MATEMATIKA 1. Grupa 6 Rexea zadataka i rezultati. Prvi pismeni kolokvijum, Prof Dragan ori

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "MATEMATIKA 1. Grupa 6 Rexea zadataka i rezultati. Prvi pismeni kolokvijum, Prof Dragan ori"

Transcript

1 MATEMATIKA 1 Prvi pismeni kolokvijum, Grupa 6 Rexea zadataka i rezultati Prof Dragan ori

2 Zadaci i rexea 1. Neka je A = {(a, b) : a, b Q, a 0} i neka je operacija definisana sa (a, b) (x, y) = ( ax, x bx + y) za sve (a, b), (x, y) A. Ispitati da li je (A, ) grupa. Da li je data operacija komutativna? Rexee: 1. Operacija je zatvorena u skupu A jer iz a, b, x, y Q sledi ax, x bx + y Q, a iz a 0 i x 0 sledi da je ax Operacija je asocijativna jer je i ((a, b) (x, y)) (u, v) = ( ax, x bx + y) (u, v) = (axu, u xu + bxu yu + v) (a, b) ((x, y) (u, v)) = (a, b) ( xu, u yu + v) = (axu, xu + bxu + u yu + v). 3. Iz jednakosti (a, b) (e 1, e 2 ) = (a, b), odnosno ( ae 1, e 1 be 1 + e 2 ) = (a, b), dobijamo da je e 1 = 1 i e 2 = 1. Kako je ( 1, 1) (a, b) = (a, a a + b) = (a, b) i ( 1, 1) A, to je ( 1, 1) neutralni element u odnosu na operaciju. 4. Obzirom da je a 0 za svako (a, b) A, iz jednakosti (a, b) (u, v) = ( 1, 1), odnosno ( au, u bu + v) = ( 1, 1) imamo da je u = 1 a i v = 1 1 a + b i (u, v) A. Kako je jox i a ( 1 a, 1 1 a + b ) (a, b) = ( 1, 1), a svaki element (a, b) skupa A ima svoj inverzni element. Na osnovu (1)-(4) sledi da je struktura (A, ) grupa. Meutim, iz jednakosti (1, 0) (1, 1) = ( 1, 2), (1, 1) (1, 0) = ( 1, 1) sledi da nije komutativna operacija, pa struktura (A, ) nije Abelova grupa. 2. Odrediti sopstvene vrednosti i ima odgovarajue sopstvene vektore matrice Kako je A = Rexee: 3 λ 2 4 A λe = 2 λ λ = λ3 + 6λ λ + 8 = (λ 8)(λ + 1) 2, sopstvene vrednosti matrice A su λ 1 = 8 i λ 2 = λ 3 = 1. Za λ = λ 1 iz jednaqine Av = 8v, gde je v = sistemu x y z 5x + 2y + 4z = 0, x 4y + z = 0., dobijamo sistem koji je ekvivalentan

3 Ovaj sistem ima jednoparametarski skup rexea, a odgovarajui sopstveni vektori su oblika v(t) = 2t t = 2 1 2t 2 t, t R \ {0}. Za λ = 1 iz jednaqine Av = v dobijamo sistem koji je ekvivalentan jednaqini 2x + y + 2z = 0. Skup rexea ove jednaqine je dvoparametarski, a odgovarajui sopstveni vektori su oblika x v(x, z) = 2x 2z z 1 = 2 x z, (x, z) R 2 \ {(0, 0)} U zavisnosti od vrednosti realnog parametra m diskutovati i rexiti sistem x + 7y mz = 1 2x my + z = m 2x + 25y + (1 4m)z = 1. Rexee: Neka je D determinanta matrice datog sistema. Kako je D = (2m 1)(m 3), postoje tri sluqaja. (1) Za m {1/2, 3} sistem ima jedinstveno rexee gde je (x, y, z) = ( Dx D, D y D, D ) z, D 1 7 m D x = m m m = 6(m 3), D 1 1 m y = 2 m 1 = (2m 1)(m 3), m Dakle, u ovom sluqaju je (x, y, z) = D z = 2 m m = 12(m 3) ( ) 6 1 2m, 1, m (2) Za a = 1/2 dati sistem nema rexea jer je D = 0 i D x = (3) Za a = 3 dati sistem ekvivalentan je sistemu x + 7y 3z = 1 11y 5z = 1 koji ima jednoparametarski skup rexea. Ako je z slobodna promen iva, tada je x = (2z + 18/11 i y = (5z + 1)/11. Dakle, u ovom sluqaju, {( (x, y, z) 2 11 α 18 11, 5 11 α + 1 ) } 11, α, α R.

