n n matrik v prostor realnih števil.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "n n matrik v prostor realnih števil."

Transcript

1 . Detemite Detemit je peslikv i posto mtik v posto elih števil. Opecije detemitmi: - seštevje: Dve detemiti lhko seštejemo če se likujet le v ei vstici li eem stolpcu. To vstico (stolpec) pepišemo ostle seštejemo. - možeje s številom: Detemito pomožimo s številom tko d jim pomožimo eo vstico li e stolpec. - mejv: Če mejmo dve vstici li dv stolpc se pedk detemiti spemei. Rčuje vedosti detemite d c c d podukti pej - podukti j Detemito pevedemo goje tikoto: - vstici (stolpcu) pištejemo s številom pomožeo vstico (stolpec) - mejmo vstici (stolpc) i spemeimo pedk. M O L M O O L L Detemito vijemo po vstici li stolpcu L L L M k M L L ki L L L M k M i ( ) k i ki ki Cmejev metod eševje sistemov lieih eč: v v Sistem pišemo v mtiči oliki. Mtik j je mtik v ktei smo j -ti stolpec mejli v j. otem je j.

2 Ilustcij lstosti detemit pimeih: ( ) NLOGE:. Z sledjo detemito piši poddetemito i kofktoj!. Ičuj sledji detemiti vojem po vstici li stolpcu. Ičuj sledjo detemito s pevedo goje tikoto.

3 . Reši s pomočjo Cmejeve metode: ) t t t ) t t t c) REŠITVE:. ) ( ) (... ) t ) t c)

4 . Mtike Opecije mtikmi: - seštevje: Dve mtiki seštejemo tko d seštejemo istoleže elemete. - možeje s številom: Mtiko pomožimo s številom tko d jim pomožimo vse elemete mtike. - tspoije: Elemet ij poste elemet ji. Vlog vstice i stolpc se mejt. - možeje mtik: Nj o C. otem je c ij skli podukt i -te vstice mtike i j -teg stolpc mtike. Možeje mtik i komuttivo toej v splošem. T T Z tspoije i možeje mtik velj ekost ( ) T. Ive mtik mtike je tk mtik d velj E. Ive mtik ostj smo pi kvdtih mtikh. Ičumo jo lhko dv či:. mtiko kofktojev : - iču detemite; - iču mtike kofktojev; - tspoije mtike kofktojev; - deljeje vedostjo detemite.. elemetimi tsfomcijmi: Mtiko šiimo eotsko mtiko. E elemetimi tsfomcijmi euedimo šijeo mtiko [ ] vstich i doimo [ ] E. Fomul ičuvje ivee mtike pi mtikh ed. c d d d c c Mtiče eče ešujemo podoo kot vde eče piti p momo ekomuttivost možej i možeje iveo mtiko mesto deljej. Rg mtike je velikost jvečje eičele poddetemite. Določimo g tko d mtiko elemetimi tsfomcijmi petvoimo v stopičsto oliko (vsk vstic če v ksejšem stolpcu). otem je g mtike ek številu eičelih vstic.

5 NLOGE:. Di st mtiki i Ičuj mtiko.. Di st mtiki i Določi mtiko X tko d o veljlo X!. Ičuj podukt i če je i!. N pimeu mtik i pevei d velj tspoicijo podukt pvilo ( ) T T T!. Nj o M. oišči vse mtike N ktee je MN! Nmig: oišči pogoje poljuo mtiko.. oišči kvdte mtik i C!. okži d mtiki i komutit!. Z poliom ( ) p i mtiko M pokži d je ( ) M p.. S popolo idukcijo dokži d velj!

6 . Di mtiki poišči iveo mtiko!. Ičuj!. Reši mtičo ečo X i [ ].. Reši mtičo ečo C X če so i C.. S pomočjo keg itj loke eši.. Določi g mtike!. Določi g mtike v odvisosti od!. S pomočjo elemetih tsfomcij poišči iveo mtiko.. Reši sistem lieih eč s pomočjo ivee mtike )

7 ). oišči vse tiste mtike X ki hkti ustejo sledjim pogojem: ) komutijo mtiko ) c) ( ) det X. Nmig: oišči pogoje poljuo mtiko.. Reši mtičo ečo D CX X kje je D C REŠITVE:.. Iimo X i eče i doimo X.. i. Zdi ekomuttivosti možej mtik st podukt lič.. ( ) T T i T T.. Nj o d c N. otem i d c d c MN doimo pogoj c i d. Toej je d c d c N polju R d c.

8 i mtikh toej i MN e sledi ( ) ( ) N M.. C. Ičumo i te ju pimejmo. i toej je.. Ičumo ) ( E M M M p.. ;.... Ečo X desi (ekomuttivost!) pomožimo i doimo [ ] [ ] X.. Ečo C X di ekomuttivosti pomožimo levi i desi. Tko doimo C X.. omožimo F D Y X C i doimo F D CY Y X. Sledi D Y X i F CY. I eč iimo ( ) Y D X F C Y. Doimo Y i X. Toej je.

9 . Toej je ( ).. Toej je ( ) i ( )... ) ). Vemimo. d c X Zdi ) je. c X Komutije pomei d mo iti X X. Sledi i c. Toej je. X Zdi c) je X. Doimo i. Toej st mtiki ki doščt pogojem X i X.. N levi jpej ipostvimo X i doimo ( ) D X C. N levi pomožimo ( ) C i desi. Doimo ( ) D C X.

10 . Sistemi lieih eč Sistem lieih eč pišemo v mtiči oliki X kje je mtik koeficietov X vekto ek i vekto kostt dese sti eč. ~ Defiimo šijeo mtiko [ ]. Sistem je ešljiv tko tkt ko je ~ ( ) ( ). Sistem je eoličo ešljiv če je ( ) ek številu ek i pmetičo ešljiv če je ( ) mjši od števil ek. i pmetičo ešljivem sistemu eke delimo iče i pmete te iče eke iimo s pmeti. Homoge sistem sistem smo tivilo ešitev sistem pmetičo ešitev. X je vedo ešljiv. Če je ( ) X če p je ( ) ek številu ek im mjši od števil ek im Reši sistem lieih eč ~ Ršije mtik je. ~ Rg ( ) (e djeg stolpc) i ( ). Ke st g lič sistem i ešljiv. Kkš i mol iti des st duge eče d i il sistem ešljiv? Sistem o ešljiv ko ost g ek. D o dug vstic peolikove mtike i smih ičel mo iti des st ek. ~. Rg st ek toej je sistem ešljiv. Število ek je to je sistem pmetičo ešljiv. Če ičo eko vmemo je ešitev polju R. NLOGE:. Reši sistem lieih eč

11 . Reši sistem lieih eč w w w w. liij ešljivost sistem lieih eč v odvisosti od vedosti pmetov i!. Reši homoge sistem lieih eč. Določi tko d o imel sistem etivilo ešitev i jo piši.. Reši sistem. Sistem u t v t v u t peolikuj tko d odo iče eke t u! REŠITVE:. ~ Rg ( ) ( ) ~ sistem je ešljiv. Število ek je toej immo eo ešitev..

12 Vektoski pis ešitve X.. To je pmetičo ešljiv sistem ke ( ) ( ) ~ i immo eke. R w. ~. Glede vedosti i ločimo sledje ti pimee: ) ( ) ( ) ~ sistem je pmetičo ešljiv ) ( ) ( ) ~ sistem i ešljiv c) R ( ) ( ) ~ sistem je eoličo ešljiv. ~ Ke je ( ) ( ) ~ im poleg tivile ešitve tudi pmetičo ešitev. Z pmete vmemo i doimo ešitev X R.. ~ Netivilo ešitev immo ko je ( ) < toej X.

13 . X R. ~ Stolpce ki pipdjo ičim ekm pemkemo levo. Neke si potem sledijo v u t. ~ v v u v t

14 Komitoik Osovi iek komitoike: Če je poces odločj sestvlje i več eodvisih f odločj se števil možosti io v posmeih fh možijo. vilo vsote: Če se pi iiju odločmo med dvem edužljivim možicm ioov se število možosti sešteje. emutcije e povljj: ličih elemetov poejmo mest elemeti se e smejo povljti vsti ed je pomeme:!! ) (! L emutcije s povljjem: elemetov od kteih jih je k m m m K ekih poejmo mest vsti ed je pomeme:!!!! k m m m m m m k L K Vicije e povljj: ličih elemetov poejmo mest ( ) elemeti se e smejo povljti vsti ed je pomeme: )! (! V Vicije s povljjem: ličih elemetov poejmo mest elemeti se lhko povljjo vsti ed je pomeme: p V Komicije: i možice ličimi elemeti ieemo podmožico elemeti vsti ed i pomeme: )!!(! C iomski iek voj potece dvočleik: ( ) L V voju potece dvočleik je k ti čle ek: k k k. NLOGE:. Immo možico { } D C. Koliko je vseh možih ) pemutcij; ) vicij dugeg ed e povljj; c) vicij dugeg ed s povljjem; d) komicij dugeg ed.

15 . Koliko ličih vocev doimo če postvljmo v vsto mode i dečih kogel?. N koliko čiov lhko gostitelj poedi vo mio sedem žesk če st dve skegi i e smet sedeti skupj?. N koliko čiov lhko gostitelj poedi okoglo mio sedem žesk če st dve skegi i e smet sedeti skupj?. N koliko čiov lhko poedimo polici deče elee i či kjigi če: ) immo htev; ) deče četku; c) deče skupj; d) istove skupj.. Koliko možosti mo (v jslšem pimeu) peikusiti tt če želi odkleiti ključvico ki jo odpe šif dvem čkm žčetku i temi številkmi?. Sestvljmo petmest števil. Koliko je ) pvih (se e čejo ) ) pvih ličimi števkmi c) pvih ki imjo pvih dveh mestih lihi števki d) pvih ličimi števkmi ki imjo pvih dveh mestih lihi števki e) pvih ki imjo pvih dveh mestih sodi števki f) pvih ličimi števkmi ki imjo pvih dveh mestih sodi števki g) pvih ki so deljiv s h) pvih ličimi števkmi ki so deljiv s.. Reši ečo V V V!. Koliko elemetov imš polgo če veš d je jim mogoče sestviti komicij dugeg ed?. N koliko čiov lhko i šktle v kteih je dečih elih i čih kogel ieemo deči elo i či kogli?. Odo im člov od teg so žeske. N koliko čiov lhko sestvimo tičlsko pedsedstvo če j o v jem vsj e žesk?. Med idelki je defektih. N koliko čiov lhko v voec sestvlje i idelkov ieemo doe i defekt idelk?. Rvij iom ( )!. Ičuj peti čle v voju iom ( ) REŠITVE:

16 . ) ) c) d)!.!!.!!!..!!!. )! )!! c)!! d)!!!!.... ). ). c). d). e). f). g). h). ( )! ( )! ( )!. ( )! ( )! ( )! ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zdi defiiosti fkultete je.!. C ( )!( )! ( ) ( ) Zdi defiiosti fkultete je....

17 ...!!!!!!. ( )..

18 . Osove vejetosteg ču število ugodih Defiicij: ( ) število vseh Vedosti: ( ) Nemogoč dogodek: ( N). Gotov dogodek: ( G). Vejetost spoteg dogodk: ( ) ( ). Vsot dogodkov se godi ko se godi li. odukt dogodkov se godi ko se godit i. Vejetost vsote dogodkov: ( ) ( ) ( ) ( ) ( C) ( ) ( ) ( C) ( ) ( C) ( C) ( C) Vejetost podukt dogodkov: Če st i eodvis dogodk je ( ) ( ) ( ). ( ) ogoj vejetost: ( ) ( ) >. ( ) Dvofi poskusi so sestvljei i dveh f iij. Elemete dogodke v pvi fi iij imeujemo hipotee i jih očimo H i. opol vejetost dogodk : ( ) ( H) ( H) ( H ) ( H ) L ( H ) ( H ) ( H i ) ( H i ) esov oec: ( H i ). ( ) eoullijev fomul: Vejetost d se dogodek vejetostjo p v poskusih godi tko k kt je k iomsk podelitev. Njvejetejše število dogodkov je: p q Z k p q k p p p q Z kje je k p q jmjše celo število ki je večje od. k k ( ; p k) p ( p). Tej podelitvi ečemo sclov oec: Vejetost d se dogodek vejetostjo p v k k godi tko k tič je p ( p). k tem poskusu! ; p ; L p. k m osploše eoullijev oec: ( ) K pm k K km p k! Lkm! k m

19 NLOGE:. Loteij im sečk od teg jih de. Ičuj vejetosti sledjih dveh dogodkov: slučjo i sečk dee; od dveh slučjo iih sečk tko e dee!. V šktli so štii koglice ki so oštevilčee i. N slepo iimo po eo. Ičuj vejetost d doimo piso letico! ) koglice e včmo ) koglice včmo. Tomol im ploščic s številkmi od do. N slepo ivlečemo eo ploščico. Kkše so vejetosti sledjih dogodkov: število ploščici je deljivo s ; število ploščici je deljivo s ; C število ploščici je deljivo s li s.. V šktli immo elih dečih i čih (sice p ekih) kogel. Hkti slepo potegemo ti kogle i šktle. Ičuj vejetosti sledjih dogodkov: vse ti kogle so ele; e kogl je deč dve p či; C oe kogl i el.. Med idelki so pokvjei. N slepo ieemo v voec (istočso) štii idelke. Kolikš je vejetost d st v iem vocu tko dv idelk pokvje?. Loteij je dl v podjo M N sečk od kteih jih de tko N. Kolikš je vejetost d med k kupljeimi sečkmi de tko q sečk?. V šktli immo elih i če kogle; slepo tikt potegemo po eo koglo i jo vemo v šktlo. Kolikš je vejetost d so vse ti kogle če?. Kolikš je vejetost d pi metu kock pde pet ličih vedosti; kock vsko število pik pde po dvkt?. Med elemeti je defektih. N slepo ieemo ti elemete. Kolikš je vejetost d je med jimi vsj e defekte?. Vejetost d pvi stelec dee tčo je ( Z ) dugeg p ( Z ) Ičuj vejetosti dogodkov: pvi stelec geši; o stelc deet; C tč je det (vsj ekt); D tč i det; E tč je det tko ekt! i tej i soodih log pedpostvljmo d st dogodk Z i Z eodvis!.

20 . Nj odo i C med seoj eodvisi dogodki i ( ) ( ) ( C) Ičuj vejetosti dogodkov i C!.. Kolikš je vejetost d dveh kockh v pvem metu doimo vsoto li če se to i godilo v poovljeem metu vsoto?. etdesetkt ustelimo poti tči vejeost detk pi posmeem stelu je ( Z ) i se e spemij. Kolikš je vejetost dogodk d je v teh stelih tč vsj ekt det?. Kolikš mo iti vejetost detk pi posmeem stelu d lhko pi petih stelih vejetostjo večjo od pičkujemo vsj e detek?. V šktli je elih i dečih koglic. N slepo štiikt potegemo po eo koglico i jo vskič vemo v šktlo. Kolikš je vejetost d se šele v čettem poskusu pokže deč koglic?. Dv iglc mečet kovec dug dugim. Zmg tisti pi kteem se pej pojvi g kolikš je vejetost d mg iglec ki je igo čel?. Nepismeemu človeku dmo listke s čkmi N N S i g posimo j jih postvi v vsto. Kolikš je vejetost d ste esed NNS?. V posodi immo ele deči i mode kogle. N slepo iimo po eo koglo dokle jih e mjk. Ivlečee kogle odlgmo v vsto. Ičuj vejetost dogodk d odo v kočem»vočku«kogle eke ve stle skupj!. Med jolki je čvivih. N slepo ieemo imed jolk. Kolikš je vejetost d je vsj eo čvivo?. Sočso vžemo dve kocki. Kolikš je vejetost dogodk d vsj ei pde šestic?. Ti pve delujejo eodviso dug od duge. Vejetosti d jih v letu di e o te popvljti šjo po vsti i. Določi vejetost dogodk d o v letu di vsj e delovl e okve!. Lovec stelj lisico dlje metov vejetost d jo de je. Če geši mu lisic uide dljo metov pede lhko stelj jo. Ičuj vejetost d je lisic (s pvim li dugim stelom) det če je pi teh oddljeostih vejetost detek oto some kvdtu dlje!. I šktle s elimi i dečimi koglmi vlečemo po eo kglo i ivlečeih kogel e včmo. Ičuj vejetost dogodkov: ivlečemo štii deče kogle poed; ivlečemo jpej eli to deči kogli.. Kolikš je vejetost d je pi istočsem metu dveh pošteih iglih kock pdl vsj e tojk če vemo d je il vsot pik oeh kockh ek?

21 . Tikt poed vžemo pošteo iglo kocko. Kolikš je vejetost dogodk d pvič pde sodo število pik dugič šestic i tetjič mj kot pik?. Idelke isteg tip idelujet dve tovi pv % i dug % od celote poivodje. Med idelki pve tove je % idelkov pve i % idelkov duge kvlitete; med idelki duge tove je pvovstih % ostli so duge kvlitete. Nj pomei dogodek d je slepo i idelek idel v pvi tovi p dogodek d je slepo i idelek pve kvlitete. Ičuj vejetosti dogodkov: / / / / i vskeg od jih podoo opiši esedmi! Koliko je pvovstih idelkov?. odjetje kdidi posel dveh eodvisih tečjih. N pvem doi posel vejetostjo % dugem p %. Vejetost d im doiček če doi posel smo pvem tečju je % d im doiček če doi posel smo dugem tečju je % če doi o posl p %. Kkš je vejetost d im doiček? Če im doiček kkš je vejetost d je doil posel smo pvem tečju?. Immo ti eke šktle; v pvi či i elo koglico v dugi ele i či v tetji elo i če koglice. N slepo sežemo v eo od šktel i slepo ivlečemo eo koglico. Kolikš je vejetost d je t koglic č?. I šktle v ktei je elih i čih kogel pedeemo slepo dve kogli v žo elim i čimi koglmi to p i te slepo ivlečemo eo koglo. Kolikš je vejetost d je t kogl č?. N ipit i mtemtike je pišlo študetov od kteih jih je peštudilo poglvje o vejetostem čuu. N ipitu je tudi e log i vejetosteg ču. Vejetost d to logo pivede do pvileg eultt študet ki je poglvje peštudil je ; vejetost d im pvile eultt študet ki teg poglvj i peštudil p je (pepisovje»teuti vdih«ipd.). Ičuj vejetost d ključo ii študet pvilo eši logo? Kkš je vejetost d študet ki pvilo eši logo sovi i peštudil?. Jeovi uspehi pi skoku v dljio so močo odvisi od veme. Če je lepo veme mg džvem pvestvu vejetostjo če p dežuje je vejetost mgo smo. V Celju kje je povpečo e tetji septemeskih di deževih je. septem osvojil slov džveg pvk. Kolikš je vejetost d je. septem v Celju deževlo?. Imed števil slepo ieemo dve števili. Ičuj vejetost dogodk d st oe števili lihi če je ju vsot sodo število!. Desetkt poedom vžemo kovec. Kolikš je vejetost d g: - pde tko dvkt; - e pde več kot dvkt; C - pde vsj dvkt?. i metju kovc je šestidvjsetkt poedom pdel g. Kolikš je vejetost d pde g v sedemidvjsetem poskusu?

22 . V ži je eko število elih i čih kogel. Osemkt poedom ivlečemo ( slepo) po eo koglo i jo spet vemo v žo. Kolikš je vejetost d smo pi tem šestkt ivlekli čo koglo?. Ktei dogodek im večjo vejetost: štije gi pi sedmih metih kovc li; šest gov pi devetih metih?. odjetje im štii tovojke okve posmeeg tovojk so eodvise od okv ostlih tovojkov. Vejetost d se v določeem čsovem itevlu posmee tovojk pokvi š. Kolikš je vejetost dogodk d se pokvijo vsi štije tovojki; d se e pokvi vsj e tovojk; C d se pokvi vsj e tovojk?. Kteo število gov je jolj vejeto če vžemo kovec ) tidesetkt; ) petitidesetkt?. Kolikokt momo veči kocko d o vejetostjo vsj vsj ekt pdl šestic?. V šktli immo ele če i deči kogli. Šestkt slepo ivlečemo po eo koglo i jo vskič vemo v šktlo. Kolikš je vejetost d se pi tem po dvkt pojvi kogl posmee ve?. Vojk ki dev vejetostjo im polgo ojev. Z poitivo oceo poteuje šest detkov. Kolikš je vejetost d to omo doseže djim ojem? REŠITVE:.... ( ) ( )!. ) ( ) ) ( ). ( ) ( )

23 ( C) ( ) ( ) ( ) ( ) ( ) ( ). ( ). ( ). N M q k q ( ) N M k. ( ). ( )! (!) ( ) p V. K oede defekte ( ) ( )

24 . ( ) ( Z ) ( Z ) ( ) ( Z Z ) ( Z ) ( Z ) Upoštevmo eodvisost! ( C) Z Z ) ( Z ) ( Z ) ( Z ) ( Z ) ( D) ( Z Z ) ( ( Z )) ( ( Z )) li ( D) ( C) Z ZZ ( ZZ ) ( ZZ ) ( ZZ Z ) ( E) ( Z ) Z ( ) ( C ). ( ). vsot devet v pvem metu; vsot sedem v dugem metu; ( ). K oe detek ( ) ( ) ( ZZZ... Z ) ( ( Z ) ( Z ). ( ) ( ) p > p > p >. ( ) ( R) ( ) ( ) ( ) ( R) ( ) ( ). ( ) ( G) ( ŠŠG) ( ŠŠŠŠG) ( ŠŠŠŠŠŠG)......!!!. m ( )!. m!!!! ( ). ( ) &

25 . ( ). ( ). p ; je dvkt večje od di kvdte vee je p štiikt mjše od p toej p. p p p ( ) ( ). ( ) ( R R R R ) ( R ) ( R R ) ( R R R ) ( R R R R ) ( ) ( R R ) ( ) ( ) ( R ) ( R R ). vsj e tojk vsot pik ( ) ( ) ( ). sodo število pik (v pvem poskusu); šestic (v dugem poskusu); mj kot pik (v tetjem poskusu). Neodvisi dogodki: ( ) ( ) ( ) ( ) ( ). Vsti ed čuj:. ( ) ( ) pomo;. vse štii podukte;. vsoti po stolpcih ( ( ) ( ));. pogoje vejetosti po ocu. vovstih idelkov je %.. H - smo pvi posel H - smo dugi posel H - o posl H - oe posel ( H ) ( H ) ( H ) ( H )

26 - im doiček ( H ) ( H ) ( H ) ( H ) ( ) ( H ) ( H ) ( H ) ( ). H - pv šktl H - dug šktl H - tetj šktl ( H ) ( H ) ( ) H ( Č H ) ( Č H ) ( Č ) H ( Č). H - či H - č i el H - eli ( H ) ( H ) ( ) ( Č H ) ( Č) H ( Č H ) ( Č ) H. H - je študil H - i študil pvilo eši ( H ) ( H ) ( H ) ( H ) ) ( ) ( H ) ) ( H ) ( ). H - lepo veme H - dežuje mg ( H ) ( H ) ( H ) ( H ) ( H ) ( H ) ( H ) ( ). oe števili lihi vsot ivlečeih števil je sodo število ( ) ( ) ( )

27 ivlečemo dve sodi li dve lihi števili () Dogodek je či dogodk to je ( ) ( ) i to ( ).. ( ) ; ( ) ( )... ; ;... ; ; ; C. Vejetost d pde g v sedemidvjsetem poskusu je sj so poskusi eodvisi.. ( ). štije gi v sedmih metih šest gov v devetih metih ( ) ( ) >. ( ) ( )... ; ; ( ) ( ) ( ) ( ) ; ; C. ) q p to i celo število k ; ) q p celo število k i ' k.. ( ) ; ; ;

28 log log log log otei so vsj štije meti.. ( )!!!!. ( ) ( ) k k p p k

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1 Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο ο φ. II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai

Διαβάστε περισσότερα

B) VEKTORSKI PRODUKT 1. 1) Pravilo desnega vijaka

B) VEKTORSKI PRODUKT 1. 1) Pravilo desnega vijaka B) VEKTORSKI PRODUKT 1 1) Prvilo desneg vijk Vsi smo že videli vijk, nekteri kkšneg privili, tisti, ki teg še niste storili, p prosite kog, ki se n vijke spozn, d vm pokže privijnje vijk. Večin vijkov

Διαβάστε περισσότερα

Dani vektor lahko ponazorimo z usmerjeno daljico, ki se začne v poljubni točki - pravimo tudi, da vektor vzporedno premaknemo v dano začetno točko.

Dani vektor lahko ponazorimo z usmerjeno daljico, ki se začne v poljubni točki - pravimo tudi, da vektor vzporedno premaknemo v dano začetno točko. Vektoji Usejen dlji ozio oientin dlji je dlji ki ji piedio useitev oientijo. To nedio tko d se odločio kteo od kjišč je zčetn točk in kteo končn točk te dljie. Usejeno dljio z zčetno točko A in končno

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1 Sarò signor io sol Canzon, ottava stanza Domenico Micheli Soprano Soprano 2 Alto Alto 2 Α Α Sa rò si gnor io sol del mio pen sie io sol Sa rò si gnor io sol del mio pen sie io µ Tenor Α Tenor 2 Α Sa rò

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza Mte Vijug: Rijesei zdci iz mtemtike z sredju skolu. ARITMETICKI I GEOMETRIJKI NIZ, RED, BINOMNI POUCAK. Aritmeticki iz Opci oblik ritmetickog iz: + - d Gdje je: prvi cl ritmetickog iz ti cl ritmetickog

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču

PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču PIRAMIDA I ZARULJENA PIRAMIDA Slično ko i kod pizme i ovde ćemo njpe ojniti oznke... - oeležvmo dužinu onovne ivice - oeležvmo dužinu viine pimide - oeležvmo dužinu viine očne tne ( potem) - oeležvmo dužinu

Διαβάστε περισσότερα

32. Inverzna Laplaceova transformacija z parcialnimi ulomki ( ) ( )

32. Inverzna Laplaceova transformacija z parcialnimi ulomki ( ) ( ) MATEMATIKA IV -- vpršj z usti izpit 14.6.5 1. Reši PDE. Lstosti Besseovih fukcij 3. Lstosti Lpc 4. Kovoucij 5. Biomsk sučj spremejivk 6. Lstosti zvezih spremeejivk 7. Kj je ekstrem fukcio 8. Mweove ečbe

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

KUPA I ZARUBLJENA KUPA

KUPA I ZARUBLJENA KUPA KUPA I ZAUBLJENA KUPA KUPA Povšin bze B Povšin omotč M P BM to jet P B to jet S O o kupe Oni peek Obim onog peek O op Povšin onog peek P op Pimen pitgoine teoeme vnotn jednkotn kup je on kod koje je, p

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla.

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla. Mnogougo oji im četii stnice nziv se četvoougo. ČETVOROUGAO D δ δ γ C A α β B β Z svi četvoougo vži im je zi unutšnji i spoljšnji uglov isti i iznosi 0 0 α β γ δ 0 0 α β γ δ 0 0 Njpe žemo četvoouglovi

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

Izbrana poglavja iz matematike

Izbrana poglavja iz matematike Izbrn poglvj iz mtemtike BF Biologij Mtjž Željko Zpiski ob predvnjih v šolskem letu 009/00 Izpis: 9 jnur 00 KAZALO Kzlo Števil 5 Nrvn števil 5 Cel števil 6 3 Rcionln števil 6 4 Reln števil 7 5 Urejenost

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

Αλληλεπίδραση ακτίνων-χ με την ύλη

Αλληλεπίδραση ακτίνων-χ με την ύλη Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

Predmet : MATEMATIKA EPF MARIBOR Učno gradivo 2008/09 Miklavž Mastinšek

Predmet : MATEMATIKA EPF MARIBOR Učno gradivo 2008/09 Miklavž Mastinšek Predmet : MATEMATIKA EPF MARIBOR Učo grdivo 2008/09 Miklvž Mstišek Grdivo je povzetek vsebi učbeikov : Mtemtik z ekoomiste. i 2.del, EPF Mribor Podi so temelji pojmi i primeri log. Popol vsebi i rešei

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

TROUGAO. - Stranice a,b,c ( po dogovoru stranice se obeležavaju nasuprot temenu, npr naspram temena A je stranica a, itd) 1, β

TROUGAO. - Stranice a,b,c ( po dogovoru stranice se obeležavaju nasuprot temenu, npr naspram temena A je stranica a, itd) 1, β TRUG Mngug kji im ti stnie zve se tug. snvni elementi tugl su : - Temen,, - Stnie,, ( p dgvu stnie se eležvju nsupt temenu, np nspm temen je stni, itd) - Uglvi, unutšnji α, β, γ i spljšnji α, β, γ γ α

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΗΣ ΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΟΥ ΓΕΩΘΕΡΜΙΚΟΥ ΠΕ ΙΟΥ ΘΕΡΜΩΝ ΝΙΓΡΙΤΑΣ (Ν. ΣΕΡΡΩΝ)

ΜΕΛΕΤΗ ΤΗΣ ΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΟΥ ΓΕΩΘΕΡΜΙΚΟΥ ΠΕ ΙΟΥ ΘΕΡΜΩΝ ΝΙΓΡΙΤΑΣ (Ν. ΣΕΡΡΩΝ) ελτίο της Ελληνικής Γεωλογικής Εταιρίας τοµ. XXXVI, 2004 Πρακτικά 10 ου ιεθνούς Συνεδρίου, Θεσ/νίκη Απρίλιος 2004 Bulletin of the Geological Society of Greece vol. XXXVI, 2004 Proceedings of the 10 th

Διαβάστε περισσότερα

5.2. Orientacija. Aleš Glavnik in Bojan Rotovnik

5.2. Orientacija. Aleš Glavnik in Bojan Rotovnik Orietacija Aleš Glavik i Boja Rotovik 52 Izvleček: Pred stav lje e so iz bra e te me iz orie ti ra ja v a ra vi, ki jih mo ra poz a ti vsak vod ik PZS, da lah ko var o vo di ude le `e ce a tu ri Pred stav

Διαβάστε περισσότερα

! ҽԗज़ϧљ!!ΐμΐԃ த ໒ ำ!! ǵ թ໒!! ΒǵЬ ठ໒!! Οǵ ٣!! Ѥǵ ᇡ٣!! ϖǵᖏਔ!! Ϥǵණ!!!!! 1 ~ 1 ~

! ҽԗज़ϧљ!!ΐμΐԃ த ໒ ำ!! ǵ թ໒!! ΒǵЬ ठ໒!! Οǵ ٣!! Ѥǵ ᇡ٣!! ϖǵᖏਔ!! Ϥǵණ!!!!! 1 ~ 1 ~ ~ 1 ~ ~ 2 ~ pm ~ 3 ~ p v :9 Ô ndã ndã 2/Æs )644-619-859/* 3/sÕ )6:4-:94-594/* ss ss )2-238-5:3-342/* v v 2/s. 1/ Ô Ô )2-238-5:3 5:3-342/* 342/* :9/23/42 hsà OU%:6-974 m Ë½Ç s Äi z us o½ 352 ssu Çyg ìjý

Διαβάστε περισσότερα

VPRAŠANJA IN ODGOVORI ZA USTNI DEL POKLICNE MATURE... 4 NARAVNA IN CELA ŠTEVILA... 4

VPRAŠANJA IN ODGOVORI ZA USTNI DEL POKLICNE MATURE... 4 NARAVNA IN CELA ŠTEVILA... 4 Lesrsk šol Mrior Aktiv mtemtikov VPRAŠANJA IN ODGOVORI ZA USTNI DEL POKLICNE MATURE... 4 NARAVNA IN CELA ŠTEVILA... 4.. Defiirjte pojm prštevil i sestvljeeg števil ter vedite kriterije deljivosti z, 3,

Διαβάστε περισσότερα

!"#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667

!#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667 !"#!$% & &' ( )*+*,% $ -*(-$ -.*/% $- &$ -.&01#(2$#3 4-$ #35667 5051 & 00000000000000000000000000000000000000000000000000000000000000000000000000000 9 508&:;&& 0000000000000000000000000000000000000000000000000

Διαβάστε περισσότερα

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,

Διαβάστε περισσότερα

αριθμός δοχείου #1# control (-)

αριθμός δοχείου #1# control (-) Μόνο απιονισμένο νερό #1# control (-) Μακροστοχεία: Ν, P, K, Ca, S, Εάν κάποια έλλειψη μετά 1 μήνα έχει σημαντικές επιπτώσεις προσθέτουμε σε δόσεις την έλλειψη έως ότου ανάπτυξη ΟΚ #2# control (+) Μακροστοχεία:

Διαβάστε περισσότερα

!"!# ""$ %%"" %$" &" %" "!'! " #$!

!!# $ %% %$ & % !'!  #$! " "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(

Διαβάστε περισσότερα

SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov

SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov Ruolf Klnik: Fizik z srenješolce Set elektrono in too Električno olje (11), gibnje elce električne olju Strn 55, nlog 1 Kolikšno netost or releteti elektron, se njego kinetičn energij oeč z 1 kev? Δ W

Διαβάστε περισσότερα

)))*+,-!-)#..!""-#)/..+-$-*..-!--+ -*

)))*+,-!-)#..!-#)/..+-$-*..-!--+ -* ψ!"#$%&'&( )))*+,-!-)#..!""-#)/..+-$-*..-!--+ -* ψ #-).#!./ #0)1 #2#)--#3#-..-4#32+4#.#34.#-)3$$-!-315$-#+-")3"6.+-32-#-#3-#3#0-.3 ")!4 31-))!7.-3"#*).#03+ --38-#)3#.-!9.-#*-.$-3!#-)#)3!""-#)3#!-*)#!4:--.)))#!-##-.6+#!#+*-.*+.--)-!

Διαβάστε περισσότερα

Κεφάλαιο 1. Έννοιες και παράγοντες αντιδράσεων

Κεφάλαιο 1. Έννοιες και παράγοντες αντιδράσεων Κεφάλαιο 1 Έννοιες και παράγοντες αντιδράσεων Σύνοψη Το κεφάλαιο αυτό είναι εισαγωγικό του επιστημονικού κλάδου της Οργανικής Χημείας και περιλαμβάνει αναφορές στους πυλώνες της. Ειδικότερα, εδώ παρουσιάζεται

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

m i N 1 F i = j i F ij + F x

m i N 1 F i = j i F ij + F x N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

ο3 3 gs ftffg «5.s LS ό b a. L Μ κ5 =5 5 to w *! .., TJ ο C5 κ .2 '! "c? to C φ io -Ρ (Μ 3 Β Φ Ι <^ ϊ bcp Γί~ eg «to ιο pq ΛΛ g Ό & > I " CD β U3

ο3 3 gs ftffg «5.s LS ό b a. L Μ κ5 =5 5 to w *! .., TJ ο C5 κ .2 '! c? to C φ io -Ρ (Μ 3 Β Φ Ι <^ ϊ bcp Γί~ eg «to ιο pq ΛΛ g Ό & > I  CD β U3 I co f - bu. EH T ft Wj. ta -p -Ρ - a &.So f I P ω s Q. ( *! C5 κ u > u.., TJ C φ Γί~ eg «62 gs ftffg «5.s LS ό b a. L κ5 =5 5 W.2 '! "c? io -Ρ ( Β Φ Ι < ϊ bcp «δ ι pq ΛΛ g Ό & > I " CD β U (Ν φ ra., r

Διαβάστε περισσότερα

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι

Διαβάστε περισσότερα

pi r p p c i i c i (0) i c i (x) i c i, av i c i i C i i C i P i C i W i d d D i i D i p i D in D out e e F F = I c j i i J V k i k b k b = K ic i K id i n P m P Pe i i r si i r p R R = R T V W i x x X

Διαβάστε περισσότερα

Kinematika materijalne toke. 2. Prirodni koordinatni sustav. 1. Vektorski nain definiranja gibanja. Krivocrtno gibanje materijalne toke

Kinematika materijalne toke. 2. Prirodni koordinatni sustav. 1. Vektorski nain definiranja gibanja. Krivocrtno gibanje materijalne toke Kioco gibje meijle oke Kiemik meijle oke. dio ) Zje kiocog gibj b) Bi i ubje Položj meijle oke u skom euku eme možemo defiii slijedee ie:. Vekoski i defiij gibj (). Piodi i defiij gibj s s (). Vekoski

Διαβάστε περισσότερα

II. ANALITIČKA GEOMETRIJA PROSTORA

II. ANALITIČKA GEOMETRIJA PROSTORA II. ANALITIČA GEOMETRIJA PROSTORA II. DIO (Pv).. Min Roić Linović 9./. Pv u otou Jenž v Nek je: T (,, ) n točk oto {,, } ni vekto mje Znom točkom oto oli mo v leln nim vektoom. T (,,) - oivoljn točk v

Διαβάστε περισσότερα

())*+,-./0-1+*)*2, *67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3*

())*+,-./0-1+*)*2, *67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3* ! " # $ $ %&&' % $ $! " # ())*+,-./0-1+*)*2,-3-4050+*67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* *),+-30 *5 35(2(),+-./0 30 *,0+ 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3* *3*+-830-+-2?< +(*2,-30+

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ/ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ

Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ/ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ Β ΥΚΕΙΟΥ ΘΕΤΙΚΗ/ΤΕΧΝΟΟΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ο ΔΙΑΩΝΙΣΜΑ ΘΕΜΑ ο Επιλέξτε την ή τις σωστές απαντήσεις.. Ο πρώτος θερμοδυναμικός νόμος: α) Αποτελεί μια έκφραση της αρχής διατήρησης της ενέργειας. β) Αναφέρεται

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) «ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ»

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) «ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ» ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) «ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ» ΜΑΘΗΜΑ ΚΟΡΜΟΥ «ΥΔΑΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ» ΥΔΑΤΙΚΑ ΟΙΚΟΣΥΣΤΗΜΑΤΑ Σημειώσεις

Διαβάστε περισσότερα

Reševanje sistema linearnih

Reševanje sistema linearnih Poglavje III Reševanje sistema linearnih enačb V tem kratkem poglavju bomo obravnavali zelo uporabno in zato pomembno temo linearne algebre eševanje sistemov linearnih enačb. Spoznali bomo Gaussovo (natančneje

Διαβάστε περισσότερα

rs r r â t át r st tíst Ó P ã t r r r â

rs r r â t át r st tíst Ó P ã t r r r â rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã

Διαβάστε περισσότερα

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH

Διαβάστε περισσότερα

Řečtina I průvodce prosincem a začátkem ledna prezenční studium

Řečtina I průvodce prosincem a začátkem ledna prezenční studium Řečtina I průvodce prosincem a začátkem ledna prezenční studium Dobson číst si Dobsona 9. až 12. lekci od 13. lekce už nečíst (minulý čas probírán na stažených slovesech velmi matoucí) Bartoň pořídit si

Διαβάστε περισσότερα

O ÛÒ ˆÓ Â ÙfiÓ... ÙÔÓ ÈÛÙfi ÙË Ú ÓË T Ì ÛÙÈÎ ÁÈ ÌÈ

O ÛÒ ˆÓ Â ÙfiÓ... ÙÔÓ ÈÛÙfi ÙË Ú ÓË T Ì ÛÙÈÎ ÁÈ ÌÈ B EK O H Â «Ô ÙÈ» Ô Ú ÚÁ ÚÔ 25 A PI IOY 2010 ñ ºY O 1.681 ñ appleâú Ô Ô B www.enet.gr 2 ú (EÎ ÔÛË ÌÂ appleúôûêôú 4 ú ) E. 62 MIA PO ºOPA TH «K.E.» OI E I Tø EI A O THN PO ºY H TO MHXANI MO THPI H E OIKONOMIA,

Διαβάστε περισσότερα

PROCESIRANJE SIGNALOV

PROCESIRANJE SIGNALOV Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:

Διαβάστε περισσότερα

Polgrupe i grupe (1) Razišči strukturo asledjih grupoidov: (a) S = R za operacijo x y = x + y + xy, { [ ] 1 x (b) S = 0 1 x R za operacijo možeje matrik, (c) S = R 3 za operacijo vektorski produkt, (d)

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

II. ŠTEVILSKE IN FUNKCIJSKE VRSTE

II. ŠTEVILSKE IN FUNKCIJSKE VRSTE II. ŠTEVILSKE IN FUNKCIJSKE VRSTE. Številske vrste Poleg zporedij relnih števil lhko o konvergenci govorimo tudi pri t.i. številskih vrsth. Formlno gledno je številsk vrst neskončn vsot relnih števil;

Διαβάστε περισσότερα

vsota je komutativna, asociativna,skalarno množenje pa distributivno če obstaja tak skalar,da velja a = cb in b = ca, ter če velja da so n

vsota je komutativna, asociativna,skalarno množenje pa distributivno če obstaja tak skalar,da velja a = cb in b = ca, ter če velja da so n . Determt poddetermt dvovrste determte srečmo pr reševju sstemov dve ler eč z dvem ezkm; spodj zrz meujemo determt sstem D. Lstost determte če m mtrk A v stolpc zpse vrstce mtrke A potem velj deta deta

Διαβάστε περισσότερα

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTAL INFORMATION Fully Automated Total Metals and Chromium

Διαβάστε περισσότερα

List za mlade matematike, fizike, astronome in računalnikarje. Peter Šemrl: LINEARNE PRESLIKAVE RAVNINE IN 2 x 2 MATRIKE

List za mlade matematike, fizike, astronome in računalnikarje. Peter Šemrl: LINEARNE PRESLIKAVE RAVNINE IN 2 x 2 MATRIKE Lit za mlade matematike, fizike, atonome in ačunalnikaje ISSN 351-6652 Letnik 32 (24/25) Številka 4 Stani 9 12 Pete Šeml: LINEARNE PRESLIKAVE RAVNINE IN 2 2 MATRIKE Ključne beede: matematika, lineana algeba,

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ V. Πρότυπα δυναμικά αναγωγής ( ) ΠΡΟΤΥΠΑ ΔΥΝΑΜΙΚΑ ΑΝΑΓΩΓΗΣ ΣΤΟΥΣ 25 o C. Ημιαντιδράσεις αναγωγής , V. Antimony. Bromine. Arsenic.

ΠΑΡΑΡΤΗΜΑ V. Πρότυπα δυναμικά αναγωγής ( ) ΠΡΟΤΥΠΑ ΔΥΝΑΜΙΚΑ ΑΝΑΓΩΓΗΣ ΣΤΟΥΣ 25 o C. Ημιαντιδράσεις αναγωγής , V. Antimony. Bromine. Arsenic. ΠΑΡΑΡΤΗΜΑ V. ΠΡΟΤΥΠΑ ΔΥΝΑΜΙΚΑ ΑΝΑΓΩΓΗΣ ΣΤΟΥΣ 5 o C ΠΑΡΑΡΤΗΜΑ V. Πρότυπα δυναμικά αναγωγής ΠΡΟΤΥΠΑ ΔΥΝΑΜΙΚΑ ΑΝΑΓΩΓΗΣ ΣΤΟΥΣ 5 o C, V, V Auminum Bervium A ( H ) e A H. 0 Be e Be H. 1 ( ) [ ] e A F. 09 AF

Διαβάστε περισσότερα

Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads.

Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Η μυκηναϊκή Γραμμική Β γραφή ονομάστηκε έτσι από τον

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 3/5/016 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΣΥΡΜΑΤΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Παραδείγματα Κεραιών Αθανάσιος Κανάτας Καθηγητής Παν/μίου Πειραιώς Δίπολο Hetz L d

Διαβάστε περισσότερα

Veliine u mehanici. Rad, snaga i energija. Dinamika. Meunarodni sustav mjere (SI) 1. Skalari. 2. Vektori - poetak. 12. dio. 1. Skalari. 2.

Veliine u mehanici. Rad, snaga i energija. Dinamika. Meunarodni sustav mjere (SI) 1. Skalari. 2. Vektori - poetak. 12. dio. 1. Skalari. 2. Vele u ehc Rd, g eegj D. do. Sl. Veo 3. Tezo II. ed 4. Tezo IV. ed. Sl: 3 0 pod je jedc (ezo ulog ed). Veo: 3 3 pod je jedc (ezo pog ed) 3. Tezo dugog ed 3 9 pod je jedc 4. Tezoeog ed 3 4 8 pod je jedc

Διαβάστε περισσότερα

891 Ν.30/85. E.E., Παρ. I, Αρ. 2045,

891 Ν.30/85. E.E., Παρ. I, Αρ. 2045, E.E., Παρ., Αρ. 2045, 6.4.5 91 Ν.0/5 περί Συμπληρματικύ Πρϋπλγισμύ Νόμς (Αρ. ) τυ 195 εκδίδεται διό δημσιεύσες εις την επίσημ ν εφημερίδα της Κυπριακής Δημκρατίας συμφώνς τ άρθρ 52 τυ Συντάγματς. Αριθμός

Διαβάστε περισσότερα

Matematika I. NTF Načrtovanje tekstilij in oblačil Zapiski ob predavanjih v šolskem letu 2006/07

Matematika I. NTF Načrtovanje tekstilij in oblačil Zapiski ob predavanjih v šolskem letu 2006/07 Mtemtik I Mtjž Željko NTF Nčrtovnje tekstilij in oblčil Zpiski ob predvnjih v šolskem letu 006/07 Izpis: mrec 009 Kzlo Množice in števil 4 Množice 4 Reln števil 8 3 Podmnožice relnih števil 0 4 Kompleksn

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

œj œ œ œ œ œ œ b œ œ œ œ œ œ w

œj œ œ œ œ œ œ b œ œ œ œ œ œ w Osmogasnik - as 5 - Jutrewe 1 16.. Na O treni j Bog= o - spod' i - vi - sq nam=, n b w ba - go - so-ven= grq-dyj vo i -mq o-spod - ne. Bog= o-spod' i -vi - sq nam=, ba - go - so - n > b w ven= grq - dyj

Διαβάστε περισσότερα

3607 Ν. 7.28/88. E.E., Παρ. I, Αρ. 2371,

3607 Ν. 7.28/88. E.E., Παρ. I, Αρ. 2371, E.E., Παρ. I, Αρ. 271, 16.12. 607 Ν. 7.2/ περί Συμπληρματικύ Πρϋπλγισμύ Νόμς (Αρ. 5) τυ 19 εκδίδεται με δημσίευση στην επίσημη εφημερίδα της Κυπριακής Δημκρατίας σύμφνα με τ Άρθρ 52 τυ Συντάγματς- - Αριθμός

Διαβάστε περισσότερα

! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

! # $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 $ 6, ::: ;<$& = = 7 + > + 5 $?# 46(A *( / A 6 ( 1,*1 B',CD77E *+ *),*,*) F? $G'& 0/ (,. ! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$

Διαβάστε περισσότερα

1 Fibonaccijeva stevila

1 Fibonaccijeva stevila 1 Fibonaccijeva stevila Fibonaccijevo število F n, kjer je n N, lahko definiramo kot število načinov zapisa števila n kot vsoto sumandov, enakih 1 ali Na primer, število 4 lahko zapišemo v obliki naslednjih

Διαβάστε περισσότερα

diferencialne enačbe - nadaljevanje

diferencialne enačbe - nadaljevanje 12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

M p f(p, q) = (p + q) O(1)

M p f(p, q) = (p + q) O(1) l k M = E, I S = {S,..., S t } E S i = p i {,..., t} S S q S Y E q X S X Y = X Y I X S X Y = X Y I S q S q q p+q p q S q p i O q S pq p i O S 2 p q q p+q p q p+q p fp, q AM S O fp, q p + q p p+q p AM

Διαβάστε περισσότερα

Επιστήμη και Τεχνολογία Συγκολλήσεων. Ενότητα 7: Θερμοεπηρεασμένη Ζώνη Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών

Επιστήμη και Τεχνολογία Συγκολλήσεων. Ενότητα 7: Θερμοεπηρεασμένη Ζώνη Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Επιστήμη και Τεχνολογία Συγκολλήσεων Ενότητα 7: Θερμοεπηρεασμένη Ζώνη Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

(Ne)rešljiva Rubikova kocka in grupe

(Ne)rešljiva Rubikova kocka in grupe (Ne)rešljiva Rubikova kocka in grupe Maša Lah, Sabina Boršić, Klara Drofenik Mentor: Rok Gregorič Matematično raziskovalno srečanje 24. avgust 2016 Povzetek Cilj našega projekta je bil ugotoviti kriterij

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα

k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)

Διαβάστε περισσότερα

s.s a a e !* : Β 3 Β. t Β. ε= α Η S < is *? A1=3 a ** 5 * 5 .Π % ** 5. II sr ο. " f-s ο < go< (5) D ^ X s ti3i "ε Ρ 5 Ρ Η. θ δ δ .

s.s a a e !* : Β 3 Β. t Β. ε= α Η S < is *? A1=3 a ** 5 * 5 .Π % ** 5. II sr ο.  f-s ο < go< (5) D ^ X s ti3i ε Ρ 5 Ρ Η. θ δ δ . Ε.Ε. Παρ. III(I) Κ.Δ.Π. /200 Αρ. 671,.1.200 Αριθμός ΠΕΡΙ ΠΛΕΔΜΙΑΣ ΚΑΙ ΧΩΡΤΑΞΙΑΣ ΝΜΣ (ΝΜΣ 90 ΤΥ 1972, 56 ΤΥ 1982, 7 ΤΥ 1990, 28 ΤΥ 1991, 91(1) ΤΥ 1992, 95(1) ΤΥ 199, 72(1) ΤΥ 1998, 59(1) ΚΑΙ 142(1) ΤΥ 1999)

Διαβάστε περισσότερα

5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.

5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο. 728!. -θ-cr " -;. '. UW -,2 =*- Os Os rsi Tf co co Os r4 Ι. C Ι m. Ι? U Ι. Ι os ν ) ϋ. Q- o,2 l g f 2-2 CT= ν**? 1? «δ - * * 5 Ι -ΐ j s a* " 'g cn" w *" " 1 cog 'S=o " 1= 2 5 ν s/ O / 0Q Ε!θ Ρ h o."o.

Διαβάστε περισσότερα

/&25*+* 24.&6,2(2**02)' 24

/&25*+* 24.&6,2(2**02)' 24 !! "#$ % (33 &' ())**,"-.&/(,01.2(*(33*( ( &,.*(33*( ( 2&/((,*(33*( 24 /&25** 24.&6,2(2**02)' 24 " 0 " ( 78,' 4 (33 72"08 " 2/((,02..2(& (902)' 4 #% 7' 2"8(7 39$:80(& 2/((,* (33; (* 3: &

Διαβάστε περισσότερα

gr mol g lit mg lit mlit lit mol NaCl 96 NaCl HCl HCl

gr mol g lit mg lit mlit lit mol NaCl 96 NaCl HCl HCl 1 ( - ) ( ) : 5 ( CH 3 COOH ).1 0 /1M NaOH35ml CH COOH 3 = /3 gr mol 211/05 mg 3 /5mgr 210 /1gr 3 /5gr ppm.2 mg mlit mg lit g lit µg lit.3 1mol (58 /8 NaCl ) 0 /11F 14 /9ml NaCl.4 14 /9 96 0 /0149 0 /096

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

Im{z} 3π 4 π 4. Re{z}

Im{z} 3π 4 π 4. Re{z} ! #"!$%& '(!*),+- /. '( 0 213. $ 1546!.17! & 8 + 8 9:17!; < = >+ 8?A@CBEDF HG

Διαβάστε περισσότερα

Analitička geometrija i linearna algebra. Kartezijev trodimenzionalni pravokutni koordinatni sustav čine 3 međusobno okomite osi: Ox os apscisa,

Analitička geometrija i linearna algebra. Kartezijev trodimenzionalni pravokutni koordinatni sustav čine 3 međusobno okomite osi: Ox os apscisa, Alitičk geoetrij i lier lger Vektori KOORDINATNI SUSTAV Krteijev prvokuti koorditi sustv Krteijev trodieioli prvokuti koorditi sustv čie eđusoo okoite osi: O os pscis O os ordit O os plikt točk O ishodište

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

Matematika vaja. Matematika FE, Ljubljana, Slovenija Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija

Matematika vaja. Matematika FE, Ljubljana, Slovenija Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija Matematika 1 3. vaja B. Jurčič Zlobec 1 1 Univerza v Ljubljani, Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija Matematika FE, Ljubljana, Slovenija 2011 Določi stekališča zaporedja a

Διαβάστε περισσότερα

4. Trigonometrija pravokutnog trokuta

4. Trigonometrija pravokutnog trokuta 4. Trigonometrij prvokutnog trokut po školskoj ziri od Dkić-Elezović 4. Trigonometrij prvokutnog trokut Formule koje koristimo u rješvnju zdtk: sin os tg tg ktet nsuprot kut hipotenuz ktet uz kut hipotenuz

Διαβάστε περισσότερα

Προσοµοίωση Π ρ ο µ ο ί ω Μ η χ α ν ο ί Ε λ έ γ χ ο υ τ ο υ Χ ρ ό ν ο υ Φάσεις σο ση ς ισµ ιδάσκων: Ν ικό λ α ο ς Α µ π α ζ ή ς Φάσεις τ η ς π ρ ο σο µ ο ί ω ση ς i. Κατασκευή το υ µ ο ν τέ λ ο υ π ρ ο

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

Υ ΑΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΟΜΕΑΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ Κ. Π. ΧΑΛΒΑ ΑΚΗΣ ΜΥΤΙΛΗΝΗ 2004. Καθηγητής Περ.

Υ ΑΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΟΜΕΑΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ Κ. Π. ΧΑΛΒΑ ΑΚΗΣ ΜΥΤΙΛΗΝΗ 2004. Καθηγητής Περ. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΟΜΕΑΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ Υ ΑΤΙΚΗ ΧΗΜΕΙΑ ΤΜΗΜΑ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΥΤΙΛΗΝΗ 2004 Κ. Π. ΧΑΛΒΑ ΑΚΗΣ Καθηγητής Περ. Μηχανικής ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ...1 1 ΕΙΣΑΓΩΓΗ...3

Διαβάστε περισσότερα

œ œ œ œ œ œ œ œ œ l Bo/g Go-spo/d' i «- vi/ - sq na/m=, bla - go -

œ œ œ œ œ œ œ œ œ l Bo/g Go-spo/d' i «- vi/ - sq na/m=, bla - go - J 1 Jutrewe - as 1 16. Na O treni Bog o-spod' i «- vi - sq nam=, ba - go -. J w so -ven= grq -dyj vo i -mq o-spod - ne. 17. " rob= tvoj Spa - se vo - i - ni stre - gu? - w i, b mer - tvi - bi -sta - n

Διαβάστε περισσότερα

VALJAK. Valjak je geometrijsko telo ograničeno sa dva kruga u paralelnim ravnima i delom cilindrične površi čije su

VALJAK. Valjak je geometrijsko telo ograničeno sa dva kruga u paralelnim ravnima i delom cilindrične površi čije su ALJAK ljk je geometijsko telo ogničeno s dv kug u plelnim vnim i delom ilindične povši čije su izvodnie nomlne n vn ti kugov. Os vljk je pv koj polzi koz ente z. Nvno ko i do sd oznke su: - je povšin vljk

Διαβάστε περισσότερα

Jeux d inondation dans les graphes

Jeux d inondation dans les graphes Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488

Διαβάστε περισσότερα