ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 2 Ο ΜΕΤΡΗΣΕΙΣ ΜΕΓΕΘΩΝ 2.1 Παράσταση αριθμών με σημεία μιας ευθείας.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 2 Ο ΜΕΤΡΗΣΕΙΣ ΜΕΓΕΘΩΝ 2.1 Παράσταση αριθμών με σημεία μιας ευθείας."

Transcript

1 1. ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 2 Ο ΜΕΤΡΗΣΕΙΣ ΜΕΓΕΘΩΝ 2.1 Παράσταση αριθμών με σημεία μιας ευθείας. α) Στην παραπάνω εικόνα οι χρωματιστοί δείκτες μας δείχνουν κάποιους αριθμούς. Συμπληρώστε τον παρακάτω πίνακα. Χρώμα δείκτη Κόκκινο Μπλε Πράσινο Κίτρινο Αριθμός που αντιστοιχεί β) Η εικόνα παριστάνει ένα στροφόμετρο, το οποίο δείχνει τις στροφές που κάνει η μηχανή μιας μοτοσικλέτας. Για να υπολογιστούν οι στροφές της μηχανής πρέπει να πολλαπλασιάσουμε τον αριθμό που δείχνει ο δείκτης με το 100. Συμπληρώστε τον παρακάτω πίνακα. Χρώμα δείκτη Κόκκινο Μπλε Πράσινο Κίτρινο Στροφές μηχανής γ) Ο οδηγός της μοτοσικλέτας πρέπει να προσέχει ώστε ο δείκτης του στροφόμετρου να μην ξεπεράσει τους αριθμούς που βρίσκονται στην πορτοκαλί και κόκκινη περιοχή του στροφόμετρου, γιατί υπάρχει κίνδυνος βλάβης της μηχανής. Μέχρι πόσες χιλιάδες στροφές πρέπει να οδηγεί ο μοτοσικλετιστής. 2. Γνωρίζουμε ότι η θερμοκρασία του ανθρώπινου σώματος βρίσκεται μεταξύ των 35 και 45 βαθμών Κελσίου. α) Να κάνετε ένα τμήμα ευθείας στα άκρα του οποίου να τοποθετήσετε τους αριθμούς 35 και 45 και ενδιάμεσα όλους τους ακεραίους μεταξύ του 35 και του 45. β) Στο προηγούμενο ευθύγραμμο τμήμα να σημειώσετε την φυσιολογική θερμοκρασία του ανθρώπινου σώματος που είναι 36,5 βαθμοί Κελσίου. 1

2 3. Ο Β Α Δ Γ Στο σημείο Ο του παραπάνω άξονα αντιστοιχούμε τον αριθμό 0 και στο σημείο του Α τον αριθμό 1. α) Να βρείτε ποιους αριθμούς αντιστοιχούμε στα σημεία του Β, Γ, Δ. β) Να βάλετε πάνω στον άξονα Το σημείο Ε που αντιστοιχεί στον αριθμό 0,5 Το σημείο Ζ που αντιστοιχεί στον αριθμό 1,1 Το σημείο Η που αντιστοιχεί στον αριθμό 1,9 Το σημείο Θ που αντιστοιχεί στον αριθμό 0,8 Το σημείο Ι που αντιστοιχεί στον αριθμό 0,3 Το σημείο Κ που αντιστοιχεί στον αριθμό 1,3 4. Ο Β Α Δ Γ Στο σημείο Ο του παραπάνω άξονα αντιστοιχούμε τον αριθμό 0 και στο σημείο του Γ τον αριθμό 200. α) Να βρείτε ποιους αριθμούς αντιστοιχούμε στα σημεία του Β, Α, Δ. β) Να βάλετε πάνω στον άξονα Το σημείο Ε που αντιστοιχεί στον αριθμό 40 Το σημείο Ζ που αντιστοιχεί στον αριθμό 120 Το σημείο Η που αντιστοιχεί στον αριθμό 180 Το σημείο Θ που αντιστοιχεί στον αριθμό 70 Το σημείο Ι που αντιστοιχεί στον αριθμό 30 Το σημείο Κ που αντιστοιχεί στον αριθμό Ο Β Α Δ Γ Στο σημείο Ο του παραπάνω άξονα αντιστοιχούμε τον αριθμό 0 και στο σημείο του Β τον αριθμό 50. α) Να βρείτε ποιους αριθμούς αντιστοιχούμε στα σημεία του Α, Γ, Δ. β) Να βάλετε πάνω στον άξονα Το σημείο Ε που αντιστοιχεί στον αριθμό 75 Το σημείο Ζ που αντιστοιχεί στον αριθμό 300 Το σημείο Η που αντιστοιχεί στον αριθμό 475 Το σημείο Θ που αντιστοιχεί στον αριθμό 150 Το σημείο Ι που αντιστοιχεί στον αριθμό 400 Το σημείο Κ που αντιστοιχεί στον αριθμό 125 2

3 6. Ο Β Α Δ Γ Στο σημείο Ο του παραπάνω άξονα αντιστοιχούμε τον αριθμό 1 και στο σημείο του Δ τον αριθμό 1,15. α) Να βρείτε ποιους αριθμούς αντιστοιχούμε στα σημεία του Β, Γ, Α. β) Να βάλετε πάνω στον άξονα Το σημείο Ε που αντιστοιχεί στον αριθμό 1,05 Το σημείο Ζ που αντιστοιχεί στον αριθμό 1,11 Το σημείο Η που αντιστοιχεί στον αριθμό 1,19 Το σημείο Θ που αντιστοιχεί στον αριθμό 1,08 Το σημείο Ι που αντιστοιχεί στον αριθμό 1,03 Το σημείο Κ που αντιστοιχεί στον αριθμό 1,13 7. Σε κατάλληλο άξονα με αρχή το σημείο Ο όπου θα αντιστοιχίσετε τον αριθμό 0 να τοποθετήσετε τους διψήφιους αριθμούς που διαιρούνται με το Σε κατάλληλο άξονα με αρχή το σημείο Ο όπου θα αντιστοιχίσετε την χρονιά γέννησή σας να τοποθετήσετε το χρόνο που διανύουμε καθώς και την χρονιά που θα είστε 20 χρονών. 9. Σε κατάλληλο άξονα με αρχή το σημείο Ο όπου θα αντιστοιχίσετε τον αριθμό 0 να τοποθετήσετε τα κοινά διψήφια πολλαπλάσια του 9 και του Δύο πόλεις Α και Β απέχουν μεταξύ τους 300 χιλιόμετρα. Ένα αυτοκίνητο ξεκινάει από την πόλη Α με προορισμό την πόλη Β. Το αυτοκίνητο κινείται με ταχύτητα 90 χιλιομέτρων την ώρα. Θεωρούμε τον δρόμο που συνδέει τις δύο πόλεις ευθεία. α) Να κάνετε έναν άξονα ώστε η πόλη Α να είναι η αρχή του. Μονάδα του άξονα να θεωρήσετε τα 30 χιλιόμετρα. Πάνω στον άξονα να τοποθετήσετε την πόλη Β. β) Να σημειώσετε πάνω στον άξονα τις θέσεις του αυτοκινήτου κάθε μία ώρα. γ) Να υπολογίσετε με την βοήθεια του άξονα το χρόνο στον οποίο το αυτοκίνητο θα φτάσει στον προορισμό του. 3

4 ψ Παράσταση αριθμών με σημεία μιας ευθείας. 1 Ο 1 χ α) Στο παραπάνω ορθογώνιο σύστημα αξόνων να τοποθετήσετε τα σημεία: Α (1, 3 ) Β ( 2, 2 ) Γ ( 4, 5 ) Δ ( 8, 7 ) Ε ( 10, 1) Ζ ( 1, 10 ) β) Στο παραπάνω ορθογώνιο σύστημα αξόνων να σημειώσετε και να γράψετε τις συντεταγμένες 5 σημείων που έχουν τετμημένη 0 και τεταγμένη φυσικό αριθμό. Που βρίσκονται αυτά τα σημεία; γ) Στο παραπάνω ορθογώνιο σύστημα αξόνων να σημειώσετε και να γράψετε τις συντεταγμένες 5 σημείων που έχουν τεταγμένη 0 και τετμημένη φυσικό αριθμό. Που βρίσκονται αυτά τα σημεία; 4

5 ψ 2. Ζ Δ Ε Γ Α 1 Ο 10 Β χ Στο παραπάνω ορθογώνιο σύστημα αξόνων έχουμε τοποθετήσει τα σημεία: Α, Β, Γ, Δ, Ε, Ζ. Να συμπληρώσετε τον παρακάτω πίνακα Σημείο Α Β Γ Δ Ε Ζ Συντεταγμένες 5

6 ψ 3. Α Β Ο χ Στο παραπάνω ορθογώνιο σύστημα αξόνων έχουμε τοποθετήσει τα σημεία Α και Β. Συμπληρώστε τις παρακάτω προτάσεις: α) Αν οι συντεταγμένες του σημείου Α είναι (10, 10) οι συντεταγμένες του σημείου Β είναι: Β (.., ) β) Αν οι συντεταγμένες του σημείου Α είναι (1, 1) οι συντεταγμένες του σημείου Β είναι: Β (.., ) γ) Αν οι συντεταγμένες του σημείου Α είναι (1, 1000) οι συντεταγμένες του σημείου Β είναι: Β (.., ) δ) Αν οι συντεταγμένες του σημείου Α είναι (100, 1) οι συντεταγμένες του σημείου Β είναι: Β (.., ) ε) Αν οι συντεταγμένες του σημείου Α είναι (3, 4) οι συντεταγμένες του σημείου Β είναι: Β (.., ) 6

7 ψ 4. 1 Ο 1 χ α) Στο παραπάνω ορθογώνιο σύστημα αξόνων να τοποθετήσετε τα σημεία που έχουν συντεταγμένες ίσους ακεραίους αριθμούς. Κατόπιν να ενώσετε αυτά τα σημεία. (Η γραμμή που σχηματίστηκε πρέπει να είναι ευθεία). β) Στο ίδιο ορθογώνιο σύστημα αξόνων να σημειώσετε τα σημεία που οι συντεταγμένες τους είναι φυσικοί αριθμοί με άθροισμα 10 και να τα ενώσετε με μια ευθεία. Σε ποιο σημείο αυτή η ευθεία τέμνει την ευθεία του α ερωτήματος; 7

8 ψ Σερίφης Κων/νος 5. 1 Ο 1 χ Στο παραπάνω ορθογώνιο σύστημα αξόνων να γράψετε τις συντεταγμένες των κορυφών των τριών σχημάτων 6. Σε ένα ορθογώνιο σύστημα αξόνων τα σημεία Α ( 3, χ+2) και Β (ψ-1, 5) βρίσκονται στην ίδια θέση. Να βρείτε τις τιμές των χ, ψ. 7. Να κάνετε ένα ορθογώνιο σύστημα συντεταγμένων στο οποίο να τοποθετήσετε τα σημεία Α( χ-3, 5), Β ( 7, ψ-2), Γ ( χ, ψ ) και Δ (ψ 2 +1, 2χ-2) αν γνωρίζετε ότι τα σημεία Α και Β βρίσκονται πάνω στους άξονες. 8. Για τις μεταβλητές χ και ψ ισχύει η ισότητα: χ-ψ =2. α) Να συμπληρώσετε τον παρακάτω πίνακα. Τιμή της χ 2 6 Τιμή της ψ 3 2 β) Να κάνετε ένα ορθογώνιο σύστημα συντεταγμένων στο οποίο να τοποθετήσετε 4 σημεία με συντεταγμένες (χ,ψ) που επαληθεύουν την ισότητα χ-ψ =2. 8

9 2.3 Μέτρηση μήκους Μονάδες μέτρησης-περίμετρος σχημάτων. 1. Α Β Γ Δ Ε Ζ Η Θ Κ Λ Μ Ν Παραπάνω βλέπετε 6 ευθύγραμμα τμήματα. Αν χρησιμοποιήσουμε σαν μονάδα μέτρησης το μήκος του ευθύγραμμου τμήματος ΑΒ και το ονομάσουμε α τότε: ΑΒ = α, ΓΔ =.., ΕΖ =.., ΗΘ =.., ΚΛ =.., ΜΝ =.. (Συμπληρώστε τα κενά ώστε να δείχνουν τα μήκη των ευθυγράμμων τμημάτων). Αν χρησιμοποιήσουμε σαν μονάδα μέτρησης το μήκος του ευθύγραμμου τμήματος ΚΛ και το ονομάσουμε α τότε: ΑΒ =., ΓΔ =.., ΕΖ =.., ΗΘ =.., ΚΛ = α, ΜΝ =.. (Συμπληρώστε τα κενά ώστε να δείχνουν τα μήκη των ευθυγράμμων τμημάτων). Αν χρησιμοποιήσουμε σαν μονάδα μέτρησης το μήκος του ευθύγραμμου τμήματος ΕΖ και το ονομάσουμε α τότε: ΑΒ =., ΓΔ =.., ΕΖ = α, ΗΘ =.., ΚΛ =.., ΜΝ =.. (Συμπληρώστε τα κενά ώστε να δείχνουν τα μήκη των ευθυγράμμων τμημάτων). 2. Συμπληρώστε τον παρακάτω πίνακα ΣΧΗΜΑ Τετράγωνο με πλευρά μήκους α ΠΕΡΙΜΕΤΡΟΣ Π =. Ισόπλευρο τρίγωνο με πλευρά μήκους α Π =. Εξάγωνο με πλευρές μήκους α Π =. Ορθογώνιο με δύο πλευρές ίσες με α και δύο πλευρές ίσες με 2α Π =. 9

10 3. Να γράψετε από την μικρότερη προς την μεγαλύτερη τις παρακάτω μονάδες μέτρησης μήκους. 1 mm, 1 m, 1 Km, 1 dm, 1 cm, 1 dam, 1 hm, 1 μίλι (= 1,609 Km), 1 ναυτικό μίλι (= 1,852 Km), 1 ft (1 πόδι = 30,48 cm). 4. Να μετατρέψετε σε μέτρα όλες τις μονάδες μέτρησης μήκους της άσκησης Συμπληρώστε τον παρακάτω πίνακα. mm cm dm m ,1 1,2 0, , Συμπληρώστε τον παρακάτω πίνακα. m dam hm Km ,2 7,125 0, ,44 7. Να μετατρέψετε σε μέτρα τα παρακάτω μήκη, όπως στο παράδειγμα. Παράδειγμα: 3 Km 75 m 43 dm = 3000 m + 75 m +4,3 m = 3079,3 m. 0,6 Km 43 m 510 cm =... =.. 6,54 Km 405 m 7369 mm = =.. 75 dm 350 cm 7500 mm =... =.. 85 m 72 dm 4000 mm =...=... 10

11 8. Γι να μετατρέψουμε....πράξη που κάνουμε A. m σε dm 1. Πολλαπλασιάζουμε με 10 Β. dm σε m 2. Πολλαπλασιάζουμε με 100 Γ. m σε Km 3. Πολλαπλασιάζουμε με 1000 Δ. m σε mm 4. Διαιρούμε με 10 Ε. m σε cm 5. Διαιρούμε με Διαιρούμε με 1000 Αντιστοιχίστε κάθε στοιχείο της πρώτης στήλης του παραπάνω πίνακα σε ένα μόνο στοιχείο της δεύτερης στήλης του συμπληρώνοντας τον παρακάτω πίνακα. Α Β Γ Δ Ε 9. Ένα ισόπλευρο τρίγωνο έχει πλευρά 25 cm. Ένα τετράγωνο έχει πλευρά 0,18 m. Ένα ορθογώνιο έχει μήκος 2 dm και πλάτος 170 mm. α) Να βρείτε τις περιμέτρους των παραπάνω σχημάτων. β) Μικρότερη περίμετρο έχει το Α. Τρίγωνο Β. Τετράγωνο Γ. Ορθογώνιο. Επιλέξτε την σωστή απάντηση. 10. Ένα ορθογώνιο έχει διαστάσεις 2,5 dm η μία και 30 cm η άλλη. Να υπολογίσετε σε mm την πλευρά ενός τετραγώνου που έχει περίμετρο ίση με την περίμετρο του ορθογωνίου. 11. Ένα αεροπλάνο πετάει στον εναέριο χώρο της Ελλάδος σε ύψος ft. Το υψηλότερο βουνό της Ελλάδος είναι ο Όλυμπος με ύψος 2,92 Km. Είναι ασφαλής η πτήση του αεροπλάνου; Δικαιολογήστε την απάντησή σας. (Δίνεται ότι 1 ft = 30,48 cm). 12. Το λιμάνι της Λήμνου απέχει από το λιμάνι της Θεσσαλονίκης 150 ναυτικά μίλια. Ένα καράβι ξεκινάει από τη Λήμνο με ταχύτητα 37 Km την ώρα και προορισμό την Θεσσαλονίκη. Να υπολογίσετε με προσέγγιση δεκάτου πόσες ώρες χρειάζεται το καράβι για να φτάσει στον προορισμό του. (Δίνεται ότι 1 ναυτικό μίλι = 1852 m) 13. Ένα ορθογώνιο έχει διαστάσεις α και 2α και έχει περίμετρο ίση με την περίμετρο ενός τετραγώνου πλευράς 6 cm. α) Η περίμετρος του ορθογωνίου είναι: Α. 6 cm. B. 3α. Γ. 6α.. Δ. 4α. (Επιλέξτε την σωστή απάντηση). β) Να βρεθεί η μικρότερη πλευρά του ορθογωνίου. 11

12 14. Ο Μανόλης έχει μια μετροταινία 2 m, η οποία από την πολλή χρήση έχει επιμηκυνθεί, (ομοιόμορφα), κατά 2 cm. α) Διαθέτουμε μια «καλή» μετροταινία 2 m. Αν ανοίξουμε τις δύο μετροταινίες προς την ίδια κατεύθυνση, τοποθετώντας την αρχή της μιας δίπλα στην αρχή της άλλης, τότε θα διαπιστώσουμε ότι: Η ένδειξη του 1 m της ταινίας του Μανόλη αντιστοιχεί στην ένδειξη 1m και cm της «καλής» μετροταινίας. Η ένδειξη του 1 dm της ταινίας του Μανόλη αντιστοιχεί στην ένδειξη 1dm και mm της «καλής» μετροταινίας. Η ένδειξη του 1 cm της ταινίας του Μανόλη αντιστοιχεί στην ένδειξη 1cm και mm της «καλής» μετροταινίας. (Συμπληρώστε τα κενά των παραπάνω προτάσεων). β) Αν ο Μανόλης με την μετροταινία του μετρήσει μια απόσταση και βρει ότι είναι 5m, πόσο θα είναι η πραγματική απόσταση; γ) Αν ο Μανόλης με την μετροταινία του μετρήσει μια απόσταση που στην πραγματικότητα είναι 10,1 m, πόσο θα βρει ότι είναι; 15. Το καγκουρό με 100 μεγάλα άλματα μπορεί να καλύψει μια απόσταση 0,7 Km. Αν σε δύο λεπτά το καγκουρό κάνει 40 άλματα πόση απόσταση μπορεί να καλύψει σε μισή ώρα.. 12

13 Μέτρηση Επιφανειών Μονάδες μέτρησης-εμβαδά σχημάτων. α β Ε 1 Ε 2 γ Ε 4 Ε 3 Συμπληρώστε τον παρακάτω πίνακα. Επιφάνεια Ε 1 Ε 2 Ε 3 Ε 4 Μονάδα μέτρησης α β γ 2. Να κάνετε m 2 τα παρακάτω εμβαδά: 0,035 Km 2 = 350 dm 2 = 1750 cm 2 = mm 2 = 3,56 στρ. = 13

14 3. Συμπληρώστε τα κενά: 0, Km 2 =..m 2 =..dm 2 =..cm 2 =...mm 2 0,125 στρ. =.. m 2 =.. dm 2 0,3 m 2 =...cm 2 =...mm mm 2 =...cm 2 =...dm 2 =...m dm 2 =...m 2 =...στρ. 2 Km 2 =.m 2 =.στρ. 4. Να κάνετε m 2 τα παρακάτω εμβαδά: 2 m 2 45dm 2 = 28 dm 2 28 cm 2 28 mm 2 = 3 στρ. 213 m dm 2 = 1 m 2 10 dm cm mm 2 = 5. Να κάνετε στρ. τα παρακάτω εμβαδά.: 5 Km m dm m cm dm mm 2 6. Γι να μετατρέψουμε....πράξη που κάνουμε A. m 2 σε dm 2 1. Πολλαπλασιάζουμε με 10 6 Β. dm 2 σε m 2 2. Πολλαπλασιάζουμε με 100 Γ. m 2 σε Km 2 3. Πολλαπλασιάζουμε με 1000 Δ. m 2 σε mm 2 4. Διαιρούμε με 10 6 Ε. m 2 σε στρ. 5. Διαιρούμε με Διαιρούμε με 1000 Αντιστοιχίστε κάθε στοιχείο της πρώτης στήλης του παραπάνω πίνακα σε ένα μόνο στοιχείο της δεύτερης στήλης του συμπληρώνοντας τον παρακάτω πίνακα. Α Β Γ Δ Ε 7. Να τοποθετήσετε από το μικρότερο προς το μεγαλύτερο τα παρακάτω εμβαδά. Ε 1 = 5 στρ. 256 m 2, E 2 = 5,256 m 2, E 3 = 5000 m dm 2 8. Πόσο είναι το κόστος ενός οικοπέδου 2 στρεμμάτων και 530 m 2 αν το 1 m 2 κοστίζει 25 ευρώ. 14

15 9. Διαθέτουμε μια μετροταινία που το κάθε μέτρο της υπολείπεται του πραγματικού μέτρου κατά ένα εκατοστό. Συμπληρώστε τα κενά στις παρακάτω προτάσεις: α) Το κάθε μέτρο που μετράμε με την μετροταινία αυτή στην πραγματικότητα είναι. m β) Το κάθε m 2 που μετράμε με την μετροταινία αυτή στην πραγματικότητα είναι. m 2 γ) Τα 9,801στρ. αν μετρηθούν από την μετροταινία θα είναι..στρ. 10. Να υπολογίσετε τα εμβαδά των επιφανειών της άσκησης 1, αν γνωρίζετε ότι το τετράγωνο α έχει πλευρά 1,5 cm. 11. Συμπληρώστε τον παρακάτω πίνακα ΣΧΗΜΑ Τετράγωνο με πλευρά μήκους α ΕΜΒΑΔΟ Ε =. Ορθογώνιο με διαστάσεις α και β Ε =. Ορθογώνιο με δύο πλευρές ίσες με α και δύο πλευρές ίσες με 2α Ε =. Ορθογώνιο τρίγωνο με κάθετες πλευρές α και β Ε =. 12. Το διπλανό σχήμα αποτελείται από ίσα τετράγωνα. Το εμβαδόν του είναι 100 cm 2 Επιλέξτε την σωστή περίμετρό του. Α.: 20 cm. Β.: 25 cm. Γ.: 30 cm. Δ.: 40 cm. E.: 50 cm. (Ε.Μ.Ε. ΘΑΛΗΣ 1991) 15

16 13. Συμπληρώστε τον παρακάτω πίνακα Πλευρά Πλευρά α β ΟΡΘΟΓΩΝΙΟ A ΟΡΘΟΓΩΝΙΟ B ΟΡΘΟΓΩΝΙΟ Γ ΤΕΤΡΑΓΩΝΟ A ΤΕΤΡΑΓΩΝΟ B 16 Περίμετρος 2α+2β Εμβαδό αβ 2 cm 0,03 m cm..cm 2 5 dm.dm...dm 2000cm 2. 7 cm 3 dm..cm 2..m..m..m 49 m 2..mm..mm 20 mm..mm α) Να υπολογίσετε τις περιμέτρους όλων των ορθογωνίων, (και τετραγώνων), με πλευρές που τα μήκη τους είναι φυσικοί αριθμοί σε m και εμβαδό 100 m 2. Κατόπιν τοποθετήστε τις περιμέτρους από την μικρότερη προς την μεγαλύτερη. β) Ποιο από όλα τα ορθογώνια, (ή τετράγωνα), έχει την μικρότερη περίμετρο; γ) Αν θέλαμε να περιφράξουμε μια ορθογώνια περιοχή 100 m 2, τι διαστάσεις θα έπρεπε να επιλέξουμε ώστε το κόστος της περίφραξης να είναι το μικρότερο; 15. α) Να υπολογίσετε τα εμβαδά όλων των ορθογωνίων, (και τετραγώνων), με πλευρές που τα μήκη τους είναι φυσικοί αριθμοί σε m και έχουν περίμετρο 10 m. Κατόπιν τοποθετήστε τα εμβαδά από το μικρότερο προς το μεγαλύτερο. β) Ποιο από όλα τα ορθογώνια,(ή τετράγωνα), έχει το μεγαλύτερο εμβαδό; γ) Αν θέλαμε να περιφράξουμε μια ορθογώνια περιοχή, διαθέτοντας10 m συρματόπλεγμα, τι διαστάσεις θα έπρεπε να επιλέξουμε ώστε η περιοχή που θα περιφράξουμε να έχει το μεγαλύτερο εμβαδό; 16. Να υπολογίσετε το εμβαδό ενός ορθογωνίου που η περίμετρός του είναι ίση με την περίμετρο ενός τετραγώνου με εμβαδό 36 cm 2 και η μια πλευρά του είναι διπλάσια της άλλης. 17. Ένα ορθογώνιο έχει διαστάσεις 5 cm και 8 cm. Αυξάνουμε τις δύο πλευρές του που είναι 8 cm κατά χ cm και έτσι προκύπτει ένα καινούργιο ορθογώνιο. α) Συμπληρώστε τις παρακάτω προτάσεις: Το αρχικό ορθογώνιο έχει περίμετρο Π =.cm και εμβαδό Ε =..cm 2 To δεύτερο ορθογώνιο έχει διαστάσεις.. και. Το δεύτερο ορθογώνιο έχει περίμετρο Π = (..) =..=. (Να εφαρμόστε την επιμεριστική ιδιότητα) Το δεύτερο ορθογώνιο έχει εμβαδό Ε = ( ) =.. β) Να γράψετε την αύξηση της περιμέτρου και του εμβαδού του ορθογωνίου. γ) Να υπολογίσετε το χ αν γνωρίζετε ότι η περίμετρος του δεύτερου ορθογωνίου είναι 30 cm.

17 δ) Να υπολογίσετε το χ αν γνωρίζετε ότι το εμβαδό του δεύτερου ορθογωνίου είναι 55 cm Το παρακάτω σχήμα αποτελείται από ένα τετράγωνο και ένα ορθογώνιο. Το τετράγωνο και το ορθογώνιο έχουν το ίδιο εμβαδό, ενώ η μια πλευρά του ορθογωνίου είναι ίση με το μισό της πλευράς του τετραγώνου. Αν το εμβαδό του σχήματος είναι 0,18 dm 2, να υπολογίσετε την περίμετρό του σε cm. 19. Θέλουμε να στρώσουμε με πλακάκια δύο δάπεδα σχήματος ορθογωνίου. Το πρώτο ορθογώνιο έχει διαστάσεις 6 m και 10 m. Το δεύτερο 25 dm και 4 m. Το κάθε πλακάκι έχει σχήμα ορθογωνίου με διαστάσεις 2 dm και 2,5 dm. Τα πλακάκια κοστίζουν 12 ευρώ το m 2. Η εργασία για το στρώσιμο κοστίζει 10 ευρώ το m 2. α) Να υπολογίσετε πόσα πλακάκια θα χρειαστούν για την πλακόστρωση των δαπέδων. β) Να υπολογίσετε το συνολικό κόστος για την πλακόστρωση των δαπέδων. 20. Κόβουμε ένα τετράγωνο φύλλο χαρτί στη μέση και προκύπτουν δύο ορθογώνια. Καθένα από τα δύο ορθογώνια το κόβουμε στη μέση ώστε να πάρουμε τετράγωνα, τα οποία κόβουμε ξανά στη μέση και προκύπτουν ορθογώνια που το καθένα έχει εμβαδό 3,125 cm 2. Να υπολογίσετε την πλευρά του αρχικού τετραγώνου. 17

18 2.5 Μέτρηση Χώρου Μονάδες μέτρησης-όγκοι σχημάτων. 1. α γ Σ 1 β Σ 2 Σ 3 Συμπληρώστε τον παρακάτω πίνακα. Χώρος Σχήματος Σ 1 Σ 2 Σ 3 Μονάδα μέτρησης α β γ 2. Να κάνετε m 3 τους παρακάτω όγκους: 5800 dm 3 = cm 3 = mm 3 = 0, Km 3 = 3. Συμπληρώστε τα κενά: 0, m 3 =..dm 3 =.....cm 3 =...mm 3 0,125 l. =.. ml =... mm ml =...l =... m mm 3 =...cm 3 =...dm 3 =...m 3 18

19 4. Να κάνετε m 3 τους παρακάτω όγκους: 2 m 3 450dm 3 = dm cm mm 3 = 5. Να κάνετε l τους παρακάτω όγκους: 5 m dm cm 3 8,6 m mm 3 0,35 m ml 6. Γι να μετατρέψουμε....πράξη που κάνουμε A. m 3 σε dm 3 1. Πολλαπλασιάζουμε με 10 6 Β. dm 3 σε m 3 2. Πολλαπλασιάζουμε με 10 9 Γ. m 3 σε cm 3 3. Πολλαπλασιάζουμε με 1000 Δ. mm 3 σε dm 3 4. Διαιρούμε με 10 6 Ε. m 3 σε mm 3 5. Διαιρούμε με Διαιρούμε με 1000 Αντιστοιχίστε κάθε στοιχείο της πρώτης στήλης του παραπάνω πίνακα σε ένα μόνο στοιχείο της δεύτερης στήλης του συμπληρώνοντας τον παρακάτω πίνακα. Α Β Γ Δ Ε 7. Να τοποθετήσετε από το μικρότερο προς το μεγαλύτερο τους παρακάτω όγκους: V 1 = 5 l 256 ml, V 2 = 5,256 m 3, V 3 = 5000 dm mm 3 8. Συμπληρώστε τον παρακάτω πίνακα ΣΧΗΜΑ Κύβος με ακμή μήκους α ΟΓΚΟΣ V =. Ορθογώνιο παραλληλεπίπεδο με διαστάσεις α, β, γ V =. 19

20 Ορθογώνιο παραλληλεπίπεδο με βάση τετράγωνο πλευράς α και ύψος 2α V =. 9. Συμπληρώστε τον παρακάτω πίνακα Πλευρά βάσης α ΟΡΘΟΓΩΝΙΟ ΠΑΡΑΛΛΗΛΕΠΙΠΕΔΟ A ΟΡΘΟΓΩΝΙΟ ΠΑΡΑΛΛΗΛΕΠΙΠΕΔΟ Β ΟΡΘΟΓΩΝΙΟ ΠΑΡΑΛΛΗΛΕΠΙΠΕΔΟ Γ ΟΡΘΟΓΩΝΙΟ ΠΑΡΑΛΛΗΛΕΠΙΠΕΔΟ Δ (ΒΑΣΗ ΤΕΤΡΑΓΩΝΟ) ΟΡΘΟΓΩΝΙΟ ΠΑΡΑΛΛΗΛΕΠΙΠΕΔΟ Ε (ΒΑΣΗ ΤΕΤΡΑΓΩΝΟ) Πλευρά βάσης β Ύψος γ Εμβαδό βάσης Όγκος 3 cm 0,02 m 0,5 dm..cm 2...cm 3 4dm.dm 3 dm 2000cm 2 l. 8 cm 3 dm..cm ml..m..m..m 100 m m 3..mm..mm 20 mm..mm 2 0,5 cm α) Να βρείτε τον όγκο ενός κύβου, αν η συνολική του επιφάνεια είναι 216 cm 3. β) Να βρείτε τον όγκο και την συνολική επιφάνεια ενός κύβου, αν το συνολικό μήκος των ακμών του είναι 120 cm Να βρείτε τον όγκο ενός ορθογωνίου παραλληλεπιπέδου με βάση τετράγωνο, αν η περίμετρος της βάσης του είναι ίση με 0,8 dm και η συνολική του επιφάνεια είναι 48cm Να βρείτε το εμβαδό της βάσης ενός ορθογωνίου παραλληλεπιπέδου με ύψος 4 cm και όγκο ίσο με τον όγκο ενός κύβου ακμής 20 mm. 20

21 13. Έχουμε 5 κύβους ακμής 3 cm. Να εξετάσετε αν αυτοί χωρούν σε ένα κουτί σχήματος ορθογωνίου παραλληλεπιπέδου με διαστάσεις 9 cm, 5cm, 3 cm. 14. Μια δεξαμενή σχήματος ορθογωνίου παραλληλεπιπέδου με διαστάσεις βάσης 2,5 m, 2 m και ύψος 1,5 m γεμίζει με νερό από μια βρύση. Η παροχή της βρύσης είναι 5 l νερό σε ένα λεπτό. α) Να υπολογίσετε σε πόσες ώρες η δεξαμενή θα γεμίσει. β) Να υπολογίσετε το ύψος του νερού στη δεξαμενή σε 10 ώρες. 15. Θέλουμε να κατασκευάσουμε, με λαμαρίνα, ένα κουτί σχήματος ορθογωνίου παραλληλεπιπέδου, με βάση τετράγωνο πλευράς α cm, και ύψος β cm, (α, β φυσικοί αριθμοί). Ο όγκος του κουτιού πρέπει να είναι 0,1 l. α) Να βρείτε τις διαστάσεις των 4 κουτιών που μπορούμε να κατασκευάσουμε. β) Ποιο από τα 4 κουτιά πρέπει να επιλέξουμε να κατασκευάσουμε, ώστε το κόστος κατασκευής του να είναι το μικρότερο. (Σημείωση: Το κόστος κατασκευής του κουτιού εξαρτάται από την επιφάνεια της λαμαρίνας που θα χρησιμοποιήσουμε). 16. Ένας κύβος έχει ακμή α cm. Να υπολογίσετε πόσες φορές θα μεγαλώσει η συνολική του επιφάνεια και πόσες φορές ο όγκος του αν : α) Διπλασιάσουμε την ακμή του. β) Τριπλασιάσουμε την ακμή του. γ) Διπλασιάσουμε το ύψος του και αφήσουμε την ίδια βάση. 21

22 2.6 Μέτρηση Μάζας Μονάδες μέτρησης. 1. Τοποθετήστε από το μικρότερο προς το μεγαλύτερο τα παρακάτω βάρη: 1 Kg, 100 g, mg, 0,01 t. 2. Συμπληρώστε τα κενά: 2,5 Kg = g =..mg 350 g =.Kg 0,025 t =... Kg =... g mg =...Kg 3. Να μετατρέψτε σε Kg τα παρακάτω βάρη : 25 Kg 254 g = 0,32 t 5000 g = 3 Kg 60 g 6 mg = g 500 mg = Πυκνότητα ενός υλικού ονομάζουμε το μέγεθος που μας δείχνει πόση μάζα από αυτό το υλικό καταλαμβάνει χώρο ίσο με μια μονάδα όγκου. Στην συσκευασία ενός υλικού διαβάζουμε ότι η πυκνότητά του είναι 3 g ανά cm 3. α) Πόσο χώρο καταλαμβάνουν τα 3 Kg αυτού του υλικού. β) Αν το υλικό αυτό έχει σχήμα ορθογωνίου παραλληλεπιπέδου με διαστάσεις 2 cm, 20 cm και 30 cm, πόση θα είναι η μάζα του; 5. Η μητέρα του Φίλιππα για να φτιάξει ένα γλυκό πρέπει να ζυγίσει 500 g αλεύρι. Διαθέτει μια απλή ζυγαριά και τα εξής σταθμά: Ένα των 750 g και ένα του 1 kg. Με ποιόν τρόπο θα ζυγίσει το αλεύρι που χρειάζεται; (Μπορεί να κάνει περισσότερες από μια ζυγίσεις). 6. Ένα φορτηγό έχει απόβαρο 4,75 t. Μεταφέρει μια δεξαμενή σχήματος ορθογωνίου παραλληλεπιπέδου, γεμάτη με νερό. Οι διαστάσεις της δεξαμενής είναι: 4 m, 2 m, 1,5 m. και το βάρος της, (χωρίς το νερό), 250 Kg. Να υπολογίσετε το μικτό βάρος του φορτηγού αν γνωρίζετε ότι η πυκνότητα του νερού είναι 1 Kg ανά l. 7. Ένα κουτί έχει 500 όμοια καρφιά και ζυγίζει 3,55 Kg. Το βάρος του κουτιού είναι 50 g. Με τη βοήθεια μιας ζυγαριάς, (ακριβείας), πώς θα πάρουμε 110 καρφιά. 22

23 2.7 Μέτρηση Χρόνου Μονάδες μέτρησης. 1. Να υπολογίσετε την ηλικία σας στην αρχή του επόμενου χρόνου. (Χρόνια, μήνες, ημέρες). 2. Συμπληρώστε τα κενά: 2 h 30 min = h = min = s. 1 h 15 min 1800 s =.s =..min =.h. 0,1 h 6 min 480 s = s = min =..h. 3. Σε ένα ιδιωτικό γυμνάσιο τα μαθήματα ξεκινούν στις 08:15 και τελειώνουν στις 15:25. Ενδιάμεσα υπάρχουν 7 δεκάλεπτα διαλείμματα. Γίνονται 8 ίσης διάρκειας διδακτικές ώρες. Να υπολογίσετε την διάρκεια της κάθε διδακτικής ώρας. 4. Ο ήλιος βρίσκεται σε απόσταση Km από τη γη (:1 Αστρονομική μονάδα). Ένα σωματίδιο που εκπέμπεται από τον ήλιο κινείται με την ταχύτητα του φωτός, που είναι Km το δευτερόλεπτο και φτάνει στη γη. Υπολογίστε το χρόνο, σε s και min, που χρειάστηκε το σωματίδιο για να φτάσει στη γη. 5. Ένα ρολόι δείχνει 11:15 π.μ. Υπολογίστε την ώρα που θα δείχνει το ρολόι μετά από: α) 8 h β) 12 h και 15 min. γ) 18 h και 30 min. δ) 24 h και 50 min. 6. Να υπολογίσετε τα αθροίσματα και τις διαφορές των παρακάτω χρόνων: α) t 1 = 5 h 10 min 38 s, t 2 = 3 h 7 min 24 s. β) t 1 = 2 h 50 min 45 s, t 2 = 58 min 50 s. γ) t 1 = 3 d 17 h 30 min, t 2 = 1 d 20 h 10 min 24 s. 7. Η Σελήνη χρειάζεται 29,53 ημέρες για να κάνει μια περιφορά γύρω από τη Γη. α) Να μετατρέψετε τον χρόνο περιφοράς της Σελήνης σε συμμιγή αριθμό (: ημέρες, ώρες, λεπτά και δευτερόλεπτα). β) Κάποιος την 1/06/2002 στις 23:00:00 παρατηρεί από κάποιο σημείο της Γης την Σελήνη. Υπολογίστε πότε την επόμενη φορά, (μόνο νύχτα), που αυτός θα ξαναδεί την ίδια ακριβώς περιοχή της Σελήνης. 23

24 24

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις Γεωµετρία Α Γυµνασίου Ορισµοί Ιδιότητες Εξηγήσεις Ευθεία γραµµή Ορισµός δεν υπάρχει. Η απλούστερη από όλες τις γραµµές. Κατασκευάζεται µε τον χάρακα (κανόνα) πάνω σε επίπεδο. 1. ύο σηµεία ορίζουν την θέση

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013. Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013. Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ. Ορισµός τριγωνοµετρικών αριθµών οξείας γωνίας ορθογωνίου τριγώνου

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ. Ορισµός τριγωνοµετρικών αριθµών οξείας γωνίας ορθογωνίου τριγώνου 70 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ Ορισµός τριγωνοµετρικών αριθµών οξείας γωνίας ορθογωνίου τριγώνου Σχέσεις µεταξύ τριγωνοµετρικών αριθµών 71 Εφαρµογές 72 73 74 75 76 ΕΦΑΡΜΟΓΕΣ ΑΣΚΗΣΕΙΣ 5.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ 6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ ΘΕΩΡΙΑ. Λόγος οµοειδών µεγεθών : Ονοµάζουµε λόγο δύο οµοιειδών µεγεθών, που εκφράζονται µε την ίδια µονάδα µέτρησης, το πηλίκο των µέτρων τους. 2. Αναλογία: Η ισότητα δύο

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών 2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012. Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012. Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Φώτης Κουνάδης Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ ΕΚ ΟΤΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΛΙΒΑΝΗ ΑΘΗΝΑ 2007 Σειρά:

Διαβάστε περισσότερα

4.4 Η ΠΥΡΑΜΙ Α ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ

4.4 Η ΠΥΡΑΜΙ Α ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ 1 4.4 Η ΠΥΡΜΙ ΚΙ Τ ΣΤΟΙΧΕΙ ΤΗΣ ΘΕΩΡΙ 1. Πυραµίδα Ονοµάζεται ένα στερεό του οποίου µία έδρα είναι ένα οποιοδήποτε πολύγωνο και όλες οι άλλες έδρες του είναι τρίγωνα µε κοινή κορυφή. ύο πυραµίδες φαίνονται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 2013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός http://cutemaths.wordpress.com/ ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 20,

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 11 ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ

ΕΝΟΤΗΤΑ 11 ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών ΑΡ2.5 Αναπαριστούν, συγκρίνουν και σειροθετούν ομώνυμα κλάσματα

Διαβάστε περισσότερα

3 + 5 = 23 :13 + 18 = 23

3 + 5 = 23 :13 + 18 = 23 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106

Διαβάστε περισσότερα

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις 24 Κεφάλαιο ο. Να κάνετε τις πράξεις : α) 2 + 3 4-2 : (-4) + γ) -3 (-2) -5 +4: (-2) -6 β) 2 +3 (4-2): (-4 +) δ) -8 : (-3 +5) -4 (-2 + 6) Για να κάνουμε τις πράξεις ακολουθούμε τα εξής βήματα: ο βήμα: Πράξεις

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων Νίκος Γ. Τόμπρος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Ενότητα : ΟΜΟΙΟΤΗΤΑ (ΛΟΓΟΣ ΑΝΑΛΟΓΙΑ) Σκοποί: Η ανάπτυξη ενδιαφέροντος για το θέμα, η εξοικείωση με τη χρήση τεχνολογίας, η παρότρυνση για αναζήτηση πληροφοριών (εδώ σε

Διαβάστε περισσότερα

Θαλής Α' Λυκείου 1995-1996

Θαλής Α' Λυκείου 1995-1996 Θαλής Α' Λυκείου 1995-1996 1. Δυο μαθητές Α και Β παίζουν το ακόλουθο παιχνίδι: Τους δίνεται ένα κανονικό πολύγωνο με άρτιο πλήθος πλευρών, μεγαλύτερο από 6 (π.χ. ένα 100-γωνο). Κάθε παίκτης συνδέει δυο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 4: Συναρτήσεις ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 4: Συναρτήσεις Συγγραφή: Ομάδα Υποστήριξης

Διαβάστε περισσότερα

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση ΚΕΦΑΛΑΙΟ 1ο Υπενθύμιση Δ τάξης Παιχνίδια στην κατασκήνωση Συγκρίνω δυο αριθμούς για να βρω αν είναι ίσοι ή άνισοι. Στην περίπτωση που είναι άνισοι μπορώ να βρω ποιος είναι μεγαλύτερος (ή μικρότερος). Ανάμεσα

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε

Διαβάστε περισσότερα

Ε - ΣΤ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012

Ε - ΣΤ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012 1. Πόσες ώρες έχουν περάσει από τις 6:45 πμ μέχρι τις 11:45 μμ της ίδιας μέρας; Α. 5 Β. 17 Γ. 24 Δ. 29 Ε. 41 1 1 2. Αν το χ είναι μεταξύ 1 και 1 +, τότε το χ μπορεί να είναι ίσο με τον κάθε 5 5 αριθμό

Διαβάστε περισσότερα

4.2 4.3 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ

4.2 4.3 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ 1 4. 4.3 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΘΕΩΡΙΑ 1. Πρόβληµα : Ονοµάζουµε την κατάσταση που δηµιουργείται όταν αντι- µετωπίζουµε εµπόδια και δυσκολίες στην προσπάθεια µας να φτάσουµε σε έναν συγκεκριµένο στόχο.. Επίλυση

Διαβάστε περισσότερα

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης τόμος Καγκουρό Ελλάς 0 007 (ο πρώτος αριθµός σε µια γραµµή αναφέρεται στη σελίδα που αρχίζει το άρθρο και ο δεύτερος στη σελίδα που περιέχει τις απαντήσεις) Πρόλογος

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή

Διαβάστε περισσότερα

Γ - Δ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012

Γ - Δ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012 1. Ποια από τις πιο κάτω προτάσεις είναι ΛΑΝΘΑΣΜΕΝΗ; Α. 8 7 > 7 6 Β. 8 5 < 6 7 Γ. 7 0 < 8 8 Δ. 1 7 > 1 8 Ε. 60 7 > 60 8 2. Ο αδύναμος κρίκος μιας αλυσίδας είναι ο 7 ος από την αρχή της και ο 11 ος από

Διαβάστε περισσότερα

Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ

Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 0 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΑΣΚΗΣΕΙΣ Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 0 1 Στρατηγική επίλυσης προβλημάτων Α. Κάνε κατάλληλο σχήμα,τοποθέτησε τα δεδομένα στο σχήμα και ονόμασε

Διαβάστε περισσότερα

Ευκλείδης Β' Γυμνασίου 1995-1996. 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26

Ευκλείδης Β' Γυμνασίου 1995-1996. 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26 Ευκλείδης Β' Γυμνασίου 1995-1996 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26 2. Σ' ένα ισόπλευρο τρίγωνο ΑΒΓ παίρνουμε τις διαμέσους ΑΔ, ΒΕ και ΓΖ (που διέρχονται από το ίδιο σημείο Θ). Πόσες γωνίες,

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ αγγέλης Α Νικολακάκης Μαθηματικός ΛΙΑ ΛΟΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 0, δηλαδή το σύνολο των μονάδων των απολυτήριων

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ

ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΜΕΤΡΗΣΗ Εκτίμηση και μέτρηση Μ1.1 Συγκρίνουν και σειροθετούν αντικείμενα με βάση το ύψος, το μήκος,

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

1.5 Αξιοσημείωτες Ταυτότητες

1.5 Αξιοσημείωτες Ταυτότητες 1.5 Αξιοσημείωτες Ταυτότητες Ορισμός: Κάθε ισότητα που περιέχει μεταβλητές και αληθεύει για όλες τις τιμές των μεταβλητών της λέγεται ταυτότητα. Ταυτότητες που πρέπει να γνωρίζουμε: Τετράγωνο αθροίσματος

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 6, Γραφ. 102, Στρόβολος 200, Λευκωσία Τηλ. 57-2278101 Φαξ: 57-2279122 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 201 ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ Ημερομηνία:

Διαβάστε περισσότερα

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το 5/2 1 Παράδειγμα 2: Γράψε ένα κλάσμα που χρησιμοποιεί

Διαβάστε περισσότερα

κάθετη δύναμη εμβαδόν επιφάνειας Σύμβολο μεγέθους Ορισμός μεγέθους Μονάδα στο S.I.

κάθετη δύναμη εμβαδόν επιφάνειας Σύμβολο μεγέθους Ορισμός μεγέθους Μονάδα στο S.I. 4.1 Η πίεση ονομάζουμε το μονόμετρο φυσικό μέγεθος που ορίζεται ως το πηλίκο του μέτρου της συνολικής δύναμης που ασκείται κάθετα σε μια επιφάνεια προς το εμβαδόν της επιφάνειας αυτής. πίεση = κάθετη δύναμη

Διαβάστε περισσότερα

Φυσική Β Γυμνασίου. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Φυσική Β Γυμνασίου. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com Φυσική Β Γυμνασίου Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 2 Εισαγωγή 1.1 Οι φυσικές επιστήμες και η μεθοδολογία τους Φαινόμενα: Μεταβολές όπως το λιώσιμο του πάγου, η

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:...

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ ΗΜΕΡΟΜΗΝΙΑ: 5/06/2015 ΤΑΞΗ: A Αριθμητικά... ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... Ολογράφως:...

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 013-014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου Χρόνος: ώρες Βαθμός: Ημερομηνία: Παρασκευή, 13 Ιουνίου 014 Υπογραφή καθηγητή: Ονοματεπώνυμο:

Διαβάστε περισσότερα

Α) 4 Β) 5 Γ) 7 Δ) 6 Ε) Κανένα από τα πιο πάνω.

Α) 4 Β) 5 Γ) 7 Δ) 6 Ε) Κανένα από τα πιο πάνω. η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 200 Χρόνος: 60 λεπτά ΣΤ ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΗ Ο πενταψήφιος αριθμός 45Β7Α, στον οποίο τα ψηφία των μονάδων και των εκατοντάδων είναι σημειωμένα με Α και Β, διαιρείται

Διαβάστε περισσότερα

2.4 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ 30 Ο 45 Ο 60 Ο

2.4 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ 30 Ο 45 Ο 60 Ο .4 ΤΡΙΩΝΟΜΕΤΡΙΚΟΙ ΡΙΘΜΟΙ 0 Ο 45 Ο 60 Ο ΘΕΩΡΙ. Τριγωνοµετρικοί αριθµοί 0 ο, 45 ο, 60 ο : ηµίτονο συνηµίτονο εφαπτοµένη 0 ο 45 ο 60 ο ΣΚΗΣΕΙΣ. Στο διπλανό πίνακα, σε κάθε πληροφορία της στήλης, να επιλέξετε

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 A-PDF Merger DEMO : Purchase from www.a-pdf.com to remove the watermark ΥΠΟΥΡΓΙΟ ΠΑΙΔΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΥΘΥΝΣΗ ΑΝΩΤΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΚΠΑΙΔΥΣΗΣ ΥΠΗΡΣΙΑ ΞΤΑΣΩΝ ΠΑΓΚΥΠΡΙΣ ΞΤΑΣΙΣ 007 Μάθημα: ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ

Διαβάστε περισσότερα

Κλάσματα. Στις προηγούμενες ερωτήσεις απαντήσαμε με την βοήθεια των κλασμάτων. πόσα μέρη πήραμε σε πόσαίσα μέρη χωρίσαμε : αριθμητής

Κλάσματα. Στις προηγούμενες ερωτήσεις απαντήσαμε με την βοήθεια των κλασμάτων. πόσα μέρη πήραμε σε πόσαίσα μέρη χωρίσαμε : αριθμητής Κλάσματα Ένα βράδυ τρεις φίλοι αγοράζουν πίτσα και την χωρίζουν σε οκτώ κομμάτια. Ο ένας έφαγε το ένα, ο δεύτερος τα τρία και ο τρίτος δύο κομμάτια. Μπορείς να βρεις το μέρος της πίτσας που έφαγε ο καθένας

Διαβάστε περισσότερα

2ηέκδοση 20Ιανουαρίου2015

2ηέκδοση 20Ιανουαρίου2015 ηέκδοση 0Ιανουαρίου015 ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΓΧΡΟΝΗ ΜΑΘΗΣΗ (β-πακέτο ασκήσεων) 1 89 Δίνεται τρίγωνο ΑΒΓ και Δ εσωτερικό σημείο του ΒΓ. Φέρουμε από το Δ παράλληλες στις πλευρές ΑΒ και ΑΓ. Η παράλληλη στην

Διαβάστε περισσότερα

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης:

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: παρόμοιο με του Cabri με αρκετές όμως διαφορές στην αρχιτεκτονική

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1.

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1. Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1.Δίνεται η συνάρτηση f()= 4 1 α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; β) Αν χ=, ποια είναι η τιμή της f; γ) Αν f()=1, ποια είναι

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

Ενδεικτικά θέματα Μαθηματικών για την εισαγωγή στα Πρότυπα Πειραματικά Λύκεια

Ενδεικτικά θέματα Μαθηματικών για την εισαγωγή στα Πρότυπα Πειραματικά Λύκεια ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΛΥΚΕΙΑ 6 η Δοκιμασία ο Θέμα Στις ερωτήσεις έως και 4 να επιλέξτε τη σωστή απάντηση αιτιολογώντας την απάντησή σας. Ερώτηση

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Α ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Α ΓΥΜΝΑΣΙΟΥ 1. Μετρήσεις μήκους Η μέση τιμή. 1. Ποια μεγέθη λέγονται φυσικά μεγέθη; Πως γίνεται η μέτρησή τους; Οι ποσότητες που μπορούν να μετρηθούν ονομάζονται φυσικά μεγέθη. Η μέτρησή

Διαβάστε περισσότερα

3.5 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΙΣΚΟΥ

3.5 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΙΣΚΟΥ 1 3.5 ΕΜΒ Ν ΚΥΚΛΙΚΥ ΙΣΚΥ ΘΕΩΡΙ Εµβαδόν κυκλικού δίσκου ακτίνας ρ : Ε = πρ Σηµείωση : Tο εµβαδόν του κυκλικού δίσκου, χάριν ευκολίας αναφέρεται σαν εµβαδόν του κύκλου. ΣΧΛΙ Για το εµβαδόν του κυκλικού δίσκου

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε

Διαβάστε περισσότερα

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης ενός συστήματος συντεταγμένων για τον προσδιορισμό της θέσης ενός σημείου πάνω σε μια επιφάνεια προέρχεται από την Γεωγραφία και ήταν γνωστή στους

Διαβάστε περισσότερα

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; Μονόμετρα ονομάζονται τα μεγέθη τα οποία, για να τα προσδιορίσουμε πλήρως, αρκεί να γνωρίζουμε

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 015 Μάθημα : ΜΑΘΗΜΑΤΙΚΑ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4-ΩΡΟ ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ Ημερομηνία και

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 21 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής).

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

(Μονάδες 10) γ) Αν η εξίσωση (1) έχει ρίζες τους αριθμούς x 1, x 2 και d x 1,

(Μονάδες 10) γ) Αν η εξίσωση (1) έχει ρίζες τους αριθμούς x 1, x 2 και d x 1, Σε ένα τμήμα της Α Λυκείου κάποιοι μαθητές παρακολουθούν μαθήματα Αγγλικών και κάποιοι Γαλλικών. Η πιθανότητα ένας μαθητής να μην παρακολουθεί Γαλλικά είναι 0,8. Η πιθανότητα ένας μαθητής να παρακολουθεί

Διαβάστε περισσότερα

1. Ένας κασκαντέρ θέλει με το αυτοκίνητό του, να πηδήξει πάνω από

1. Ένας κασκαντέρ θέλει με το αυτοκίνητό του, να πηδήξει πάνω από 1. Ένας κασκαντέρ θέλει με το αυτοκίνητό του, να πηδήξει πάνω από 8 αυτοκίνητα σταθμευμένα ένα μετά το άλλο κάτω από μια οριζόντια πλατφόρμα. Το κάθε αυτοκίνητο έχει μήκος d = 3 m και ύψος h = 1,2 m. Τo

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014 Τηλ. 6165-617784 - Fax: 64105 Tel. 6165-617784 - Fax: 64105 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά

Διαβάστε περισσότερα

ΜΕΡΟΣ Α 2 Ô. º π. Πραγματικοί αριθμοί

ΜΕΡΟΣ Α 2 Ô. º π. Πραγματικοί αριθμοί ΜΕΡΟΣ Α º π Ô Πραγματικοί αριθμοί ΕΙΣΑΩΙΚΟ ΣΗΜΕΙΩΜΑ ª ÚÈ ÙÒÚ Ô ÌÂ Û Ó ÓÙ ÛÂÈ Ê ÛÈÎÔ, Î Ú ÈÔ Î È ÚËÙÔ ÚÈıÌÔ. ÙÔ ÙÂÏÂ Ù Ô Â ÌÂ ÂÍÂÙ ÛÂÈ ÙË ÂÎ ÈÎ ÙÔ apple Ú ÛÙ ÛË, Ë ÔappleÔ Ù Ó ÁÓˆÛÙ ÛÂ appleï appleâúèô

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ,

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ, ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 7 Ο - ΑΝΑΛΟΓΙΕΣ ΘΕΜΑ Ο Άσκηση (_8975) Θεωρούμε τρίγωνο ΑΒΓ ΑΒ=9 και ΑΓ=5. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c σταθερός πραγματικός αριθμός, να αποδείξετε με τη χρήση του

Διαβάστε περισσότερα

Θεωρία. 1. 2 Γνωρίσματα της ύλης (μάζα, όγκος, πυκνότητα). Μετρήσεις και μονάδες.

Θεωρία. 1. 2 Γνωρίσματα της ύλης (μάζα, όγκος, πυκνότητα). Μετρήσεις και μονάδες. Θεωρία 1. 2 Γνωρίσματα της ύλης (μάζα, όγκος, πυκνότητα). Μετρήσεις και μονάδες. 2.1. Τι είναι φυσικό μέγεθος; Τα φυσικά μεγέθη είναι ποσότητες που προσδιορίζουν τις διαστάσεις ενός σώματος ή ενός φυσικού

Διαβάστε περισσότερα

ΘΕΜΑ GI_A_FYS_0_4993

ΘΕΜΑ GI_A_FYS_0_4993 ΘΕΜΑ GI_A_FYS_0_4993 ΘΕΜΑ Β Β Ένας αλεξιπτωτιστής που έχει μαζί με τον εξοπλισμό του συνολική μάζα Μ, πέφτει από αεροπλάνο που πετάει σε ύψος Η Αφού ανοίξει το αλεξίπτωτο, κινούμενος για κάποιο χρονικό

Διαβάστε περισσότερα

B. ΠΡΟΒΛΗΜΑΤΑ ΑΠΟ ΔΙΑΓΩΝΙΣΜΟΥΣ

B. ΠΡΟΒΛΗΜΑΤΑ ΑΠΟ ΔΙΑΓΩΝΙΣΜΟΥΣ Τα Μαθηματικά παίζουν κυρίαρχο ρόλο σε όλους τους χώρους της σύγχρονης κοινωνίας. Όλα σχεδόν τα επιτεύγματα της τεχνολογίας και της ε- πιστήμης στηρίζονται στην ανάπτυξη των Μαθηματικών. Αλλά και τα προβλήματα

Διαβάστε περισσότερα

Από το επίπεδο στο χώρο (Στερεομετρία)

Από το επίπεδο στο χώρο (Στερεομετρία) Από το επίπεδο στο χώρο (Στερεομετρία) (Διεπιστημονική προσέγγιση αριθμητικού και οπτικού γραμματισμού) Εκπαιδευτικοί: Αθανασοπούλου Ζαφειρία (οπτικός γραμματισμός) Σαρακινίδου Σοφία (αριθμητικός γραμματισμός)

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Τι ονομάζουμε κίνηση ενός κινητού; 2. Τι ονομάζουμε τροχιά ενός κινητού; 3. Τι ονομάζουμε υλικό σημείο; 4. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

Διαβάστε περισσότερα

β φυσικοί αριθμοί. Δίνεται ότι η Ευκλείδεια διαίρεση με διαιρετέο τον α και

β φυσικοί αριθμοί. Δίνεται ότι η Ευκλείδεια διαίρεση με διαιρετέο τον α και 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 GR. 06 79 - Athens - HELLAS Tel. 36653-367784 - Fax: 36405 ΣΑΒΒΑΤΟ, 30 ΟΚΤΩΒΡΙΟΥ 00 B Γυμνασίου 3. Έστω x = 3 4 :4+ 5 και y = 45 4 3 + 73. (α) Να βρεθούν οι αριθμοί

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :

Διαβάστε περισσότερα

1. Ένας ποδηλάτης διαγράφει την περιφέρεια ενός κύκλου (OR). Το διάστηµα που έχει διανύσει είναι ίσο µε : α) 2πR β) πr. γ) πr 2.

1. Ένας ποδηλάτης διαγράφει την περιφέρεια ενός κύκλου (OR). Το διάστηµα που έχει διανύσει είναι ίσο µε : α) 2πR β) πr. γ) πr 2. 1. Ένας ποδηλάτης διαγράφει την περιφέρεια ενός κύκλου (OR). Το διάστηµα που έχει διανύσει είναι ίσο µε : α) 2πR β) πr γ) πr 2 δ) καµία από τις παραπάνω τιµές Το µέτρο της µετατόπισης που έχει υποστεί

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

β) το αυτοκίνητο τη χρονική στιγμή t = 2 s έχει ταχύτητα μέτρου υ 4. s γ) στο αυτοκίνητο ασκείται σταθερή συνισταμένη δύναμη μέτρου 1 Ν.

β) το αυτοκίνητο τη χρονική στιγμή t = 2 s έχει ταχύτητα μέτρου υ 4. s γ) στο αυτοκίνητο ασκείται σταθερή συνισταμένη δύναμη μέτρου 1 Ν. ΘΕΜΑ Β Β 1. Ένα παιγνίδι - αυτοκινητάκι μάζας 1 Kg είναι ακίνητο στη θέση x = 0 m. Την χρονική στιγμή t = 0 s ξεκινά να κινείται ευθύγραμμα. Στον παρακάτω πίνακα φαίνονται οι τιμές της θέσης του αυτοκινήτου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα Συγγραφή: Ομάδα Υποστήριξης Μαθηματικών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 010 ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 4 Ιουνίου 010 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 4 ώρες (40 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ Ευρωπαικό τυπολόγιο Μη προγραμματιζόμενος υπολογιστής, χωρίς γραφικά

Διαβάστε περισσότερα

Σειρά: Τράπεζα Θεμάτων Γυμνασίου

Σειρά: Τράπεζα Θεμάτων Γυμνασίου Σειρά: Τράπεζα Θεμάτων Γυμνασίου Θέματα Προαγωγικών και Απολυτηρίων εξετάσεων Γυμνασίων του Νομού Δωδεκανήσου Σχολικό Έτος: 01-013 Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών Ν. Δωδεκανήσου

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Επιμέλεια: Σακαρίκος Ευάγγελος 08 Θέματα - 4//05 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσαν. Κεφάλαιο

Διαβάστε περισσότερα

ENOTHTA 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ

ENOTHTA 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ENOTHTA. ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΜΕΡΟΣ ο. Πώς προσδιορίζουμε τη θέση των αντικειμένων; A O M B ' y P Ì(,y) Ð Για τον προσδιορισμό της θέσης πάνω σε μία ευθεία πρέπει να έχουμε ένα σημείο της

Διαβάστε περισσότερα

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014)

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014) > Φυσική Β Γυμνασίου >> Αρχική σελίδα ΕΙΙΣΑΓΩΓΗ ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς χχωρρί ίςς ααππααννττήήσσεει ιςς (σελ. ) ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς μμεε ααππααννττήήσσεει ιςς (σελ. 4) ΙΑΒΑΣΕ

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Θέμα 1 Α. Να αποδείξετε ότι αν α,β τότε α //β α λβ, λ. είναι δύο διανύσματα, με β 0, Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας

Διαβάστε περισσότερα

Γυμνάσιο Μαθηματικά Τάξη Γ

Γυμνάσιο Μαθηματικά Τάξη Γ 1 Θέματα εξετάσεων περιόδου Μαΐου-Ιουνίου στα Μαθηματικά Τάξη Γ ΘΕΜΑ 1 0 Η εξίσωση αχ + βχ +γ = 0 είναι βαθμού εξίσωση και λύνεται χρησιμοποιώντας τους τύπους Δ =.. χ 1 =. χ =.. Η διακρίνουσα Δ της εξίσωσης

Διαβάστε περισσότερα

Μαθηματικά της Φύσης και της Ζωής

Μαθηματικά της Φύσης και της Ζωής Μαθηματικά της Φύσης και της Ζωής Τάξη:Ε Ονοματεπώνυμο:.. Σχολείο: Το ημερολόγιο Ο Πέτρος ζήτησε από το φίλο του Χρήστο να διαλέξει 4 αριθμούς από το διπλανό ημερολόγιο που να σχηματίζουν τετράγωνο (για

Διαβάστε περισσότερα

Κεφάλαιο 1.1 Ευθύγραμμη κίνηση

Κεφάλαιο 1.1 Ευθύγραμμη κίνηση Κεφάλαιο 1.1 Ευθύγραμμη κίνηση 1 H θέση ενός κινητού που κινείται σε ένα επίπεδο, προσδιορίζεται κάθε στιγμή αν: Είναι γνωστές οι συντεταγμένες του κινητού (x,y) ως συναρτήσεις του χρόνου Είναι γνωστό

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

3.6 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ

3.6 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ 1 3.6 ΕΜΝ ΚΥΚΛΙΚΥ ΤΜΕ ΘΕΩΡΙ 1. Εµβαδόν κυκλικού τοµέα γωνίας µ ο : Ε = πρ. µ, όπου ρ η ακτίνα του κύκλου και π ο γνωστός αριθµός. Εµβαδόν κυκλικού τοµέα γωνίας α rad: Ε = 1 αρ, όπου ρ η ακτίνα του κύκλου

Διαβάστε περισσότερα

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8)

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8) ΘΕΜΑ Β Παράδειγμα 1 Β1. Στο σχολικό εργαστήριο μια μαθήτρια περιεργάζεται ένα ελατήριο και λέει σε συμμαθητή της: «Θα μπορούσαμε να βαθμολογήσουμε αυτό το ελατήριο και με τον τρόπο αυτό να κατασκευάσουμε

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΕΟΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΒΙΒΛΙΟ ΤΟΥ ΜΑΘΗΤΗ ΠΡΟΓΡΑΜΜΑ: «ΕΝΤΑΞΗ ΤΣΙΓΓΑΝΟΠΑΙΔΩΝ ΣΤΟ ΣΧΟΛΕΙΟ»

ΥΠΟΥΡΓΕΙΟ ΕΟΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΒΙΒΛΙΟ ΤΟΥ ΜΑΘΗΤΗ ΠΡΟΓΡΑΜΜΑ: «ΕΝΤΑΞΗ ΤΣΙΓΓΑΝΟΠΑΙΔΩΝ ΣΤΟ ΣΧΟΛΕΙΟ» ΥΠΟΥΡΓΕΙΟ ΕΟΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΒΙΒΛΙΟ ΤΟΥ ΜΑΘΗΤΗ ΠΡΟΓΡΑΜΜΑ: «ΕΝΤΑΞΗ ΤΣΙΓΓΑΝΟΠΑΙΔΩΝ ΣΤΟ ΣΧΟΛΕΙΟ» ΒΟΛΟΣ 2007 ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 1) Δίνεται η εξίσωση x 2-2(λ + 2) χ + 2λ 2-17 = 0. Να βρείτε το λ ώστε η εξίσωση να έχει μία ρίζα διπλή. Υπολογίστε τη ρίζα. Aσκήσεις στις εξισώσεις Β βαθμού Για να έχει η εξίσωση μία ρίζα διπλή πρέπει:

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα.

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. ΘΕΜΑ Α Παράδειγμα 1 Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. Α2. Για τον προσδιορισμό μιας δύναμης που ασκείται σε ένα σώμα απαιτείται να

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 28 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Κυριακή, 13 Απριλίου, 2014 Ώρα: 10:00-13:00 Παρακαλώ διαβάστε πρώτα τα πιο κάτω, πριν απαντήσετε οποιαδήποτε ερώτηση. Γενικές οδηγίες: 1.

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2008 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2008 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. Θεωρητικό Μέρος Θέμα 1o A Λυκείου 22 Μαρτίου 28 Στις ερωτήσεις Α,Β,Γ,Δ,E μια μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής απάντησης.

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ Κοίταξε τις µεθόδους, τις λυµένες ασκήσεις και τις ασκήσεις προς λύση των ενοτήτων 6, 7 του βοηθήµατος Μεθοδολογία Άλγεβρας και Στοιχείων Πιθανοτήτων Α Γενικού Λυκείου των Ευσταθίου Μ. και Πρωτοπαπά Ελ.

Διαβάστε περισσότερα