Quantitative Finance and Investments Core Formula Sheet. Spring 2016
|
|
- Θέκλα Καλογιάννης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Quaniaive Finance and Invesmens Core Formula Shee Spring 6 Morning and afernoon exam bookles will include a formula package idenical o he one aached o his sudy noe. The exam commiee believe ha by providing many key formulas, candidaes will be able o focus more of heir exam preparaion ime on he applicaion of he formulas and conceps o demonsrae heir undersanding of he syllabus maerial and less ime on he memorizaion of he formulas. The formula shee was developed sequenially by reviewing he syllabus maerial for each major syllabus opic. Candidaes should be able o follow he flow of he formula package easily. We recommend ha candidaes use he formula package concurrenly wih he syllabus maerial. No every formula in he syllabus is in he formula package. Candidaes are responsible for all formulas on he syllabus, including hose no on he formula shee. Candidaes should carefully observe he someimes suble differences in formulas and heir applicaion o slighly differen siuaions. For example, here are several versions of he Black-Scholes-Meron opion pricing formula o differeniae beween insrumens paying dividends, ied o an index, ec. Candidaes will be expeced o recognize he correc formula o apply in a specific siuaion of an exam quesion. Candidaes will noe ha he formula package does no generally provide names or definiions of he formula or symbols used in he formula. Wih he wide variey of references and auhors of he syllabus, candidaes should recognize ha he leer convenions and use of symbols may vary from one par of he syllabus o anoher and hus from one formula o anoher. We rus ha you will find he inclusion of he formula package o be a valuable sudy aide ha will allow for more of your preparaion ime o be spen on masering he learning objecives and learning oucomes. In sources where some equaions are numbered and ohers are no (nn) denoes ha here is no number assigned o ha paricular equaion. The only change from 5 is ha Chaper 9, Secion 3 from Wilmo has been removed from he syllabus.
2 An Inroducion o he Mahemaics of Financial Derivaives, 3rd Ediion, A. Hirsa and S. Nefci Chaper (.) S() = C() ( + r ) (+r ) S ( + ) S ( + ) C ( + ) C ( + ) ψ ψ h Q up (S + σ )+Q down (S σ ) (.66) S = +r (.67) C = ( + r) (.7) S = +d S u Q up + S d Q down +r (.7) C = +r (page 6) Chaper 3 (3.37) (3.49) E Q C+ C nx i + i f Chaper 4 Qup C up + + Q downc+ down C u Q up + C d Q down g(s)df (s) +r ( i i ) f(s)ds nx i + i g i (f( i ) f( i )) (4.4) df () =F s ds + F r dr + F d + F ssds + F rrdr + F sr ds dr Chaper 5 (5.) E[S I u ]= Z S f(s I u )ds, (5.8) P ( F () =+a )=p u < (5.9) P ( F () = a )= p (5.44) P (X +s x +s x,...,x )=P(X +s x +s x ) (5.45) r + r = E[(r + r ) I ]+σ(i,) W (5.48) dr = μ(r,)d + σ(r,)dw r+ α r (5.49) = + β R σ W + + R + α r + β R σ W+ Chaper 6 (6.3) E [S T ]=E[S T I ], < T (6.4) E S < (6.5) E [S T ]=S, for all <T
3 (6.9) E Q [e ru B +u ]=B, <u<t (6.) E Q [e ru S +u ]=S, <u (6.) M = N G N B (6.6) P ( N G =) λ G >P( N B =) λ B (6.7) E[ M ] λ G λ B > (6.44) X N(μ,σ ) (6.46) X +T = X + Z +T (6.5) Z = X μ (6.54) E [Z +T ]=X μ (6.55) E [Z +T ]=Z (6.56) S N(,σ ) (6.57) S = (6.58) Z = S dx u (6.6) E [Z +T σ (T + )] = Z σ (6.64) I I + I T I T (6.65) M = E P [Y T I ] (6.66) E P [M +s I ]=M (6.7) G T = f(s T ) (6.7) B T = e T r sds (6.7) M = E P GT B T I (6.6) M k = M + (6.8) E [M k ]=M (6.) C T = C + Chaper 7 kx H i [Z i Z i ] D s ds + g(c s )dm s (7.3) W k =[S k S k ] E k [S k S k ] (7.6) W k = kx W i (7.8) E k [W k ]=W k (7.9) V k = E [ Wk ] (7.3) " n # X V = E W k = k= nx k= V k 3