4 4. Dati su vektori e 1 = (4, 1, 2, 10), e 2 = (1, a 2, 0, 2), e 3 = ( 2, 2, 4, a 8), e 4 = (1, 1, 2, 3) u vektorskom prostoru V = (R 4, R, +, ), gde je a R. a) Odrediti vrednosti parametra a za koje su dati vektori linearno nezavisni. b) Za a = 1 ispitati da li dati vektori qine bazu vektorskog prostora V. Ukoliko qine bazu, odrediti koordinate vektora v = (1, 0, 1, 0) u toj bazi, a u suprotnom izraziti vektor e 1 kao linearnu kombinaciju vektora e 2, e 3 i e 4. Rexee: a) Dati vektori su linearno nezavisni ako iz jednakosti αe 1 + βe 2 + γe 3 + δe 4 = 0 sledi da je α = β = γ = δ = 0. Iz navedene jednakosti dobijamo homogen sistem 4α + β 2γ + δ = 0 α + (a 2)β 2γ + δ = 0 2α 4γ + 2δ = 0 10α + 2β + (a 8)γ + 3δ = 0 koji ima trivijalno rexee ako i samo ako je determinanta D ovog sistema razliqita od nule. Kako je D = 1 a = 10a a 40 = 10(a 2) 2, 10 2 a 8 3 dati vektori su linearno nezavisni za a 2. b) Za a = 1 iz a) sledi da su dati vektori linearno nezavisni. Kako je dim(v ) = 4, dati vektori qine bazu prostora V. Iz jednakosti (1, 0, 1, 0) = x 1 e 1 + x 2 e 2 + x 3 e 3 + x 4 e 4 imamo sistem AX = V, gde je A matrica homogenog sistema iz a), X = x 1 x 2 x 3 x 4 i V = vt. Rexavaem ovog sistema (na primer, Kramerovim pravilom) dobijamo x 1 = 1 3, x 2 = 1 6, x 3 = 5 6 i x 3 = 3. Prema tome, 2 v = 1 3 e e e e 4.

5 Р Е З У Л Т А ТИ Презиме Име Бр. Инд. 1.zad 2.zad 3.zad 4.zad I kol Миловановић Јован 50/ Тадић Давид 48/ Чубрић Игор 190/ Никчевић Марија 10/ Петковић Милица 536/ Стошић Нина 176/ Тешић Катарина 858/ Остојић Никола 571/ Михаиловић Антоније 58/ Павловић Драгана 119/ Ракић Иван 183/ Црномарковић Ема 75/ Матовић Дејана 78/ Мешић Теодора 511/ Мијовић Настасија 662/ Милосављевић Душан 816/ Стаменић Тамара 180/ Стефановић Алекса 131/ Сукновић Милена 164/ Никић Жељко 609/ Стевановић Марина 171/ Степић Душица 40/ Тиодоровић Матија 661/ Павловић Алекса 221/ Пећанац Леона 233/ Ракита Јована 353/ Рамљак Стефан 592/ Свичевић Јована 35/ Милојковић Алекса 249/ Петковић Јована 687/ Петровић Ивана 534/ Путниковић Марко 121/ Томић Никола 747/ Турковић Ирена 574/ Џаковић Јована 627/ Цвијановић Стефан 190/ Матејић Нина 238/ Моравчић Кристина 502/ Нешковић Александра 391/ Перовић Тијана 67/ Протулипац Тијана 588/ Рајевац Наташа 157/ Рајић Тања 615/ Савов Урош 251/ Спасић Невена 692/ Стакић Јелица 151/ You created this PDF from an application that is not licensed to print to novapdf printer (

6 Станојковић Мина 228/ Стојковић Александар 831/ Ченић Јована 293/ Чучковић Марија 504/ Шљукић Исидора 743/ Миленковић Ана 672/ Петровић Немања 628/ Петровић Урош 609/ Радивојевић Ана 275/ Расулић Тамара 630/ Ћаловић Марко 623/ Митић Анђела 450/ Мићић Александар 428/ Моровић Петар 763/ Нинић Марко 815/ Обрадовић Мина 518/ Павловић Јелена 210/ Стајић Ивана 784/ Стојковић Никола 145/ Чпајак Матија 546/ Михајловић Марина 738/ Радуловић Андреј 597/ Рајковић Мирјана 389/ Секуловић Тијана 864/ Стакић Милица 144/ Танасковић Немања 669/ Тодоровић Теодора 823/ Топаловић Стефан 747/ Трифуновић Вељко 220/ Филиповић Никола 740/ Хаџи-Тонић Страхиња 73/ Милићевић Алекса 357/ Милошевић Јована 735/ Митровић Маргарета 821/ Петровић Милица 680/ Ристивојевић Петар 173/ Ристић Алекса 804/ Скочић Александар 699/ Станојевић Драгана 748/ Трајковић Никола 134/ Чанковић Татјана 668/ Ђурић Драгиша 227/ Новчић Ивана 269/ Радивојевић Круна 752/ Раковић Марија 656/ Самарџић Теодора 854/ Славински Стефан 782/ Трбовић Милица 875/ Ћурчић Филип 379/ Урошевић Стефан 271/ You created this PDF from an application that is not licensed to print to novapdf printer (

7 Секулић Милан 301/ Матић Ивана 702/ Миковић Дарко 137/ Николић Павле 753/ Оравец Кристина 530/ Пејовић Магдалена 837/ Петровић Гаврило 634/ Рафајловић Иван 570/ Цвјетан Новак 296/ Младеновић Лазар 366/ Радаковић Катарина 371/ Миливојевић Стефан 809/ Нешовић Душан 386/ Пешић Предраг 961/ Плескоњић Оливера 386/ Презиме Име Бр. Инд. 1.zad 2.zad 3.zad 4.zad I kol Радове прегледао: Проф Драган Ђорић Увид у радове: од 12:20 до 13:30, каб.317 You created this PDF from an application that is not licensed to print to novapdf printer (

MATEMATIKA 1. Grupa 6 Rexea zadataka i rezultati. Prvi pismeni kolokvijum, Prof Dragan ori

MATEMATIKA 1. Grupa 6 Rexea zadataka i rezultati. Prvi pismeni kolokvijum, Prof Dragan ori MATEMATIKA 1 Prvi pismeni kolokvijum, 29.11.2014 Grupa 6 Rexea zadataka i rezultati Prof Dragan ori MATEMATIKA 1 1. Kolokvijum, novembar 2014 - Grupa 6 Dragan ori 1. Neka je M = { (x, y) : x, y R, x 2

Διαβάστε περισσότερα

Број поена из модула

Број поена из модула 1 I Радишић Јована 84/2012 да да 38,00 да да да 49,50 да 87,50 88,0 9 2 I Младеновић Сања 54/2012 да да 41,75 да да да 47,00 да 88,75 89,0 9 3 I Милутиновић Филип 87/2012 да да 47,00 да да да 51,00 да

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

ПАТОЛОШКА АНАТОМИЈА- поени из модула 5

ПАТОЛОШКА АНАТОМИЈА- поени из модула 5 Павловић Весна 12/2010 Б 2,00 2,00 2,00 69,00 12,00 18,00 Спасојевић Кристина 93/2010 Б 2,00 2,00 2,00 53,00 8,00 14,00 Ђорђевић Ивана 60/2010 Б 2,00 2,00 2,00 68,00 12,00 18,00 I Павловић Маја 21/2010

Διαβάστε περισσότερα

Ime i prezime. Катарина Делчев 001/ Александар Сандуловић 002/11 5. Александар Ристић 003/ Милена Врбић 004/11 5

Ime i prezime. Катарина Делчев 001/ Александар Сандуловић 002/11 5. Александар Ристић 003/ Милена Врбић 004/11 5 VREDNOVANJE STUDENATA U PROLEĆNOM SEMESTRU ŠKOLSKE 2012/2013. GODNE MEðUNARODNO JAVNO PRAVO ( godina) me i prezime ndeks 1. Катарина Делчев 001/11 6 2. Александар Сандуловић 002/11 5 3. Александар Ристић

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

КОНАЧНА РАНГ ЛИСТА СА ГРАДСКОГ ТАКМИЧЕЊА ИЗ МАТЕМАТИКЕ НИШАВСКОГ ОКРУГА ОДРЖАНОГ У ОСНОВНОЈ ШКОЛИ ДУШАН РАДОВИЋ У НИШУ 01.

КОНАЧНА РАНГ ЛИСТА СА ГРАДСКОГ ТАКМИЧЕЊА ИЗ МАТЕМАТИКЕ НИШАВСКОГ ОКРУГА ОДРЖАНОГ У ОСНОВНОЈ ШКОЛИ ДУШАН РАДОВИЋ У НИШУ 01. КОНАЧНА РАНГ ЛИСТА СА ГРАДСКОГ ТАКМИЧЕЊА ИЗ МАТЕМАТИКЕ НИШАВСКОГ ОКРУГА ОДРЖАНОГ У ОСНОВНОЈ ШКОЛИ ДУШАН РАДОВИЋ У НИШУ 01. МАРТА 2014. ГОДИНЕ - СЕДМИ РАЗРЕД - БРОЈ ПОЕНА - ЗАДАТКА 1 7070 Маја Цветковић

Διαβάστε περισσότερα

Коначна ранг листа Окружног такмичења - IV разред

Коначна ранг листа Окружног такмичења - IV разред Министарство просвете, науке и технолошког развоја Друштво математичара Србије, Подружница математичара Ваљево Основна школа "Милован Глишић", Ваљево Ваљево 19. 03. 2016. Коначна ранг листа Окружног такмичења

Διαβάστε περισσότερα

РАНГ I II III IV V БРОЈ ПОЕНА - ЗАДАТКА ШКОЛА МЕСТО НАСТАВНИК Р. Б. ШИФРА ИМЕ И ПРЕЗИМЕ УЧЕНИКА

РАНГ I II III IV V БРОЈ ПОЕНА - ЗАДАТКА ШКОЛА МЕСТО НАСТАВНИК Р. Б. ШИФРА ИМЕ И ПРЕЗИМЕ УЧЕНИКА ПРЕЛИМИНАРНА РАНГ ЛИСТА СА ОКРУЖНОГ ТАКМИЧЕЊА ИЗ МАТЕМАТИКЕ НИШАВСКОГ ОКРУГА ОДРЖАНОГ У ОСНОВНОЈ ШКОЛИ ВОЖД КАРАЂОРЂЕ У НИШУ 31. МАРТА 2012. ГОДИНЕ - ПЕТИ РАЗРЕД - Р. Б. ШИФРА ИМЕ И ПРЕЗИМЕ УЧЕНИКА БРОЈ

Διαβάστε περισσότερα

MATEMATIKA 1. Grupa 2 Rexea zadataka i rezultati. Prvi pismeni kolokvijum, Prof Dragan ori

MATEMATIKA 1. Grupa 2 Rexea zadataka i rezultati. Prvi pismeni kolokvijum, Prof Dragan ori MATEMATIKA 1 Prvi pismeni kolokvijum, 28.11.2015 Grupa 2 Rexea zadataka i rezultati Prof Dragan ori MATEMATIKA 1 1. Kolokvijum, novembar 2015 - Grupa 2 Dragan ori 1. Neka je M = x 0 y 0 x + y 0 x, y R

Διαβάστε περισσότερα

КОНАЧНА РАНГ ЛИСТА СА ГРАДСКОГ ТАКМИЧЕЊА ИЗ МАТЕМАТИКЕ НИШАВСКОГ ОКРУГА ОДРЖАНОГ У ОСНОВНОЈ ШКОЛИ ДУШАН РАДОВИЋ У НИШУ 28. ФЕБРУАРА 2015.

КОНАЧНА РАНГ ЛИСТА СА ГРАДСКОГ ТАКМИЧЕЊА ИЗ МАТЕМАТИКЕ НИШАВСКОГ ОКРУГА ОДРЖАНОГ У ОСНОВНОЈ ШКОЛИ ДУШАН РАДОВИЋ У НИШУ 28. ФЕБРУАРА 2015. КОНАЧНА РАНГ ЛИСТА СА ГРАДСКОГ ТАКМИЧЕЊА ИЗ МАТЕМАТИКЕ НИШАВСКОГ ОКРУГА ОДРЖАНОГ У ОСНОВНОЈ ШКОЛИ ДУШАН РАДОВИЋ У НИШУ 28. ФЕБРУАРА 2015. ГОДИНЕ Р. Б. ШИФРА ИМЕ И ПРЕЗИМЕ УЧЕНИКА - OСМИ РАЗРЕД - БРОЈ ПОЕНА

Διαβάστε περισσότερα

Коначна ранг листа - IV разред

Коначна ранг листа - IV разред Коначна ранг листа - IV разред Број бодова по Шифра Име и презиме Школа Место Наставник задацима 1. 432 Вукашин Пешић Карађорђе Велико Орашје Млађена Момчиловић 2 2 2 2 2 1 I 2. 423 Наталија Ђурић Др Јован

Διαβάστε περισσότερα

РАНГ I II III IV V БРОЈ ПОЕНА - ЗАДАТКА ШКОЛА МЕСТО НАСТАВНИК Р. Б. ШИФРА ИМЕ И ПРЕЗИМЕ УЧЕНИКА

РАНГ I II III IV V БРОЈ ПОЕНА - ЗАДАТКА ШКОЛА МЕСТО НАСТАВНИК Р. Б. ШИФРА ИМЕ И ПРЕЗИМЕ УЧЕНИКА КОНАЧНА ЛИСТА СА ГРАДСКОГ ТАКМИЧЕЊА ИЗ МАТЕМАТИКЕ НИШАВСКОГ ОКРУГА ОДРЖАНОГ У ОСНОВНОЈ ШКОЛИ ДУШАН РАДОВИЋ У НИШУ 04. МАРТА 2012. ГОДИНЕ - ПЕТИ РАЗРЕД - Р. Б. ШИФРА ИМЕ И ПРЕЗИМЕ УЧЕНИКА 1 5038 Михајло

Διαβάστε περισσότερα

РАНГ ИМЕ И ПРЕЗИМЕ УЧЕНИКА I II III IV V БРОЈ ПОЕНА - ЗАДАТКА Р. Б. ШИФРА

РАНГ ИМЕ И ПРЕЗИМЕ УЧЕНИКА I II III IV V БРОЈ ПОЕНА - ЗАДАТКА Р. Б. ШИФРА ПРЕЛИМИНАРНА ЛИСТА СА ГРАДСКОГ ТАКМИЧЕЊА ИЗ МАТЕМАТИКЕ НИШАВСКОГ ОКРУГА ОДРЖАНОГ У ОСНОВНОЈ ШКОЛИ ДУШАН РАДОВИЋ У НИШУ 02. МАРТА 2013. ГОДИНЕ - ШЕСТИ РАЗРЕД - Р. Б. ШИФРА 1 6058 Александар Стојадиновић

Διαβάστε περισσότερα

ОПШТИНСКО ТАКМИЧЕЊЕ ИЗ МАТЕМАТИКЕ РЕЗУЛТАТИ ТАКМИЧЕЊА - 5 РАЗРЕД

ОПШТИНСКО ТАКМИЧЕЊЕ ИЗ МАТЕМАТИКЕ РЕЗУЛТАТИ ТАКМИЧЕЊА - 5 РАЗРЕД Министарство просвете, науке и технолошког развоја Друштво математичара Србије Подружница математичара Ваљево Основна школа "Андра Савчић", Ваљево Датум: 28.2.2015. Ваљево ОПШТИНСКО ТАКМИЧЕЊЕ ИЗ МАТЕМАТИКЕ

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

школска 2016/2017. ФИЗИЧКО ВАСПИТАЊЕ- поени из модула 1

школска 2016/2017. ФИЗИЧКО ВАСПИТАЊЕ- поени из модула 1 школска 2016/2017. ФИЗИЧКО ВАСПИТАЊЕ- из модула 1 Р.Б. Т.Г. Презиме и име удента број индекса наава 1 I Гогић Анђела 46/2016 0,00 0,00 6,00 0,00 0,00 6,00 2 I Милетић Александра 84/2016 0,00 3,00 0,00

Διαβάστε περισσότερα

Група % % %

Група % % % 105 / 16 Антић Љубомир К-1 0 95 48 Полаже 1. колоквијум (Теоријски и рачунски део) 63 / 16 Арсић Жељко К-1 35 45 80 80 80 Потпис + Ослобођен полагања писменог дела испита 153 / 16 Арсовић Петар К-1 23

Διαβάστε περισσότερα

Коначна ранг листа - IV разред

Коначна ранг листа - IV разред МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ДРУШТВО МАТЕМАТИЧАРА СРБИЈЕ ПОДРУЖНИЦА МАТЕМАТИЧАРА ВАЉЕВО ОСНОВНА ШКОЛА "МИЛОВАН ГЛИШИЋ", ВАЉЕВО ВАЉЕВО, 28. 03. 2015. ОКРУЖНО ТАКМИЧЕЊЕ ИЗ МАТЕМАТИКЕ

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Резултати окружног такмичења из математике - IV разред

Резултати окружног такмичења из математике - IV разред Министарство просвете, науке и технолошког развоја Друштво математичара Србије, Подружница математичара Ваљево Основна школа,,милован Глишић", Ваљево Вaљево 25. 03. 2018. Резултати окружног такмичења из

Διαβάστε περισσότερα

I Pismeni ispit iz matematike 1 I

I Pismeni ispit iz matematike 1 I I Pismeni ispit iz matematike I 27 januar 2 I grupa (25 poena) str: Neka je A {(x, y, z): x, y, z R, x, x y, z > } i ako je operacija definisana sa (x, y, z) (u, v, w) (xu + vy, xv + uy, wz) Ispitati da

Διαβάστε περισσότερα

ИМЕ И ПРЕЗИМЕ УЧЕНИКА РАНГ I II III IV V БРОЈ ПОЕНА - ЗАДАТКА НАСТАВНИК Павле Милошевић Душан Радовић Ниш Светлана Милић I

ИМЕ И ПРЕЗИМЕ УЧЕНИКА РАНГ I II III IV V БРОЈ ПОЕНА - ЗАДАТКА НАСТАВНИК Павле Милошевић Душан Радовић Ниш Светлана Милић I КОНАЧНА РАНГ ЛИСТА СА ОКРУЖНОГ ТАКМИЧЕЊА ИЗ МАТЕМАТИКЕ НИШАВСКОГ ОКРУГА ОДРЖАНОГ У ОСНОВНОЈ ШКОЛИ УЧИТЕЉ ТАСА У НИШУ 19.03.2016. ГОДИНЕ - ПЕТИ РАЗРЕД - БРОЈ ПОЕНА - ЗАДАТКА Σ МЕСТО НАСТАВНИК РАНГ 1 5097

Διαβάστε περισσότερα

Резултати општинског такмичења из математике - III разред

Резултати општинског такмичења из математике - III разред Министарство просвете, науке и технолошког развоја Друштво математичара Србије, Подружница математичара Ваљево Основна школа,,владика Николај Велимировић", Ваљево Општина Ваљево 24. 02. 2018. Резултати

Διαβάστε περισσότερα

Резултати општинског такмичења из математике - III разред

Резултати општинског такмичења из математике - III разред Министарство просвете, науке и технолошког развоја Друштво математичара Србије, Подружница математичара Ваљево Основна школа "Сестре Илић", Ваљево Ваљево 27. 02. 2016. Резултати општинског такмичења из

Διαβάστε περισσότερα

Резултати општинског такмичења из математике - III разред

Резултати општинског такмичења из математике - III разред Министарство просвете, науке и технолошког развоја Друштво математичара Србије, Подружница математичара Ваљево Основна школа "Сестре Илић", Ваљево Ваљево 27. 02. 2016. Резултати општинског такмичења из

Διαβάστε περισσότερα

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE 1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

Коначна ранг листа - IV разред

Коначна ранг листа - IV разред Место Σ Ранг 1 Теодора Лазаревић Светолик Ранковић Аранђеловац 100 I 2 Мајра Ђокић Светолик Ранковић Аранђеловац 96 I 3 Димитрије Никић Светолик Ранковић Аранђеловац 95 I 4 Милош Максимовић Светолик Ранковић

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka 1 Afina geometrija 11 Afini prostor Definicija 11 Pod afinim prostorom nad poljem K podrazumevamo svaku uređenu trojku (A, V, +): A - skup taqaka V - vektorski prostor nad poljem K + : A V A - preslikavanje

Διαβάστε περισσότερα

Име Презиме Кат. Разред Школа Место Шифра Σ Јелена Иванчић А 1 Математичка гимназија Београд 1А I награда Ирина Ђанковић А

Име Презиме Кат. Разред Школа Место Шифра Σ Јелена Иванчић А 1 Математичка гимназија Београд 1А I награда Ирина Ђанковић А Име Презиме Кат. Разред Школа Место Шифра 1 2 3 4 Σ Јелена Иванчић А 1 Математичка гимназија Београд 1А17 25 25 25 25 100 I награда Ирина Ђанковић А 1 Математичка гимназија Београд 1А16 25 25 25 25 100

Διαβάστε περισσότερα

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa Binarne operacije Binarna operacija na skupu A je preslikavanje skupa A A u A, to jest : A A A. Pišemo a b = c. Označavanje operacija:,,,. Poznate operacije: sabiranje (+), oduzimanje ( ), množenje ( ).

Διαβάστε περισσότερα

ТЕХНИЧКА МЕХАНИКА 1 » РЕЗУЛТАТИ 3. КОЛОКВИЈУМА « 3. колоквијум положили су студенти који су имали мин. 22 поен (од могућих 50 поена).

ТЕХНИЧКА МЕХАНИКА 1 » РЕЗУЛТАТИ 3. КОЛОКВИЈУМА « 3. колоквијум положили су студенти који су имали мин. 22 поен (од могућих 50 поена). ТЕХНИЧКА МЕХАНИКА 1» РЕЗУЛТАТИ 3. КОЛОКВИЈУМА «3. колоквијум 3. колоквијум положили су студенти који су имали мин. 22 поен (од могућих 50 поена). Поправни колоквијум (за студенте који нису положили 3.колоквијум)

Διαβάστε περισσότερα

Организациони одбор КОМИСИЈА ЗА КОПИРАЊЕ ТЕСТОВА ЦЕНТРАЛНА КОМИСИЈА

Организациони одбор КОМИСИЈА ЗА КОПИРАЊЕ ТЕСТОВА ЦЕНТРАЛНА КОМИСИЈА МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА РЕПУБЛИКЕ СРБИЈЕ ДРУШТВО МАТЕМАТИЧАРА СРБИЈЕ ОКРУЖНО ТАКМИЧЕЊЕ УЧЕНИКА ОСНОВНИХ ШКОЛА ИЗ МАТЕМАТИКЕ Време одржавања Организатор Покровитељи Домаћин субота

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

Општинско такмичење из математике - V разред

Општинско такмичење из математике - V разред Општинско такмичење из математике - V разред 1 Илија Серафимовић ОШ Мирослав Антић Радица Миловановић 20 20 20 20 20 100 I 2 Срна Марковић ОШ Јован Јовановић Змај Миомир Станивуковић 20 20 15 20 20 95

Διαβάστε περισσότερα

РЕЗУЛТАТИ ОПШТИНСКОГ ТАКМИЧЕЊА ИЗ МАТЕМАТИКЕ

РЕЗУЛТАТИ ОПШТИНСКОГ ТАКМИЧЕЊА ИЗ МАТЕМАТИКЕ ТРЕЋИ РАЗРЕД БОДОВИ Р.Б. ИМЕ И ПРЕЗИМЕ ШИФРА ШКОЛА МЕСТО УЧИТЕЉ 1. 2. 3. 4. 5. Σ 1 ЈАКОВ НЕШИЋ Е13 ИВО ЛОЛА РИБАР СОМБОР СВЕТЛАНА ШТАЈБАХ 20 20 10 20 20 95 1. 2 Коста Талоши С08 ОШ "Аврам Мразовић" Сомбор

Διαβάστε περισσότερα

x + 3y + 6z = 3 3x + 5y + z = 4 x + y + z = 4.

x + 3y + 6z = 3 3x + 5y + z = 4 x + y + z = 4. Linearna algebra A, kolokvijum, 1. tok 22. novembar 2014. 1. a) U zavisnosti od realnih parametara a i b Gausovim metodom rexiti sistem linearnih jednaqina nad poljem R ax + (a + b)y + bz = 3a + 5b ax +

Διαβάστε περισσότερα

Geometrija (I smer) deo 1: Vektori

Geometrija (I smer) deo 1: Vektori Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

1 Pojam funkcije. f(x)

1 Pojam funkcije. f(x) Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije

Διαβάστε περισσότερα

Matematika 1 { fiziqka hemija

Matematika 1 { fiziqka hemija UNIVERZITET U BEOGRADU MATEMATIQKI FAKULTET Matematika 1 { fiziqka hemija Vektori Tijana Xukilovi 29. oktobar 2015 Definicija vektora Definicija 1.1 Vektor je klasa ekvivalencije usmerenih dui koje imaju

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

LINEARNA ALGEBRA 1, ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ, VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ

LINEARNA ALGEBRA 1, ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ, VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ LINEARNA ALGEBRA 1 ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ 2. VEKTORSKI PROSTORI - LINEARNA (NE)ZAVISNOST SISTEM IZVODNICA BAZA Definicija 1. Neka je F

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Linearna algebra I, zimski semestar 2007/2008

Linearna algebra I, zimski semestar 2007/2008 Linearna algebra I, zimski semestar 2007/2008 Predavanja: Nenad Bakić, Vježbe: Luka Grubišić i Maja Starčević 22. listopada 2007. 1 Prostor radijvektora i sustavi linearni jednadžbi Neka je E 3 trodimenzionalni

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Sistemi linearnih jednačina

Sistemi linearnih jednačina Sistemi linearnih jednačina Sistem od n linearnih jednačina sa n nepoznatih (x 1, x 2,..., x n ) je a 11 x 1 + a 12 x 2 + + a 1n x n = b 1, a 21 x 1 + a 22 x 2 + + a 2n x n = b 2, a n1 x 1 + a n2 x 2 +

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA. Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Vektorski prostori. Vektorski prostor

Vektorski prostori. Vektorski prostor Vektorski prostori Vektorski prostor Neka je X neprazan skup i (K, +, ) polje. Skup X je vektorski ili linearni prostor nad poljem skalara K ako ima sledeću strukturu: (1) Definisana je operacija + u skupu

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Zadaci iz Linearne algebre (2003/4)

Zadaci iz Linearne algebre (2003/4) Zadaci iz Linearne algebre (2003/4) Srdjan Vukmirović May 22, 2004 1 Matematička indukcija 1.1 Dokazati da za sve prirodne brojeve n važi 3 / (5 n + 2 n+1 ). 1.2 Dokazati da sa svake m Z i n N postoje

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i PRIPREMA ZA II PISMENI IZ ANALIZE SA ALGEBROM. zadatak Re{avawe algebarskih jedna~ina tre}eg i ~etvrtog stepena. U skupu kompleksnih brojeva re{iti jedna~inu: a x 6x + 9 = 0; b x + 9x 2 + 8x + 28 = 0;

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1 Ispit održan dana 9 0 009 Naći sve vrijednosti korjena 4 z ako je ( ) 8 y+ z Data je prava a : = = kroz tačku A i okomita je na pravu a z = + i i tačka A (,, 4 ) Naći jednačinu prave b koja prolazi ( +

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA. Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.

Διαβάστε περισσότερα

POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA. U ovom poglavlju proučavaćemo problem bezuslovne optimizacije:

POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA. U ovom poglavlju proučavaćemo problem bezuslovne optimizacije: POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA U ovom poglavlju proučavaćemo problem bezuslovne optimizacije: min f(x) (1.1) pri čemu nema dodatnih ograničenja na X = (x 1,..., x n ) R n. Probleme bezuslovne optimizacije

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije Glava 1 Realne funkcije realne promen ive 1.1 Elementarne funkcije Neka su dati skupovi X i Y. Ukoliko svakom elementu skupa X po nekom pravilu pridruimo neki, potpuno odreeni, element skupa Y kaemo da

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a: Zenica, 70006 + y+ z+ 4= 0 y+ z : i ( q) : = = y + z 4 = 0 a) Napisati pavu p u kanonskom, a pavu q u paametaskom obliku b) Naći jednačinu avni koja polazi koz pavu p i okomita je na pavu q ate su pave

Διαβάστε περισσότερα

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ). 0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo

Διαβάστε περισσότερα

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. 5 Sistemi linearnih jednačina 47 5 Sistemi linearnih jednačina U opštem slučaju, pod sistemom linearnih jednačina podrazumevamo sistem od m jednačina sa n nepoznatih x 1 + a 12 x 2 + + a 1n x n = b 1 a

Διαβάστε περισσότερα

Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak

Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak Matematiqki fakultet Univerzitet u Beogradu Domai zadatak Zlatko Lazovi 30. decembar 2016. verzija 1.1 Sadraj 1 METRIQKI PROSTORI 2 1 1 METRIQKI PROSTORI a) Neka je (M, d) metriqki prostor i neka je (x

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

Matematika 4. t x(u)du + 4. e t u y(u)du, t e u t x(u)du + Pismeni ispit, 26. septembar e x2. 2 cos ax dx, a R.

Matematika 4. t x(u)du + 4. e t u y(u)du, t e u t x(u)du + Pismeni ispit, 26. septembar e x2. 2 cos ax dx, a R. Matematika 4 zadaci sa pro²lih rokova, emineter.wordpress.com Pismeni ispit, 26. jun 25.. Izra unati I(α, β) = 2. Izra unati R ln (α 2 +x 2 ) β 2 +x 2 dx za α, β R. sin x i= (x2 +a i 2 ) dx, gde su a i

Διαβάστε περισσότερα

ZBIRKA TESTOVA IZ ALGEBRE

ZBIRKA TESTOVA IZ ALGEBRE ZBIRKA TESTOVA IZ ALGEBRE 0.0.04. Studenti koji na testu kod pitanja do zvezdica naprave više od tri greške nisu položili ispit! U svakom zadatku dato je više odgovora, a treba zaokružiti tačne odgovore

Διαβάστε περισσότερα

INTEGRALI Zadaci sa kolokvijuma

INTEGRALI Zadaci sa kolokvijuma INTEGRALI Zadaci sa kolokvijuma ragan ori Sadrжaj Neodređeni integral Određeni integral 6 Nesvojstveni integral 9 4 vojni integral 5 Redovi 5 Studentima generacije / (grupe A9, A i A) Ovo je jox jedna

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x. 4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos

Διαβάστε περισσότερα

Bulove jednačine i metodi za njihovo

Bulove jednačine i metodi za njihovo Matematički fakultet Univerzitet u Beogradu Bulove jednačine i metodi za njihovo rešavanje Master rad Mentor: Slavko Moconja Student: Nevena Dordević Beograd, 2017. Sadržaj 1 Uvod 2 2 Bulova algebra 3

Διαβάστε περισσότερα

Gauss, Stokes, Maxwell. Vektorski identiteti ( ),

Gauss, Stokes, Maxwell. Vektorski identiteti ( ), Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα