Quantitative Finance and Investments Core Formula Sheet. Spring 2016

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Quantitative Finance and Investments Core Formula Sheet. Spring 2016"

Transcript

1 Quaniaive Finance and Invesmens Core Formula Shee Spring 6 Morning and afernoon exam bookles will include a formula package idenical o he one aached o his sudy noe. The exam commiee believe ha by providing many key formulas, candidaes will be able o focus more of heir exam preparaion ime on he applicaion of he formulas and conceps o demonsrae heir undersanding of he syllabus maerial and less ime on he memorizaion of he formulas. The formula shee was developed sequenially by reviewing he syllabus maerial for each major syllabus opic. Candidaes should be able o follow he flow of he formula package easily. We recommend ha candidaes use he formula package concurrenly wih he syllabus maerial. No every formula in he syllabus is in he formula package. Candidaes are responsible for all formulas on he syllabus, including hose no on he formula shee. Candidaes should carefully observe he someimes suble differences in formulas and heir applicaion o slighly differen siuaions. For example, here are several versions of he Black-Scholes-Meron opion pricing formula o differeniae beween insrumens paying dividends, ied o an index, ec. Candidaes will be expeced o recognize he correc formula o apply in a specific siuaion of an exam quesion. Candidaes will noe ha he formula package does no generally provide names or definiions of he formula or symbols used in he formula. Wih he wide variey of references and auhors of he syllabus, candidaes should recognize ha he leer convenions and use of symbols may vary from one par of he syllabus o anoher and hus from one formula o anoher. We rus ha you will find he inclusion of he formula package o be a valuable sudy aide ha will allow for more of your preparaion ime o be spen on masering he learning objecives and learning oucomes. In sources where some equaions are numbered and ohers are no (nn) denoes ha here is no number assigned o ha paricular equaion. The only change from 5 is ha Chaper 9, Secion 3 from Wilmo has been removed from he syllabus.

2 An Inroducion o he Mahemaics of Financial Derivaives, 3rd Ediion, A. Hirsa and S. Nefci Chaper (.) S() = C() ( + r ) (+r ) S ( + ) S ( + ) C ( + ) C ( + ) ψ ψ h Q up (S + σ )+Q down (S σ ) (.66) S = +r (.67) C = ( + r) (.7) S = +d S u Q up + S d Q down +r (.7) C = +r (page 6) Chaper 3 (3.37) (3.49) E Q C+ C nx i + i f Chaper 4 Qup C up + + Q downc+ down C u Q up + C d Q down g(s)df (s) +r ( i i ) f(s)ds nx i + i g i (f( i ) f( i )) (4.4) df () =F s ds + F r dr + F d + F ssds + F rrdr + F sr ds dr Chaper 5 (5.) E[S I u ]= Z S f(s I u )ds, (5.8) P ( F () =+a )=p u < (5.9) P ( F () = a )= p (5.44) P (X +s x +s x,...,x )=P(X +s x +s x ) (5.45) r + r = E[(r + r ) I ]+σ(i,) W (5.48) dr = μ(r,)d + σ(r,)dw r+ α r (5.49) = + β R σ W + + R + α r + β R σ W+ Chaper 6 (6.3) E [S T ]=E[S T I ], < T (6.4) E S < (6.5) E [S T ]=S, for all <T

3 (6.9) E Q [e ru B +u ]=B, <u<t (6.) E Q [e ru S +u ]=S, <u (6.) M = N G N B (6.6) P ( N G =) λ G >P( N B =) λ B (6.7) E[ M ] λ G λ B > (6.44) X N(μ,σ ) (6.46) X +T = X + Z +T (6.5) Z = X μ (6.54) E [Z +T ]=X μ (6.55) E [Z +T ]=Z (6.56) S N(,σ ) (6.57) S = (6.58) Z = S dx u (6.6) E [Z +T σ (T + )] = Z σ (6.64) I I + I T I T (6.65) M = E P [Y T I ] (6.66) E P [M +s I ]=M (6.7) G T = f(s T ) (6.7) B T = e T r sds (6.7) M = E P GT B T I (6.6) M k = M + (6.8) E [M k ]=M (6.) C T = C + Chaper 7 kx H i [Z i Z i ] D s ds + g(c s )dm s (7.3) W k =[S k S k ] E k [S k S k ] (7.6) W k = kx W i (7.8) E k [W k ]=W k (7.9) V k = E [ Wk ] (7.3) " n # X V = E W k = k= nx k= V k 3

4 (7.3) V >A > (7.33) V <A < (7.34) V max =max k [Vk,k =,...,n] (7.35) V k >A 3, V max <A 3 < (7.36) E[ W k ] = σkh (7.56) S k S k = E k [S k S k ]+σ k W k Chaper 8 (8.7) ½ wih probabiliy λd dn = wih probabiliy λd (8.8) M = N λ (8.9) E[M ]= (8.5) E(e iux )=exp(φ(u)) (8.6) φ(u) =iγu Z + σ u + e iuy iuyi { y } dν(y) (8.8) X =(r q + ω) + Z (page 9) dν(y) =k(y)dy (8.9) k(y) = e λ py νy I y> + e λn y ν y θ (nn) λ p = σ 4 + θ σ ν σ (nn) λ n = θ σ 4 + σ ν (8.) σ k W k = + θ σ I y< ω wih probabiliy p ω wih probabiliy p... ω m (8.) E[σ k W k ] = σkh mx (8.3) p i ωi = σkh (8.8) ω i (h) = ω i h ri (8.9) p i (h) = p i h qi (8.33) q i +r i = (8.34) c i = ω i p i. wih probabiliy p m (8.58) J =(N λ) (8.6) ds = a(s,)d + σ (S,)dW + σ (S,)dJ (8.75) =< < < n = T (8.76) n = T 4

5 (8.77) S i = S i, i =,,...,n ½ ui S (8.78) S i+ = i d i S i wih probabiliy p i wih probabiliy p i (8.79) u i = e σ, for all i (8.8) d i = e σ, for all i (8.8) p i = h + μ i, for all i σ (8.89) S i+n S i (8.9) log S i+n S i (8.9) log S i+n S i = Z log u +(n Z)logd = Z log u d + n log d Chaper 9 (9.37) lim n E " n X k= Z # T σ(s k,k)[w k W k ] σ(s u,u)dw u = (9.38) S k S k = a(s k,k)h + σ(s k,k)[w k W k ], k =,,...,n " Z # T (9.39) E σ(s,) d < (9.4) (9.73) nx σ(s k,k)[w k W k ] k= (9.74) lim n E (9.76) If (9.77) (9.78) x dx = x T T " n # X x i+ T = i= (dx ) exiss, hen d = T (dx ) = d (9.79) (dw ) = d Z (9.85) E s σ u dw u = Z s lim E n σ u dw u, σ(s,)dw " n X x i+ i= <s< (dx ) # = 5

6 Chaper (page 7) ds = a d + σ dw, (.36) df = F ds + F S d + F σ S d F (.37) df = a + F S + F σ S (.64) Z F s ds u =[F (S,) F (S, )] d + F Z σ dw S F u + F ssσu du (.69) df = F d + F s ds + F s ds + Fs s ds + F s s ds +F s s ds ds nx (.79) Y () = N i ()P i () (.8) dy () = nx N i ()dp i ()+ nx nx dn i ()P i ()+ dn i ()dp i () (.8) ds = a d + σ dw + dj, (.8) E[ J ]= " à kx!# (.83) J = N λ h a i p i à kx! (.84) a = α + λ a i p i " # kx (.85) df (S,)= F + λ (F (S + a i,) F (S,))p i + F ssσ d + F s ds + dj F " kx # (.86) dj F =[F (S,) F (S,)] λ (F (S + a i,) F (S,))p i d (.87) S = lim s S s, s < Chaper (.4) ds = μs d + σs dw, [, ) (.3) S = S e {(a σ )+σw } (.34) ds = rs d + σs dw, [, ) (.38) S T = hs i e (r σ )T e σw T (.4) Z = e σw (.5) x = E[Z ]=e σ (.55) S = e r(t ) E [S T ] 6

7 (.7) ds = μs d + σ p S dw, [, ) (.74) ds = λ(μ S )d + σs dw (.78) ds = μs d + σdw (.79) ds = μd + σ dw (page 9) dσ = λ(σ σ )d + ασ dw ½ wih probabiliy λd (page 93) dn = wih probabiliy λd (.83) (.84) (page 94) ds =(μ λκ)d + σdw +(e J )dn S ds S =(μ λ κ )d + σd W +(e J )dn S = S e (r q+ω)+x(;σ,ν,θ) (page 94) f(x; σ, ν, θ) = Z σ πg exp (x θg) g /ν e g/ν σ g ν /ν Γ(/ν) dg Chaper (.3) P = θ F (S,)+θ S (.4) dp = θ df + θ ds (.5) ds = a(s,)d + σ(s,)dw, [, ) (.6) df = F d + F ssσ d + F s ds (.7) df = F s a + F ssσ + F d + F s σ dw (.) θ = (.) θ = F s (.) dp = F d + F ssσ d (.6) r(f (S,) F s S )=F + F ssσ (.7) rf + rf s S + F + F ssσ =, S, T (.3) P = F (S,) F s (S,)S (.4) dp = df (S,) F s ds S df s df s (S,)dS (.6) dp = df (S,) F s ds S F s + F ss μs + F sssσ S d + F ss σs dw F ss σ S d (.8) dp = df (S,) F s ds S [F ss (μ r)s d] F ss σs dw 7

8 (page ) dw =(σdw +(μ r)d) (.9) a F + a F s S + a F + a 3 F ss =, S, T (.3) F (S T,T)=G(S T,T) (.3) F + F s =, S, T (.33) F (S,)=αS α + β (.44) F (S,)=e αs α (.46).3F ss + F = (.47) F (S,)= α(s S ) +.3 α( ) + β( ) (.53) F (S,)= (S 4) 3( ),, S Chaper 3 (3.) a(s,)=μs (3.) σ(s,)=σs, [, ) (3.3) rf + rf s S + F + σ F ss S =, S, T (3.4) F (T )=max[s T K, ] (3.6) F (S,)=S N(d ) Ke r(t ) N(d ) (3.7) d = ln( S K )+(r + σ )(T ) σ T (3.8) d = d σ T (3.9) N(d )= Z d (3.) a(s,)=μs π e x dx (3.3) σ(s,)=σ(s,)s, [, ) (3.4) rf + rf s S + F + σ(s,) F ss S =, S, T (3.5) F (T )=max[s T K, ] (3.34) rf rf s S δ F F ssσ = (3.35) F (S T,S T,T)=max[, max(s T,S T ) K] (muli-asse opion) (3.36) F (S T,S T,T)=max[,(S T S T ) K] (spread call opion) (3.37) F (S T,S T,T)=max[,(θ S T + θ S T ) K] (porfolio call opion) (3.38) F (S T,S T,T)=max[,(S T K ), (S T K )] (dual srike call opion) (3.47) F + rs F S + σ S F S rf 8

9 F (3.48) F ij F i,j (3.49) rs F S rs F ij F i,j j S (3.5) rs F F i+,j F ij (3.5) S rs j S Fi+,j F ij S F S Chaper 4 F ij F i,j S S (4.6) dp( z) =P z dz <z < z + dz (4.7) Z (4.8) E[z ]= dp(z )= Z z dp(z ) Z (4.9) E [z E[z ]] = [z E[z ]] dp(z ) (4.9) E S + = S +R (4.3) E Q S + = S +r (4.4) z N(, ) (4.4) dp(z )= e (z) dz π (4.43) ξ(z )=e z μ μ (4.44) [dp(z )][ξ(z )] = π e (z )+μz μ dz (4.45) dq(z )= π e (z μ) dz (4.47) dq(z )=ξ(z )dp(z ) (4.48) ξ(z ) dq(z )=dp(z ) 9

10 (4.53) f(z,z )= π p Ω e σ (4.54) Ω = σ σ σ (4.55) Ω = σ σ σ (4.56) dp(z,z )=f(z,z )dz dz (4.57) ξ(z,z )=exp z μ, z μ Ω z μ z μ ½ z, z Ω (4.58) dq(z,z )=ξ(z,z )dp(z,z ) (4.59) dq(z,z )= (4.6) ξ(z )=e z Ω μ+ μ Ω μ (4.69) dq(z ) dp(z ) = ξ(z ) (4.74) dq(z )=ξ(z )dp(z ) (4.75) dp(z )=ξ(z ) dq(z ) π p Ω e z, z Ω z z X u du), (4.76) ξ = e ( X udw u [,T] (4.77) E he Xdui u <, [,T] Z Z u (4.83) E ξ s X s dw s I u = ξ s X s dw s (4.84) W = W Z X u du, (4.85) Q(A) =E P [ A ξ T ] (4.86) dw = dw X d (4.93) dq = ξ T dp (4.) A A A n = Ω (4.3) A + A +... An = Ω [,T] (4.7) E P [Z Ai ]=Q(A i ) Z (4.38) E P [g(x )] = g(x)f(x)dx (page 48) g(x )=Z h(x ) Z (4.4) E P [g(x )] = h(x) f(x)dx = E Q [h(x )] Ω Ω μ + μ, μ μ Ω μ μ dz dz ¾

11 Chaper 5 (5.) Y N(μ, σ ) (5.4) M(λ) =E[e Yλ ] (5.) M(λ) =e (λμ+ σ λ ) (5.5) S = S e Y, [, ) (5.5) E[S S u,u<]=s u e μ( s)+ σ ( s) (5.3) Z = e r S (5.3) E Q e r S S u,u< = e ru S u (5.3) E Q [Z Z u,u<]=z u i (5.38) E Q e r( u) S S u,u< = S u e r( u) e ρ( u)+ σ ( u) where under Q,Y N(ρ, σ ) (5.39) ρ = r σ (5.4) E Q e r S S u,u< = e ru S u (5.5) ds = rs d + σs dw h i (5.58) C = E Q e r(t ) max{s T K, } (5.88) ds = μ d + σ dw (5.9) d[e r S ]=e r [μ rs ]d + e r σ dw (5.9) dw = dx + dw μ rs (5.97) dx = d σ (5.98) d[e r S ]=e r σ dw (5.) d e r F (S,) = e r σ F s dw Chaper 7 (page 8) R =(+r ) (page 8) R =(+r ) (page 8) B s = B(, 3 ) (page 8) B = B(,T) (page 8) B s 3 = B( 3,T) R R u R R u R R d R R d (7.6) B s = (F L u ) (F L u ) (F L d ) (F L d ) B B uu 3 B ud 3 B du 3 B dd 3 C C uu 3 C ud 3 C du 3 C dd 3 ψ uu ψ ud ψ du ψ dd

12 (7.3) = R R u ψ uu + R R u ψ ud + R R d ψ du + R R d ψ dd (7.4) Q ij =(+r )( + r i )ψ ij (7.5) = Q uu + Q ud + Q du + Q dd (7.6) Q ij > (7.8) B s = E Q ( + r )( + r ) (7.) B = E Q B 3 ( + r )( + r ) (7.) = E Q ( + r )( + r ) [F L ] (7.3) C = E Q ( + r )( + r ) C 3 (7.3) F = h ie Q L E Q ( + r )( + r ) (+r )(+r ) (7.36) B s = ψ uu + ψ ud + ψ du + ψ dd (7.38) π ij = B s ψ ij (7.39) = π uu + π ud + π du + π dd (7.46) F = E π [L ] (7.5) C 3 = N max[l K, ] (7.53) C = E Q ( + r )( + r ) max[l K, ] (7.55) C = B s E π [max[l K, ]] C (7.56) = E S CT S S T C(K) (7.57) = E S (ST K) + S S T ST (page 9) y =log K (page 9) C(K) S = Z (7.63) F (; T,S)= S T ( F (y))e y dy P (, T ) P (, S) (7.64) = T <T <T < <T M (7.65) i = T i+ T i,i=,,,...,m (7.66) L n () = P (, T n) P (, T n+ ) n P (, T n+ ) ny (7.7) P (T i,t n+ )= + j L j (T i ) j=

13 n Y (7.7) P (, T n )=P(, T l ) + j L j (T i ), T l < T l j=l l Y (7.75) B = P (, T l ) ( + j L j (T j )) (7.77) D n () = j= Q n j=l +δ jl j() Q l j= ( + jl j (T J )) (7.78) dl n () =μ n ()L n ()d + L n ()σn()dw τ, T n,n=,,...,m nx j L j ()σ (7.3) μ n () = n()σ τ j () + j L j () j=l (7.5) V = E Q he i T +δ r udu (F L T )Nδ (7.) V = E π [B(, T + δ)(f L T )Nδ] (7.) V = B(, T + δ)e π [(F L T )Nδ] (7.) F = E π [L T ] (page 96) C T =max[l T δ K, ] (7.3) C = E Q he i T +δ r u du [L T δ K, ] Chaper 8 (8.3) B(, T )=e R(T,)(T ), < T (8.) B(, T )=E Q he T rsdsi h log E Q e i T r sds (8.) R(, T )= T (8.33) B(, T )=e T F (,s)ds (8.4) log B(, T ) log B(, T + ) F (, T ) = lim (page 3) log B(, T ) log B(, U) F (, T, U) = U T Chaper 9 (9.4) db = μ(, T, B )B d + σ(, T, B )B dv T (9.5) db = r B d + σ(, T, B )B dw T σ(, T, B(, T )) (9.) df (, T )=σ(, T, B(, T )) d + T (9.) df (, T )=a(f(, T ),)d + b(f (, T ),)dw (9.5) r = F (, ) σ(, T, B(, T )) T dw 3

14 Z " Z # T Z (page 35) F (, T )=F(,T)+ b(s, T ) b(s, u)du ds + b(s, T )dw s s Z Z Z (9.6) r = F (,)+ b(s, ) b(s, u)du ds + b(s, )dw s s (9.33) df (, T )=b (T )d + bdw (9.34) db(, T )=r B(, T )d + b(t )B(, T )dw (9.35) r = F (,)+ b + bw (9.36) dr =(F (,)+b )d + bdw (9.37) F (,)= F(,) Paul Wilmo Inroduces Quaniaive Finance, nd Ediion, P. Wilmo Chaper 6 (6.6) (6.7) (6.8) (6.9) (6.) Chaper 8 V + σ S V V + rs rv = S S V + σ S V V +(r D)S rv = S S V + σ S V S +(r r f)s V rv = S V + σ S V V +(r + q)s rv = S S V + σ F V + rv = F e r(t ) (8.7) V (S, ) = σ p π(t ) Z Call opion value Se D(T ) N(d ) Ee r(t ) N(d ) d = log(s/e)+(r D+ σ )(T ) σ T d = log(s/e)+(r D σ )(T ) σ T = d σ T e (log(s/s )+(r σ )(T )) /σ (T ) Payoff(S ) ds S Pu opion value Se D(T ) N( d )+Ee r(t ) N( d ) Binary call opion value e r(t ) N(d ) Binary pu opion value e r(t ) ( N(d )) 4

15 Dela of common conracs Call e D(T ) N(d ) Pu e D(T ) (N(d ) ) Binary call e r(t ) N (d ) σs T Binary pu e r(t ) N (d ) σs T N (x) = π e x Gamma of common conracs Call Pu e D(T ) N (d ) σs T e D(T ) N (d ) σs T Binary call e r(t ) d N (d ) Binary Pu σ S (T ) e r(t ) d N (d ) σ S (T ) Theas of common conracs Call σse D(T ) N (d ) + DSN(d T )e D(T ) ree r(t ) N(d ) Pu σse D(T ) N ( d ) DSN( d T )e D(T ) + ree r(t ) N( d ) ³ Binary call re r(t ) N(d )+e r(t ) N (d ) d (T ) r D ³ σ T Binary pu re r(t ) ( N(d )) e r(t ) N (d ) d (T ) r D σ T Speedofcommonconracs Call e D(T ) N (d ) σ S (T ) d + σ T Pu e D(T ) N (d ) σ S (T ) d + σ T ³ Binary call e r(t ) N (d ) σ S 3 (T ) d + d d ³ σ T e Binary pu r(t ) N (d ) σ S 3 (T ) d + dd σ T Vegas of common conracs Call S T e D(T ) N (d ) Pu S T e D(T ) N (d ) Binary call e r(t ) N (d ) d σ Binary pu e r(t ) N (d ) d σ Rhos of common conracs Call E(T )e r(t ) N(d ) Pu E(T )e r(t ) N( d ) Binary call (T )e r(t ) N(d )+ T σ e r(t ) N (d ) Binary pu (T )e r(t ) ( N(d )) T σ e r(t ) N (d ) Sensiiviy o dividend for common conracs Call (T )Se D(T ) N(d ) Pu (T )Se D(T ) N( d ) Binary call T σ e r(t ) N (d ) Binary pu T σ e r(t ) N (d ) 5

16 Chaper 9 This maerial was removed from he syllabus for 6. Chaper Secion.4, one ime sep mark-o-marke profi (using Black-Scholes wih σ = σ) = (σ σ )S Γ i d +( i a )((μ r + D)Sd + σsdx) Secion.5, mark-o-marke profi from oday o omorrow = σ σ S Γ i d Chaper 4 (4.) V = Pe y(t ) + Chaper 6 (6.4) V + w V r NX C i e y( i ) +(u λw) V r (6.5) dv rv d = w V (dx + λd) r 6.6 NAMED MODELS 6.6. Vasicek dr =(η γr)d + β / dx rv = A(;T ) rb(;t ) The value of a zero coupon bond is given by e B = γ ( e γ(t ) ) A = γ (B(; T ) T + )(ηγ βb(; T ) β) 4γ 6.6. Cox, Ingersoll & Ross dr =(η γr)d + αrdx A(;T ) rb(;t ) The value of a zero coupon bond is given by e α A = aψ log(a B)+ψ b log((b + b)/b) aψ log a (e ψ (T ) ) B(; T )= (γ + ψ )(e ψ(t ) ) + ψ ψ = p γ +α and ψ = η a + b b, a = ±γ + p γ +α α 6

17 6.6.3 Ho & Lee dr = η()d + β / dx A(;T ) rb(;t ) The value of a zero coupon bond is given by e B = T A = η(s)(t s)ds + β(t )3 6 η() = log Z M( ; )+β( ) Secion 6.7 Forward price = S Z Z + w Z +(u λw) Z r r wih Z(r, T )= rz = Secion 6.8 Fuures price F (S, r, ) = S p(r, ) ³ p p + w p r +(μ λw) p rp w + pσβ p r r q r = wih p(r, T )= Chaper 7 Secion7.Ho&Lee dr = η()d + cdx A(;T ) r(t ) Z(r, : T )=e A(; T )=log ZM ( ; T ) Z M ( ; ) (T ) log(z M( ; )) c ( )(T ) Secion 7.3 The Exended Vasicek Model of Hull & Whie dr =(η γr)d + cdx dr =(η() γr)d + cdx A(;T ) rb(;t ) Z(r, : T )=e B(; T )= γ(t ³ e ) γ ZM ( ; T ) A(; T )=log Z M ( B(; T ) ³ ; ) log(z M( ; )) c 4γ 3 e γ(t ) ) e ³e γ( γ( ) 7

18 Chaper 8 Secion 8.3. Bond Opions - Marke Pracice Call opion price: e r(t ) (FN(d ) EN(d )) Pu opion price: e r(t ) (EN( d ) FN( d )) d = log(f/e)+ σ (T ) σ T d = d σ T Secion Caps and Floors - Marke Pracice Caple price: e r ( i ) (F (, i, i )N(d ) r cn(d )) Floorle price: e r ( i ) ( F (, i, i )N( d )+r c N( d )) d = log(f/r c)+ σ i σ i d = d σ p i Secion 8.6. Swapions, Capions and Floorions - Marke Pracice à ) Price of a payer swapion: e r(t +! (Ts T ) F F (FN(d ) EN(d )) à ) Price of a receiver swapion: e r(t +! (Ts T ) F F (EN( d ) FN( d )) d = log(f/e)+ σ (T ) σ T d = d σ T Chaper 9 (9.) Z(; T )=e T F (;s)ds (9.) dz(; T )=μ(, T )Z(; T )d + σ(, T )Z(; T )dx (nn) F (; T )= log Z(; T ) T 8

19 (9.3) df (; T )= T σ (, T ) μ(, T ) à Z! T (9.5) df (; T )=ν(, T ) ν(, s)ds d σ(, T )dx T d + ν(, T )dx à X N Z! T NX (9.6) df (; T )= ν i (, T ) ν i (, s)ds d + ν i (, T )dx i Xi (9.7) dz i = rz i d + Z i a ij dx j j= ix (9.8) dz i =(+τf i )dz i+ + τz i+ df i + τσ i F i Z i+ a i+,j ρ ij d ix (9.9) df i = j= σ j F j τρ ij +τf j σ i F i d + σ i F i dx i FAQ s in Opion Pricing Theory, P. Carr (38) β T =[V (S, ; σ h ) V (S, ; σ i )]e rt + S T f (S T ) f(s T )+ e r(t ) (σ σh) S (39) N T = f (S T ) (4) P &L T N T S T β T f(s T )=[V (S, ; σ i ) V (S, ; σ h )]e rt + The Handbook of Fixed Income Securiies, 8h ed., F. Fabozzi j= e r(t ) (σ h σ )S S V (S,; σ h )d S V (S,; σ h )d Page Y d = (F P ) F 36 Managing Invesmen Porfolios, a dynamic process, Maginn, e al Chaper 5 (5-) U m = E(R m ).5R A σ m (5-) SFRaio = E(R P ) R L (5-3) σ P E(R new ) R F σ new > E(Rp ) R F (5-4) U ALM m = E(SR m ).5R A σ (SR m ) σ p Corr(R new,r p ) 9

20 Modern Invesmen Managemen: (QFIC 6-3) Chaper An Equilibrium Approach, B. Lierman (.) R L, R f, = β(r B, R f, )+ε (.) SR i = μ i R f σ i (.3) S A L (.4) F A /L (.6) RACS = E [A ( + R A,+ ) L ( + R L,+ ) (A L )(+R f )] σ [A ( + R A,+ ) L ( + R L,+ )] (.8) (.9) σ [S + ] A β L A σ B ρσ Bσ E σ E + σ B ρσ Bσ E (.) μ B β L + L R f ( β) A A μ E μ B (.) A + = A ( + R A,+ ) pl ( + R L,+ ) and L + = L ( + R L,+ )( p) (.3) E [R x,+ ]= E [F +]( p)+p F +E [Rx ] +E [Rx ] p (.4) E [F ]= F + p p E [R x ]+p (.A.) R L, R f, = β (R B, R f, )+ε (.A.) (.A.4) r(t ) V = Ce dv V (.A.4) α = = dc C (T )dr + rd β L A σ B ρσ Eσ B σ E + σ B ρσ Eσ B (.A.6) α = (.A.) E [F ]= μ B β L + L [R f ( β)+η] A A μ E μ B +μx F + p p +μx p μ x + p

21 Analysis of Financial Time Series, hird ediion, R. Tsay (QFIC -3) Chaper 3 (3.) μ = E(r F ), σ = Var(r F )=E[(r μ ) F ] px qx (3.3) r = μ + a, μ = φ i y i θ i a i, y = r φ (3.4) σ = Var(r F )=Var(a F ) (p4) a = α + α a + + α m a m + e. = m +,...,T (p4) F = (SSR SSR )/m SSR /(T m ) (3.5) a = σ, σ = α + α a + + α m a m (p7) a = σ, σ = α + α a (p8) E(a 4 )= (p) 3α ( + α ) ( α )( 3α ) kx β i x i f(a,...,a T α) =f(a T F T )f(a T F T ) f(a m+ F m )f(a,...,a m α) TY = p exp a πσ σ f(a,...,a m α) =m+ (p) (a m+,...,a T α, α,...,α m )= Γ[(v +)/] (3.7) f( v) = Γ(v/) p (v )π (3.8) (a m+,...,a T α, A m )= + TX =m+ TX =m+ v v + (p) (a m+,...,a T α, υ, A m )=(T m) ln(σ )+ (v+)/,v> ln + ½ ln Γ υ + o.5ln[(υ )π] + (a m+,...,a T α, A m ) ξ + f[ξ( + ω) v] if < ω/ ξ (3.9) g( ξ,v) = ξ + f[( + ω)/ξ v] if ω/ ξ a a σ (v )σ + ln(σ ) h ³ υ i ln Γ

22 (p) = Γ[(υ )/] υ ξ, = ξ + ξ πγ(υ/) ξ (3.) f(x) = v exp x/λ v, <x<, <v λ (+/v) Γ(/v) mx (3.) σh( ) =α + α i σh( i). where σh( i) =a h+ i if i (3.4) GARCH(m, s) :a = σ,σ = α + mx α i a i + max(m,s) X (3.5) GARCH(m, s) :a = α + (α i + β i )a i + η sx β j σ j j= sx β j η j (p3) E(a 4 ) [E(a )] = 3[ (α + β ) ] (α + β ) α > 3 (3.7) σh( ) =α +(α + β )σh( ), > (p33) σh ( ) =α [ (α + β ) ] +(α + β ) σh α β () (3.) σh( ) =σh() + ( )α, (3.3) GARCH(, ) M : r = μ + cσ + a,a = σ,σ = α + α a + β σ (3.4) g( )=θ + γ[ E( )] ½ (θ + γ) γe( (p43) g( )= ) if (θ γ) γe( ) if < (p43) E( )= υ Γ[(υ +)/] (υ )Γ(υ/) π (3.5) EGARCH(m, s) :a = σ, ln(σ )=α + +β B + + β s B s α B α m B m g( ) (3.6) a = σ, ( αb)ln(σ )=( α)α + g( ) j= ½ (3.7) ( αb)ln(σ α +(γ + θ) )= if α +(γ θ)( = ) if < exp (γ + θ) a if a (p44) σ = σ α σ exp(α ) exp (γ θ) a if a < σ (p48) σh+ = σ α h exp[( α )α ]exp[g( h+ )] ³ (p48) E{exp[g( )]} =exp γ p h i /π e (θ+γ)/ Φ(θ + γ)+e (θ γ)/ Φ(γ θ) (p48) ˆσ h(j) =ˆσ α h (j ) exp(ω) exp[(θ + γ) /Φ(θ + γ)+exp[(θ γ) /Φ(γ θ) ª

23 Frequenly Asked Quesions in Quanaive Finance, P. Wilmo Q3 - Jensen s Inequaliy (3-5) If he payoff is a convex funcion, E[P (S T )] P (E[S T ]) E[f(S)] = E f( S + ) = E f( S)+ f ( S)+ f ( S)+ f( S)+ f ( S)E[ ] = f(e[s]) + f (E[S])E[ ] The LHS is greaer han he RHS by approximaely f (E[S])E[ ] Q6 - Girsanov s Theorem (3-5) The Theorem is: Le W be a Brownian moion wih measure P and sample space Ω. If γ is a previsible process saisfying R i T he consrain E P hexp γ < hen here exiss an equivalen measure Q on Ω such ha W = ³ W + R γ sds is a Brownian moion. Chaper 6 - The Mos Popular Probabiliy Disribuions Normal or Guassian: f(x) = (x a) exp πb b, <x<,μ= a, σ = b Lognormal: f(x) = Poisson: πbx exp (ln(x) a),x>,μ=exp a + b b,σ =exp a + b exp(b ) p(x) = e a a x,x=,,...,μ= a, σ = a x! Chi square (noe ha his is a generalizaion of he usual chi-square disribuion): f(x) = e (x+a)/ v/ X i= x i +v/ a i i j!γ(i + v/),x,μ= v + a, σ =(v +a) Gumbel: f(x) = b exp a x b exp ³ e a x b, <x<,μ= a + γb,σ = 6 π b whereγ = Weibull: f(x) = c c c! x a x a c + c + c + exp,x>a,μ= a+bγ,σ = b ÃΓ Γ b b b c c c Suden s : f(x) = Γ c+ b πcγ c à + x a b c! c+, <x<, μ= a for c>, σ = 3 c b for c>. c

24 Pareo: f(x) = bab,x a, μ = ab xb+ a for b>, σ = Uniform: f(x) = b a, a<x<b, μ = a + b, (b σ a) = a b for b> (b )(b ) Inverse normal: r à b f(x) = πx 3 exp b! x a, x>, μ = a, σ = a3 x a b Gamma: f(x) = bγ(c) c x a a x exp b b, x a, μ = a + bc, σ = b c Logisic f(x) = exp x a b b +exp x a, <x<, μ= a, σ = 3 π b b Laplace: f(x) = b exp x a, <x<, μ = a, σ =b b Cauchy: f(x) = ³ πb + x a, <x<, momens do no exis b Bea: f(x) = Exponenial: Γ(c + d) Γ(c)Γ(d)(b a) c+d (x a)c (b x) d ad + bc,a x b, μ = c + d, cd(b a) σ = (c + d +)(c + d) f(x) = b exp a x b Lévy:,x a, μ = a + b, σ = b no closed form for densiy funcion, μ = μ, varianceisinfinie unless α =,wheniisσ =v 4

25 Risk Managemen and Financial Insiuions, second ediion, J. Hull Chaper 9-Volailiy (9.) Prob(υ >x)=kx α (9.5) σ n = (page 86) mx α i u n i mx α i = (9.6) σ n = γv L + (9.7) σ n = ω + mx α i u n i mx α i u n i (9.8) σ n = λσ n +( λ)u n (9.9) σ n = γv L + αu n + βσ n (9.) σ n = ω + αu n + βσ n (9.4) E[σn+] =V L +(α + β) (σn V L ) (9.5) σ(t ) = 5 ½V L + ¾ e at [V () V L ) at (9.6) σ(t ) σ() e at σ() at σ(t ) 5

Quantitative Finance and Investment Core Formula Sheet. Spring 2017

Quantitative Finance and Investment Core Formula Sheet. Spring 2017 Quaniaive Finance and Invesmen Core Formula Shee Spring 7 Morning and afernoon exam bookles will include a formula package idenical o he one aached o his sudy noe. The exam commiee believe ha by providing

Διαβάστε περισσότερα

Quantitative Finance and Investments Advanced Formula Sheet. Fall 2013/Spring 2014

Quantitative Finance and Investments Advanced Formula Sheet. Fall 2013/Spring 2014 Quaniaive Finance and Invesmens Advanced Formula Shee Fall 013/Spring 014 ThisishesamesheeusedforFall013.Theonlychangeisonhiscoverpage. Morning and afernoon exam bookles will include a formula package

Διαβάστε περισσότερα

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example: (B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds

Διαβάστε περισσότερα

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

Teor imov r. ta matem. statist. Vip. 94, 2016, stor eor imov r. ta matem. statist. Vip. 94, 6, stor. 93 5 Abstract. e article is devoted to models of financial markets wit stocastic volatility, wic is defined by a functional of Ornstein-Ulenbeck process

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A 2012 4 Chinese Journal of Applied Probability and Statistics Vol.28 No.2 Apr. 2012 730000. :. : O211.9. 1..... Johnson Stulz [3] 1987. Merton 1974 Johnson Stulz 1987. Hull White 1995 Klein 1996 2008 Klein

Διαβάστε περισσότερα

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

TeSys contactors a.c. coils for 3-pole contactors LC1-D

TeSys contactors a.c. coils for 3-pole contactors LC1-D References a.c. coils for 3-pole contactors LC1-D Control circuit voltage Average resistance Inductance of Reference (1) Weight Uc at 0 C ± 10 % closed circuit For 3-pole " contactors LC1-D09...D38 and

Διαβάστε περισσότερα

Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009

Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009 Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009 1 IV. Hedging of credit derivatives 1. Two default free assets, one defaultable asset 1.1 Two

Διαβάστε περισσότερα

m i N 1 F i = j i F ij + F x

m i N 1 F i = j i F ij + F x N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,

Διαβάστε περισσότερα

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i d d S = ()SI d d I = ()SI ()I d d R = ()I d d S = ()SI μs + fi + hr d d I = + ()SI (μ + + f + ())I d d R = ()I (μ + h)r d d P(S,I,) = ()(S +1)(I 1)P(S +1, I 1, ) +()(I +1)P(S,I +1, ) (()SI + ()I)P(S,I,)

Διαβάστε περισσότερα

Χρονοσειρές Μάθημα 3

Χρονοσειρές Μάθημα 3 Χρονοσειρές Μάθημα 3 Ασυσχέτιστες (λευκός θόρυβος) και ανεξάρτητες (iid) παρατηρήσεις Chafield C., The Analysis of Time Series, An Inroducion, 6 h ediion,. 38 (Chaer 3): Some auhors refer o make he weaker

Διαβάστε περισσότερα

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs

Διαβάστε περισσότερα

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

Errata (Includes critical corrections only for the 1 st & 2 nd reprint) Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y

Διαβάστε περισσότερα

(1) P(Ω) = 1. i=1 A i) = i=1 P(A i)

(1) P(Ω) = 1. i=1 A i) = i=1 P(A i) Χρηματοοικονομικά Μαθηματικά Το συνεχές μοντέλο συνεχούς χρόνου Σ. Ξανθόπουλος Παν. Αιγαίου Χειμερινό Εξάμηνο 2015-2016 Χειμερινό Εξάμηνο 2015-2016 1 / Σύνοψη 1 Προκαταρκτικά 2 Διαδικασία Wiener ή Κίνηση

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

Pricing Asian option under mixed jump-fraction process

Pricing Asian option under mixed jump-fraction process 3 17 ( ) Journal of Eas China Normal Universiy (Naural Science) No. 3 May 17 : 1-641(17)3-9-1 - ( 18) : -. Iô.... : -; ; : O11.6 : A DOI: 1.3969/j.issn.1-641.17.3.3 Pricing Asian opion under mixed jump-fracion

Διαβάστε περισσότερα

The ε-pseudospectrum of a Matrix

The ε-pseudospectrum of a Matrix The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l = C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

HONDA. Έτος κατασκευής

HONDA. Έτος κατασκευής Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V

Διαβάστε περισσότερα

Quantitative Finance and Investments Advanced Formula Sheet. Fall 2014/Spring 2015

Quantitative Finance and Investments Advanced Formula Sheet. Fall 2014/Spring 2015 Quaniaive Finance and Invemen Advanced Formula Shee Fall 2014/Spring 2015 Morning and afernoon exam bookle will include a formula package idenical o he one aached o hi udy noe. The exam commiee believe

Διαβάστε περισσότερα

ΑΠΟΣΗΜΖΖ ΠΑΡΑΓΩΓΩΝ ΔΤΡΩΠΑΗΚΟΤ ΣΤΠΟΤ (CURRENCY OPTIONS, BINARY OPTIONS, COMPOUND OPTIONS, CHOOSER OPTIONS, LOOKBACK OPTIONS, ASIAN OPTIONS)

ΑΠΟΣΗΜΖΖ ΠΑΡΑΓΩΓΩΝ ΔΤΡΩΠΑΗΚΟΤ ΣΤΠΟΤ (CURRENCY OPTIONS, BINARY OPTIONS, COMPOUND OPTIONS, CHOOSER OPTIONS, LOOKBACK OPTIONS, ASIAN OPTIONS) ΑΠΟΣΗΜΖΖ ΠΑΡΑΓΩΓΩΝ ΔΤΡΩΠΑΗΚΟΤ ΣΤΠΟΤ (CURRENCY OPIONS, BINARY OPIONS, COMPOUND OPIONS, CHOOSER OPIONS, LOOKBACK OPIONS, ASIAN OPIONS) ΣΑΝΣΟΤΛΟΤ ΔΛΔΝΖ ΔΠΗΒΛΔΠΩΝ ΚΑΘΖΓΖΣΖ: ΠΖΛΗΩΣΖ ΗΩΑΝΝΖ ΔΘΝΗΚΟ ΜΔΣΟΒΗΟ ΠΟΛΤΣΔΥΝΔΗΟ

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

γ n ϑ n n ψ T 8 Q 6 j, k, m, n, p, r, r t, x, y f m (x) (f(x)) m / a/b (f g)(x) = f(g(x)) n f f n I J α β I = α + βj N, Z, Q ϕ Εὐκλείδης ὁ Ἀλεξανδρεύς Στοιχεῖα ἄκρος καὶ μέσος λόγος ὕδωρ αἰθήρ ϕ φ Φ τ

Διαβάστε περισσότερα

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα x + = 0 N = {,, 3....}, Z Q, b, b N c, d c, d N + b = c, b = d. N = =. < > P n P (n) P () n = P (n) P (n + ) n n + P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + ) P (n) n m P n P (n) P () P (), P (),...,

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ & ΕΛΕΓΧΟΥ ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

Jeux d inondation dans les graphes

Jeux d inondation dans les graphes Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488

Διαβάστε περισσότερα

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9. 9.1 Inroducion 9.2 Lags in he Error Term: Auocorrelaion 9.3 Esimaing an AR(1) Error Model 9.4 Tesing for Auocorrelaion 9.5 An Inroducion o Forecasing: Auoregressive Models 9.6 Finie Disribued Lags 9.7

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

The one-dimensional periodic Schrödinger equation

The one-dimensional periodic Schrödinger equation The one-dmensonal perodc Schrödnger equaon Jordan Bell jordan.bell@gmal.com Deparmen of Mahemacs, Unversy of Torono Aprl 23, 26 Translaons and convoluon For y, le τ y f(x f(x y. To say ha f : C s unformly

Διαβάστε περισσότερα

Galatia SIL Keyboard Information

Galatia SIL Keyboard Information Galatia SIL Keyboard Information Keyboard ssignments The main purpose of the keyboards is to provide a wide range of keying options, so many characters can be entered in multiple ways. If you are typing

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

DOI /J. 1SSN

DOI /J. 1SSN 4 3 2 Vol 43 No 2 2 1 4 4 Journal of Shanghai Normal UniversityNatural Sciences Apr 2 1 4 DOI1 3969 /J 1SSN 1-5137 214 2 2 1 2 2 1 22342 2234 O 175 2 A 1-51372142-117-1 2 7 8 1 2 3 Black-Scholes-Merton

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Z = 1.2 X 1 + 1, 4 X 2 + 3, 3 X 3 + 0, 6 X 4 + 0, 999 X 5. X 1 X 2 X 2 X 3 X 4 X 4 X 5 X 4 X 4 Z = 0.717 X 1 + 0.847 X 2 + 3.107 X 3 + 0.420 X 4 + 0.998 X 5. X 5 X 4 Z = 6.56 X 1 + 3.26 X 2 + 6.72 X 3

Διαβάστε περισσότερα

Financial Risk Management

Financial Risk Management Pricing of American options University of Oulu - Department of Finance Spring 2018 Volatility-based binomial price process uuuus 0 = 26.51 uuus 0 = 24.71 uus 0 = us 0 = S 0 = ds 0 = dds 0 = ddds 0 = 16.19

Διαβάστε περισσότερα

Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat

Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat Pierre Coucheney, Patrick Maillé, runo Tuffin To cite this version: Pierre Coucheney, Patrick

Διαβάστε περισσότερα

The Student s t and F Distributions Page 1

The Student s t and F Distributions Page 1 The Suden s and F Disribuions Page The Fundamenal Transformaion formula for wo random variables: Consider wo random variables wih join probabiliy disribuion funcion f (, ) simulaneously ake on values in

Διαβάστε περισσότερα

Vulnerable European option pricing with the time-dependent for double jump-diffusion process

Vulnerable European option pricing with the time-dependent for double jump-diffusion process 1 014 1 Journal of Eas China Normal Universiy Naural Science No. 1 Jan. 014 : 1000-564101401-0013-08 -,, 1116 :,., r σ d ;, Iô,. : ; ; : O11.6 : A DOI: 10.3969/j.issn.1000-5641.014.01.003 Vulnerable European

Διαβάστε περισσότερα

Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s

Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr st t t t Ø t q s ss P r s P 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t P r røs r Łs t r t t Ø t q s r Ø r t t r t q t rs tø

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

& Risk Management , A.T.E.I.

& Risk Management , A.T.E.I. Μεταβλητότητα & Risk Managemen Οικονοµικό Επιµελητήριο της Ελλάδας Επιµορφωτικά Σεµινάρια Σταύρος. Ντεγιαννάκης, Οικονοµικό Πανεπιστήµιο Αθηνών Χρήστος Φλώρος, A.T.E.I. Κρήτης Volailiy - Μεταβλητότητα

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

ITU-R P (2012/02) &' (

ITU-R P (2012/02) &' ( ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS

Διαβάστε περισσότερα

Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques

Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques Raphael Chenouard, Patrick Sébastian, Laurent Granvilliers To cite this version: Raphael

Διαβάστε περισσότερα

Advanced Subsidiary Unit 1: Understanding and Written Response

Advanced Subsidiary Unit 1: Understanding and Written Response Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes

Διαβάστε περισσότερα

ECE 468: Digital Image Processing. Lecture 8

ECE 468: Digital Image Processing. Lecture 8 ECE 468: Digital Image Processing Lecture 8 Prof. Sinisa Todorovic sinisa@eecs.oregonstate.edu 1 Image Reconstruction from Projections X-ray computed tomography: X-raying an object from different directions

Διαβάστε περισσότερα

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1) Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as

Διαβάστε περισσότερα

γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Διευθύνοντα Μέλη του mathematica.gr

Διευθύνοντα Μέλη του mathematica.gr Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή και η ϕροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mathematica.gr.

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Κλασσική Θεωρία Ελέγχου

Κλασσική Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ο μετασχηματισμός Laplace Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Calculating the propagation delay of coaxial cable

Calculating the propagation delay of coaxial cable Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral. SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

Mean-Variance Analysis

Mean-Variance Analysis Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago Laplace Expansion Peter McCullagh Department of Statistics University of Chicago WHOA-PSI, St Louis August, 2017 Outline Laplace approximation in 1D Laplace expansion in 1D Laplace expansion in R p Formal

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation date: GF F GF F SLE GF F D Ĉ = C { } Ĉ \ D D D = {z : z < 1} f : D D D D = D D, D = D D f f : D D

Διαβάστε περισσότερα

J J l 2 J T l 1 J T J T l 2 l 1 J J l 1 c 0 J J J J J l 2 l 2 J J J T J T l 1 J J T J T J T J {e n } n N {e n } n N x X {λ n } n N R x = λ n e n {e n } n N {e n : n N} e n 0 n N k 1, k 2,..., k n N λ

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Déformation et quantification par groupoïde des variétés toriques

Déformation et quantification par groupoïde des variétés toriques Défomation et uantification pa goupoïde de vaiété toiue Fédéic Cadet To cite thi veion: Fédéic Cadet. Défomation et uantification pa goupoïde de vaiété toiue. Mathématiue [math]. Univeité d Oléan, 200.

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1) HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X

(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X X, Y f X,Y x, y X x, Y y f X Y x y X x Y y X x, Y y Y y f X,Y x, y f Y y f X Y x y x y X Y f X,Y x, y f X Y x y f X,Y x, y f Y y x y X : Ω R Y : Ω E X < y Y Y y 0 X Y y x R x f X Y x y gy X Y gy gy : Ω

Διαβάστε περισσότερα

Probability and Random Processes (Part II)

Probability and Random Processes (Part II) Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer: HOMEWORK# 52258 李亞晟 Eercise 2. The lifetime of light bulbs follows an eponential distribution with a hazard rate of. failures per hour of use (a) Find the mean lifetime of a randomly selected light bulb.

Διαβάστε περισσότερα

Premia 14 Closed Formula Methods

Premia 14 Closed Formula Methods 19 pages 1 Premia 14 Closed Formula Methods Routine cf_spm_nig.c Routine cf_hullwhite1d_zbputeuro.c Routine cf_hullwhite1d_zcbond.c Routine cf_hullwhite1d_payerswaption.c Routine cf_hullwhite1d_zbcalleuro.c

Διαβάστε περισσότερα

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

Διαβάστε περισσότερα