4 (7.3) V >A > (7.33) V <A < (7.34) V max =max k [Vk,k =,...,n] (7.35) V k >A 3, V max <A 3 < (7.36) E[ W k ] = σkh (7.56) S k S k = E k [S k S k ]+σ k W k Chaper 8 (8.7) ½ wih probabiliy λd dn = wih probabiliy λd (8.8) M = N λ (8.9) E[M ]= (8.5) E(e iux )=exp(φ(u)) (8.6) φ(u) =iγu Z + σ u + e iuy iuyi { y } dν(y) (8.8) X =(r q + ω) + Z (page 9) dν(y) =k(y)dy (8.9) k(y) = e λ py νy I y> + e λn y ν y θ (nn) λ p = σ 4 + θ σ ν σ (nn) λ n = θ σ 4 + σ ν (8.) σ k W k = + θ σ I y< ω wih probabiliy p ω wih probabiliy p... ω m (8.) E[σ k W k ] = σkh mx (8.3) p i ωi = σkh (8.8) ω i (h) = ω i h ri (8.9) p i (h) = p i h qi (8.33) q i +r i = (8.34) c i = ω i p i. wih probabiliy p m (8.58) J =(N λ) (8.6) ds = a(s,)d + σ (S,)dW + σ (S,)dJ (8.75) =< < < n = T (8.76) n = T 4
5 (8.77) S i = S i, i =,,...,n ½ ui S (8.78) S i+ = i d i S i wih probabiliy p i wih probabiliy p i (8.79) u i = e σ, for all i (8.8) d i = e σ, for all i (8.8) p i = h + μ i, for all i σ (8.89) S i+n S i (8.9) log S i+n S i (8.9) log S i+n S i = Z log u +(n Z)logd = Z log u d + n log d Chaper 9 (9.37) lim n E " n X k= Z # T σ(s k,k)[w k W k ] σ(s u,u)dw u = (9.38) S k S k = a(s k,k)h + σ(s k,k)[w k W k ], k =,,...,n " Z # T (9.39) E σ(s,) d < (9.4) (9.73) nx σ(s k,k)[w k W k ] k= (9.74) lim n E (9.76) If (9.77) (9.78) x dx = x T T " n # X x i+ T = i= (dx ) exiss, hen d = T (dx ) = d (9.79) (dw ) = d Z (9.85) E s σ u dw u = Z s lim E n σ u dw u, σ(s,)dw " n X x i+ i= <s< (dx ) # = 5
6 Chaper (page 7) ds = a d + σ dw, (.36) df = F ds + F S d + F σ S d F (.37) df = a + F S + F σ S (.64) Z F s ds u =[F (S,) F (S, )] d + F Z σ dw S F u + F ssσu du (.69) df = F d + F s ds + F s ds + Fs s ds + F s s ds +F s s ds ds nx (.79) Y () = N i ()P i () (.8) dy () = nx N i ()dp i ()+ nx nx dn i ()P i ()+ dn i ()dp i () (.8) ds = a d + σ dw + dj, (.8) E[ J ]= " à kx!# (.83) J = N λ h a i p i à kx! (.84) a = α + λ a i p i " # kx (.85) df (S,)= F + λ (F (S + a i,) F (S,))p i + F ssσ d + F s ds + dj F " kx # (.86) dj F =[F (S,) F (S,)] λ (F (S + a i,) F (S,))p i d (.87) S = lim s S s, s < Chaper (.4) ds = μs d + σs dw, [, ) (.3) S = S e {(a σ )+σw } (.34) ds = rs d + σs dw, [, ) (.38) S T = hs i e (r σ )T e σw T (.4) Z = e σw (.5) x = E[Z ]=e σ (.55) S = e r(t ) E [S T ] 6
7 (.7) ds = μs d + σ p S dw, [, ) (.74) ds = λ(μ S )d + σs dw (.78) ds = μs d + σdw (.79) ds = μd + σ dw (page 9) dσ = λ(σ σ )d + ασ dw ½ wih probabiliy λd (page 93) dn = wih probabiliy λd (.83) (.84) (page 94) ds =(μ λκ)d + σdw +(e J )dn S ds S =(μ λ κ )d + σd W +(e J )dn S = S e (r q+ω)+x(;σ,ν,θ) (page 94) f(x; σ, ν, θ) = Z σ πg exp (x θg) g /ν e g/ν σ g ν /ν Γ(/ν) dg Chaper (.3) P = θ F (S,)+θ S (.4) dp = θ df + θ ds (.5) ds = a(s,)d + σ(s,)dw, [, ) (.6) df = F d + F ssσ d + F s ds (.7) df = F s a + F ssσ + F d + F s σ dw (.) θ = (.) θ = F s (.) dp = F d + F ssσ d (.6) r(f (S,) F s S )=F + F ssσ (.7) rf + rf s S + F + F ssσ =, S, T (.3) P = F (S,) F s (S,)S (.4) dp = df (S,) F s ds S df s df s (S,)dS (.6) dp = df (S,) F s ds S F s + F ss μs + F sssσ S d + F ss σs dw F ss σ S d (.8) dp = df (S,) F s ds S [F ss (μ r)s d] F ss σs dw 7
8 (page ) dw =(σdw +(μ r)d) (.9) a F + a F s S + a F + a 3 F ss =, S, T (.3) F (S T,T)=G(S T,T) (.3) F + F s =, S, T (.33) F (S,)=αS α + β (.44) F (S,)=e αs α (.46).3F ss + F = (.47) F (S,)= α(s S ) +.3 α( ) + β( ) (.53) F (S,)= (S 4) 3( ),, S Chaper 3 (3.) a(s,)=μs (3.) σ(s,)=σs, [, ) (3.3) rf + rf s S + F + σ F ss S =, S, T (3.4) F (T )=max[s T K, ] (3.6) F (S,)=S N(d ) Ke r(t ) N(d ) (3.7) d = ln( S K )+(r + σ )(T ) σ T (3.8) d = d σ T (3.9) N(d )= Z d (3.) a(s,)=μs π e x dx (3.3) σ(s,)=σ(s,)s, [, ) (3.4) rf + rf s S + F + σ(s,) F ss S =, S, T (3.5) F (T )=max[s T K, ] (3.34) rf rf s S δ F F ssσ = (3.35) F (S T,S T,T)=max[, max(s T,S T ) K] (muli-asse opion) (3.36) F (S T,S T,T)=max[,(S T S T ) K] (spread call opion) (3.37) F (S T,S T,T)=max[,(θ S T + θ S T ) K] (porfolio call opion) (3.38) F (S T,S T,T)=max[,(S T K ), (S T K )] (dual srike call opion) (3.47) F + rs F S + σ S F S rf 8
9 F (3.48) F ij F i,j (3.49) rs F S rs F ij F i,j j S (3.5) rs F F i+,j F ij (3.5) S rs j S Fi+,j F ij S F S Chaper 4 F ij F i,j S S (4.6) dp( z) =P z dz <z < z + dz (4.7) Z (4.8) E[z ]= dp(z )= Z z dp(z ) Z (4.9) E [z E[z ]] = [z E[z ]] dp(z ) (4.9) E S + = S +R (4.3) E Q S + = S +r (4.4) z N(, ) (4.4) dp(z )= e (z) dz π (4.43) ξ(z )=e z μ μ (4.44) [dp(z )][ξ(z )] = π e (z )+μz μ dz (4.45) dq(z )= π e (z μ) dz (4.47) dq(z )=ξ(z )dp(z ) (4.48) ξ(z ) dq(z )=dp(z ) 9
10 (4.53) f(z,z )= π p Ω e σ (4.54) Ω = σ σ σ (4.55) Ω = σ σ σ (4.56) dp(z,z )=f(z,z )dz dz (4.57) ξ(z,z )=exp z μ, z μ Ω z μ z μ ½ z, z Ω (4.58) dq(z,z )=ξ(z,z )dp(z,z ) (4.59) dq(z,z )= (4.6) ξ(z )=e z Ω μ+ μ Ω μ (4.69) dq(z ) dp(z ) = ξ(z ) (4.74) dq(z )=ξ(z )dp(z ) (4.75) dp(z )=ξ(z ) dq(z ) π p Ω e z, z Ω z z X u du), (4.76) ξ = e ( X udw u [,T] (4.77) E he Xdui u <, [,T] Z Z u (4.83) E ξ s X s dw s I u = ξ s X s dw s (4.84) W = W Z X u du, (4.85) Q(A) =E P [ A ξ T ] (4.86) dw = dw X d (4.93) dq = ξ T dp (4.) A A A n = Ω (4.3) A + A +... An = Ω [,T] (4.7) E P [Z Ai ]=Q(A i ) Z (4.38) E P [g(x )] = g(x)f(x)dx (page 48) g(x )=Z h(x ) Z (4.4) E P [g(x )] = h(x) f(x)dx = E Q [h(x )] Ω Ω μ + μ, μ μ Ω μ μ dz dz ¾
11 Chaper 5 (5.) Y N(μ, σ ) (5.4) M(λ) =E[e Yλ ] (5.) M(λ) =e (λμ+ σ λ ) (5.5) S = S e Y, [, ) (5.5) E[S S u,u<]=s u e μ( s)+ σ ( s) (5.3) Z = e r S (5.3) E Q e r S S u,u< = e ru S u (5.3) E Q [Z Z u,u<]=z u i (5.38) E Q e r( u) S S u,u< = S u e r( u) e ρ( u)+ σ ( u) where under Q,Y N(ρ, σ ) (5.39) ρ = r σ (5.4) E Q e r S S u,u< = e ru S u (5.5) ds = rs d + σs dw h i (5.58) C = E Q e r(t ) max{s T K, } (5.88) ds = μ d + σ dw (5.9) d[e r S ]=e r [μ rs ]d + e r σ dw (5.9) dw = dx + dw μ rs (5.97) dx = d σ (5.98) d[e r S ]=e r σ dw (5.) d e r F (S,) = e r σ F s dw Chaper 7 (page 8) R =(+r ) (page 8) R =(+r ) (page 8) B s = B(, 3 ) (page 8) B = B(,T) (page 8) B s 3 = B( 3,T) R R u R R u R R d R R d (7.6) B s = (F L u ) (F L u ) (F L d ) (F L d ) B B uu 3 B ud 3 B du 3 B dd 3 C C uu 3 C ud 3 C du 3 C dd 3 ψ uu ψ ud ψ du ψ dd
12 (7.3) = R R u ψ uu + R R u ψ ud + R R d ψ du + R R d ψ dd (7.4) Q ij =(+r )( + r i )ψ ij (7.5) = Q uu + Q ud + Q du + Q dd (7.6) Q ij > (7.8) B s = E Q ( + r )( + r ) (7.) B = E Q B 3 ( + r )( + r ) (7.) = E Q ( + r )( + r ) [F L ] (7.3) C = E Q ( + r )( + r ) C 3 (7.3) F = h ie Q L E Q ( + r )( + r ) (+r )(+r ) (7.36) B s = ψ uu + ψ ud + ψ du + ψ dd (7.38) π ij = B s ψ ij (7.39) = π uu + π ud + π du + π dd (7.46) F = E π [L ] (7.5) C 3 = N max[l K, ] (7.53) C = E Q ( + r )( + r ) max[l K, ] (7.55) C = B s E π [max[l K, ]] C (7.56) = E S CT S S T C(K) (7.57) = E S (ST K) + S S T ST (page 9) y =log K (page 9) C(K) S = Z (7.63) F (; T,S)= S T ( F (y))e y dy P (, T ) P (, S) (7.64) = T <T <T < <T M (7.65) i = T i+ T i,i=,,,...,m (7.66) L n () = P (, T n) P (, T n+ ) n P (, T n+ ) ny (7.7) P (T i,t n+ )= + j L j (T i ) j=
13 n Y (7.7) P (, T n )=P(, T l ) + j L j (T i ), T l < T l j=l l Y (7.75) B = P (, T l ) ( + j L j (T j )) (7.77) D n () = j= Q n j=l +δ jl j() Q l j= ( + jl j (T J )) (7.78) dl n () =μ n ()L n ()d + L n ()σn()dw τ, T n,n=,,...,m nx j L j ()σ (7.3) μ n () = n()σ τ j () + j L j () j=l (7.5) V = E Q he i T +δ r udu (F L T )Nδ (7.) V = E π [B(, T + δ)(f L T )Nδ] (7.) V = B(, T + δ)e π [(F L T )Nδ] (7.) F = E π [L T ] (page 96) C T =max[l T δ K, ] (7.3) C = E Q he i T +δ r u du [L T δ K, ] Chaper 8 (8.3) B(, T )=e R(T,)(T ), < T (8.) B(, T )=E Q he T rsdsi h log E Q e i T r sds (8.) R(, T )= T (8.33) B(, T )=e T F (,s)ds (8.4) log B(, T ) log B(, T + ) F (, T ) = lim (page 3) log B(, T ) log B(, U) F (, T, U) = U T Chaper 9 (9.4) db = μ(, T, B )B d + σ(, T, B )B dv T (9.5) db = r B d + σ(, T, B )B dw T σ(, T, B(, T )) (9.) df (, T )=σ(, T, B(, T )) d + T (9.) df (, T )=a(f(, T ),)d + b(f (, T ),)dw (9.5) r = F (, ) σ(, T, B(, T )) T dw 3
14 Z " Z # T Z (page 35) F (, T )=F(,T)+ b(s, T ) b(s, u)du ds + b(s, T )dw s s Z Z Z (9.6) r = F (,)+ b(s, ) b(s, u)du ds + b(s, )dw s s (9.33) df (, T )=b (T )d + bdw (9.34) db(, T )=r B(, T )d + b(t )B(, T )dw (9.35) r = F (,)+ b + bw (9.36) dr =(F (,)+b )d + bdw (9.37) F (,)= F(,) Paul Wilmo Inroduces Quaniaive Finance, nd Ediion, P. Wilmo Chaper 6 (6.6) (6.7) (6.8) (6.9) (6.) Chaper 8 V + σ S V V + rs rv = S S V + σ S V V +(r D)S rv = S S V + σ S V S +(r r f)s V rv = S V + σ S V V +(r + q)s rv = S S V + σ F V + rv = F e r(t ) (8.7) V (S, ) = σ p π(t ) Z Call opion value Se D(T ) N(d ) Ee r(t ) N(d ) d = log(s/e)+(r D+ σ )(T ) σ T d = log(s/e)+(r D σ )(T ) σ T = d σ T e (log(s/s )+(r σ )(T )) /σ (T ) Payoff(S ) ds S Pu opion value Se D(T ) N( d )+Ee r(t ) N( d ) Binary call opion value e r(t ) N(d ) Binary pu opion value e r(t ) ( N(d )) 4
15 Dela of common conracs Call e D(T ) N(d ) Pu e D(T ) (N(d ) ) Binary call e r(t ) N (d ) σs T Binary pu e r(t ) N (d ) σs T N (x) = π e x Gamma of common conracs Call Pu e D(T ) N (d ) σs T e D(T ) N (d ) σs T Binary call e r(t ) d N (d ) Binary Pu σ S (T ) e r(t ) d N (d ) σ S (T ) Theas of common conracs Call σse D(T ) N (d ) + DSN(d T )e D(T ) ree r(t ) N(d ) Pu σse D(T ) N ( d ) DSN( d T )e D(T ) + ree r(t ) N( d ) ³ Binary call re r(t ) N(d )+e r(t ) N (d ) d (T ) r D ³ σ T Binary pu re r(t ) ( N(d )) e r(t ) N (d ) d (T ) r D σ T Speedofcommonconracs Call e D(T ) N (d ) σ S (T ) d + σ T Pu e D(T ) N (d ) σ S (T ) d + σ T ³ Binary call e r(t ) N (d ) σ S 3 (T ) d + d d ³ σ T e Binary pu r(t ) N (d ) σ S 3 (T ) d + dd σ T Vegas of common conracs Call S T e D(T ) N (d ) Pu S T e D(T ) N (d ) Binary call e r(t ) N (d ) d σ Binary pu e r(t ) N (d ) d σ Rhos of common conracs Call E(T )e r(t ) N(d ) Pu E(T )e r(t ) N( d ) Binary call (T )e r(t ) N(d )+ T σ e r(t ) N (d ) Binary pu (T )e r(t ) ( N(d )) T σ e r(t ) N (d ) Sensiiviy o dividend for common conracs Call (T )Se D(T ) N(d ) Pu (T )Se D(T ) N( d ) Binary call T σ e r(t ) N (d ) Binary pu T σ e r(t ) N (d ) 5
16 Chaper 9 This maerial was removed from he syllabus for 6. Chaper Secion.4, one ime sep mark-o-marke profi (using Black-Scholes wih σ = σ) = (σ σ )S Γ i d +( i a )((μ r + D)Sd + σsdx) Secion.5, mark-o-marke profi from oday o omorrow = σ σ S Γ i d Chaper 4 (4.) V = Pe y(t ) + Chaper 6 (6.4) V + w V r NX C i e y( i ) +(u λw) V r (6.5) dv rv d = w V (dx + λd) r 6.6 NAMED MODELS 6.6. Vasicek dr =(η γr)d + β / dx rv = A(;T ) rb(;t ) The value of a zero coupon bond is given by e B = γ ( e γ(t ) ) A = γ (B(; T ) T + )(ηγ βb(; T ) β) 4γ 6.6. Cox, Ingersoll & Ross dr =(η γr)d + αrdx A(;T ) rb(;t ) The value of a zero coupon bond is given by e α A = aψ log(a B)+ψ b log((b + b)/b) aψ log a (e ψ (T ) ) B(; T )= (γ + ψ )(e ψ(t ) ) + ψ ψ = p γ +α and ψ = η a + b b, a = ±γ + p γ +α α 6
17 6.6.3 Ho & Lee dr = η()d + β / dx A(;T ) rb(;t ) The value of a zero coupon bond is given by e B = T A = η(s)(t s)ds + β(t )3 6 η() = log Z M( ; )+β( ) Secion 6.7 Forward price = S Z Z + w Z +(u λw) Z r r wih Z(r, T )= rz = Secion 6.8 Fuures price F (S, r, ) = S p(r, ) ³ p p + w p r +(μ λw) p rp w + pσβ p r r q r = wih p(r, T )= Chaper 7 Secion7.Ho&Lee dr = η()d + cdx A(;T ) r(t ) Z(r, : T )=e A(; T )=log ZM ( ; T ) Z M ( ; ) (T ) log(z M( ; )) c ( )(T ) Secion 7.3 The Exended Vasicek Model of Hull & Whie dr =(η γr)d + cdx dr =(η() γr)d + cdx A(;T ) rb(;t ) Z(r, : T )=e B(; T )= γ(t ³ e ) γ ZM ( ; T ) A(; T )=log Z M ( B(; T ) ³ ; ) log(z M( ; )) c 4γ 3 e γ(t ) ) e ³e γ( γ( ) 7
18 Chaper 8 Secion 8.3. Bond Opions - Marke Pracice Call opion price: e r(t ) (FN(d ) EN(d )) Pu opion price: e r(t ) (EN( d ) FN( d )) d = log(f/e)+ σ (T ) σ T d = d σ T Secion Caps and Floors - Marke Pracice Caple price: e r ( i ) (F (, i, i )N(d ) r cn(d )) Floorle price: e r ( i ) ( F (, i, i )N( d )+r c N( d )) d = log(f/r c)+ σ i σ i d = d σ p i Secion 8.6. Swapions, Capions and Floorions - Marke Pracice à ) Price of a payer swapion: e r(t +! (Ts T ) F F (FN(d ) EN(d )) à ) Price of a receiver swapion: e r(t +! (Ts T ) F F (EN( d ) FN( d )) d = log(f/e)+ σ (T ) σ T d = d σ T Chaper 9 (9.) Z(; T )=e T F (;s)ds (9.) dz(; T )=μ(, T )Z(; T )d + σ(, T )Z(; T )dx (nn) F (; T )= log Z(; T ) T 8
19 (9.3) df (; T )= T σ (, T ) μ(, T ) à Z! T (9.5) df (; T )=ν(, T ) ν(, s)ds d σ(, T )dx T d + ν(, T )dx à X N Z! T NX (9.6) df (; T )= ν i (, T ) ν i (, s)ds d + ν i (, T )dx i Xi (9.7) dz i = rz i d + Z i a ij dx j j= ix (9.8) dz i =(+τf i )dz i+ + τz i+ df i + τσ i F i Z i+ a i+,j ρ ij d ix (9.9) df i = j= σ j F j τρ ij +τf j σ i F i d + σ i F i dx i FAQ s in Opion Pricing Theory, P. Carr (38) β T =[V (S, ; σ h ) V (S, ; σ i )]e rt + S T f (S T ) f(s T )+ e r(t ) (σ σh) S (39) N T = f (S T ) (4) P &L T N T S T β T f(s T )=[V (S, ; σ i ) V (S, ; σ h )]e rt + The Handbook of Fixed Income Securiies, 8h ed., F. Fabozzi j= e r(t ) (σ h σ )S S V (S,; σ h )d S V (S,; σ h )d Page Y d = (F P ) F 36 Managing Invesmen Porfolios, a dynamic process, Maginn, e al Chaper 5 (5-) U m = E(R m ).5R A σ m (5-) SFRaio = E(R P ) R L (5-3) σ P E(R new ) R F σ new > E(Rp ) R F (5-4) U ALM m = E(SR m ).5R A σ (SR m ) σ p Corr(R new,r p ) 9
20 Modern Invesmen Managemen: (QFIC 6-3) Chaper An Equilibrium Approach, B. Lierman (.) R L, R f, = β(r B, R f, )+ε (.) SR i = μ i R f σ i (.3) S A L (.4) F A /L (.6) RACS = E [A ( + R A,+ ) L ( + R L,+ ) (A L )(+R f )] σ [A ( + R A,+ ) L ( + R L,+ )] (.8) (.9) σ [S + ] A β L A σ B ρσ Bσ E σ E + σ B ρσ Bσ E (.) μ B β L + L R f ( β) A A μ E μ B (.) A + = A ( + R A,+ ) pl ( + R L,+ ) and L + = L ( + R L,+ )( p) (.3) E [R x,+ ]= E [F +]( p)+p F +E [Rx ] +E [Rx ] p (.4) E [F ]= F + p p E [R x ]+p (.A.) R L, R f, = β (R B, R f, )+ε (.A.) (.A.4) r(t ) V = Ce dv V (.A.4) α = = dc C (T )dr + rd β L A σ B ρσ Eσ B σ E + σ B ρσ Eσ B (.A.6) α = (.A.) E [F ]= μ B β L + L [R f ( β)+η] A A μ E μ B +μx F + p p +μx p μ x + p
21 Analysis of Financial Time Series, hird ediion, R. Tsay (QFIC -3) Chaper 3 (3.) μ = E(r F ), σ = Var(r F )=E[(r μ ) F ] px qx (3.3) r = μ + a, μ = φ i y i θ i a i, y = r φ (3.4) σ = Var(r F )=Var(a F ) (p4) a = α + α a + + α m a m + e. = m +,...,T (p4) F = (SSR SSR )/m SSR /(T m ) (3.5) a = σ, σ = α + α a + + α m a m (p7) a = σ, σ = α + α a (p8) E(a 4 )= (p) 3α ( + α ) ( α )( 3α ) kx β i x i f(a,...,a T α) =f(a T F T )f(a T F T ) f(a m+ F m )f(a,...,a m α) TY = p exp a πσ σ f(a,...,a m α) =m+ (p) (a m+,...,a T α, α,...,α m )= Γ[(v +)/] (3.7) f( v) = Γ(v/) p (v )π (3.8) (a m+,...,a T α, A m )= + TX =m+ TX =m+ v v + (p) (a m+,...,a T α, υ, A m )=(T m) ln(σ )+ (v+)/,v> ln + ½ ln Γ υ + o.5ln[(υ )π] + (a m+,...,a T α, A m ) ξ + f[ξ( + ω) v] if < ω/ ξ (3.9) g( ξ,v) = ξ + f[( + ω)/ξ v] if ω/ ξ a a σ (v )σ + ln(σ ) h ³ υ i ln Γ
22 (p) = Γ[(υ )/] υ ξ, = ξ + ξ πγ(υ/) ξ (3.) f(x) = v exp x/λ v, <x<, <v λ (+/v) Γ(/v) mx (3.) σh( ) =α + α i σh( i). where σh( i) =a h+ i if i (3.4) GARCH(m, s) :a = σ,σ = α + mx α i a i + max(m,s) X (3.5) GARCH(m, s) :a = α + (α i + β i )a i + η sx β j σ j j= sx β j η j (p3) E(a 4 ) [E(a )] = 3[ (α + β ) ] (α + β ) α > 3 (3.7) σh( ) =α +(α + β )σh( ), > (p33) σh ( ) =α [ (α + β ) ] +(α + β ) σh α β () (3.) σh( ) =σh() + ( )α, (3.3) GARCH(, ) M : r = μ + cσ + a,a = σ,σ = α + α a + β σ (3.4) g( )=θ + γ[ E( )] ½ (θ + γ) γe( (p43) g( )= ) if (θ γ) γe( ) if < (p43) E( )= υ Γ[(υ +)/] (υ )Γ(υ/) π (3.5) EGARCH(m, s) :a = σ, ln(σ )=α + +β B + + β s B s α B α m B m g( ) (3.6) a = σ, ( αb)ln(σ )=( α)α + g( ) j= ½ (3.7) ( αb)ln(σ α +(γ + θ) )= if α +(γ θ)( = ) if < exp (γ + θ) a if a (p44) σ = σ α σ exp(α ) exp (γ θ) a if a < σ (p48) σh+ = σ α h exp[( α )α ]exp[g( h+ )] ³ (p48) E{exp[g( )]} =exp γ p h i /π e (θ+γ)/ Φ(θ + γ)+e (θ γ)/ Φ(γ θ) (p48) ˆσ h(j) =ˆσ α h (j ) exp(ω) exp[(θ + γ) /Φ(θ + γ)+exp[(θ γ) /Φ(γ θ) ª
23 Frequenly Asked Quesions in Quanaive Finance, P. Wilmo Q3 - Jensen s Inequaliy (3-5) If he payoff is a convex funcion, E[P (S T )] P (E[S T ]) E[f(S)] = E f( S + ) = E f( S)+ f ( S)+ f ( S)+ f( S)+ f ( S)E[ ] = f(e[s]) + f (E[S])E[ ] The LHS is greaer han he RHS by approximaely f (E[S])E[ ] Q6 - Girsanov s Theorem (3-5) The Theorem is: Le W be a Brownian moion wih measure P and sample space Ω. If γ is a previsible process saisfying R i T he consrain E P hexp γ < hen here exiss an equivalen measure Q on Ω such ha W = ³ W + R γ sds is a Brownian moion. Chaper 6 - The Mos Popular Probabiliy Disribuions Normal or Guassian: f(x) = (x a) exp πb b, <x<,μ= a, σ = b Lognormal: f(x) = Poisson: πbx exp (ln(x) a),x>,μ=exp a + b b,σ =exp a + b exp(b ) p(x) = e a a x,x=,,...,μ= a, σ = a x! Chi square (noe ha his is a generalizaion of he usual chi-square disribuion): f(x) = e (x+a)/ v/ X i= x i +v/ a i i j!γ(i + v/),x,μ= v + a, σ =(v +a) Gumbel: f(x) = b exp a x b exp ³ e a x b, <x<,μ= a + γb,σ = 6 π b whereγ = Weibull: f(x) = c c c! x a x a c + c + c + exp,x>a,μ= a+bγ,σ = b ÃΓ Γ b b b c c c Suden s : f(x) = Γ c+ b πcγ c à + x a b c! c+, <x<, μ= a for c>, σ = 3 c b for c>. c
24 Pareo: f(x) = bab,x a, μ = ab xb+ a for b>, σ = Uniform: f(x) = b a, a<x<b, μ = a + b, (b σ a) = a b for b> (b )(b ) Inverse normal: r à b f(x) = πx 3 exp b! x a, x>, μ = a, σ = a3 x a b Gamma: f(x) = bγ(c) c x a a x exp b b, x a, μ = a + bc, σ = b c Logisic f(x) = exp x a b b +exp x a, <x<, μ= a, σ = 3 π b b Laplace: f(x) = b exp x a, <x<, μ = a, σ =b b Cauchy: f(x) = ³ πb + x a, <x<, momens do no exis b Bea: f(x) = Exponenial: Γ(c + d) Γ(c)Γ(d)(b a) c+d (x a)c (b x) d ad + bc,a x b, μ = c + d, cd(b a) σ = (c + d +)(c + d) f(x) = b exp a x b Lévy:,x a, μ = a + b, σ = b no closed form for densiy funcion, μ = μ, varianceisinfinie unless α =,wheniisσ =v 4
25 Risk Managemen and Financial Insiuions, second ediion, J. Hull Chaper 9-Volailiy (9.) Prob(υ >x)=kx α (9.5) σ n = (page 86) mx α i u n i mx α i = (9.6) σ n = γv L + (9.7) σ n = ω + mx α i u n i mx α i u n i (9.8) σ n = λσ n +( λ)u n (9.9) σ n = γv L + αu n + βσ n (9.) σ n = ω + αu n + βσ n (9.4) E[σn+] =V L +(α + β) (σn V L ) (9.5) σ(t ) = 5 ½V L + ¾ e at [V () V L ) at (9.6) σ(t ) σ() e at σ() at σ(t ) 5
Quantitative Finance and Investment Core Formula Sheet. Spring 2017
Quaniaive Finance and Invesmen Core Formula Shee Spring 7 Morning and afernoon exam bookles will include a formula package idenical o he one aached o his sudy noe. The exam commiee believe ha by providing
Quantitative Finance and Investments Advanced Formula Sheet. Fall 2013/Spring 2014
Quaniaive Finance and Invesmens Advanced Formula Shee Fall 013/Spring 014 ThisishesamesheeusedforFall013.Theonlychangeisonhiscoverpage. Morning and afernoon exam bookles will include a formula package
P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:
(B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds
Teor imov r. ta matem. statist. Vip. 94, 2016, stor
eor imov r. ta matem. statist. Vip. 94, 6, stor. 93 5 Abstract. e article is devoted to models of financial markets wit stocastic volatility, wic is defined by a functional of Ornstein-Ulenbeck process
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A
2012 4 Chinese Journal of Applied Probability and Statistics Vol.28 No.2 Apr. 2012 730000. :. : O211.9. 1..... Johnson Stulz [3] 1987. Merton 1974 Johnson Stulz 1987. Hull White 1995 Klein 1996 2008 Klein
( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential
Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
TeSys contactors a.c. coils for 3-pole contactors LC1-D
References a.c. coils for 3-pole contactors LC1-D Control circuit voltage Average resistance Inductance of Reference (1) Weight Uc at 0 C ± 10 % closed circuit For 3-pole " contactors LC1-D09...D38 and
Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009
Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009 1 IV. Hedging of credit derivatives 1. Two default free assets, one defaultable asset 1.1 Two
m i N 1 F i = j i F ij + F x
N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,
d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i
d d S = ()SI d d I = ()SI ()I d d R = ()I d d S = ()SI μs + fi + hr d d I = + ()SI (μ + + f + ())I d d R = ()I (μ + h)r d d P(S,I,) = ()(S +1)(I 1)P(S +1, I 1, ) +()(I +1)P(S,I +1, ) (()SI + ()I)P(S,I,)
Χρονοσειρές Μάθημα 3
Χρονοσειρές Μάθημα 3 Ασυσχέτιστες (λευκός θόρυβος) και ανεξάρτητες (iid) παρατηρήσεις Chafield C., The Analysis of Time Series, An Inroducion, 6 h ediion,. 38 (Chaer 3): Some auhors refer o make he weaker
r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t
r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs
Errata (Includes critical corrections only for the 1 st & 2 nd reprint)
Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y
(1) P(Ω) = 1. i=1 A i) = i=1 P(A i)
Χρηματοοικονομικά Μαθηματικά Το συνεχές μοντέλο συνεχούς χρόνου Σ. Ξανθόπουλος Παν. Αιγαίου Χειμερινό Εξάμηνο 2015-2016 Χειμερινό Εξάμηνο 2015-2016 1 / Σύνοψη 1 Προκαταρκτικά 2 Διαδικασία Wiener ή Κίνηση
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
Pricing Asian option under mixed jump-fraction process
3 17 ( ) Journal of Eas China Normal Universiy (Naural Science) No. 3 May 17 : 1-641(17)3-9-1 - ( 18) : -. Iô.... : -; ; : O11.6 : A DOI: 1.3969/j.issn.1-641.17.3.3 Pricing Asian opion under mixed jump-fracion
The ε-pseudospectrum of a Matrix
The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =
C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
HONDA. Έτος κατασκευής
Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V
Quantitative Finance and Investments Advanced Formula Sheet. Fall 2014/Spring 2015
Quaniaive Finance and Invemen Advanced Formula Shee Fall 2014/Spring 2015 Morning and afernoon exam bookle will include a formula package idenical o he one aached o hi udy noe. The exam commiee believe
ΑΠΟΣΗΜΖΖ ΠΑΡΑΓΩΓΩΝ ΔΤΡΩΠΑΗΚΟΤ ΣΤΠΟΤ (CURRENCY OPTIONS, BINARY OPTIONS, COMPOUND OPTIONS, CHOOSER OPTIONS, LOOKBACK OPTIONS, ASIAN OPTIONS)
ΑΠΟΣΗΜΖΖ ΠΑΡΑΓΩΓΩΝ ΔΤΡΩΠΑΗΚΟΤ ΣΤΠΟΤ (CURRENCY OPIONS, BINARY OPIONS, COMPOUND OPIONS, CHOOSER OPIONS, LOOKBACK OPIONS, ASIAN OPIONS) ΣΑΝΣΟΤΛΟΤ ΔΛΔΝΖ ΔΠΗΒΛΔΠΩΝ ΚΑΘΖΓΖΣΖ: ΠΖΛΗΩΣΖ ΗΩΑΝΝΖ ΔΘΝΗΚΟ ΜΔΣΟΒΗΟ ΠΟΛΤΣΔΥΝΔΗΟ
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
γ n ϑ n n ψ T 8 Q 6 j, k, m, n, p, r, r t, x, y f m (x) (f(x)) m / a/b (f g)(x) = f(g(x)) n f f n I J α β I = α + βj N, Z, Q ϕ Εὐκλείδης ὁ Ἀλεξανδρεύς Στοιχεῖα ἄκρος καὶ μέσος λόγος ὕδωρ αἰθήρ ϕ φ Φ τ
Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα
x + = 0 N = {,, 3....}, Z Q, b, b N c, d c, d N + b = c, b = d. N = =. < > P n P (n) P () n = P (n) P (n + ) n n + P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + ) P (n) n m P n P (n) P () P (), P (),...,
ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ & ΕΛΕΓΧΟΥ ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
Jeux d inondation dans les graphes
Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488
9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.
9.1 Inroducion 9.2 Lags in he Error Term: Auocorrelaion 9.3 Esimaing an AR(1) Error Model 9.4 Tesing for Auocorrelaion 9.5 An Inroducion o Forecasing: Auoregressive Models 9.6 Finie Disribued Lags 9.7
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
The one-dimensional periodic Schrödinger equation
The one-dmensonal perodc Schrödnger equaon Jordan Bell jordan.bell@gmal.com Deparmen of Mahemacs, Unversy of Torono Aprl 23, 26 Translaons and convoluon For y, le τ y f(x f(x y. To say ha f : C s unformly
Galatia SIL Keyboard Information
Galatia SIL Keyboard Information Keyboard ssignments The main purpose of the keyboards is to provide a wide range of keying options, so many characters can be entered in multiple ways. If you are typing
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
DOI /J. 1SSN
4 3 2 Vol 43 No 2 2 1 4 4 Journal of Shanghai Normal UniversityNatural Sciences Apr 2 1 4 DOI1 3969 /J 1SSN 1-5137 214 2 2 1 2 2 1 22342 2234 O 175 2 A 1-51372142-117-1 2 7 8 1 2 3 Black-Scholes-Merton
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Z = 1.2 X 1 + 1, 4 X 2 + 3, 3 X 3 + 0, 6 X 4 + 0, 999 X 5. X 1 X 2 X 2 X 3 X 4 X 4 X 5 X 4 X 4 Z = 0.717 X 1 + 0.847 X 2 + 3.107 X 3 + 0.420 X 4 + 0.998 X 5. X 5 X 4 Z = 6.56 X 1 + 3.26 X 2 + 6.72 X 3
Financial Risk Management
Pricing of American options University of Oulu - Department of Finance Spring 2018 Volatility-based binomial price process uuuus 0 = 26.51 uuus 0 = 24.71 uus 0 = us 0 = S 0 = ds 0 = dds 0 = ddds 0 = 16.19
Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat
Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat Pierre Coucheney, Patrick Maillé, runo Tuffin To cite this version: Pierre Coucheney, Patrick
The Student s t and F Distributions Page 1
The Suden s and F Disribuions Page The Fundamenal Transformaion formula for wo random variables: Consider wo random variables wih join probabiliy disribuion funcion f (, ) simulaneously ake on values in
Vulnerable European option pricing with the time-dependent for double jump-diffusion process
1 014 1 Journal of Eas China Normal Universiy Naural Science No. 1 Jan. 014 : 1000-564101401-0013-08 -,, 1116 :,., r σ d ;, Iô,. : ; ; : O11.6 : A DOI: 10.3969/j.issn.1000-5641.014.01.003 Vulnerable European
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr st t t t Ø t q s ss P r s P 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t P r røs r Łs t r t t Ø t q s r Ø r t t r t q t rs tø
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
& Risk Management , A.T.E.I.
Μεταβλητότητα & Risk Managemen Οικονοµικό Επιµελητήριο της Ελλάδας Επιµορφωτικά Σεµινάρια Σταύρος. Ντεγιαννάκης, Οικονοµικό Πανεπιστήµιο Αθηνών Χρήστος Φλώρος, A.T.E.I. Κρήτης Volailiy - Μεταβλητότητα
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω
Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
ITU-R P (2012/02) &' (
ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS
Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques
Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques Raphael Chenouard, Patrick Sébastian, Laurent Granvilliers To cite this version: Raphael
Advanced Subsidiary Unit 1: Understanding and Written Response
Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes
ECE 468: Digital Image Processing. Lecture 8
ECE 468: Digital Image Processing Lecture 8 Prof. Sinisa Todorovic sinisa@eecs.oregonstate.edu 1 Image Reconstruction from Projections X-ray computed tomography: X-raying an object from different directions
Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)
Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as
γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Διευθύνοντα Μέλη του mathematica.gr
Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή και η ϕροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mathematica.gr.
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ
P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Κλασσική Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ο μετασχηματισμός Laplace Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Calculating the propagation delay of coaxial cable
Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.
SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
Mean-Variance Analysis
Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago
Laplace Expansion Peter McCullagh Department of Statistics University of Chicago WHOA-PSI, St Louis August, 2017 Outline Laplace approximation in 1D Laplace expansion in 1D Laplace expansion in R p Formal
Commutative Monoids in Intuitionistic Fuzzy Sets
Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,
Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen
Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation date: GF F GF F SLE GF F D Ĉ = C { } Ĉ \ D D D = {z : z < 1} f : D D D D = D D, D = D D f f : D D
J J l 2 J T l 1 J T J T l 2 l 1 J J l 1 c 0 J J J J J l 2 l 2 J J J T J T l 1 J J T J T J T J {e n } n N {e n } n N x X {λ n } n N R x = λ n e n {e n } n N {e n : n N} e n 0 n N k 1, k 2,..., k n N λ
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Déformation et quantification par groupoïde des variétés toriques
Défomation et uantification pa goupoïde de vaiété toiue Fédéic Cadet To cite thi veion: Fédéic Cadet. Défomation et uantification pa goupoïde de vaiété toiue. Mathématiue [math]. Univeité d Oléan, 200.
Geodesic Equations for the Wormhole Metric
Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes
HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)
HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X
X, Y f X,Y x, y X x, Y y f X Y x y X x Y y X x, Y y Y y f X,Y x, y f Y y f X Y x y x y X Y f X,Y x, y f X Y x y f X,Y x, y f Y y x y X : Ω R Y : Ω E X < y Y Y y 0 X Y y x R x f X Y x y gy X Y gy gy : Ω
Probability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation
Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F
ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric
An Inventory of Continuous Distributions
Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >
HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:
HOMEWORK# 52258 李亞晟 Eercise 2. The lifetime of light bulbs follows an eponential distribution with a hazard rate of. failures per hour of use (a) Find the mean lifetime of a randomly selected light bulb.
Premia 14 Closed Formula Methods
19 pages 1 Premia 14 Closed Formula Methods Routine cf_spm_nig.c Routine cf_hullwhite1d_zbputeuro.c Routine cf_hullwhite1d_zcbond.c Routine cf_hullwhite1d_payerswaption.c Routine cf_hullwhite1d_zbcalleuro.c
6. MAXIMUM LIKELIHOOD ESTIMATION
6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