Compilatoare. Generarea codului obiect

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Compilatoare. Generarea codului obiect"

Transcript

1 Compilatoare Generarea codului obiect

2 Generarea codului intermediar Cod intermediar vs. cod obiect Reduce diferenta semantica cod sursa cod obiect Acelasi compilator pe mai multe procesoare Acelasi compilator pentru mai multe limbaje Unele optimizari se fac mai simplu pe limbaj intermediar Se pot utiliza arbori sau limbaj pentru masina virtuala Cel mai frecvent folosit quadruples, three-address code - max. 3 operanzi/instructiune id1:= id2 op id3 id1:= op id2 id1:= val id1:= &id2 id1:= * id2 * id1:= id2 id1:= id2[id3] goto id if id1 oprel id2 goto id3 { op este un operator binar aritmetic sau logic} { op este un operator unar aritmetic sau logic} { val este un scalar sau o constanta } { adresa unui obiect in memorie } { citire din memorie via pointer } { scriere din memorie via pointer } { id2 adresa unui array, id2 index in array } { oprel este un operator relational }

3 Nivelul codului intermediar HIR mentine structura limbajului MIR tinde sa fie independent de limbaj si masina LIR e dependent de masina

4 Mai mult de 3 operanzi Pentru apelul de subprograme se utilizează o secvenţă de instrucţiuni de forma: param id.1 param id.2... param id.n call id, n Expresiile cu mai mult de 3 operanzi se despart in expresii elementare

5 Evaluarea de expresii Expresiile cu mai mult de 3 operanzi se despart in expresii elementare d=b 2-4ac Pe masinile load-store creeaza un nou temporar pentru fiecare rezultat intermediar Se presupune deocamdata ca exista un numar infinit de registri Se poate lucra cu un numar finit prin tehnici simple de alocare, dar e mai bine sa lasam un pas special de optimizare sa se ocupe de asta Index: nr. instructiunii care a produs valoarea Generarea se face printr-o traversare a arborelui sintactic = d - b * b * * 4 a c t1:= b * b t2:= 4 * a t3:= t2 * c t4:= t1 t2 d := t4

6 Expresii pe masinile cu stiva Instructiuni cu 0 adrese: push, pop, aritmetice; operatiile binare scot doua valori de pe stiva, pun la loc una Pe masinile cu stiva: Pt a evalua o variabila incarca valoarea Pt a evalua o constanta push valoarea Pt a evalua o expresie Evalueaza stanga Evalueaza dreapta Aplica operatorul = d - b * b Load b Dupl Mult Load a Push 4 Mult Load c Mult Sub Store d * * 4 a c

7 Tipuri simple Integer atentie la cross-compiling Caractere tipuri de codificari; Unicode Floating point Reprezentare standard (IEEE 754) Valori speciale: ±0, ±inf, NotANumber Overflow, dar si underflow Care este cel mai mic numar pozitiv reprezentabil? Numere denormalizate Rotunjire, trunchiere, si aritmetica pe intervale

8 Tipuri compuse A:array(L1..L1+M-1, L2..L2+N-1) of integer; A[i,j] e de fapt tmp=(i-l1)*n+j-l2; A[tmp] Se poate tine A-L1*N-L2 in symbol table, accesam direct in functie de i si j Atribuirea devine de fapt o bucla dubla / memcpy char a[2][3] char *a[2] a a a[1][1] a[1][1]

9 Aliniere, padding A:record (structuri) se aloca memorie secvential pentru campurile structurii; de obicei, se aliniaza; nu ne putem baza pe layout c1 i c2 struct { char c1; int i; char c2}; Bit fields c1 c2 i1 i2 struct { char c1:6; char c2:6; short i1:6; short i2:6;};

10 Generarea de cod pentru atribuire Genereaza adresa partii stangi Variabila (tip scalar? poate fi tinuta in registru) Membru (expresie cu. ) Adresa structurii + offsetul in cadrul structurii. Element (expresie cu [] ) Adresa array + valoare index * dimensiune element. Genereaza valoarea partii drepte Atribuie (*addr)=val Se presupune ca am transformat deja casturile implicite in casturi explicite

11 Generarea de cod pentru if if cond then then_statements else else_statements; end if; t1 = cond if not t1 goto else_label {quadruples for then_statements} goto endif_label else_label: {quadruples for else_statements} endif_label: Genereaza etichete Genereaza instructiuni pentru nodurile fii Plaseaza etichete in cod (poate avea nevoie de etichete si pt then -> cand?) Daca avem elif, e practic else if ; eticheta de endif poate fi mostenita de la parinte

12 Evaluarea booleana partiala Se trateaza expresiile booleene ca instructiuni de tip if then else If(B1 B2) S1 else S2 => if(b1) goto S1 else if (B2) S1 else S2; If(B1&&B2) S1 else S2 => if(b1) then if(b2) then S1 else goto S2 else S2; Practic, se mostenesc etichetele de then si else de la if-ul parinte

13 Generarea de cod pt. while while (cond) { start_loop: if (!cond) goto end_loop s1; quadruples for s1 if (cond2) break; if (cond2) goto end_loop s2; quadruples for s2 if (cond3) continue; if (cond3) goto start_loop s3; quadruples for s3 }; goto start_loop end_loop: Genereaza doua etichete: start_loop, end_loop Restul codului ca mai sus

14 Alte tipuri de bucle Bucle numerice Semantica: bucla nu se executa daca intervalul variabilei e vid deci testul se executa initial E de fapt o bucla while: For J in expr1..expr2 -> J=expr1; while(j<=expr2){ ;J++;} Trebuie avut grija la continue J++ se executa in acest caz! Bucle repeat until Sunt bucle while, dar se copiaza o data corpul buclei inaintea ei

15 Plasarea testului la sfarsit K in expr1.. Expr2 loop t1 = expr1 t2 = expr2 K = t1-1 goto test_label start_label: S1; quadruples for S1 end loop; test_label: K = K + 1 if K <= t2 goto start_label end_label: Generarea de bucle hardware Procesoare cu o instructiune de loop Se detecteaza secventa de mai sus in codul intermediar

16 Generarea de cod pentru switch Daca intervalul e mic si majoritatea cazurilor sunt definite, se poate creea tabela de salt ca vector de etichete case x is when up: y := 0; when down : y := 1; end case; table label1, label2 jumpi table+x label1: y = 0 goto end_case label2: y = 1 goto end_case end_case: Altfel, se foloseste o serie de if-uri

17 Operatii complexe Ridicarea la putere cazurile simple pot fi tratate eficient x 2 = x*x; x 4 =x 2 *x 2 (strength reduction) Cazurile complicate apel de functii de biblioteca Tipurile care nu sunt suportate nativ tot prin functii de biblioteca Intrinsici operatii complexe la nivel inalt, simple la nivelul codului obiect DSP (mac), bitscan, instr. vectoriale

18 Generatoare de generatoare de cod Setul de instructiuni asamblare poate fi reprezentat ca un set de reguli de rescriere a arborelui sintactic Sablon, nod nou, cost, actiune replacement <- template (cost) = {action} Codul asamblare e generat in procesul de reducere al arborelui la un singur nod Alg. care cauta acoperirea de cost minim generator de generator de cod. Setul de reguli ( gramatica ) = schema de traducere a arborelui

19 Exemplu: reguli Regula Instructiune Cost reg r1 const c mov r1, c 2 reg r1 read (a) mov r1, a 2 λ write a := (reg r1) mov a, r1 2+r1 λ write (reg r1) := (reg r2) mov [r1], r2 1+r1+r 2 reg r1 read (reg r2) mov r1, [r2] 1+r2 reg r1 read ((const c) + (reg r2)) mov r1,c[r2] 2+r2 reg r1 (reg r1) + (read ((const c) + (reg r2))) add r1,c[r2] 2+r1+r 2 reg r1 (reg r1) + (reg r2) add r1, r2 1+r1+r 2 reg r1 (const 1) + (reg r1) inc r1 1+r1

20 Reguli, rescriere arbore

21 Exemplu arbore a[i] = b + 1 write a, i > pe stiva (fp + offset) b -> in.data + + const 1 read b + read const off_a fp + const off_i fp

22 Cum se face generarea de cod Intr-un prim pas, se acopera arborele cu sabloane, a.i. sa se obtina un cost minim In al doilea pas, se executa codul asociat cu sabloanele care va produce programul in limbaj de asamblare. Descrierea e similara cu gramaticile pt. parsare dar algoritmul e fundamental diferit!

23 Generare de cod Arbore Regula Instructiuni Cost const off_a reg r1 const off_a mov r1, off_a 2 const off_a + fp reg r1 (reg r1) + (reg fp) mov r1, off_a add r1, fp 3 read + reg r2 read (reg r1) mov r1, off_i add r1, fp mov r2, [r1] 4 const off_i fp reg r2 read ((const off_i) + (reg fp)) mov r2, off_i[fp] 2

24 Generare de cod Arbore Regula Instructiuni Cost + + const off_a fp read + const off_i fp reg r1 (reg r1) + (read ((const c) + (reg r2))) reg r1 (reg r1) + (reg r2) mov r1, off_a add r1, fp add r1, off_i[fp] mov r1, off_a add r1, fp mov r2, off_i[fp] add r1,r reg r3 (reg r3) + (reg r4) mov r3, 1 mov r4, b add r3, r4 5 const 1 read b reg r3 (const 1) + (reg r3) mov r3,b inc r3 3

25 Generare de cod Arbore Instructiuni Cost write + + const 1 + read const off_a fp + read b mov r1, off_a add r1, fp add r1, off_i[fp] mov r3,b inc r3 mov[r1],r3 9 const off_i fp

26 Algoritmul de generare de cod Acoperirea optima e formata din acoperirea optima a fiilor + costul aplicarii unui sablon Principiul optimalitatii programare dinamica Cautati iburg, lburg

27 Memoria la runtime Variabilele locale, parametrii in cadrul de stiva local Variabilele globale, statice in memorie (alocate static) Alocarea dinamica (new, malloc) in heap

28 Cadrul de stiva Stack Pointer Frame Pointer Cand este nevoie de fp? Conventii de apel Parametri Valori intoarse Caller / Callee saved Cine curăţă stiva?

29 Legatura statica procedure f var x:integer; begin h; end; procedure g; begin read(x); end; procedure h; begin g; end;

30 Apelarea procedurilor 1. Asamblarea argumentelor ce trebuie transferate procedurii si pasarea controlului. Fiecare argument este evaluat si pus in registrul sau locatia de pe stiva corespunzatoare. Cum se trimit structuri prin valoare? Se salveaza in memorie registrii caller saved folositi. Daca este necesar, se calculeaza legatura statica a procedurii apelate Se salveaza adresa de intoarcere si se executa un salt la adresa codului procedurii (de obicei o instructiune call face aceste lucruri)

31 Apelarea procedurilor 2. Prologul procedurii este executat la intrarea in procedura. Creaza cadrul de stiva si stabileste mediul necesar adresarii. Se salveaza vechiul fp, vechiul sp devine noul fp, si se calculeaza noul sp Se salveaza in memorie registrii callee saved folositi. 3. Se executa procedura, care la randul ei poate apela alte proceduri Proceduri frunza nu mai apeleaza alte proceduri. Optimizari?

32 Apelarea procedurilor 4. Epilogul procedurii este executat la iesirea din procedura. Restaureaza mediul de adresare si reda controlul apelantului. Valoarea care trebuie intoarsa se pune in locul corespunzator (daca procedura intoarce o valoare) Intoarcerea structurilor pointer la struct! Registrii salvati de procedura apelata sunt restaurati din memorie Se restaureaza vechiul sp si vechiul fp Se incarca adresa de revenire si se executa un salt la aceasta adresa (de obicei, o instructiune ret face acest lucru)

33 Apelarea procedurilor 5. Codul din procedura apelanta termina restaurarea mediului său şi continuă execuţia: Registrii salvati de catre procedura apelanta sunt restaurati din memorie Se foloseste valoarea intoarsa de procedura apelata

34 Politici de apel Prin valoare Prin referinta Prin rezultat Prin valoare-rezultat Prin nume

Compilatoare. Generarea codului obiect

Compilatoare. Generarea codului obiect Compilatoare Generarea codului obiect Computer architecture A computer architecture is a contract between the class of programs that are written for the architecture and the set of processor implementations

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Limbaje de Programare Curs 3 Iteraţia. Reprezentare internă. Operatori pe biţi

Limbaje de Programare Curs 3 Iteraţia. Reprezentare internă. Operatori pe biţi Limbaje de Programare Curs 3 Iteraţia. Reprezentare internă. Operatori pe biţi Dr. Casandra Holotescu Universitatea Politehnica Timişoara Ce discutăm azi... 1 Iteraţia 2 Reprezentare internă 3 Operaţii

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

Teme de implementare in Matlab pentru Laboratorul de Metode Numerice

Teme de implementare in Matlab pentru Laboratorul de Metode Numerice Teme de implementare in Matlab pentru Laboratorul de Metode Numerice As. Ruxandra Barbulescu Septembrie 2017 Orice nelamurire asupra enunturilor/implementarilor se rezolva in cadrul laboratorului de MN,

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

III. Reprezentarea informaţiei în sistemele de calcul

III. Reprezentarea informaţiei în sistemele de calcul Metode Numerice Curs 3 III. Reprezentarea informaţiei în sistemele de calcul III.1. Reprezentarea internă a numerelor întregi III. 1.1. Reprezentarea internă a numerelor întregi fără semn (pozitive) Reprezentarea

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

V O. = v I v stabilizator

V O. = v I v stabilizator Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili Anexa 2.6.2-1 SO2, NOx şi de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili de bioxid de sulf combustibil solid (mg/nm 3 ), conţinut de O 2 de 6% în gazele de ardere, pentru

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

Foarte formal, destinatarul ocupă o funcţie care trebuie folosită în locul numelui

Foarte formal, destinatarul ocupă o funcţie care trebuie folosită în locul numelui - Introducere Αξιότιμε κύριε Πρόεδρε, Αξιότιμε κύριε Πρόεδρε, Foarte formal, destinatarul ocupă o funcţie care trebuie folosită în locul numelui Αγαπητέ κύριε, Αγαπητέ κύριε, Formal, destinatar de sex

Διαβάστε περισσότερα

Esalonul Redus pe Linii (ERL). Subspatii.

Esalonul Redus pe Linii (ERL). Subspatii. Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste

Διαβάστε περισσότερα

10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea

Διαβάστε περισσότερα

Examen AG. Student:... Grupa:... ianuarie 2011

Examen AG. Student:... Grupa:... ianuarie 2011 Problema 1. Pentru ce valori ale lui n,m N (n,m 1) graful K n,m este eulerian? Problema 2. Să se construiască o funcţie care să recunoască un graf P 3 -free. La intrare aceasta va primi un graf G = ({1,...,n},E)

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

Laborator 1: INTRODUCERE ÎN ALGORITMI. Întocmit de: Claudia Pârloagă. Îndrumător: Asist. Drd. Gabriel Danciu

Laborator 1: INTRODUCERE ÎN ALGORITMI. Întocmit de: Claudia Pârloagă. Îndrumător: Asist. Drd. Gabriel Danciu INTRODUCERE Laborator 1: ÎN ALGORITMI Întocmit de: Claudia Pârloagă Îndrumător: Asist. Drd. Gabriel Danciu I. NOŢIUNI TEORETICE A. Sortarea prin selecţie Date de intrare: un şir A, de date Date de ieşire:

Διαβάστε περισσότερα

ANEXA 4. OPERAŢII ARITMETICE IMPLEMENTĂRI

ANEXA 4. OPERAŢII ARITMETICE IMPLEMENTĂRI ANEXA 4. OPERAŢII ARITMETICE IMPLEMENTĂRI ADUNAREA ÎN BINAR: A + B Adunarea a două numere de câte N biţi va furniza un rezultat pe N+1 biţi. Figura1. Anexa4. Sumator binar complet Schema bloc a unui sumator

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

Criptosisteme cu cheie publică III

Criptosisteme cu cheie publică III Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.

Διαβάστε περισσότερα

2. Circuite logice 2.4. Decodoare. Multiplexoare. Copyright Paul GASNER

2. Circuite logice 2.4. Decodoare. Multiplexoare. Copyright Paul GASNER 2. Circuite logice 2.4. Decodoare. Multiplexoare Copyright Paul GASNER Definiţii Un decodor pe n bits are n intrări şi 2 n ieşiri; cele n intrări reprezintă un număr binar care determină în mod unic care

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Analiza bivariata a datelor

Analiza bivariata a datelor Aaliza bivariata a datelor Aaliza bivariata a datelor! Presupue masurarea gradului de asoiere a doua variabile sub aspetul: Diretiei (aturii) Itesitatii Semifiatiei statistie Variabilele omiale Tabele

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

III.2.2. Reprezentarea în virgulă mobilă

III.2.2. Reprezentarea în virgulă mobilă III... Reprezentarea în virgulă mobilă Una dintre cele mai răspândite reprezentări internă (în PC-uri) a numerelor reale este reprezentarea în virgulă mobilă. Reprezentarea în virgulă mobilă presupune

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

Codificatorul SN74148 este un codificator zecimal-bcd de trei biţi (fig ). Figura Codificatorul integrat SN74148

Codificatorul SN74148 este un codificator zecimal-bcd de trei biţi (fig ). Figura Codificatorul integrat SN74148 5.2. CODIFICATOAE Codificatoarele (CD) sunt circuite logice combinaţionale cu n intrări şi m ieşiri care furnizează la ieşire un cod de m biţi atunci când numai una din cele n intrări este activă. De regulă

Διαβάστε περισσότερα

Instructiunea while. Forma generala: while (expresie) instructiune;

Instructiunea while. Forma generala: while (expresie) instructiune; Instructiunea while while (expresie) instructiune; Modul de executie: 1) Se evalueaza expresie, daca expresie = 0 (fals) se iese din instructiunea while, altfel (expresie 0, deci adevarat) se trece la

Διαβάστε περισσότερα

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective: TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi

Διαβάστε περισσότερα

Arhitectura Calculatoarelor. Fizică - Informatică an II. 2. Circuite logice. Copyright Paul GASNER 1

Arhitectura Calculatoarelor. Fizică - Informatică an II. 2. Circuite logice. Copyright Paul GASNER 1 Arhitectura Calculatoarelor Fizică - Informatică an II gasner@uaic.ro 2. Circuite logice Copyright Paul GASNER 1 Funcţii booleene Porţi logice Circuite combinaţionale codoare şi decodoare Cuprins multiplexoare

Διαβάστε περισσότερα

Lucrarea de laborator nr. 2

Lucrarea de laborator nr. 2 Metode Numerice Lucrarea de laborator nr. I. Scopul lucrării Reprezentarea numerelor reale în calculator. Erori de rotunjire. II. III. Conţinutul lucrării. Reprezentarea numerelor reale sub formă normalizată..

Διαβάστε περισσότερα

1.3 Baza a unui spaţiu vectorial. Dimensiune

1.3 Baza a unui spaţiu vectorial. Dimensiune .3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este

Διαβάστε περισσότερα

2. Circuite logice 2.5. Sumatoare şi multiplicatoare. Copyright Paul GASNER

2. Circuite logice 2.5. Sumatoare şi multiplicatoare. Copyright Paul GASNER 2. Circuite logice 2.5. Sumatoare şi multiplicatoare Copyright Paul GASNER Adunarea în sistemul binar Adunarea se poate efectua în mod identic ca la adunarea obişnuită cu cifre arabe în sistemul zecimal

Διαβάστε περισσότερα

Laborator 4 suport teoretic Tipuri de date utilizate în limbajul de programare C.

Laborator 4 suport teoretic Tipuri de date utilizate în limbajul de programare C. Laborator 4 suport teoretic Tipuri de date utilizate în limbajul de programare C. Toate valorile parametrilor unei probleme, adică datele cu care operează un program, sunt reprezentate în MO sub formă

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice

4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice 4. Măsurarea tensiunilor şi a curenţilor electrici oltmetre electronice analogice oltmetre de curent continuu Ampl.c.c. x FTJ Protectie Atenuator calibrat Atenuatorul calibrat divizor rezistiv R in const.

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

1 INTRODUCERE - ORGANIZAREA UNUI COMPILATOR ELEMENTE DE TEORIA LIMBAJELOR FORMALE... 7

1 INTRODUCERE - ORGANIZAREA UNUI COMPILATOR ELEMENTE DE TEORIA LIMBAJELOR FORMALE... 7 Irina Athanasiu 3/1/2002 Limbaje formale şi automate 1 1 INTRODUCERE - ORGANIZAREA UNUI COMPILATOR... 2 1.1 Analiza lexicala... 4 1.2 Analiza sintactică... 4 1.3 Analiza semantică... 5 1.4 Generarea de

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

Capitolul 4 Amplificatoare elementare

Capitolul 4 Amplificatoare elementare Capitolul 4 mplificatoare elementare 4.. Etaje de amplificare cu un tranzistor 4... Etajul emitor comun V CC C B B C C L L o ( // ) V gm C i rπ // B // o L // C // L B ro i B E C E 4... Etajul colector

Διαβάστε περισσότερα

28. SUPRADEFINIREA OPERATORILOR

28. SUPRADEFINIREA OPERATORILOR 28. SUPRADEFINIREA OPERATORILOR Pentru un tip clasă se poate defini un set de operatori asociaţi prin supradefinirea operatorilor existenţi, ceea ce permite realizarea de operaţii specifice cu noul tip

Διαβάστε περισσότερα

Integrale cu parametru

Integrale cu parametru 1 Integrle proprii cu prmetru 2 3 Integrle proprii cu prmetru Definiţi 1.1 Dcă f : [, b ] E R, E R este o funcţie cu propriette că pentru orice y E, funcţi de vribilă x x f (x, y) este integrbilă pe intervlul

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)).

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)). Teoremă. (Y = f(x)). Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism Demonstraţie. f este continuă pe X: x 0 X, S Y (f(x 0 ), ε), S X (x 0, ε) aşa ca f(s X (x 0, ε)) = S Y (f(x 0 ), ε) : y

Διαβάστε περισσότερα

Πού μπορώ να βρω τη φόρμα για ; Unde pot găsi un formular pentru? Για να ρωτήσετε που μπορείτε να βρείτε μια φόρμα

Πού μπορώ να βρω τη φόρμα για ; Unde pot găsi un formular pentru? Για να ρωτήσετε που μπορείτε να βρείτε μια φόρμα - Γενικά Πού μπορώ να βρω τη φόρμα για ; Unde pot găsi un formular pentru? Για να ρωτήσετε που μπορείτε να βρείτε μια φόρμα Πότε εκδόθηκε το [έγγραφο] σας; Για να ρωτήσετε πότε έχει εκδοθεί ένα έγγραφο

Διαβάστε περισσότερα

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1 Calea 13 Septembrie, r 09, Sector 5, 0507, București Tel: +40 (0)1 317 36 50 Fax: +40 (0)1 317 36 54 Olimpiada Naţioală de Matematică Etapa locală -00016 Clasa a IX-a M 1 Fie 1 abc,,, 6 şi ab c 1 Să se

Διαβάστε περισσότερα

Stabilizator cu diodă Zener

Stabilizator cu diodă Zener LABAT 3 Stabilizator cu diodă Zener Se studiază stabilizatorul parametric cu diodă Zener si apoi cel cu diodă Zener şi tranzistor. Se determină întâi tensiunea Zener a diodei şi se calculează apoi un stabilizator

Διαβάστε περισσότερα

Programarea Calculatoarelor

Programarea Calculatoarelor Programarea Calculatoarelor Modul 1: Rezolvarea algoritmică a problemelor Introducere în programare Algoritm Obiectele unui algoritm Date Constante Variabile Expresii Operaţii specifice unui algoritm şi

Διαβάστε περισσότερα

Compilatoare. Curs 4 Analiza semantica

Compilatoare. Curs 4 Analiza semantica Compilatoare Curs 4 Analiza semantica ANALIZA SEMANTICA Calculeaza toate atributele asociate nodurilor din arborele sintactic Atributele terminalilor se seteaza de obicei direct din analiza lexicala Restul

Διαβάστε περισσότερα

CIRCUITE LOGICE CU TB

CIRCUITE LOGICE CU TB CIRCUITE LOGICE CU T I. OIECTIVE a) Determinarea experimentală a unor funcţii logice pentru circuite din familiile RTL, DTL. b) Determinarea dependenţei caracteristicilor statice de transfer în tensiune

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

Curs 2 DIODE. CIRCUITE DR

Curs 2 DIODE. CIRCUITE DR Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu

Διαβάστε περισσότερα

CARACTERISTICILE LIMBAJULUI DE PROGRAMARE

CARACTERISTICILE LIMBAJULUI DE PROGRAMARE CARACTERISTICILE LIMBAJULUI DE PROGRAMARE Pentru a putea executa cu ajutorul calculatorului algoritmii descrişi în pseudocod, aceştia trebuie implementaţi într-un limbaj de programare, adică trebuie să-i

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1 FNCȚ DE ENERGE Fie un n-port care conține numai elemente paive de circuit: rezitoare dipolare, condenatoare dipolare și bobine cuplate. Conform teoremei lui Tellegen n * = * toate toate laturile portile

Διαβάστε περισσότερα

Principiul Inductiei Matematice.

Principiul Inductiei Matematice. Principiul Inductiei Matematice. Principiul inductiei matematice constituie un mijloc important de demonstratie in matematica a propozitiilor (afirmatiilor) ce depind de argument natural. Metoda inductiei

Διαβάστε περισσότερα

MULTIMEA NUMERELOR REALE

MULTIMEA NUMERELOR REALE www.webmteinfo.com cu noi totul pre mi usor MULTIMEA NUMERELOR REALE office@ webmteinfo.com 1.1 Rdcin ptrt unui numr nturl ptrt perfect Ptrtul unui numr rtionl este totdeun pozitiv su zero (dic nenegtiv).

Διαβάστε περισσότερα

, semestrul 2. Curs 2

, semestrul 2. Curs 2 Paradigme de programare 2010-2011, semestrul 2 Curs 2 Cuprins Teza lui Church Calcul lambda sintaxa si semantica operationala Functii curry/uncurry Forme normale Teorema Church Rosser Strategii de evaluare

Διαβάστε περισσότερα

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu,

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, vidiu Gabriel Avădănei, Florin Mihai Tufescu, Capitolul 6 Amplificatoare operaţionale 58. Să se calculeze coeficientul de amplificare în tensiune pentru amplficatorul inversor din fig.58, pentru care se

Διαβάστε περισσότερα

Sortare. 29 martie Utilizarea şi programarea calculatoarelor. Curs 16

Sortare. 29 martie Utilizarea şi programarea calculatoarelor. Curs 16 Sortare 29 martie 2005 Sortare 2 Sortarea. Generalitǎţi Sortarea = aranjarea unei liste de obiecte dupǎ o relaţie de ordine datǎ (ex.: pentru numere, ordine lexicograficǎ pt. şiruri, etc.) una din clasele

Διαβάστε περισσότερα

Εμπορική αλληλογραφία Ηλεκτρονική Αλληλογραφία

Εμπορική αλληλογραφία Ηλεκτρονική Αλληλογραφία - Εισαγωγή Stimate Domnule Preşedinte, Stimate Domnule Preşedinte, Εξαιρετικά επίσημη επιστολή, ο παραλήπτης έχει ένα ειδικό τίτλο ο οποίος πρέπει να χρησιμοποιηθεί αντί του ονόματος του Stimate Domnule,

Διαβάστε περισσότερα

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB 1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

Ταξίδι Γενικά. Γενικά - Τα απαραίτητα. Γενικά - Συνομιλία. Παράκληση για βοήθεια. Ερώτηση σε πρόσωπο αν μιλά αγγλικά

Ταξίδι Γενικά. Γενικά - Τα απαραίτητα. Γενικά - Συνομιλία. Παράκληση για βοήθεια. Ερώτηση σε πρόσωπο αν μιλά αγγλικά - Τα απαραίτητα Mă puteți ajuta, vă rog? Παράκληση για βοήθεια Vorbiți în engleză? Ερώτηση σε πρόσωπο αν μιλά αγγλικά Vorbiți _(limba)_? Ερώτηση σε πρόσωπο αν μιλά ορισμένη γλώσσα Nu vorbesc _(limba)_.

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi

Διαβάστε περισσότερα

Noţiuni introductive

Noţiuni introductive Metode Numerice Noţiuni introductive Erori. Condiţionare numerică. Stabilitatea algoritmilor. Complexitatea algoritmilor. Metodele numerice reprezintă tehnici prin care problemele matematice sunt reformulate

Διαβάστε περισσότερα

2. Circuite logice 2.2. Diagrame Karnaugh. Copyright Paul GASNER 1

2. Circuite logice 2.2. Diagrame Karnaugh. Copyright Paul GASNER 1 2. Circuite logice 2.2. Diagrame Karnaugh Copyright Paul GASNER Diagrame Karnaugh Tehnică de simplificare a unei expresii în sumă minimă de produse (minimal sum of products MSP): Există un număr minim

Διαβάστε περισσότερα

Universitatea din Bucureşti Facultatea de Matematică şi Informatică. Algebră (1)

Universitatea din Bucureşti Facultatea de Matematică şi Informatică. Algebră (1) Universitatea din ucureşti.7.4 Facultatea de Matematică şi Informatică oncursul de admitere iulie 4 omeniul de licenţă alculatoare şi Tehnologia Informaţiei lgebră (). Fie x,y astfel încât x+y = şi x +

Διαβάστε περισσότερα

CIRCUITE INTEGRATE MONOLITICE DE MICROUNDE. MMIC Monolithic Microwave Integrated Circuit

CIRCUITE INTEGRATE MONOLITICE DE MICROUNDE. MMIC Monolithic Microwave Integrated Circuit CIRCUITE INTEGRATE MONOLITICE DE MICROUNDE MMIC Monolithic Microwave Integrated Circuit CUPRINS 1. Avantajele si limitarile MMIC 2. Modelarea dispozitivelor active 3. Calculul timpului de viata al MMIC

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα