Osnove mikroelektronike

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Osnove mikroelektronike"

Transcript

1 Osnove mikroelektronike Z. Prijić T. Pešić Elektronski fakultet Niš Katedra za mikroelektroniku Predavanja 2006.

2 Sadržaj 1 MOSFET - model za male signale 2 Struja kroz i disipacija snage

3 Model za male signale Aproksimacija malih signala podrazumeva da se veličine koje karakterišu male signale superponiraju na DC vrednosti. Na primer, ukupna struja drejna i D jednaka je zbiru DC stuje I D i struje malih signala i d. Ukupni napon na drejnu je υ D = V D + υ d. Analiza i projektovanje kola mogu se značajno pojednostaviti odvajanjem proračunavanja za polarizacije DC i malim signalima. Dakle, najpre se postavi radna tačka i izračunaju sve DC veličine, a zatim se može izvršiti analiza kola za male signale zanemarujući DC veličine.

4 Model za male signale Aproksimacija malih signala podrazumeva da se veličine koje karakterišu male signale superponiraju na DC vrednosti. Na primer, ukupna struja drejna i D jednaka je zbiru DC stuje I D i struje malih signala i d. Ukupni napon na drejnu je υ D = V D + υ d. Analiza i projektovanje kola mogu se značajno pojednostaviti odvajanjem proračunavanja za polarizacije DC i malim signalima. Dakle, najpre se postavi radna tačka i izračunaju sve DC veličine, a zatim se može izvršiti analiza kola za male signale zanemarujući DC veličine.

5 Model za male signale Aproksimacija malih signala podrazumeva da se veličine koje karakterišu male signale superponiraju na DC vrednosti. Na primer, ukupna struja drejna i D jednaka je zbiru DC stuje I D i struje malih signala i d. Ukupni napon na drejnu je υ D = V D + υ d. Analiza i projektovanje kola mogu se značajno pojednostaviti odvajanjem proračunavanja za polarizacije DC i malim signalima. Dakle, najpre se postavi radna tačka i izračunaju sve DC veličine, a zatim se može izvršiti analiza kola za male signale zanemarujući DC veličine.

6 Model za male signale Aproksimacija malih signala podrazumeva da se veličine koje karakterišu male signale superponiraju na DC vrednosti. Na primer, ukupna struja drejna i D jednaka je zbiru DC stuje I D i struje malih signala i d. Ukupni napon na drejnu je υ D = V D + υ d. Analiza i projektovanje kola mogu se značajno pojednostaviti odvajanjem proračunavanja za polarizacije DC i malim signalima. Dakle, najpre se postavi radna tačka i izračunaju sve DC veličine, a zatim se može izvršiti analiza kola za male signale zanemarujući DC veličine.

7 Model za male signale Aproksimacija malih signala podrazumeva da se veličine koje karakterišu male signale superponiraju na DC vrednosti. Na primer, ukupna struja drejna i D jednaka je zbiru DC stuje I D i struje malih signala i d. Ukupni napon na drejnu je υ D = V D + υ d. Analiza i projektovanje kola mogu se značajno pojednostaviti odvajanjem proračunavanja za polarizacije DC i malim signalima. Dakle, najpre se postavi radna tačka i izračunaju sve DC veličine, a zatim se može izvršiti analiza kola za male signale zanemarujući DC veličine.

8 Model za male signale Zanemaren efekat modulacije dužine kanala MOSFET se ponaša kao naponom kontrolisani strujni izvor: on prihvata napon υ gs izmedju gejta i sorsa i obezbedjuje struju g m υ gs na izvodu drejna. Ulazna otpornost ovog kontrolisanog izvora je veoma velika (beskonačna). Izlazna otpornost se takodje, za sada, može smatrati beskonačnom.

9 Model za male signale Ostali elementi kola pojačavača sa MOS tranzistorima kod analize malih signala Kod analize malih signala, tranzistor se zamenjuje modelom za male signale, a ostali elementi u kolu ostaju nepromenjeni osim što: idealni naponski DC izvori su kratkospojeni; idealni strujni DC izvori su zamenjeni otvorenom granom.

10 Model za male signale Uključen efekat modulacije dužine kanala Najveći nedostatak opisanog modela je pretpostavka da struja drejna u saturaciji ne zavisi od napona na drejnu. Struja drejna ima linearnu zavisnost od napona υ DS, koja se može modelirati konačnom otpornošću r 0 izmedju drejna i sorsa: r 0 = V A I D Uobičajene vrednosti za r 0 su izmedju 10kΩ i 1MΩ.

11 Model za male signale Uključen efekat modulacije dužine kanala Parametri modela za male signale g m i r 0 zavise od DC polarizacije MOSFET-a.

12 Model za male signale Primer pojačavača i ekvivalentnog kola za male signale

13 Sadržaj MOSFET - model za male signale Struja kroz i disipacija snage 1 MOSFET - model za male signale 2 Struja kroz i disipacija snage

14 Struja kroz i disipacija snage CMOS logička kola su se pojavila kao standardna pakovanja za korišćenje u konvencionalnim digitalnim sistemima još početkom 70-tih (SSI i MSI kola). Kasnih 70-tih korišćena su logička kola sa samo NMOS tranzistorima (LSI i VLSI), jer je tadašnja CMOS tehnologija bila previše složena da ekonomski bude isplativa za čipove sa visokim stepenom integracije. Sa poboljšanjem tehnoloških procesa, CMOS tehnologija je u potpunosti zamenila NMOS tehnologiju na svim nivoima integracije, kako za analogne tako i za digitalne primene.

15 Struja kroz i disipacija snage CMOS logička kola su se pojavila kao standardna pakovanja za korišćenje u konvencionalnim digitalnim sistemima još početkom 70-tih (SSI i MSI kola). Kasnih 70-tih korišćena su logička kola sa samo NMOS tranzistorima (LSI i VLSI), jer je tadašnja CMOS tehnologija bila previše složena da ekonomski bude isplativa za čipove sa visokim stepenom integracije. Sa poboljšanjem tehnoloških procesa, CMOS tehnologija je u potpunosti zamenila NMOS tehnologiju na svim nivoima integracije, kako za analogne tako i za digitalne primene.

16 Struja kroz i disipacija snage CMOS logička kola su se pojavila kao standardna pakovanja za korišćenje u konvencionalnim digitalnim sistemima još početkom 70-tih (SSI i MSI kola). Kasnih 70-tih korišćena su logička kola sa samo NMOS tranzistorima (LSI i VLSI), jer je tadašnja CMOS tehnologija bila previše složena da ekonomski bude isplativa za čipove sa visokim stepenom integracije. Sa poboljšanjem tehnoloških procesa, CMOS tehnologija je u potpunosti zamenila NMOS tehnologiju na svim nivoima integracije, kako za analogne tako i za digitalne primene.

17 - osnovno kolo Struja kroz i disipacija snage Sastoji se od dva uparena tranzistora: Q N sa n tipom kanala; Q P sa p tipom kanala; Supstrati tranzistora vezani su za odgovarajuće izvode sorsa.

18 Ulaz invertora na logičkoj jedinici (υ I = V DD ) Struja kroz i disipacija snage

19 Ulaz invertora na logičkoj jedinici (υ I = V DD ) Struja kroz i disipacija snage Izlazni napon je blizu 0 (manji od 10mV), struja kroz tranzistore je skoro 0. Disipacija snage u kolu je vrlo mala (manja od µw). Q N obezbedjuje niskootporni put izmedju izlaza i mase: 1 r DSN = [ ( k W n L )n (V DD V tn ) ]

20 Ulaz invertora na logičkoj nuli (υ I = 0) Struja kroz i disipacija snage

21 Ulaz invertora na logičkoj nuli (υ I = 0) Struja kroz i disipacija snage Izlazni napon je skoro jednak V DD (manji od njega za oko 10mV), struja kroz tranzistore je skoro 0. Disipacija snage u kolu je i u ovom slučaju vrlo mala. Q P obezbedjuje niskootporni put izmedju izlaza i DC napajanja V DD : 1 r DSP = [ ( k p W ) ] L p (V DD V tp )

22 MOSFET - model za male signale Struja kroz i disipacija snage Osnovni se ponaša kao idealni invertor. 1 Nivoi izlaznih napona su 0 i V DD, što obezbedjuje odličnu izmenu signala i velike margine šuma. 2 Disipacija snage je skoro jednaka nuli (zanemarujući disipaciju usled struja curenja) za oba logička stanja. 3 Postoji niskootporni put izmedju izlaza i mase ili V DD, što obezbedjuje da je izlazni napon 0 ili V DD, nezavisno od odnosa W /L ili drugih parametara tranzistora. 4 Ulazna otpornost invertora je beskonačna (I G = 0), što znači da se na izlaz invertora može vezati veći broj sličnih invertora bez gubitka u nivou signala.

23 Fan-in i Fan-out MOSFET - model za male signale Struja kroz i disipacija snage Fan-in: Maksimalni broj logičkih gejtova koji se mogu priključiti na ulazni gejt nekog logičkog kola. Fan-out: Maksimalni broj logičkih gejtova koji se mogu priključiti na izlazni gejt nekog logičkog kola.

24 Sadržaj MOSFET - model za male signale Struja kroz i disipacija snage 1 MOSFET - model za male signale 2 Struja kroz i disipacija snage

25 Struja kroz i disipacija snage Potpuna prenosna karakteristika može se dobiti ponavljanjem grafičke procedure opisane za dva prethodna ekstremna slučaja napona υ I :

26 Struja kroz i disipacija snage V IL niži ulazni napon pri kome je strmina prenosne karakteristike jednaka -1; V IH viši ulazni napon pri kome je strmina prenosne karakteristike jednaka -1; V OH - izlazni napon koji odgovara naponu V IL ; V OL - izlazni napon koji odgovara naponu V IH ; V M - napon pri kome su naponi na ulazu i izlazu invertora jednaki.

27 Struja kroz i disipacija snage se obično projektuje tako da tranzistori imaju iste vrednosti napona praga (V tn = V tp =V t ); Tranzistori najčešće imaju jednake dužine kanala, ali za dobijanje simetrične prelazne karakteristike širina tranzistora Q P je 2 do 3 puta veća nego kod tranzistora Q N, tako da bude zadovoljen uslov: W p W n = µ n µ p

28 Struja kroz i disipacija snage Simetrična naponska karakteristika sa naznačenim oblastima rada pojedinih tranzistora

29 Margine šuma MOSFET - model za male signale Struja kroz i disipacija snage Ako se izlaz jednog logičkog kola optereti drugim logičkim kolima, potrebno je obezbediti da se naponski nivoi sa izlaza prethodnog kola uvek pravilno interpretiraju na ulazu narednog kola. U tom smislu se definišu margine šuma: NM H = V OH V IH NM L = V IL V OL Margina šuma NM H obezbedjuje da se logička jedinica sa izlaza prvog invertora interpretira kao logička jedinica na ulazu drugog invertora. Margina šuma NM L obezbedjuje da se logička nula sa izlaza prvog invertora interpretira kao logička nula na ulazu drugog invertora.

30 Sadržaj MOSFET - model za male signale Struja kroz i disipacija snage 1 MOSFET - model za male signale 2 Struja kroz i disipacija snage

31 Struja kroz i disipacija snage Ekvivalentna kapacitivnost C na izlazu invertora uključuje: ulaznu kapacitivnost logičkih kola koja se vezuju na izlaz invertora; parazitnu kapacitivnost veza izmedju kola; parazitnu kapacitivnost osiromašenih oblasti spoja drejn-supstrat tranzistora unutar invertora.

32 Propagaciono kašnjenje Struja kroz i disipacija snage Brzina rada digitalnog sistema odredjena je propagacionim kašnjenjem logičkih gejtova koji su korišćeni pri projektovanju i realizaciji sistema. Pretpostavka: promene napona na ulazu su trenutne; Ako su tranzistori upareni, kako je kolo simetrično, vremena porasta i opadanja izlaznog signala bi trebalo da budu jednaka.

33 Na ulaz se dovodi logička jedinica... Struja kroz i disipacija snage Za odredjivanje vremena opadanja izlaznog signala:

34 Vremena kašnjanja Struja kroz i disipacija snage Vreme pražnjenje kondenzatora t PHL (High-to-Low output prelaz), za uobičajen slučaj V t 0.2V DD : 1.6C t PHL = k n (W /L) n V DD Vreme punjenja kondenzatora t PLH (Low-to-High output prelaz): 1.6C t PLH = k p (W /L) p V DD Propagaciono kašnjenje je: t p = t PHL + t PLH 2

35 Model za male signale MOSFET - model za male signale Struja kroz i disipacija snage

36 Sadržaj MOSFET - model za male signale Struja kroz i disipacija snage 1 MOSFET - model za male signale 2 Struja kroz i disipacija snage

37 Struja kroz i disipacija snage Struja kroz i disipacija snage Struja kroz Kod a struja protiče samo u prelaznom režimu, odnosno pri promeni logičkih stanja invertora. To je i osnovni razlog zbog koga se za kola visokog stepena integracije (VLSI i ULSI) koristi isključivo CMOS tehnologija.

38 Struja kroz i disipacija snage Struja kroz i disipacija snage Struja kroz Kod a struja protiče samo u prelaznom režimu, odnosno pri promeni logičkih stanja invertora. To je i osnovni razlog zbog koga se za kola visokog stepena integracije (VLSI i ULSI) koristi isključivo CMOS tehnologija.

39 Struja kroz i disipacija snage Struja kroz i disipacija snage Disipacija snage Energija na kondenzatoru je CVDD 2 /2, što znači da je PMOS tranzistor da bi napunio kondenzator C naelektrisanjem koje obezbedjuje napon na njegovim krajevima V DD disipirao energiju CVDD 2 /2. Slična analiza važi i za pražnjenje kondenzatora. Ukoliko menja stanje f puta u sekundi, onda je dinamička snaga disipacije na njemu: P D = fcv 2 DD Druga komponenta disipacije snage odnosi se na prelazni režim a. U tom slučaju su oba tranzistora uključena i kroz kolo teče struja od izvora V DD do mase.

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA OSNOVI ELEKTRONIKE

RAČUNSKE VEŽBE IZ PREDMETA OSNOVI ELEKTRONIKE ELEKTRONSKI FAKULTET NIŠ KATEDRA ZA ELEKTRONIKU predmet: OSNOVI ELEKTRONIKE studijske grupe: EMT, EKM Godina 2014/2015 RAČUNSKE VEŽBE IZ PREDMETA OSNOVI ELEKTRONIKE 1 1. ZADATAK Na slici je prikazano električno

Διαβάστε περισσότερα

FAKULTET PROMETNIH ZNANOSTI

FAKULTET PROMETNIH ZNANOSTI SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

Aneta Prijić Poluprovodničke komponente

Aneta Prijić Poluprovodničke komponente Aneta Prijić Poluprovodničke komponente Modul Elektronske komponente i mikrosistemi (IV semestar) Studijski program: Elektrotehnika i računarstvo Broj ESPB: 6 JFET (Junction Field Effect Transistor) -

Διαβάστε περισσότερα

Osnove mikroelektronike

Osnove mikroelektronike Osnove mikroelektronike Z. Prijić T. Pešić Elektronski fakultet Niš Katedra za mikroelektroniku Predavanja 2006. Sadržaj Bipolarni tranzistor 1 Bipolarni tranzistor 2 Ebers-Molov model Strujno-naponske

Διαβάστε περισσότερα

Snage u kolima naizmjenične struje

Snage u kolima naizmjenične struje Snage u kolima naizmjenične struje U naizmjeničnim kolima struje i naponi su vremenski promjenljive veličine pa će i snaga koja se isporučuje potrošaču biti vremenski promjenljiva Ta snaga naziva se trenutna

Διαβάστε περισσότερα

OSNOVE ELEKTROTEHNIKE II Vježba 11.

OSNOVE ELEKTROTEHNIKE II Vježba 11. OSNOVE EEKTOTEHNKE Vježba... Za redno rezonantno kolo, prikazano na slici. je poznato E V, =Ω, =Ω, =Ω kao i rezonantna učestanost f =5kHz. zračunati: a) kompleksnu struju u kolu kao i kompleksne napone

Διαβάστε περισσότερα

POJAČAVAČI VELIKIH SIGNALA (drugi deo)

POJAČAVAČI VELIKIH SIGNALA (drugi deo) OJAČAAČI ELIKIH SIGNALA (drugi deo) Obrtači faze 0. decembar 0. ojačavači velikih signala 0. decembar 0. ojačavači velikih signala Obrtači faze Diferencijalni pojačavač sa nesimetričnim ulazom. Rc Rb Rb

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) II deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) II deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) II deo Miloš Marjanović Bipolarni tranzistor kao prekidač BIPOLARNI TRANZISTORI ZADATAK 16. U kolu sa slike bipolarni

Διαβάστε περισσότερα

ELEKTROTEHNIKA. Profesor: Miroslav Lutovac Singidunum University, Predavanje: 9

ELEKTROTEHNIKA. Profesor: Miroslav Lutovac Singidunum University,   Predavanje: 9 ELEKTROTEHNIKA Profesor: Miroslav Lutovac Singidunum University, e-mail: mlutovac@singidunum.ac.rs Predavanje: 9 MOSFET Metal Oxide Semiconductor Field Effect Transistor Kontrolna elektroda (gejt) je izolovana

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

Elektronički Elementi i Sklopovi

Elektronički Elementi i Sklopovi Sadržaj predavanja: 1. Strujna zrcala pomoću BJT tranzistora 2. Strujni izvori sa BJT tranzistorima 3. Tranzistor kao sklopka 4. Stabilizacija radne točke 5. Praktični sklopovi s tranzistorima Strujno

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE ODSEK ZA SOFTVERSKO INŽENJERSTVO LABORATORIJSKE VEŽBE VEŽBA BROJ 2 DIODA I TRANZISTOR 1. 2. IME I PREZIME BR. INDEKSA GRUPA

Διαβάστε περισσότερα

Ovisnost ustaljenih stanja uzlaznog pretvarača 16V/0,16A o sklopnoj frekvenciji

Ovisnost ustaljenih stanja uzlaznog pretvarača 16V/0,16A o sklopnoj frekvenciji Ovisnost ustaljenih stanja uzlaznog pretvarača 16V/0,16A o sklopnoj frekvenciji Električna shema temeljnog spoja Električna shema fizički realiziranog uzlaznog pretvarača +E L E p V 2 P 2 3 4 6 2 1 1 10

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Snage u ustaljenom prostoperiodičnom režimu

Snage u ustaljenom prostoperiodičnom režimu Snage u ustaljenom prostoperiodičnom režimu 13. januar 016 Posmatrajmo kolo koje se sastoji od dvije podmreže M i N, kao na Slici 1. U kolu je uspostavljen ustaljeni prostoperiodični režim i ulazni napon

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Κεφάλαιο 2 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab

Κεφάλαιο 2 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab ΚΥΚΛΩΜΑΤΑ VLSI Πανεπιστήμιο Ιωαννίνων CMOS Αναστροφέας Κεφάλαιο ο Τμήμα Μηχανικών Η/Υ και Πληροφορικής Γ. Τσιατούχας VLSI Systems ad Computer Architecture Lab ΚΥΚΛΩΜΑΤΑ VLSI Διάρθρωση 1. I V χαρακτηριστική

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Elektronički Elementi i Sklopovi. Sadržaj predavanja: 1. MOSFET tranzistor obogaćenog tipa 2. CMOS 3. MESFET tranzistor 4. DC analiza FET tranzistora

Elektronički Elementi i Sklopovi. Sadržaj predavanja: 1. MOSFET tranzistor obogaćenog tipa 2. CMOS 3. MESFET tranzistor 4. DC analiza FET tranzistora Sadržaj predavanja: 1. MOSFET tranzistor obogaćenog tipa 2. CMOS 3. MESFET tranzistor 4. DC analiza FET tranzistora MOSFET tranzistor obogaćenog tipa Konstrukcija MOSFET tranzistora obogaćenog tipa je

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

Zadatak 1. U kojim od spojeva ispod je iznos pada napona na otporniku R=100 Ω približno 0V?

Zadatak 1. U kojim od spojeva ispod je iznos pada napona na otporniku R=100 Ω približno 0V? Zadatak 1. U kojim od spojeva ispod je iznos pada napona na otporniku R=100 Ω približno 0V? a) b) c) d) e) Odgovor: a), c), d) Objašnjenje: [1] Ohmov zakon: U R =I R; ako je U R 0 (za neki realni, ne ekstremno

Διαβάστε περισσότερα

MAGNETNO SPREGNUTA KOLA

MAGNETNO SPREGNUTA KOLA MAGNETNO SPEGNTA KOA Zadatak broj. Parametri mreže predstavljene na slici su otpornost otpornika, induktivitet zavojnica, te koeficijent manetne spree zavojnica k. Ako je na krajeve mreže -' priključen

Διαβάστε περισσότερα

Memorijski CMOS sklopovi

Memorijski CMOS sklopovi Memorijski CMOS sklopovi Zadatak 1 U statičkoj RAM ćeliji na slici 1 dimenzije kanala tranzistora T 1 i T 3 su ( W / ) = 3 λ/λ, a tranzistora T, T 4, T 5 i T 6 su ( W / ) = 4 λ/λ pri čemu je λ = 0,1 μm.

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Elektronske komponente

Elektronske komponente Elektronske komponente Z. Prijić Elektronski fakultet Niš Katedra za mikroelektroniku Predavanja 2014. Sadržaj 1 Kalem Sadržaj Kalem 1 Kalem - definicije Kalem Kalem je pasivna elektronska komponenta koja

Διαβάστε περισσότερα

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD Predmet: Mašinski elementi Proraþun vratila strana 1 Dimenzionisati vratilo elektromotora sledecih karakteristika: ominalna snaga P 3kW Broj obrtaja n 14 min 1 Shema opterecenja: Faktor neravnomernosti

Διαβάστε περισσότερα

MERNO-AKVIZICIONI SISTEMI U INDUSTRIJI A/D KONVERTORI SA SUKCESIVNIM APROKSIMACIJAMA

MERNO-AKVIZICIONI SISTEMI U INDUSTRIJI A/D KONVERTORI SA SUKCESIVNIM APROKSIMACIJAMA MERNO-AKVIZICIONI SISTEMI U INDUSTRIJI A/D KONVERTORI SA SUKCESIVNIM APROKSIMACIJAMA 1 1. OSNOVE SAR A/D KONVERTORA najčešće se koristi kada su u pitanju srednje brzine konverzije od nekoliko µs do nekoliko

Διαβάστε περισσότερα

2.2 Pojačavač snage. Autori: prof. dr Predrag Petković, dr Srđan Đorđević,

2.2 Pojačavač snage. Autori: prof. dr Predrag Petković, dr Srđan Đorđević, 2.2 Pojačavač snage Autori: prof. dr Predrag Petković, dr Srđan Đorđević, 2.2.1 Cilj vežbe Ova vežba treba da omugući studentima da sagledaju osobine pojačavača velikih signala koji rade u klasi AB i B.

Διαβάστε περισσότερα

INTEGRISANA KOLA OPERACIONIH POJAČAVAČA

INTEGRISANA KOLA OPERACIONIH POJAČAVAČA NTEGRSN KOL OPERONH POJČVČ 1 UVOD U interisanim kolima ne realizuju se induktivnosti zbo toa što je za to potrebna velika površina čipa. Ukoliko su neophodne u kolu one mou biti vezane na spoljašne priključke

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Θεωρία Τρανζίστορ MOS

Θεωρία Τρανζίστορ MOS 2 η Θεµατική Ενότητα : Θεωρία Τρανζίστορ MOS Επιµέλεια διαφανειών:. Μπακάλης Θεωρία Τρανζίστορ MOS Ένα τρανζίστορ MOS ορίζεται ως στοιχείο φορέων πλειονότητας (majority - carrier device) του οποίου το

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

L E M I L I C E LEMILICA WELLER WHS40. LEMILICA WELLER SP25 220V 25W Karakteristike: 220V, 25W, VRH 4,5 mm Tip: LEMILICA WELLER. Tip: LEMILICA WELLER

L E M I L I C E LEMILICA WELLER WHS40. LEMILICA WELLER SP25 220V 25W Karakteristike: 220V, 25W, VRH 4,5 mm Tip: LEMILICA WELLER. Tip: LEMILICA WELLER L E M I L I C E LEMILICA WELLER SP25 220V 25W Karakteristike: 220V, 25W, VRH 4,5 mm LEMILICA WELLER SP40 220V 40W Karakteristike: 220V, 40W, VRH 6,3 mm LEMILICA WELLER SP80 220V 80W Karakteristike: 220V,

Διαβάστε περισσότερα

PRAKTIKUM ZA LABORATORIJSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) Aneta Prijić Miloš Marjanović

PRAKTIKUM ZA LABORATORIJSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) Aneta Prijić Miloš Marjanović Univerzitet u Nišu Elektronski fakultet PRAKTIKUM ZA LABORATORIJSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) Aneta Prijić Miloš Marjanović SPISAK VEŽBI 1. Ispravljačka diodna

Διαβάστε περισσότερα

Μικροηλεκτρονική - VLSI

Μικροηλεκτρονική - VLSI ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μικροηλεκτρονική - VLSI Ενότητα 5: Αντιστροφέας CMOS Κυριάκης - Μπιτζάρος Ευστάθιος Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

OPERACIONI POJAČAVAČI. Doc. dr. Neđeljko Lekić

OPERACIONI POJAČAVAČI. Doc. dr. Neđeljko Lekić OPERACIONI POJAČAVAČI Doc. dr. Neđeljko Lekić ŠTO JE OPERACIONI POJAČAVAČ? Pojačavač visokog pojačanja Ima diferencijalne ulaze Obično ima jedan izlaz Visoka ulazna i mala izlazna otpornost Negativnom

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

Snaga naizmenicne i struje

Snaga naizmenicne i struje Snaga naizmenicne i struje Zadatak električne mreže u okviru elektroenergetskog sistema (EES) je prenos i distribucija električne energije od izvora do potrošača, uz zadovoljenje kriterijuma koji se tiču

Διαβάστε περισσότερα

1.5 TRANZISTOR SA EFEKTOM POLJA SA IZOLOVANIM GEJTOM - IGFET

1.5 TRANZISTOR SA EFEKTOM POLJA SA IZOLOVANIM GEJTOM - IGFET B 1.5 TRANZITOR A EFEKTOM POLJA A IZOLOVANIM EJTOM - IFET Za razliku od JFET-a kod koga je gejt bio spregnut sa kanalom preko p-n spoja, druga kategorija tranzistora sa efektom polja ima izolovani gejt.

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Trigonometrijske nejednačine

Trigonometrijske nejednačine Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja

Διαβάστε περισσότερα

Sveučilište u Zagrebu. Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave. Elektronika 1R

Sveučilište u Zagrebu. Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave. Elektronika 1R Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave Elektronika 1R Ž. Butković, J. Divković Pukšec, A. Barić 5. Unipolarni

Διαβάστε περισσότερα

POJAČAVAČI. Sadržaj. Sadržaj. Uvod. 13. decembar Pojačavači velikih signala decembar decembar Pojačavači velikih signala

POJAČAVAČI. Sadržaj. Sadržaj. Uvod. 13. decembar Pojačavači velikih signala decembar decembar Pojačavači velikih signala POJAČAVAČ VELKH SGNALA 3. decembar 0. Pojačavači velikih signala. Uvod Namena Sadržaj Oblast sigurnog rada tranzistora Bila ilans snage (t (stepen ik iskorišćenja) išć Klir faktor Klasifikacija ij pojačavača

Διαβάστε περισσότερα

1. As (Amper sekunda) upotrebljava se kao mjerna jedinica za. A) jakost električne struje B) influenciju C) elektromotornu silu D) kapacitet E) naboj

1. As (Amper sekunda) upotrebljava se kao mjerna jedinica za. A) jakost električne struje B) influenciju C) elektromotornu silu D) kapacitet E) naboj ELEKTROTEHNIKA TZ Prezime i ime GRUPA Matični br. Napomena: U tablicu upisivati slovo pod kojim smatrate da je točan odgovor. Upisivati isključivo velika štampana slova. Točan odgovor donosi jedan bod.

Διαβάστε περισσότερα

Izvori jednosmernog napona (nastavak) - Stabilizatori - regulatori napona 2. deo - redni regulatori

Izvori jednosmernog napona (nastavak) - Stabilizatori - regulatori napona 2. deo - redni regulatori Izvori jednmernog napona (nastavak) - Stabilizatori - regulatori napona. deo - redni regulatori Sadržaj Izvori jednmernog napajanja 1. Uvod. Usmerači napona.1 Jedntrano usmeravanje. Dvtrano usmeravanje.3

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

FIZIČKO-TEHNIČKA MERENJA: ELEKTRIČNA KOLA NEOPHODNA ZA RAD SENZORA, ŠUM U SENZORIMA I KOLIMA

FIZIČKO-TEHNIČKA MERENJA: ELEKTRIČNA KOLA NEOPHODNA ZA RAD SENZORA, ŠUM U SENZORIMA I KOLIMA : ELEKTRIČNA KOLA NEOPHODNA ZA RAD SENZORA, ŠUM U SENZORIMA I KOLIMA UVOD Signal koji generiše senzor je ili suviše slab ( ~ μv) ili sadrži šum ili sadrži neželjene komponente (DC nivo) ili nije u odgovarajućoj

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

Trofazno trošilo je simetrično ako su impedanse u sve tri faze međusobno potpuno jednake, tj. ako su istog karaktera i imaju isti modul.

Trofazno trošilo je simetrično ako su impedanse u sve tri faze međusobno potpuno jednake, tj. ako su istog karaktera i imaju isti modul. Zadaci uz predavanja iz EK 500 god Zadatak Trofazno trošilo spojeno je u zvijezdu i priključeno na trofaznu simetričnu mrežu napona direktnog redoslijeda faza Pokazivanja sva tri idealna ampermetra priključena

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

POGON SA ASINHRONIM MOTOROM

POGON SA ASINHRONIM MOTOROM OGON SA ASNHRON OTORO oučavaćemo amo ogone a tofaznim motoom. Najčešće koišćeni ogon. Ainhoni moto: - ota kontukcija; - jeftin; - efikaan. ETALN RSTEN LANRANO JEZGRO BAKARNE ŠKE KAVEZN ROTOR NAOTAJ LANRANO

Διαβάστε περισσότερα

Odredivanje odziva u električnim kolima

Odredivanje odziva u električnim kolima Odredivanje odziva u električnim kolima 28. oktobar 2015 Kada se u električno kolo uključe naponski ili strujni generatori dolazi do promjene stanja kola. Na elementima kola se javljaju naponi, a kroz

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

SKUPOVI I SKUPOVNE OPERACIJE

SKUPOVI I SKUPOVNE OPERACIJE SKUPOVI I SKUPOVNE OPERACIJE Ne postoji precizna definicija skupa (postoji ali nama nije zanimljiva u ovom trenutku), ali mi možemo koristiti jednu definiciju koja će nam donekle dočarati šta su zapravo

Διαβάστε περισσότερα

Zadatak Vul[V] Vul[V]

Zadatak Vul[V] Vul[V] Zadatak 11.1. a) Projektovati kolo A/D konvertora sa paralelnim komparatorima koji ulazni napon u opsegu 0 8V kovertuje u 3 bitni binarni broj prema karakteristici sa Slike 11.1.1. a). U slučaju kada je

Διαβάστε περισσότερα

Glava 3 INSTRUMENTACIONI POJAČAVAČI

Glava 3 INSTRUMENTACIONI POJAČAVAČI ioje Đurić - Osnoi analogne elektronike Glaa 3 NSTUMENTACON POJAČAVAČ ETF u eogru - Osek za elektroniku 3 nstrumentacioni pojačaači 33 X G Slika 3 A 3 Na ulaz instrumentacionog pojačaača sa slike 3 ooi

Διαβάστε περισσότερα

PRVI DEO ISPITA IZ OSNOVA ELEKTROTEHNIKE 28. jun 2003.

PRVI DEO ISPITA IZ OSNOVA ELEKTROTEHNIKE 28. jun 2003. PVI DO ISPIT I OSNOV KTOTHNIK 8 jun 003 Napomene Ispit traje 0 minuta Nije ozvoqeno napu{tawe sale 90 minuta o po~etka ispita Dozvoqena je upotreba iskqu~ivo pisaqke i ovog lista papira Kona~ne ogovore

Διαβάστε περισσότερα

Prediktor-korektor metodi

Prediktor-korektor metodi Prediktor-korektor metodi Prilikom numeričkog rešavanja primenom KP: x = fx,, x 0 = 0, x 0 x b LVM α j = h β j f n = 0, 1, 2,..., N, javlja se kompromis izmed u eksplicitnih metoda, koji su lakši za primenu

Διαβάστε περισσότερα

Elektronički Elementi i Sklopovi. Sadržaj predavanja: 1. FET tranzistori 2. MOSFET tranzistori

Elektronički Elementi i Sklopovi. Sadržaj predavanja: 1. FET tranzistori 2. MOSFET tranzistori Sadržaj predavanja: 1. FET tranzistori 2. MOSFET tranzistori Slično kao i bipolarni tranzistor FET (Field Effect Tranzistor - tranzistor s efektom polja) je poluvodički uređaj s tri terminala (izvoda)

Διαβάστε περισσότερα

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =

Διαβάστε περισσότερα

Priprema za državnu maturu

Priprema za državnu maturu Priprema za državnu maturu E L E K T R I Č N A S T R U J A 1. Poprečnim presjekom vodiča za 0,1 s proteče 3,125 10¹⁴ elektrona. Kolika je jakost struje koja teče vodičem? A. 0,5 ma B. 5 ma C. 0,5 A D.

Διαβάστε περισσότερα

9.11.Spojni tranzistor sa efektom polja (JFET)

9.11.Spojni tranzistor sa efektom polja (JFET) 9.11.Spojni tranzistor sa efektom polja (JFET) Drugi tip tranzistora sa efektom polja se formira bez upotrebe izolatora u vidu SiO, samo koristeći pn spojeve, kako je pokazano na slici 9.14 a). Ovaj uređaj,

Διαβάστε περισσότερα

ELEKTROMOTORNI POGONI SA ASINHRONIM MOTOROM

ELEKTROMOTORNI POGONI SA ASINHRONIM MOTOROM ELEKTROOTORNI POGONI SA ASINHRONI OTORO Poučavamo amo pogone a tofaznim motoom. Najčešće koišćeni moto u elektomotonim pogonima. Ainhoni moto: - jednotavna kontukcija; - mala cena; - vioka enegetka efikanot.

Διαβάστε περισσότερα

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. 5 Sistemi linearnih jednačina 47 5 Sistemi linearnih jednačina U opštem slučaju, pod sistemom linearnih jednačina podrazumevamo sistem od m jednačina sa n nepoznatih x 1 + a 12 x 2 + + a 1n x n = b 1 a

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

5. MOSFET. 5.1 PRINCIP RADA MOSFET-a Struktura MOSFET-a

5. MOSFET. 5.1 PRINCIP RADA MOSFET-a Struktura MOSFET-a 5. MOSFET MOSFET (metal-oxide-semiconductor field-effect-transistor, MOS tranzistor sa efektom polja) bio je prvi put proizveden 1960. godine, samo godinu dana nakon po~etka ere integrisanih kola 1959.

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

ΔΗΜΗΤΡΗΣ ΓΡΕΑΣΙΔΗΣ ΑΕΜ: 1624

ΔΗΜΗΤΡΗΣ ΓΡΕΑΣΙΔΗΣ ΑΕΜ: 1624 ΗΛΕΚΤΡΟΝΙΚΗ 1 - ΕΡΓΑΣΙΑ 2 ΔΗΜΗΤΡΗΣ ΓΡΕΑΣΙΔΗΣ ΑΕΜ: 1624 ΕΤΟΣ: 2ο -12- ΑΣΚΗΣΗ 1 Για τεχνολογία TSMC 0.25μm έχω: Υπολογισμός πλάτους ώστε k n /k p = 1 Υπολογισμός πλάτους ώστε k n /k p = 0.25 Υπολογισμός

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

«Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο

«Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανικών Πληροφορικής ΤΕ Εργαστήριο Σχεδίασης Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων «Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο 2016-2017 Διάλεξη 2 η :

Διαβάστε περισσότερα

PRAKTIKUM ZA LABORATORIJSKE VJEŽBE IZ ELEKTRONIKE

PRAKTIKUM ZA LABORATORIJSKE VJEŽBE IZ ELEKTRONIKE TEHNIČKI ŠKOLSKI CENTAR ZVORNIK PRAKTIKUM ZA LABORATORIJSKE VJEŽBE IZ ELEKTRONIKE II RAZRED Zanimanje: Tehničar računarstva MODUL 3 (1 čas nedeljno, 36 sedmica) PREDMETNI PROFESOR: Biljana Vidaković 0

Διαβάστε περισσότερα

Sveučilište u Zagrebu. Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave. Elektronika 1

Sveučilište u Zagrebu. Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave. Elektronika 1 Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave Elektronika 1 Ž. Butković, J. Divković Pukšec, A. Barić 5. Unipolarni

Διαβάστε περισσότερα

TEORIJA BETONSKIH KONSTRUKCIJA 79

TEORIJA BETONSKIH KONSTRUKCIJA 79 TEORIJA BETOSKIH KOSTRUKCIJA 79 Primer 1. Odrediti potrebn površin armatre za stb poznatih dimenzija, pravogaonog poprečnog preseka, opterećen momentima savijanja sled stalnog ( g ) i povremenog ( w )

Διαβάστε περισσότερα

6. ELEKTRONIKA Energetski nivoi elektrona

6. ELEKTRONIKA Energetski nivoi elektrona 6. ELEKTONIKA Elektronika je oblast elektrotehnike u kojoj se proučavaju zakonitosti i efekti proticanja nosilaca elektriciteta kroz provodnike, poluprovodnike, gasove ili vakum. elektronskim kolima nosioci

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Na grafiku bi to značilo :

Na grafiku bi to značilo : . Ispitati tok i skicirati grafik funkcije + Oblast definisanosti (domen) Kako zadata funkcija nema razlomak, to je (, ) to jest R Nule funkcije + to jest Ovo je jednačina trećeg stepena. U ovakvim situacijama

Διαβάστε περισσότερα

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα