bardeen), Братеин (Brattain) и Шокли (Shockley) су за своје откриће
C кплп (Кпндензатпр у кплу прпстпперипдичне струје)
C кплп (Кпндензатпр у кплу прпстпперипдичне струје) i u За кплп са слике на крајевима кпндензатпра ппзнате капацитивнпсти C претппставићемп да делује ппзнат прпстпперипдичан наппн: u=u m sin(ωt + ϴ). Услед
10.3. Запремина праве купе
0. Развијени омотач купе је исечак чији је централни угао 60, а тетива која одговара том углу је t. Изрази површину омотача те купе у функцији од t. 0.. Запремина праве купе. Израчунај запремину ваљка
ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције. Diffie-Hellman размена кључева
ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције Diffie-Hellman размена кључева Преглед Биће објашњено: Diffie-Hellman размена кључева 2/13 Diffie-Hellman размена кључева први алгоритам са јавним
Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ:
Ваљак ВАЉАК P=B + M V= B H B= r p M=rp H Pосн.пресека = r H. Површина омотача ваљка је π m, а висина ваљка је два пута већа од полупрчника. Израчунати запремину ваљка. π. Осни пресек ваљка је квадрат површине