MATEMATIKA 1. Grupa 6 Rexea zadataka i rezultati. Prvi pismeni kolokvijum, Prof Dragan ori

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "MATEMATIKA 1. Grupa 6 Rexea zadataka i rezultati. Prvi pismeni kolokvijum, Prof Dragan ori"

Transcript

1 MATEMATIKA 1 Prvi pismeni kolokvijum, Grupa 6 Rexea zadataka i rezultati Prof Dragan ori

2 MATEMATIKA 1 1. Kolokvijum, novembar Grupa 6 Dragan ori 1. Neka je M = { (x, y) : x, y R, x 2 7y 2 0 } i neka je operacija definisana sa (x, y) (a, b) = (xa + 7yb, xb + ya) za sve (x, y), (a, b) M. Ispitati da li je (M, ) grupa. Da li je data operacija komutativna? Rexee. Dokaimo da je (M, ) Abelova grupa. 1. Operacija je zatvorena u skupu M. Ako je (x, y) (a, b) = (u, v), tada iz a, b, x, y R sledi da je u = xa + 7yb R i v = xb + ya R. Treba jox proveriti da li je u 2 7v 2 0 za (x, y) M i (a, b) M. Kako je u 2 7v 2 = (xa + 7yb) 2 7(xb + ya) 2 = x 2 a xayb y 2 b 2 7x 2 b 2 14xbya 7y 2 a 2 = x 2 (a 2 7b 2 ) + 7y 2 (7b 2 a 2 ) = (a 2 7b 2 )(x 2 7y 2 ) i kako je a 2 7b 2 0 i x 2 7y 2 0, to je i u 2 7v 2 0. Prema tome, (u, v) M. 2. Operacija je u skupu M komutativna jer je (a, b) (x, y) = (ax + 7by, ay + bx) = (u, v). 3. Operacija je asocijativna. Za (x, y), (a, b), (c, d) M je gde je [(x, y) (a, b)] (c, d) = (u, v) (c, d) = (p, q), p = uc + 7vd = (ax + 7yb)c + 7(xb + ya)d = axc + 7ybc + 7xbd + 7yad, q = ud + vc = (ax + 7yb)d + (xb + ya)c = axd + 7ybd + xbc + yac. S druge strane, imamo da je gde je (x, y) [(a, b) (c, d)] = (x, y) (s, t) = (g, h), g = xs + 7yt = x(ac + 7bd) + 7y(ad + bc) = xac + 7bdx + 7yad + 7ybc, h = xt + ys = x(ad + bc) + y(ac + 7bd) = xad + xbc + yac + 7ybd. Kako je p = g i q = h, operacija je asocijativna. 4. Jediniqni element je (1, 0) jer je 1, 0 R, i vai za svaki element (x, y) M. (x, y) (1, 0) = (1, 0) = (x, y)

3 5. Svaki element (x, y) skupa M ima svoj inverzni element. Iz jednakosti (x, y) (a, b) = (1, 0) sledi da je ax + 7yb = 1 i xb + ya = 0. Determinanta ovog sistema (po a i b) je x y pa sistem ima jedinstveno rexee a = Kako je a, b R i a 2 7b 2 = 7y x = x2 7y 2 0, x x 2 7y 2, b = y x 2 7y 2. 1 x 2 7y 2 0, to je (a, b) M. Naravno, zbog komutativnosti vai i (a, b) (x, y) = (1, 0). Prema tome, element (a, b) je inverzni za element (x, y). Na osnovu (1)-(5) sledi da je struktura (M, ) Abelova grupa. 2. U zavisnosti od vrednosti parametara p i q odrediti rang matrice A = p p 12 1 pq q = 13q + 26, 1 4 q + 19 Rexee: Neka je r rang date matrice. Minor r 2. Kako je to je r = 3 za q 2. Za q = 2 imamo da je je razliqit od nule, pa je A = p p p p p 13 2p p p p p Iz posledne matrice vidimo da je r = 3 za 2p i r = 2 za p = 3. Prema tome, r = 2 za (p, q) = ( 3, 2) i r = 3 za (p, q) ( 3, 2). 3. U zavisnosti od vrednosti realnog parametra a diskutovati i rexiti sistem 2x + (a + 1)y + 2(a + 1)z = 1 2ax + 2y + (3a + 1)z = 1 2ax + 2ay + (3a + 1)z = a. Rexee: Neka je D determinanta matrice datog sistema. Kako je 2 2a + 2 a + 1 D = 2a 2 3a + 1 2a 2a 3a + 2 = 2 a + 1 2a + 2 2a 2 3a + 1 = (2a 2) 2 2a a 2 0 2a 3a + 1 = 4(a 1)2 (2a + 1), postoje tri sluqaja.

4 ( Dx (1) Za m { 1/2, 1} sistem ima jedinstveno rexee (x, y, z) = D, D y D, D ) z, gde je D 1 a + 1 2a + 2 D x = 1 2 3a + 1 a 2a 3a + 1 = 1 a + 1 2a a + 1 a 1 2a a 1 2a + 2 = 1 0 3a + 1 = (a 1) a 1 2a + 2 a a + 2 = (a 1)2 (3a + 1), 2 1 2a + 2 D y = 2a 1 3a + 1 2a a 3a + 1 = 2 1 2a + 2 2a 1 3a + 1 = (a 1) 2 2a a 1 0 2a 3a + 1 = 2(a 1)2 (2a + 1), 2 a D z = 2a 2 1 2a 2a a = 2 a a a 2 a 1 2 a 1 1 = 2a 0 1 = (a 1) 2 a a 1 2a 0 = 2a(a 1)2. Dakle, u ovom sluqaju je (x, y, z) = ( 1 4 3a + 1 2a + 1, 1 ) 2, 1 2 a. 2a + 1 (2) Za a = 1/2 dati sistem nema rexea jer je D = 0 i D z = 9/4 0. (3) Za a = 1 dati sistem ekvivalentan je jednaqini 2x + 2y + 4z = 1, pa sistem ima dvoparametarski skup rexea. Dakle, u ovom sluqaju, (x, y, z) {(1/2 α 2β, α, β), α, β R}. 4. U vektorskom prostoru V = (R 3, R, +, ) dati su vektori a = (1, 2, 3), b = (1, 1, 2), c = (0, 2, 6), d = (1, 1, 1). a) Dokazati da vektori a, b i c qine bazu vektorskog prostora V. b) Izraziti vektor d kao linearnu kombinaciju vektora a, b i c. Rexee: a) Poxto je dim(v ) = 3, dovo no je dokazati da su vektori a, b i c linearno nezavisni. Iz jednakosti αa + βb + γc = 0 dobijamo homogen sistem α + β = 0, 2α + β + 2γ = 0, 3α 2β 6γ = 0 koji ima trivijalno rexee ako i samo ako je determinanta D matrice sistema razliqita od nule. Kako je dati vektori su linearno nezavisni D = = = = 16 0, Prema tome, vektori a, b i c qine bazu vektorskog prostora V.

5 b) Iz jednakosti imamo sistem d = (1, 1, 1) = x 1 a + x 2 b + x 3 c = (x 1, 2x 1, 3x 1 ) + (x 2, x 2, 2x 2 ) + (0, 2x 3, 6x 3 ) = (x 1 + x 2, 2x 1 + x 2 + 2x 3, 3x 1 2x 2 6x 3 ) x 1 + x 2 = 1, 2x 1 + x 2 + 2x 3 = 1, 3x 1 2x 2 6x 3 = 1. Rexavaem ovog sistema (na primer, Kramerovim pravilom - matrica sistema je matrica homogenog sistema iz a)) dobijamo x 1 = 3 8, x 2 = 11 8 i x 3 = Prema tome, d = 3 8 a b c. Uvid u radove Uvid u radove bie u kab.317 (ako jox uvek bude postojao) u sledeim terminima: Za studente sa vixe od 9 poena u 12:20 Za studente sa mae od 10 poena u 12:20 Pre dolaska na uvid treba deta no prouqiti priloena rexea zadataka i pripremiti eventualna pitaa. Prof Dragan ori

6 РБ. Презиме Име Бр инд. Poeni 1 Поповић Ђорђе 45/ Пејица Ана 4/ Пејић Никола 79/ Радуловић Игор 508/ Савковић Ирена 26/ Миловановић Лука 104/ Ракуљ Кристина 512/ Соломка Соња 201/ Петровић Милица 593/ Поповић Милош 599/ Савић Вук 570/ Стојановић Вања 17/ Микашевић Александра 40/ Миљковић Марија 577/ Петковић Нина 68/ Радојичић Сандра 140/ Ристић Бојана 145/ Ставрић Лазар 106/ Тојчић Иван 846/ Филиповић Филип 64/ Матић Јован 124/ Недељковић Урош 234/ Стефановић Ана 502/ Терзић Јована 36/ Матић Срђан 222/ Митровић Дарко 113/ Николић Јелена 108/ Опачић Немања 595/ Сарић Александар 645/ Стојадиновић Милица 58/ Стојковић Филип 256/ Тодосијевић Александра 213/ Цветановић Наташа 183/ Чолић Дејан 545/ Матић Данијела 167/ Милинковић Слободан 505/ Митковић Ружица 822/ Моровић Петар 763/13 11

7 39 Недељковић Лазар 146/ Николић Ања 175/ Плескоњић Оливера 386/ Прокоповић Милан 507/ Радовановић Милица 203/ Станишић Наталија 765/ Стојић Милош 759/ Тешић Слађана 750/ Милановић Виолета 629/ Минић Бојан 158/ Николић Милица 631/ Срејић Сандра 711/ Тодић Сава 569/ Цветковић Ана 445/ Чупић Емилија 395/ Марковић Ана 586/ Милошевић Софија 523/ Николић Катарина 519/ Радић Катарина 606/ Радовић Сара 634/ Станковић Анђела 118/ Филиповић Ивана 685/ Филић Милена 249/ Црнчевић Петар 19/ Миковић Дарко 137/ Милосављевић Јелена 712/ Михајловић Јована 162/ Михајловић Никола 563/ Младеновић Јелена 370/ Младеновић Лазар 366/ Младеновић Марија 420/ Николић Срђан 444/ Стефановић Александар 641/ Стефановић Иван 270/ Цветковић Милош 248/ Чубрак Катарина 532/ Огњеновић Хана 421/ Петровић Софија 601/ Узур Милица 787/14 7

8 78 Мартиновић Сара 603/ Мићуновић Маша 430/ Пачов Катарина 277/ Пејновић Милана 832/ Пешић Никола 654/ Радовић Милица 760/ Ташин Филип 213/ Мијатовић Јована 469/ Милићевић Никола 219/ Новчић Ивана 269/ Петровић Мирослава 437/ Репановић Михајло 362/ Ристић Марија 96/ Савић Катарина 258/ Тошић Стеван 676/ Цветановић Петар 753/ Милићевић Миња 859/ Миловановић Матија 240/ Минчић Душан 581/ Ницевић Ена 380/ Радосављевић Вукан 445/ Цветковић Јована 803/ Чаровић Бранислав 260/ Милановић Александар 499/ Остојић Маја 789/ Пепић Марко 269/ Рајић Владимир 225/ Стојановић Милица 259/ Чоловић Јелена 905/ Николић Срећко 455/ Пешут Милена 839/ Радојковић Јелена 452/ Станишић Алекса 409/ Томић Ана 844/ Цветановић Немања 830/ Миленковић Андрија 437/12 0

MATEMATIKA 1. Grupa 6 Rexea zadataka i rezultati. Prvi pismeni kolokvijum, Prof Dragan ori

MATEMATIKA 1. Grupa 6 Rexea zadataka i rezultati. Prvi pismeni kolokvijum, Prof Dragan ori MATEMATIKA 1 Prvi pismeni kolokvijum, 30.11.2013 Grupa 6 Rexea zadataka i rezultati Prof Dragan ori Zadaci i rexea 1. Neka je A = {(a, b) : a, b Q, a 0} i neka je operacija definisana sa (a, b) (x, y)

Διαβάστε περισσότερα

MATEMATIKA 1. Grupa 2 Rexea zadataka i rezultati. Prvi pismeni kolokvijum, Prof Dragan ori

MATEMATIKA 1. Grupa 2 Rexea zadataka i rezultati. Prvi pismeni kolokvijum, Prof Dragan ori MATEMATIKA 1 Prvi pismeni kolokvijum, 28.11.2015 Grupa 2 Rexea zadataka i rezultati Prof Dragan ori MATEMATIKA 1 1. Kolokvijum, novembar 2015 - Grupa 2 Dragan ori 1. Neka je M = x 0 y 0 x + y 0 x, y R

Διαβάστε περισσότερα

Број поена из модула

Број поена из модула 1 I Радишић Јована 84/2012 да да 38,00 да да да 49,50 да 87,50 88,0 9 2 I Младеновић Сања 54/2012 да да 41,75 да да да 47,00 да 88,75 89,0 9 3 I Милутиновић Филип 87/2012 да да 47,00 да да да 51,00 да

Διαβάστε περισσότερα

Ime i prezime. Катарина Делчев 001/ Александар Сандуловић 002/11 5. Александар Ристић 003/ Милена Врбић 004/11 5

Ime i prezime. Катарина Делчев 001/ Александар Сандуловић 002/11 5. Александар Ристић 003/ Милена Врбић 004/11 5 VREDNOVANJE STUDENATA U PROLEĆNOM SEMESTRU ŠKOLSKE 2012/2013. GODNE MEðUNARODNO JAVNO PRAVO ( godina) me i prezime ndeks 1. Катарина Делчев 001/11 6 2. Александар Сандуловић 002/11 5 3. Александар Ристић

Διαβάστε περισσότερα

ПАТОЛОШКА АНАТОМИЈА- поени из модула 5

ПАТОЛОШКА АНАТОМИЈА- поени из модула 5 Павловић Весна 12/2010 Б 2,00 2,00 2,00 69,00 12,00 18,00 Спасојевић Кристина 93/2010 Б 2,00 2,00 2,00 53,00 8,00 14,00 Ђорђевић Ивана 60/2010 Б 2,00 2,00 2,00 68,00 12,00 18,00 I Павловић Маја 21/2010

Διαβάστε περισσότερα

КОНАЧНА РАНГ ЛИСТА СА ГРАДСКОГ ТАКМИЧЕЊА ИЗ МАТЕМАТИКЕ НИШАВСКОГ ОКРУГА ОДРЖАНОГ У ОСНОВНОЈ ШКОЛИ ДУШАН РАДОВИЋ У НИШУ 28. ФЕБРУАРА 2015.

КОНАЧНА РАНГ ЛИСТА СА ГРАДСКОГ ТАКМИЧЕЊА ИЗ МАТЕМАТИКЕ НИШАВСКОГ ОКРУГА ОДРЖАНОГ У ОСНОВНОЈ ШКОЛИ ДУШАН РАДОВИЋ У НИШУ 28. ФЕБРУАРА 2015. КОНАЧНА РАНГ ЛИСТА СА ГРАДСКОГ ТАКМИЧЕЊА ИЗ МАТЕМАТИКЕ НИШАВСКОГ ОКРУГА ОДРЖАНОГ У ОСНОВНОЈ ШКОЛИ ДУШАН РАДОВИЋ У НИШУ 28. ФЕБРУАРА 2015. ГОДИНЕ Р. Б. ШИФРА ИМЕ И ПРЕЗИМЕ УЧЕНИКА - OСМИ РАЗРЕД - БРОЈ ПОЕНА

Διαβάστε περισσότερα

КОНАЧНА РАНГ ЛИСТА СА ГРАДСКОГ ТАКМИЧЕЊА ИЗ МАТЕМАТИКЕ НИШАВСКОГ ОКРУГА ОДРЖАНОГ У ОСНОВНОЈ ШКОЛИ ДУШАН РАДОВИЋ У НИШУ 01.

КОНАЧНА РАНГ ЛИСТА СА ГРАДСКОГ ТАКМИЧЕЊА ИЗ МАТЕМАТИКЕ НИШАВСКОГ ОКРУГА ОДРЖАНОГ У ОСНОВНОЈ ШКОЛИ ДУШАН РАДОВИЋ У НИШУ 01. КОНАЧНА РАНГ ЛИСТА СА ГРАДСКОГ ТАКМИЧЕЊА ИЗ МАТЕМАТИКЕ НИШАВСКОГ ОКРУГА ОДРЖАНОГ У ОСНОВНОЈ ШКОЛИ ДУШАН РАДОВИЋ У НИШУ 01. МАРТА 2014. ГОДИНЕ - СЕДМИ РАЗРЕД - БРОЈ ПОЕНА - ЗАДАТКА 1 7070 Маја Цветковић

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

ОПШТИНСКО ТАКМИЧЕЊЕ ИЗ МАТЕМАТИКЕ РЕЗУЛТАТИ ТАКМИЧЕЊА - 5 РАЗРЕД

ОПШТИНСКО ТАКМИЧЕЊЕ ИЗ МАТЕМАТИКЕ РЕЗУЛТАТИ ТАКМИЧЕЊА - 5 РАЗРЕД Министарство просвете, науке и технолошког развоја Друштво математичара Србије Подружница математичара Ваљево Основна школа "Андра Савчић", Ваљево Датум: 28.2.2015. Ваљево ОПШТИНСКО ТАКМИЧЕЊЕ ИЗ МАТЕМАТИКЕ

Διαβάστε περισσότερα

Коначна ранг листа - IV разред

Коначна ранг листа - IV разред Место Σ Ранг 1 Теодора Лазаревић Светолик Ранковић Аранђеловац 100 I 2 Мајра Ђокић Светолик Ранковић Аранђеловац 96 I 3 Димитрије Никић Светолик Ранковић Аранђеловац 95 I 4 Милош Максимовић Светолик Ранковић

Διαβάστε περισσότερα

РАНГ I II III IV V БРОЈ ПОЕНА - ЗАДАТКА ШКОЛА МЕСТО НАСТАВНИК Р. Б. ШИФРА ИМЕ И ПРЕЗИМЕ УЧЕНИКА

РАНГ I II III IV V БРОЈ ПОЕНА - ЗАДАТКА ШКОЛА МЕСТО НАСТАВНИК Р. Б. ШИФРА ИМЕ И ПРЕЗИМЕ УЧЕНИКА КОНАЧНА ЛИСТА СА ГРАДСКОГ ТАКМИЧЕЊА ИЗ МАТЕМАТИКЕ НИШАВСКОГ ОКРУГА ОДРЖАНОГ У ОСНОВНОЈ ШКОЛИ ДУШАН РАДОВИЋ У НИШУ 04. МАРТА 2012. ГОДИНЕ - ПЕТИ РАЗРЕД - Р. Б. ШИФРА ИМЕ И ПРЕЗИМЕ УЧЕНИКА 1 5038 Михајло

Διαβάστε περισσότερα

РАНГ I II III IV V БРОЈ ПОЕНА - ЗАДАТКА ШКОЛА МЕСТО НАСТАВНИК Р. Б. ШИФРА ИМЕ И ПРЕЗИМЕ УЧЕНИКА

РАНГ I II III IV V БРОЈ ПОЕНА - ЗАДАТКА ШКОЛА МЕСТО НАСТАВНИК Р. Б. ШИФРА ИМЕ И ПРЕЗИМЕ УЧЕНИКА ПРЕЛИМИНАРНА РАНГ ЛИСТА СА ОКРУЖНОГ ТАКМИЧЕЊА ИЗ МАТЕМАТИКЕ НИШАВСКОГ ОКРУГА ОДРЖАНОГ У ОСНОВНОЈ ШКОЛИ ВОЖД КАРАЂОРЂЕ У НИШУ 31. МАРТА 2012. ГОДИНЕ - ПЕТИ РАЗРЕД - Р. Б. ШИФРА ИМЕ И ПРЕЗИМЕ УЧЕНИКА БРОЈ

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Коначна ранг листа Окружног такмичења - IV разред

Коначна ранг листа Окружног такмичења - IV разред Министарство просвете, науке и технолошког развоја Друштво математичара Србије, Подружница математичара Ваљево Основна школа "Милован Глишић", Ваљево Ваљево 19. 03. 2016. Коначна ранг листа Окружног такмичења

Διαβάστε περισσότερα

РАНГ ИМЕ И ПРЕЗИМЕ УЧЕНИКА I II III IV V БРОЈ ПОЕНА - ЗАДАТКА Р. Б. ШИФРА

РАНГ ИМЕ И ПРЕЗИМЕ УЧЕНИКА I II III IV V БРОЈ ПОЕНА - ЗАДАТКА Р. Б. ШИФРА ПРЕЛИМИНАРНА ЛИСТА СА ГРАДСКОГ ТАКМИЧЕЊА ИЗ МАТЕМАТИКЕ НИШАВСКОГ ОКРУГА ОДРЖАНОГ У ОСНОВНОЈ ШКОЛИ ДУШАН РАДОВИЋ У НИШУ 02. МАРТА 2013. ГОДИНЕ - ШЕСТИ РАЗРЕД - Р. Б. ШИФРА 1 6058 Александар Стојадиновић

Διαβάστε περισσότερα

Коначна ранг листа - IV разред

Коначна ранг листа - IV разред Коначна ранг листа - IV разред Број бодова по Шифра Име и презиме Школа Место Наставник задацима 1. 432 Вукашин Пешић Карађорђе Велико Орашје Млађена Момчиловић 2 2 2 2 2 1 I 2. 423 Наталија Ђурић Др Јован

Διαβάστε περισσότερα

ИМЕ И ПРЕЗИМЕ УЧЕНИКА РАНГ I II III IV V БРОЈ ПОЕНА - ЗАДАТКА НАСТАВНИК Павле Милошевић Душан Радовић Ниш Светлана Милић I

ИМЕ И ПРЕЗИМЕ УЧЕНИКА РАНГ I II III IV V БРОЈ ПОЕНА - ЗАДАТКА НАСТАВНИК Павле Милошевић Душан Радовић Ниш Светлана Милић I КОНАЧНА РАНГ ЛИСТА СА ОКРУЖНОГ ТАКМИЧЕЊА ИЗ МАТЕМАТИКЕ НИШАВСКОГ ОКРУГА ОДРЖАНОГ У ОСНОВНОЈ ШКОЛИ УЧИТЕЉ ТАСА У НИШУ 19.03.2016. ГОДИНЕ - ПЕТИ РАЗРЕД - БРОЈ ПОЕНА - ЗАДАТКА Σ МЕСТО НАСТАВНИК РАНГ 1 5097

Διαβάστε περισσότερα

Група % % %

Група % % % 105 / 16 Антић Љубомир К-1 0 95 48 Полаже 1. колоквијум (Теоријски и рачунски део) 63 / 16 Арсић Жељко К-1 35 45 80 80 80 Потпис + Ослобођен полагања писменог дела испита 153 / 16 Арсовић Петар К-1 23

Διαβάστε περισσότερα

школска 2016/2017. ФИЗИЧКО ВАСПИТАЊЕ- поени из модула 1

школска 2016/2017. ФИЗИЧКО ВАСПИТАЊЕ- поени из модула 1 школска 2016/2017. ФИЗИЧКО ВАСПИТАЊЕ- из модула 1 Р.Б. Т.Г. Презиме и име удента број индекса наава 1 I Гогић Анђела 46/2016 0,00 0,00 6,00 0,00 0,00 6,00 2 I Милетић Александра 84/2016 0,00 3,00 0,00

Διαβάστε περισσότερα

Резултати општинског такмичења из математике - III разред

Резултати општинског такмичења из математике - III разред Министарство просвете, науке и технолошког развоја Друштво математичара Србије, Подружница математичара Ваљево Основна школа,,владика Николај Велимировић", Ваљево Општина Ваљево 24. 02. 2018. Резултати

Διαβάστε περισσότερα

Коначна ранг листа - IV разред

Коначна ранг листа - IV разред МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ДРУШТВО МАТЕМАТИЧАРА СРБИЈЕ ПОДРУЖНИЦА МАТЕМАТИЧАРА ВАЉЕВО ОСНОВНА ШКОЛА "МИЛОВАН ГЛИШИЋ", ВАЉЕВО ВАЉЕВО, 28. 03. 2015. ОКРУЖНО ТАКМИЧЕЊЕ ИЗ МАТЕМАТИКЕ

Διαβάστε περισσότερα

Организациони одбор КОМИСИЈА ЗА КОПИРАЊЕ ТЕСТОВА ЦЕНТРАЛНА КОМИСИЈА

Организациони одбор КОМИСИЈА ЗА КОПИРАЊЕ ТЕСТОВА ЦЕНТРАЛНА КОМИСИЈА МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА РЕПУБЛИКЕ СРБИЈЕ ДРУШТВО МАТЕМАТИЧАРА СРБИЈЕ ОКРУЖНО ТАКМИЧЕЊЕ УЧЕНИКА ОСНОВНИХ ШКОЛА ИЗ МАТЕМАТИКЕ Време одржавања Организатор Покровитељи Домаћин субота

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

Резултати окружног такмичења из математике - IV разред

Резултати окружног такмичења из математике - IV разред Министарство просвете, науке и технолошког развоја Друштво математичара Србије, Подружница математичара Ваљево Основна школа,,милован Глишић", Ваљево Вaљево 25. 03. 2018. Резултати окружног такмичења из

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Име Презиме Кат. Разред Школа Место Шифра Σ Јелена Иванчић А 1 Математичка гимназија Београд 1А I награда Ирина Ђанковић А

Име Презиме Кат. Разред Школа Место Шифра Σ Јелена Иванчић А 1 Математичка гимназија Београд 1А I награда Ирина Ђанковић А Име Презиме Кат. Разред Школа Место Шифра 1 2 3 4 Σ Јелена Иванчић А 1 Математичка гимназија Београд 1А17 25 25 25 25 100 I награда Ирина Ђанковић А 1 Математичка гимназија Београд 1А16 25 25 25 25 100

Διαβάστε περισσότερα

Резултати општинског такмичења из математике - III разред

Резултати општинског такмичења из математике - III разред Министарство просвете, науке и технолошког развоја Друштво математичара Србије, Подружница математичара Ваљево Основна школа "Сестре Илић", Ваљево Ваљево 27. 02. 2016. Резултати општинског такмичења из

Διαβάστε περισσότερα

Резултати општинског такмичења из математике - III разред

Резултати општинског такмичења из математике - III разред Министарство просвете, науке и технолошког развоја Друштво математичара Србије, Подружница математичара Ваљево Основна школа "Сестре Илић", Ваљево Ваљево 27. 02. 2016. Резултати општинског такмичења из

Διαβάστε περισσότερα

Општинско такмичење из математике - V разред

Општинско такмичење из математике - V разред Општинско такмичење из математике - V разред 1 Илија Серафимовић ОШ Мирослав Антић Радица Миловановић 20 20 20 20 20 100 I 2 Срна Марковић ОШ Јован Јовановић Змај Миомир Станивуковић 20 20 15 20 20 95

Διαβάστε περισσότερα

I Pismeni ispit iz matematike 1 I

I Pismeni ispit iz matematike 1 I I Pismeni ispit iz matematike I 27 januar 2 I grupa (25 poena) str: Neka je A {(x, y, z): x, y, z R, x, x y, z > } i ako je operacija definisana sa (x, y, z) (u, v, w) (xu + vy, xv + uy, wz) Ispitati da

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

ТЕХНИЧКА МЕХАНИКА 1 » РЕЗУЛТАТИ 3. КОЛОКВИЈУМА « 3. колоквијум положили су студенти који су имали мин. 22 поен (од могућих 50 поена).

ТЕХНИЧКА МЕХАНИКА 1 » РЕЗУЛТАТИ 3. КОЛОКВИЈУМА « 3. колоквијум положили су студенти који су имали мин. 22 поен (од могућих 50 поена). ТЕХНИЧКА МЕХАНИКА 1» РЕЗУЛТАТИ 3. КОЛОКВИЈУМА «3. колоквијум 3. колоквијум положили су студенти који су имали мин. 22 поен (од могућих 50 поена). Поправни колоквијум (за студенте који нису положили 3.колоквијум)

Διαβάστε περισσότερα

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa Binarne operacije Binarna operacija na skupu A je preslikavanje skupa A A u A, to jest : A A A. Pišemo a b = c. Označavanje operacija:,,,. Poznate operacije: sabiranje (+), oduzimanje ( ), množenje ( ).

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE 1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar

Διαβάστε περισσότερα

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i PRIPREMA ZA II PISMENI IZ ANALIZE SA ALGEBROM. zadatak Re{avawe algebarskih jedna~ina tre}eg i ~etvrtog stepena. U skupu kompleksnih brojeva re{iti jedna~inu: a x 6x + 9 = 0; b x + 9x 2 + 8x + 28 = 0;

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

Sistemi linearnih jednačina

Sistemi linearnih jednačina Sistemi linearnih jednačina Sistem od n linearnih jednačina sa n nepoznatih (x 1, x 2,..., x n ) je a 11 x 1 + a 12 x 2 + + a 1n x n = b 1, a 21 x 1 + a 22 x 2 + + a 2n x n = b 2, a n1 x 1 + a n2 x 2 +

Διαβάστε περισσότερα

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka 1 Afina geometrija 11 Afini prostor Definicija 11 Pod afinim prostorom nad poljem K podrazumevamo svaku uređenu trojku (A, V, +): A - skup taqaka V - vektorski prostor nad poljem K + : A V A - preslikavanje

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

x + 3y + 6z = 3 3x + 5y + z = 4 x + y + z = 4.

x + 3y + 6z = 3 3x + 5y + z = 4 x + y + z = 4. Linearna algebra A, kolokvijum, 1. tok 22. novembar 2014. 1. a) U zavisnosti od realnih parametara a i b Gausovim metodom rexiti sistem linearnih jednaqina nad poljem R ax + (a + b)y + bz = 3a + 5b ax +

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Matematika 1 { fiziqka hemija

Matematika 1 { fiziqka hemija UNIVERZITET U BEOGRADU MATEMATIQKI FAKULTET Matematika 1 { fiziqka hemija Vektori Tijana Xukilovi 29. oktobar 2015 Definicija vektora Definicija 1.1 Vektor je klasa ekvivalencije usmerenih dui koje imaju

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

LINEARNA ALGEBRA 1, ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ, VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ

LINEARNA ALGEBRA 1, ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ, VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ LINEARNA ALGEBRA 1 ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ 2. VEKTORSKI PROSTORI - LINEARNA (NE)ZAVISNOST SISTEM IZVODNICA BAZA Definicija 1. Neka je F

Διαβάστε περισσότερα

РЕЗУЛТАТИ ОПШТИНСКОГ ТАКМИЧЕЊА ИЗ МАТЕМАТИКЕ

РЕЗУЛТАТИ ОПШТИНСКОГ ТАКМИЧЕЊА ИЗ МАТЕМАТИКЕ ТРЕЋИ РАЗРЕД БОДОВИ Р.Б. ИМЕ И ПРЕЗИМЕ ШИФРА ШКОЛА МЕСТО УЧИТЕЉ 1. 2. 3. 4. 5. Σ 1 ЈАКОВ НЕШИЋ Е13 ИВО ЛОЛА РИБАР СОМБОР СВЕТЛАНА ШТАЈБАХ 20 20 10 20 20 95 1. 2 Коста Талоши С08 ОШ "Аврам Мразовић" Сомбор

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1 Ispit održan dana 9 0 009 Naći sve vrijednosti korjena 4 z ako je ( ) 8 y+ z Data je prava a : = = kroz tačku A i okomita je na pravu a z = + i i tačka A (,, 4 ) Naći jednačinu prave b koja prolazi ( +

Διαβάστε περισσότερα

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA. Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.

Διαβάστε περισσότερα

Ministarstvo prosvete, nauke i tehnoloxkog razvoja Druxtvo matematiqara Srbije DRЖAVNO TAKMIQENjE IZ MATEMATIKE UQENIKA SREDNjIH XKOLA 5. mart 2016.

Ministarstvo prosvete, nauke i tehnoloxkog razvoja Druxtvo matematiqara Srbije DRЖAVNO TAKMIQENjE IZ MATEMATIKE UQENIKA SREDNjIH XKOLA 5. mart 2016. Ministarstvo prosvete, nauke i tehnoloxkog razvoja Druxtvo matematiqara Srbije DRЖAVNO TAKMIQENjE IZ MATEMATIKE UQENIKA SREDNjIH XKOLA 5. mart 2016. Prvi razred A kategorija 1. Neka je operacija,, na skupu

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak

Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak Matematiqki fakultet Univerzitet u Beogradu Domai zadatak Zlatko Lazovi 30. decembar 2016. verzija 1.1 Sadraj 1 METRIQKI PROSTORI 2 1 1 METRIQKI PROSTORI a) Neka je (M, d) metriqki prostor i neka je (x

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

1 Pojam funkcije. f(x)

1 Pojam funkcije. f(x) Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a: Zenica, 70006 + y+ z+ 4= 0 y+ z : i ( q) : = = y + z 4 = 0 a) Napisati pavu p u kanonskom, a pavu q u paametaskom obliku b) Naći jednačinu avni koja polazi koz pavu p i okomita je na pavu q ate su pave

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

- ЛИСТА ДОБИТНИКА СТИПЕНДИЈЕ - ФАКУЛТЕТ (основне академске студије у Републици Србији) Факултет музичке уметности. Факултет политичких наука

- ЛИСТА ДОБИТНИКА СТИПЕНДИЈЕ - ФАКУЛТЕТ (основне академске студије у Републици Србији) Факултет музичке уметности. Факултет политичких наука КОНКУРС ЗА СТИПЕНДИРАЊЕ НАЈБОЉИХ СТУДЕНАТА СТУДИЈА ДРУГОГ И ТРЕЋЕГ СТЕПЕНА НА УНИВЕРЗИТЕТИМА ЗЕМАЉА ЧЛАНИЦА ЕВРОПСКЕ УНИЈЕ И ЕВРОПСКЕ АСОЦИЈАЦИЈЕ ЗА СЛОБОДНУ ТРГОВИНУ (EFTA) И НА ВОДЕЋИМ СВЕТСКИМ УНИВЕРЗИТЕТИМА,

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Matematika 4. t x(u)du + 4. e t u y(u)du, t e u t x(u)du + Pismeni ispit, 26. septembar e x2. 2 cos ax dx, a R.

Matematika 4. t x(u)du + 4. e t u y(u)du, t e u t x(u)du + Pismeni ispit, 26. septembar e x2. 2 cos ax dx, a R. Matematika 4 zadaci sa pro²lih rokova, emineter.wordpress.com Pismeni ispit, 26. jun 25.. Izra unati I(α, β) = 2. Izra unati R ln (α 2 +x 2 ) β 2 +x 2 dx za α, β R. sin x i= (x2 +a i 2 ) dx, gde su a i

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Geometrija (I smer) deo 1: Vektori

Geometrija (I smer) deo 1: Vektori Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo

Διαβάστε περισσότερα

Linearna algebra I, zimski semestar 2007/2008

Linearna algebra I, zimski semestar 2007/2008 Linearna algebra I, zimski semestar 2007/2008 Predavanja: Nenad Bakić, Vježbe: Luka Grubišić i Maja Starčević 22. listopada 2007. 1 Prostor radijvektora i sustavi linearni jednadžbi Neka je E 3 trodimenzionalni

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Vektorski prostori. Vektorski prostor

Vektorski prostori. Vektorski prostor Vektorski prostori Vektorski prostor Neka je X neprazan skup i (K, +, ) polje. Skup X je vektorski ili linearni prostor nad poljem skalara K ako ima sledeću strukturu: (1) Definisana je operacija + u skupu

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ). 0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Gauss, Stokes, Maxwell. Vektorski identiteti ( ),

Gauss, Stokes, Maxwell. Vektorski identiteti ( ), Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

ZBIRKA TESTOVA IZ ALGEBRE

ZBIRKA TESTOVA IZ ALGEBRE ZBIRKA TESTOVA IZ ALGEBRE 0.0.04. Studenti koji na testu kod pitanja do zvezdica naprave više od tri greške nisu položili ispit! U svakom zadatku dato je više odgovora, a treba zaokružiti tačne odgovore

Διαβάστε περισσότερα

RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA. Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.

Διαβάστε περισσότερα

Zadaci iz Linearne algebre (2003/4)

Zadaci iz Linearne algebre (2003/4) Zadaci iz Linearne algebre (2003/4) Srdjan Vukmirović May 22, 2004 1 Matematička indukcija 1.1 Dokazati da za sve prirodne brojeve n važi 3 / (5 n + 2 n+1 ). 1.2 Dokazati da sa svake m Z i n N postoje

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x. 4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos

Διαβάστε περισσότερα

Linearna algebra. skripta. Januar 2013.

Linearna algebra. skripta. Januar 2013. Linearna algebra skripta Januar 23. Reč autora Ovo je verzija teksta koji je pod naslovom Linearna algebra prvobitno bio pripremljen za studente Odseka za informatiku, Matematičkog fakulteta Univerziteta

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα