METODOLOGIJA PROJEKTOVANJA ANALOGNIH CMOS INTEGRISANIH KOLA

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "METODOLOGIJA PROJEKTOVANJA ANALOGNIH CMOS INTEGRISANIH KOLA"

Transcript

1 METODOLOGIJA PROJEKTOVANJA ANALOGNIH CMOS INTEGRISANIH KOLA D. Stefanović and M. Kayal, Structured Analog CMOS Design, Springer

2 Strukturirano projektovanje analognih kola Tok projektovanja pojačavača od sistemskog do tranzistorskog nivoa baziran na metodu strukturiranog projektovanja. Pojačavač se u početnoj fazi zamenjuje modelom ponašanja. Na osnovu zahteva i simulacija na sistemskom nivou izvode se specifikacije na nivou kola. Izabrana topologija pojačavača se deli na osnovne analogne strukture i na osnovu zahteva na nivou kola se izvode projektne specifikacije za svaku osnovnu analognu strukturu. Da bi se olakšao ovaj zadatak definiše se biblioteka osnovnih analognih struktura, i za svaku osnovnu strukturu specificiraju se važni projektni slučajevi i projektni parametri. 2

3 Scenario procedure projektovanja Posle raščlanjavanja kola i prenošenja specifikacija na nivo osnovnih analognih struktura, potrebno je razviti proceduralnu sekvencu projektovanja da bi se dostigle zahtevane specifikacije. Lokalna optimizacija Optimizacija se takođe prenosi na nivo osnovnih analognih struktura. Potrebno je da se procene granice tehnologije i da se odrede granične vrednosti parametara. Pošto uvek ima više puteva u nalaženju rešenja, i rešenje jako zavisi od odluka korisnika (projektanta), u kritičnim tačkama proceduralnih scenarija projektovanja se daju uputstva i komentari za lokalnu optimizaciju. Varijante topologije Na kraju, u slučajevima kada su specifikacije vrlo zahtevne i ne mogu da se dostignu, rešenje je da se zameni naprednijom verzijom samo ona osnovna analogna struktura koja utiče na parametar koji je u pitanju. Kada se kolo kompletira na tranzistorskom nivou, njegove performanse moraju da se provere ponavljanjem simulacija na sistemskom nivou, kakve su bile korišćene na početku projektovanja. Ukoliko neka od specifikacija na sistemskom nivou nije dostignuta, mogu da se izdvoje parazitni efekti i dodaju u model ponašanja, a zatim da se ponove sekvence projektovanja. 3

4 Projektovanje na tranzistorskom nivou bazirano na nivou inverzije tranzistora U klasičnom pristupu dimenzionisanju CMOS tranzistora projektne promenljive su I D (struja polarizacije tranzistora), W (širina kanala) i L (dužina kanala). U alternativnom pristupu koriste se dve projektne promenljive: IF (faktor inverzije tranzistora) i L (dužina kanala). Može se pokazati da struja polarizacije tranzistora nije nezavisno promenljiva na tranzistorskom nivou pošto je ona određena specifikacijama na nivou kola. Stoga ona može da se promeni samo na nivou kola, a za to je potrebna iteracija ponovnog projektovanja na nivou osnovnih analognih struktura. U ovom alternativnom pristupu projektovanje na nivou tranzistora se obično zasniva na EKV modelu, u kojem su projektni parametri tranzistora dati kao kontinualne i jedinstvene funkcije nivoa inverzije tranzistora. Ovo omogućava jednostavnu procenu granica vrednosti parametara i definisanje strategije optimizacije na tranzistorskom nivou. Na ovoj osnovi identifikuju se mogući slučajevi rešenja i predlažu se uputstva za projektovanje na tranzistorskom nivou. 4

5 Projektni parametri tranzistora Simetrija tranzistora i definisanje njegovih napona MOS tranzistor je komponenta sa četiri priključka koja poseduje simetriju sors/drejn. Imajući u vidu ovu simetriju, naponi se određuju u odnosu na supstrat (osnovu). 5

6 Ψ s - površinski potencijal Q i = Q inv - naelektrisanje inverzije (po jedinici površine) Q b - nepokretno negativno naelektrisanje u osiromašenom sloju osnove Q fc - fiksno negativno naelektrisanje u oksidu na granici sa osnovom (kanalom) Q b + Q i = Q si - ukupno negativno naelektrisanje Φ ms - razlika kontaktnih potencijala metala gejta i poluprovodnika u kanalu 6

7 Režimi rada Režimi rada u gornjoj tabeli definisani su u odnosu na površinski potencijal Ψ s i potencijal kanala V ch. V ch odgovara razlici kvazi-fermijevih potencijala većinskih i manjinskih nosilaca duž kanala. Integracijom pokretnog naelektrisanja duž kanala dobija se izraz za struju drejna. Normalizovana direktna komponenta struje drejna daje indikaciju nivoa inverzije, koji može da se koristi kao parametar u projektovanju. 7

8 Izraz za naelektrisanje inverzije se dobija integracijom Poasonove jednačine (za n-kanalni tranzistor): γ - faktor modulacije osnove (supstrata) ili faktor efekta osnove Relacija između površinskog potencijala Ψ s, naelektrisanja inverzije Q inv i napona gejta V G, koja važi u svim radnim režimima, je Jaka inverzija, napon uštinuća (pinch-off voltage) i faktor nagiba Napon praga V T0, napon uštinuća V P i faktor nagiba n se odnose na rad u režimu jake inverzije. Oni su izvedeni iz aproksimacije naelektrisanja inverzije u režimu jake inverzije. U režimu jake inverzije površinski potencijal je Ψ s = 2Φ F + mv t +V ch. (V t = kt/q) Uz Ψ 0 = 2Φ F + mv t može da se napiše Ψ s = Ψ 0 +V ch. Sada je Ako je prag napona gejt osnova, naelektrisanja inverzije može da se napiše kao 8

9 Napon praga V T0 je napon gejta za koji je kanal u ravnoteži (V ch = 0) i naelektrisanje inverzije je jednako nuli. Sledi Napon uštinuća V P je potencijal kanala za koji, pri datom naponu gejta, naelektrisanje inverzije postaje jednako nuli (tj. kanal je uštinut). Iz sledi Napon uštinuća kao funkcija napona gejta je prikazan na slici na sledećem slajdu. Ako je napon gejta jednak V T0, napon uštinuća je jednak nuli. Nagib V P =f(v G ) nije konstantan i obično se piše gde je n faktor nagiba. Iz jednačine za V G on može da se izračuna kao 2 γ γ VP = VG VT0 γ VG V T0 + Ψ 0 + Ψ i pošto zavisi od γ često se naziva faktorom efekta osnove. Njegova vrednost obično varira između 1,2 i 1,8. Za ručne proračune njegova vrednost se aproksimira asimptotskom vrednošću u režimu jake inverzije i daje se kao tehnološki parametar. Sada se napon uštinuća dobija aproksimacijom prvog reda gornjeg izraza za V P kao 9

10 Aproksimativni izraz za V P sa prethodnog slajda može da se koristi u ručnim proračunima i ako tranzistor nije u režimu jake inverzije. Iz ove relacije se vidi da je V G = V T0 + nv P, a zatim generalnije V TB = V T0 +nv ch. Unošenjem ovog izraza u izraz za Q inv dobija se Q inv = C ox n(v P V ch ). 10

11 Slaba inverzija Kada je potencijal kanala veći od V P, naelektrisanje inverzije Q inv postaje mnogo manje od naelektrisanja osiromašene oblasti Q dep i kanal je u režimu slabe inverzije. Zbog Q inv «Q dep može da se napiše Ako se V FB zameni korišćenjem definicije za V T0, napon gejta je Na osnovu poređenja sa definicijom za V P sledi da pri slaboj inverziji površinski potencijal može da se aproksimira sa Kada se ovo unese u rešenje Poasonove jednačine i razvije u Tajlorov red, naelektrisanje inverzije u režimu slabe inverzije može da se aproksimira sa 11

12 Struja drejna i specifična struja Slika prikazuje naelektrisanje inverzije u funkciji potencijala kanala. Vidi se da ono linearno zavisi od (V P V ch ) u režimu jake inverzije, a eksponencijalno u režimu slabe inverzije. Prelazna oblast odgovara umerenoj inverziji. Struja drejna se dobija integracijom naelektrisanja inverzije duž kanala, i proporcionalna je osenčenoj površini na istoj slici. Ako se pretpostavi da pokretljivost ne zavisi od pozicije duž kanala, struja drejna je Ovaj integral može da se napiše na sledeći način: 12

13 Ovim se uvodi koncept direktne (I F ) i inverzne (I R ) struje, koji je potpuno u skladu sa simetrijom tranzistora: ako se naponi drejna i sorsa međusobno zamene, menja se samo znak struje drejna. Korišćenjem prethodno određenih aproksimacija za naelektrisanje inverzije mogu da se odrede izrazi za I F,R u režimu slabe/jake inverzije. Međutim, za projektovanje analognih kola malog napona napajanja i male snage, neophodno je da se raspolaže jednim izrazom koji obuhvata sve režime inverzije. Prema tome, korišćenjem interpolacije dobija se kontinualna funkcija koja važi pri svim nivoima inverzije: gde direktna struja zavisi od (V P V S ), a inverzna struja zavisi od (V P V D ). Pored toga, direktna i inverzna struja mogu da se normalizuju na Ova vrednost se obično naziva specifičnom strujom. Specifična struja je važan projektni parametar i jednaka je struji drejna kada tranzistor radi u sredini umerene inverzije. Parametar β se obično određuje kao gde je dato kao parametar modela koji se naziva transkonduktansnim parametrom. Specifična struja zavisi od tehnologije i geometrije tranzistora. Međutim, za potrebe analognog dizajna, za datu tehnologiju specifična struja može da se smatra funkcijom samo geometrije tranzistora. Konačno, struja drejna je gde su normalizovana direktna i inverzna struja i izračunavaju se korišćenjem aproksimacije za V P jednake 13

14 Važna činjenica ovde je da slučaj kada je napon sorsa ili drejna manji od V P odgovara radu u režimu jake inverzije, a slučaj kada su naponi i sorsa i drejna veći od V P odgovara radu u režimu slabe inverzije, kao što je prikazano na prethodnoj slici. Struja drejna u zasićenju i napon zasićenja Na osnovu prethodnih izraza, triodna oblast i oblast zasićenja mogu da se interpretiraju na sledeći način: kada se menja napon drejna, sve dok su direktna i inverzna struja istog reda veličine, tranzistor je u triodnoj oblasti. Kada je I F» I R uticaj napona drejna postaje zanemarljiv, tj. tranzistor radi u oblasti zasićenja, i struja drejna je jednaka struji drejna u zasićenju I Dsat : Pogodniji način za odredjivanje da li tranzistor radi u triodnoj oblasti ili u zasićenju je poređenje razlike napona drejna i sorsa sa projektnim parametrom koji se naziva naponom zasićenja V DSsat. Da bi se on izračunao potrebno je ponovo analizirati uslove za triodnu oblast i zasićenje pri jakoj i slaboj inverziji. Kada tranzistor radi u jakoj inverziji, triodna oblast i zasićenje mogu da se definišu u odnosu na V P : ako su i V S i V D manji od V P tranzistor je u triodnoj oblasti, a ako je tranzistor je u zasićenju. Napon zasićenja se izračunava kao što je prikazano na slici a) na sledećem slajdu. 14

15 Kada tranzistor radi u slaboj inverziji Pošto je direktna struja drejna ovde nekoliko redova veličine manja nego u slučaju jake inverzije pa uslov I F» I R ne može lako da se verifikuje, napon zasićenja se određuje prema prihvatljivoj grešci između struje drejna i očekivane struje drejna u zasićenju (slika b). Procenjuje se da je ova vrednost (napona zasićenja) nekoliko V t. Na osnovu ovih asimptota napona zasićenja, EKV model predlaže jednostavnu relaciju gde napon zasićenja zavisi samo od normalizovane direktne struje drejna, ili nivoa inverzije kao što će biti pokazano sledeće. 15

16 Faktor inverzije kao mera nivoa inverzije tranzistora Nivo inverzije može da se odredi na osnovu direktne struje drejna I F, koja je direktno proporcionalna pokretnom naelektrisanju inverzije duž kanala. Projektni parametar se naziva faktorom inverzije IF koji je jednak: Gornja relacija pokazuje da je faktor inverzije određen: - strujom zasićenja (odnosno strujom polarizacije tranzistora, kao što će biti pokazano kasnije) i geometrijom tranzistora (preko specifične struje); - naponima polarizacije tranzistora (V G, V S ). Kada je struja drejna u zasićenju jednaka specifičnoj struji, tranzistor radi na sredini umerene inverzije, tj. IF = 1. Stoga se procenjuje da prelazna oblast rada u umerenoj inverziji odgovara opsegu struja drejna između 0,1I S i 10I S. U skladu sa tim, oblasti rada u režimu jake, umerene i slabe inverzije definišu se kao u priloženoj tabeli. Ovo omogućava jednostavnu manipulaciju podatkom o nivou inverzije tokom procesa analognog projektovanja. 16

17 Transkonduktanse Transkonduktansa gejta g mg, obično se označava sa g m i naziva transkonduktansom tranzistora Transkonduktansa sorsa g ms Važno je pomenuti transkonduktansu osnove, korišćenu u SPICE-u pošto se u EKV modelu naponi gejta, sorsa i drejna određuju u odnosu na osnovu. Transkonduktansa drejna g md obično se označava kao g ds. Ovo je ispravno pošto uticaj napona sorsa može da se zanemari kada se određuje inverzna struja. Ako se uzme u obzir da su I F,R funkcije (V P V S,D ), sledi da je S druge strane, napon uštinuća se aproksimira sa pa je 17

18 Stoga je u oblasti zasićenja Sada jednačina za struju drejna sa prethodnog slajda može da se napiše u obliku što daje ekvivalentnu šemu za male signale prikazanu na slici. Transkonduktansa drejn sors je predstavljena kao otpornik pošto je kontrolisana naponom na svojim krajevima. Stoga ona predstavlja izlaznu provodnost tranzistora i važan je parametar u projektovanju. Za ručne proračune u projektovanju analognih kola izlazna provodnost se aproksimira pomoću Early-jevog napona V a kao (Ovo je Early-jev napon za jediničnu dužinu tranzistora) 18

19 Normalizovana transkonduktansa Diferenciranjem struje drejna i interpolacione funkcije EKV modela dobija se Normalizovana transkonduktansa, izvedena iz prve od ovih jednačina i definisana kao predstavlja fundamentalnu relaciju za projektovanje analognih kola. Ona daje vezu između parametra za male signale i jednosmernih parametara (struje drejna u zasićenju i faktora inverzije). Ona predstavlja meru translacije struje polarizacije u transkonduktansu za različite nivoe inverzije. Stoga se često naziva faktorom efikasnosti transkonduktanse TEF. Ova relacija je univerzalna i ne zavisi od tehnologije. U slaboj inverziji asimptotski se približava jedinici, a asimptota za jaku inverziju je 19

20 Kapacitivnosti Varijacija globalnog naelektrisanja (Q inv, Q G, Q d ) u odnosu na varijacije napona priključaka modeluje se preko unutrašnjih kapacitivnosti. Nazivaju se unutrašnjim zato što se odnose na unutrašnji deo tranzistora (koji se sastoji od inverzionog sloja, osiromašene oblasti, oksida i gejta), koji određuje njegovo ponašanje. Ostatak tranzistora predstavlja spoljašnji deo i utiče na parazitne efekte koji obično ograničavaju ukupni odziv. Unutrašnje kapacitivnosti su: - kapacitivnosti između gejta i ostalih priključaka - kapacitivnosti između supstrata i priključaka sorsa/drejna Ovaj način modelovanja je ispravan samo za kvazi-statičko ponašanje, tj. ako naponi priključaka variraju dovoljno sporo, tako da raspodela naelektrisanja u kanalu može da prati varijacije sa zanemarljivom inercijom. Kvazi-statičko ponašanje je ispravno do 20

21 Unutrašnje kapacitivnosti se izračunavaju iz normalizovane direktne i inverne struje drejna: U oblasti zasićenja je, pa je 21

22 Spoljašnje kapacitivnosti su: - kapacitivnosti preklapanja između gejta i sorsa, drejna ili supstrata i određene su sa: gde su i parametri tehnologije; - kapacitivnosti spoja sorsa/drejna, i Kompletna šema za male signale je prikazana na slici desno gore, a uprošćena šema za rad u zasićenju, u analognim primenama, na slici dole. 22

23 Unutrašnje pojačanje Unutrašnje pojačanje se definiše kao odnos transkonduktanse i izlazne konduktanse Ovaj parametar pokazuje granice tehnologije, tj. pojačanje koje može da se dostigne sa jednim pojačavačkim stepenom pri datim uslovima polarizacije. On zavisi od odnosa g m /I Dsat, dakle od nivoa inverzije, kao i od dužine tranzistora. Jedinična učestanost Predstavlja maksimalnu učestanost do koje tranzistor može da se koristi, i mera je brzine rada tranzistora. 23

24 Unutrašnji šum Spektralna gustina strujnog termičkog šuma može da se aproksimira zavisnošću od faktora inverzije gde je Za rad u zasićenju ovo postaje S Ith Spektralna gustina naponskog termičkog šuma se zatim izračunava kao Spektralna gustina naponskog fliker šuma je gde je f učestanost a KF i AF su tehnološki parametri. Ekvivalentna spektralna gustina naponskog šuma na ulazu je jednaka zbiru 24

25 Učestanost na kojoj je komponenta fliker šuma jednaka komponenti termičkog šuma naziva se ugaonom učestanošću (corner frequency) 25

26 Način projektovanja Svaki tranzistor u kolu predstavlja kombinaciju jednog ili nekoliko projektnih parametara. Specifikacija za svaku osnovnu analognu strukturu se izvodi iz specifikacije kola. Sve struje polarizacije su određene ili iz zahteva za maksimalnu dozvoljenu struju disipacije ili minimalnu prihvatljivu brzinu. Pošto se svaka osnovna analogna struktura sastoji od jednog ili nekoliko tranzistora koji realizuju određenu analognu funkciju, potrebne vrednosti parametara svakog tranzistora se ekstrahuju iz specifikacije analogne strukture. Stoga se projektovanje na nivou tranzistora sastoji od proračuna vrednosti projektnih varijabli tranzistora kojima se ostvaruju zadati projektni parametri analogne strukture sa datom strujom polarizacije. Projektni parametri i projektne promenljive Za projektovanje osnovnih analognih struktura su potrebni sledeći parametri tranzistora: - napon zasićenja V DSsat - transkonduktansa g m - izlazna konduktansa g ds - parazitne kapacitivnosti (unutrašnje/spoljašnje) - pojačanje A i -jedinična učestanost f t - ekvivalentni šum 26

27 Iz datih izraza za ove parametre tranzistora se vidi da oni zavise od sledećih promenljivih: - struja zasićenja I Dsat - faktor inverzije IF - širina tranzistora W - dužina tranzistora L - odnos W/L - površina WL. Međuzavisnost ovih varijabli komplikuje zadatak određivanja veličina tranzistora, što u tradicionalnom načinu projektovanja predstavlja proračun širine i dužine tranzistora. Stoga problem projektovanja na nivou tranzistora treba da se postavi drugačije. Pošto tranzistor u analognom kolu obično radi u zasićenju, data struja polarizacije predstavlja struju drejna u zasićenju: Stoga struja drejna u zasićenju nije nezavisna promenljiva na nivou tranzistora, pošto je određena projektovanjem na nivou kola. Ako je zadat faktor inverzije IF, odnos W/L može da se izračuna kao ili obrnuto. Pošto dužina tranzistora utiče na važne projektne parametre kao što su izlazna konduktansa i jedinična učestanost, pogodno je izraziti širinu u funkciji IF i L : 27

28 Ovim se širina tranzistora eliminiše iz skupa projektnih promenljivih. Na isti način površina tranzistora može da se napiše kao Na ovaj način, problem dimenzionisanja tranzistora može da se posmatra kao proračun faktora inverzije i dužine tranzistora u cilju postizanja zadatih projektnih parametara sa datom strujom polarizacije. Tabela projektnih parametara u funkciji projektnih promenljivih U sledećoj tabeli su dati svi značajni tranzistorski projektni parametri u funkciji dve nezavisne projektne promenljive. Umesto transkonduktanse je kao projektni parametar upotrebljen odnos g m /I Dsat, pošto on zavisi samo od faktora inverzije, pa je pogodniji za analogni dizajn. Sa druge strane, zbir svih unutrašnjih kapacitivnosti je aproksimiran sa gde se površina WL zamenjuje datim izrazom. Na sličan način je jedinična učestanost izražena kao funkcija faktora inverzije i dužine tranzistora. Rekapitulacija projektnih parametara i njihova zavisnost od projektnih promenljivih naznačena je na sledećoj slici. Odnos g m /I Dsat, napon zasićenja i izlazna konduktansa zavise od samo jedne projektne promenljive i kada su ovi parametri dati kao projektna specifikacija, dužina tranzistora ili faktor inverzije se direktno izračunava. Nasuprot tome, projektni parametri koji zavise od dve projektne promenljive zahtevaju ili dva projektna uslova ili strategiju optimizacije. 28

29 29

30 30

31 31

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA. IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

Dr Željko Aleksić, predavanja MS1AIK, februar D. Stefanović and M. Kayal, Structured Analog CMOS Design, Springer 2008.

Dr Željko Aleksić, predavanja MS1AIK, februar D. Stefanović and M. Kayal, Structured Analog CMOS Design, Springer 2008. OSNOVNE ANALOGNE STRUKTURE Dr Željko Aleksić, predavanja MS1AIK, februar 2009. D. Stefanović and M. Kayal, Structured Analog CMOS Design, Springer 2008. 1 Osnovne analogne strukture Strukturisano projektovanje

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno. JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Aneta Prijić Poluprovodničke komponente

Aneta Prijić Poluprovodničke komponente Aneta Prijić Poluprovodničke komponente Modul Elektronske komponente i mikrosistemi (IV semestar) Studijski program: Elektrotehnika i računarstvo Broj ESPB: 6 JFET (Junction Field Effect Transistor) -

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

BIPOLARNI TRANZISTOR Auditorne vježbe

BIPOLARNI TRANZISTOR Auditorne vježbe BPOLARN TRANZSTOR Auditorne vježbe Struje normalno polariziranog bipolarnog pnp tranzistora: p n p p - p n B0 struja emitera + n B + - + - U B B U B struja kolektora p + B0 struja baze B n + R - B0 gdje

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA OSNOVI ELEKTRONIKE

RAČUNSKE VEŽBE IZ PREDMETA OSNOVI ELEKTRONIKE ELEKTRONSKI FAKULTET NIŠ KATEDRA ZA ELEKTRONIKU predmet: OSNOVI ELEKTRONIKE studijske grupe: EMT, EKM Godina 2014/2015 RAČUNSKE VEŽBE IZ PREDMETA OSNOVI ELEKTRONIKE 1 1. ZADATAK Na slici je prikazano električno

Διαβάστε περισσότερα

ELEKTROTEHNIKA. Profesor: Miroslav Lutovac Singidunum University, Predavanje: 9

ELEKTROTEHNIKA. Profesor: Miroslav Lutovac Singidunum University,   Predavanje: 9 ELEKTROTEHNIKA Profesor: Miroslav Lutovac Singidunum University, e-mail: mlutovac@singidunum.ac.rs Predavanje: 9 MOSFET Metal Oxide Semiconductor Field Effect Transistor Kontrolna elektroda (gejt) je izolovana

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II 1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

FAKULTET PROMETNIH ZNANOSTI

FAKULTET PROMETNIH ZNANOSTI SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost

Διαβάστε περισσότερα

5 Ispitivanje funkcija

5 Ispitivanje funkcija 5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:

Διαβάστε περισσότερα

1.5 TRANZISTOR SA EFEKTOM POLJA SA IZOLOVANIM GEJTOM - IGFET

1.5 TRANZISTOR SA EFEKTOM POLJA SA IZOLOVANIM GEJTOM - IGFET B 1.5 TRANZITOR A EFEKTOM POLJA A IZOLOVANIM EJTOM - IFET Za razliku od JFET-a kod koga je gejt bio spregnut sa kanalom preko p-n spoja, druga kategorija tranzistora sa efektom polja ima izolovani gejt.

Διαβάστε περισσότερα

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i

Διαβάστε περισσότερα

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x. 4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) II deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) II deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) II deo Miloš Marjanović Bipolarni tranzistor kao prekidač BIPOLARNI TRANZISTORI ZADATAK 16. U kolu sa slike bipolarni

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Osnove mikroelektronike

Osnove mikroelektronike Osnove mikroelektronike Z. Prijić T. Pešić Elektronski fakultet Niš Katedra za mikroelektroniku Predavanja 2006. Sadržaj 1 MOSFET - model za male signale 2 Struja kroz i disipacija snage Model za male

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Algoritmi zadaci za kontrolni

Algoritmi zadaci za kontrolni Algoritmi zadaci za kontrolni 1. Nacrtati algoritam za sabiranje ulaznih brojeva a i b Strana 1 . Nacrtati algoritam za izračunavanje sledeće funkcije: x y x 1 1 x x ako ako je : je : x x 1 x x 1 Strana

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti MEHANIKA FLUIDA Isticanje kroz otvore sa promenljivim nivoom tečnosti zadatak Prizmatična sud podeljen je vertikalnom pregradom, u kojoj je otvor prečnika d, na dve komore Leva komora je napunjena vodom

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Program testirati pomoću podataka iz sledeće tabele:

Program testirati pomoću podataka iz sledeće tabele: Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n

Διαβάστε περισσότερα

Iz zadatka se uočava da je doslo do tropolnog kratkog spoja na sabirnicama B, pa je zamjenska šema,

Iz zadatka se uočava da je doslo do tropolnog kratkog spoja na sabirnicama B, pa je zamjenska šema, . Na slici je jednopolno prikazan trofazni EES sa svim potrebnim parametrima. U režimu rada neposredno prije nastanka KS kroz prekidač protiče struja (168-j140)A u naznačenom smjeru. Fazni stav struje

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Elementi elektronike septembar 2014 REŠENJA. Za vrednosti ulaznog napona

Elementi elektronike septembar 2014 REŠENJA. Za vrednosti ulaznog napona lementi elektronike septembar 2014 ŠNJA. Za rednosti ulaznog napona V transistor je isključen, i rednost napona na izlazu je BT V 5 V Kada ulazni napon dostigne napon uključenja tranzistora, transistor

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

MAGNETNO SPREGNUTA KOLA

MAGNETNO SPREGNUTA KOLA MAGNETNO SPEGNTA KOA Zadatak broj. Parametri mreže predstavljene na slici su otpornost otpornika, induktivitet zavojnica, te koeficijent manetne spree zavojnica k. Ako je na krajeve mreže -' priključen

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log = ( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

Deljivost. 1. Ispitati kada izraz (n 2) 3 + n 3 + (n + 2) 3,n N nije deljiv sa 18.

Deljivost. 1. Ispitati kada izraz (n 2) 3 + n 3 + (n + 2) 3,n N nije deljiv sa 18. Deljivost 1. Ispitati kada izraz (n 2) 3 + n 3 + (n + 2) 3,n N nije deljiv sa 18. Rešenje: Nazovimo naš izraz sa I.Važi 18 I 2 I 9 I pa možemo da posmatramo deljivost I sa 2 i 9.Iz oblika u kom je dat

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo Najpre da se podsetimo tablice i osnovnih pravila:. C0.. (. ( n n n-. (a a lna 6. (e e 7. (log a 8. (ln ln a (>0 9. ( 0 0. (>0 (ovde je >0 i a >0. (cos. (cos - π. (tg kπ cos. (ctg

Διαβάστε περισσότερα

ANALIZA TTL, DTL I ECL LOGIČKIH KOLA

ANALIZA TTL, DTL I ECL LOGIČKIH KOLA ANALIZA TTL, DTL I ECL LOGIČKIH KOLA Zadatak 1 Za DTL logičko kolo sa slike 1.1, odrediti: a) Logičku funkciju kola i režime rada svih tranzistora za sve kombinacije logičkih nivoa na ulazu kola. b) Odrediti

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Testiranje statistiqkih hipoteza

Testiranje statistiqkih hipoteza Testiranje statistiqkih hipoteza Testiranje statistiqkih hipoteza Testiranje statistiqkih hipoteza je vid statistiqkog zakljuqivanja koji se primenjuje u situacijama: kada se unapred pretpostavlja postojanje određene

Διαβάστε περισσότερα

, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova

, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova Grupa A 29..206. agreb Prvi kolokvij Analognih sklopova i lektroničkih sklopova Kolokvij se vrednuje s ukupno 42 boda. rijednost pojedinog zadatka navedena je na kraju svakog zadatka.. a pojačalo na slici

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

OSNOVE ELEKTROTEHNIKE II Vježba 11.

OSNOVE ELEKTROTEHNIKE II Vježba 11. OSNOVE EEKTOTEHNKE Vježba... Za redno rezonantno kolo, prikazano na slici. je poznato E V, =Ω, =Ω, =Ω kao i rezonantna učestanost f =5kHz. zračunati: a) kompleksnu struju u kolu kao i kompleksne napone

Διαβάστε περισσότερα

Trigonometrijske nejednačine

Trigonometrijske nejednačine Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja

Διαβάστε περισσότερα

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Rešenja. Matematičkom indukcijom dokazati da za svaki prirodan broj n važi jednakost: + 5 + + (n )(n + ) = n n +.

Διαβάστε περισσότερα

Dimenzionisanje štapova izloženih uvijanju na osnovu dozvoljenog tangencijalnog napona.

Dimenzionisanje štapova izloženih uvijanju na osnovu dozvoljenog tangencijalnog napona. Dimenzionisanje štapova izloženih uvijanju na osnovu dozvoljenog tangencijalnog napona Prema osnovnoj formuli za dimenzionisanje maksimalni tangencijalni napon τ max koji se javlja u štapu mora biti manji

Διαβάστε περισσότερα

1. Pojam fazi skupa. 2. Pojam fazi skupa. 3. Funkcija pripadnosti, osobine i oblici. 4. Funkcija pripadnosti, osobine i oblici

1. Pojam fazi skupa. 2. Pojam fazi skupa. 3. Funkcija pripadnosti, osobine i oblici. 4. Funkcija pripadnosti, osobine i oblici Meko računarstvo Student: Indeks:. Poja fazi skupa. Vrednost fazi funkcije pripadnosti je iz skupa/opsega: a) {0, b) R c) N d) N 0 e) [0, ] f) [-, ] 2. Poja fazi skupa 2. Na slici je prikazan grafik: a)

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

TERMALNOG ZRAČENJA. Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine. Ž. Barbarić, MS1-TS 1

TERMALNOG ZRAČENJA. Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine. Ž. Barbarić, MS1-TS 1 OSNOVNI ZAKONI TERMALNOG ZRAČENJA Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine Ž. Barbarić, MS1-TS 1 Plankon zakon zračenja Svako telo čija je temperatura

Διαβάστε περισσότερα

Periodičke izmjenične veličine

Periodičke izmjenične veličine EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike

Διαβάστε περισσότερα

Osnove mikroelektronike

Osnove mikroelektronike Osnove mikroelektronike Z. Prijić T. Pešić Elektronski fakultet Niš Katedra za mikroelektroniku Predavanja 2006. Sadržaj Bipolarni tranzistor 1 Bipolarni tranzistor 2 Ebers-Molov model Strujno-naponske

Διαβάστε περισσότερα

4 Izvodi i diferencijali

4 Izvodi i diferencijali 4 Izvodi i diferencijali 8 4 Izvodi i diferencijali Neka je funkcija f() definisana u intervalu (a, b), i neka je 0 0 + (a, b). Tada se izraz (a, b) i f( 0 + ) f( 0 ) () zove srednja brzina promene funkcije

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα