Evolutionary Equilibrium

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Evolutionary Equilibrium"

Transcript

1 Evolutionary Equilibrium Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών v Algorithmic Game Theory Evolutionary Equilibium 1

2 τι θα πούμε εξελικτικά παίγνια (evolutionary games) evolutionary stable strategy (ESS) παραδείγματα Algorithmic Game Theory Evolutionary Equilibium 2

3 Darwin θεωρία εξέλιξης του Δαρβίνου: μια «συμπεριφορά» επιβιώνει εάν δεν υπάρχει άλλη συμπεριφορά πιο επιτυχημένη στη δημιουργία απογόνων η επιτυχία αναπαραγωγής μιας συμπεριφοράς ενός οργανισμού μπορεί να εξαρτάται από τη συμπεριφορά άλλων οργανισμών εάν για παράδειγμα όλοι οι οργανισμοί έχουν μια επιθετική συμπεριφορά μπορεί ένα οργανισμός να ευνοείται εάν επιλέξει και αυτός μια επιθετική συμπεριφορά(ή ανάλογα με τους όρους του παιγνίου) μια πιο παθητική συμπεριφορά Algorithmic Game Theory Evolutionary Equilibium 3

4 ένα μοντέλο εξελικτικών παιγνίων οι παίκτεςθεωρούνται ένα δυναμικός πληθυσμός οργανισμών (άνθρωποι, ζώα, φυτά, μικροοργανισμοί, κτλ.) οι παίκτες αλληλεπιδρούν σε τυχαία ζευγάρια οι παίκτες παίζουν ένα στρατηγικό παίγνιο οι κινήσεις ενός παίκτη αντιστοιχούν στις διαφορετικές συμπεριφορές που θα μπορούσε να υιοθετήσει λόγω μεταλλάξεων (mutations) συνάρτηση απόδοσης: δίνει το μέτρο του βιολογικού fitness ή αλλιώς της επιτυχίας αναπαραγωγής (μέσος αριθμός υγιών απογόνων) Algorithmic Game Theory Evolutionary Equilibium 4

5 κινήσεις και αποδόσεις θεωρούμε ότι τα κέρδη των παικτών δεν προκύπτουν από προσωπικά, υποκειμενικά κριτήρια επίσης οι κινήσεις τους δεν αποτελούν συνειδητές επιλογές η απόδοση κάθε παίκτη είναι ένα μέτρο του fitness κάθε παίκτης είναι προγραμματισμένοςνα ακολουθεί μια συγκεκριμένη συμπεριφορά την οποία: είτε (με μεγάλη πιθανότητα) κληρονόμησεαπό τον πρόγονο ή τους προγόνους του είτε (με μικρή πιθανότητα) απέκτησε λόγω κάποιας μετάλλαξης Algorithmic Game Theory Evolutionary Equilibium 5

6 ισορροπία έστω ένας πληθυσμός και ένα εξελικτικό παίγνιο έστω δύο συμπεριφορές/στρατηγικές α και α έστω ότι στην τρέχουσα κατάσταση παίκτες της συμπεριφοράς α αναπαράγονται γρηγορότερα από παίκτες της συμπεριφοράς α αποτέλεσμα: η σύνθεση του πληθυσμού θα αλλάξει προς όφελος της συμπεριφοράς α επομένως: μια κατάσταση του παιγνίου είναι σταθερή μόνο εάν η κίνηση κάθε οργανισμού είναι η βέλτιστη απόκριση (best response) στην τρέχουσα κατάσταση συμπεραίνουμε ότι εξελικτικά σταθερές συμπεριφορές σχετίζονται με τις ισορροπίες Nash Algorithmic Game Theory Evolutionary Equilibium 6

7 monomorphic pure strategy equilibrium έστω πληθυσμός με οργανισμούς που συνεχώς επιλέγονται και παίζουν ανά δύο (τυχαία) θεωρούμε ότι ο πληθυσμός είναι αρκετά μεγάλος ώστε η πιθανότητα να παίξει το ίδιο ζευγάρι να είναι αμελητέα οι πιθανές συμπεριφορές είναι ίδιες για όλους τους παίκτες κάθε οργανισμός δίνει απογόνους σε τακτά χρονικά διαστήματα υποθέτουμε asexual reproduction, δηλαδή κάθε οργανισμός μόνος του δίνει απογόνους Algorithmic Game Theory Evolutionary Equilibium 7

8 το παίγνιο ένας πληθυσμός από ζώα του ίδιου είδους τα οποία ανταγωνίζονται για τροφή θεωρούμε ότι υπάρχει ένα σύνολο κινήσεων Α η συνάρτηση απόδοσης u(α,α ) ερμηνεύεται ως το fitnessενός οργανισμού τύπου α όταν συναντά οργανισμό τύπου α διαφορετικές συναρτήσεις απόδοσης ορίζουν διαφορετικά παίγνια ο ρυθμός αναπαραγωγής κάθε οργανισμού του πληθυσμού καθορίζεται από την απόδοση που έχει από τα παίγνια στα οποία συμμετέχει υπάρχει σύνθεση του πληθυσμού που να είναι σταθερή, με την έννοια ότι δεν μπορεί να εισβάλει άλλος οργανισμός θεωρούμε ότι σε κάθε προσπάθεια εισβολής μόνο οργανισμοί ενός τύπου προσπαθούν να εισβάλλουν επίσης εξετάζουμε αρχικά παράδειγμα στο οποίο στον πληθυσμό αρχικά όλοι οι παίκτες παίζουν την ίδια κίνηση (monomorphic pure strategy equilibria) Algorithmic Game Theory Evolutionary Equilibium 8

9 παράδειγμα 1 Χ Υ Χ 2,2 0,0 Υ 0,0 1,1 έστω ότι όλοι οι οργανισμοί ακολουθούν τη στρατηγική Χ ένα μικρό ποσοστό ε του πληθυσμού αλλάζει και επιλέγει τη στρατηγική Y τι θα συμβεί; μπορεί να εισβάλλει η νέα συμπεριφορά; τι ισχύει για το αντίστροφο σενάριο; Algorithmic Game Theory Evolutionary Equilibium 9

10 παράδειγμα 2 Χ Υ Χ 2,2 0,0 Υ 0,0 0,0 τι ισχύει για τη στρατηγική Υ; Algorithmic Game Theory Evolutionary Equilibium 10

11 evolutionary stable strategy συμμετρικό παίγνιο σε στρατηγική μορφή με δύο παίκτες συνάρτηση απόδοσης U(α,α ) evolutionary stable strategy α*: (α*,α*) ισορροπία Nash U(β,β)<U(α*,β) για κάθε στρατηγική β α* η οποία είναι κίνηση βέλτιστης απόκρισης ως προς α* Algorithmic Game Theory Evolutionary Equilibium 11

12 Asymmetric Contests Side-blotched lizards Male lizards follow one of three reproductive strategies, each associated with a distinctive coloration Image: orange throats: very aggressive and defend large territories blue throats:less aggressive and defend smaller territories yellow stripes on their throats: do not defend any territory, but rather depend on their similarity in coloration to females Algorithmic Game Theory Evolutionary Equilibium 12

13 αναλογία των φύλων ένας πληθυσμός αρσενικών και θηλυκών που ζευγαρώνουν ανά δύο για την δημιουργία απογόνων έστω ότι το φύλο κάθε απογόνου είναι αρσενικό, με πιθανότητα p θηλυκό, με πιθανότητα 1-p θα υπάρχει steady state στο οποίο ποσοστό p του πληθυσμού είναι αρσενικά και ποσοστό 1-p θηλυκά για ποιες τιμές του p είναι μια τέτοια κατάσταση σταθερή εξελικτικά; Algorithmic Game Theory Evolutionary Equilibium 13

14 αναλογία των φύλων εάν p 1/2 τότε αρσενικά και θηλυκά έχουν διαφορετικό πλήθος απογόνων (κατά μέσο όρο) το πλήθος των απογόνων είναι n για κάθε θηλυκό, και ((1-p)/p) n για κάθε αρσενικό έστω ότι εμφανίζεται οργανισμός που έχει αναλογία απογόνων 1/2, δηλαδή p=1/2 για λόγους απλότητας υποθέτουμε ότι το νέο χαρακτηριστικό είναι κυρίαρχο, δηλαδή εάν ένας γονέας το έχει τότε όλοι οι απόγονοι έχουν p=1/2 θεωρούμε ότι το πλήθος των απογόνων για τα θηλυκά που έχουν το χαρακτηριστικό παραμένει n Algorithmic Game Theory Evolutionary Equilibium 14

15 αναλογία των φύλων θα αλλάξει η σύνθεση του πληθυσμού; θα καταφέρει η νέα συμπεριφορά να εισβάλει στον πληθυσμό; ένα κανονικό θηλυκό έχει: p nαρσενικούς και (1-p) n θηλυκούς απογόνους επομένως ένα κανονικό θηλυκό έχει 2(1-p) n 2 εγγόνια πόσα εγγόνια έχει ένα νέο θηλυκό (p=1/2); σημείωση: υπάρχουν παραλλαγές του μοντέλου, πχ. Gintis 4.17 Algorithmic Game Theory Evolutionary Equilibium 15

16 λύση Osborne Algorithmic Game Theory Evolutionary Equilibium 16

17 TromelinIsland Μια πραγματική, δραματική, ιστορία 60 άνθρωποι εγκαταλείφτηκαν σε ένα ερημονήσι με ελάχιστα εφόδια 15 χρόνια μετά, ένα πλοίο διάσωσης βρήκε εν ζωή 7 γυναίκες και ένα μωρό αγοράκι ορισμένοι είχαν διαφύγει νωρίτερα Shipwrecked and Abandoned, The Independent, Algorithmic Game Theory Evolutionary Equilibium 17

18 Algorithmic Game Theory Evolutionary Equilibium 18

19 λογισμικό VirtualLabs in evolutionary game theory Algorithmic Game Theory Evolutionary Equilibium 19

20 Πηγές -Αναφορές Osborne, An Introduction to Game Theory, Κεφάλαιο 13 Η έννοια του evolutionary stable strategy ορίσθηκε από τον John Maynard Smith με βάση κάποιες πρώτες ιδέες του G. A. Price Gintis, Game Theory Evolving, Κεφάλαιο 4 Algorithmic Game Theory Evolutionary Equilibium 20

Εκτεταμένα Παίγνια (Extensive Games)

Εκτεταμένα Παίγνια (Extensive Games) Εκτεταμένα Παίγνια (Extensive Games) Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εκτεταμένα Παίγνια Τα στρατηγικά παίγνια δεν

Διαβάστε περισσότερα

Μοντέλα των Cournotκαι Bertrand

Μοντέλα των Cournotκαι Bertrand Μοντέλα των Cournotκαι Bertrand Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τι θα πούμε Θα εξετάσουμε αναλυτικά το μοντέλο Cournot

Διαβάστε περισσότερα

Παραδείγματα Παιγνίων

Παραδείγματα Παιγνίων Παραδείγματα Παιγνίων Παύλος Σ. Εφραιμίδης v1.3, 01/06/2014 Τι περιλαμβάνει ένα παίγνιο: Παίγνιο Παίκτες Πιθανές κινήσεις για κάθε παίκτη Απόδοση ή όφελος για κάθε παίκτη σε κάθε πιθανή έκβαση του παιγνίου

Διαβάστε περισσότερα

Κοινωνικά Δίκτυα Θεωρία Παιγνίων

Κοινωνικά Δίκτυα Θεωρία Παιγνίων Κοινωνικά Δίκτυα Θεωρία Παιγνίων Ν. Μ. Σγούρος Τμήμα Ψηφιακών Συστημάτων, Παν. Πειραιώς sgouros@unipi.gr Ορισμοί Ένα Παίγνιο (game) ορίζεται ως μια δραστηριότητα με τα ακόλουθα τρία χαρακτηριστικά: Υπάρχει

Διαβάστε περισσότερα

Ένα Παίγνιο (game) ορίζεται ως μια δραστηριότητα με τα ακόλουθα τρία χαρακτηριστικά:

Ένα Παίγνιο (game) ορίζεται ως μια δραστηριότητα με τα ακόλουθα τρία χαρακτηριστικά: Γενικοί Ορισμοί Η Θεωρία Παιγνίων (game theory) εξετάζει δραστηριότητες στις οποίες το αποτέλεσμα της απόφασης ενός ατόμου εξαρτάται όχι μόνο από τον τρόπο με τον οποίο επιλέγει ανάμεσα από διάφορες εναλλακτικές

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Παιγνίων

Βασικές Έννοιες Θεωρίας Παιγνίων Παύλος Σ. Εφραιμίδης Έκδοση 05/11/2013 Περιεχόμενα Τι είναι η θεωρία παιγνίων Ο ρόλος ενός μαθηματικού μοντέλου Το δίλημμα του φυλακισμένου Σημείο ισορροπίας Nash Θεωρία Παιγνίων Η θεωρία παιγνίων (game

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Παιγνίων

Βασικές Έννοιες Θεωρίας Παιγνίων Βασικές Έννοιες Θεωρίας v. 01/06/2014 Παύλος Σ. Εφραιμίδης Βασικές Έννοιες Θεωρίας Περιεχόμενα Τι είναι η θεωρία παιγνίων Ο ρόλος ενός μαθηματικού μοντέλου Το δίλημμα του φυλακισμένου Σημείο ισορροπίας

Διαβάστε περισσότερα

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Μερική Παρατηρησιµότητα Θεωρία Παιγνίων Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Reinforcement Learning (RL)

Διαβάστε περισσότερα

Extensive Games with Imperfect Information

Extensive Games with Imperfect Information Extensive Games with Imperfect Information Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εκτεταµένα παίγνια µε ατελή πληροφόρηση

Διαβάστε περισσότερα

Ιστορικά Στοιχεία. Παύλος Σ. Εφραιμίδης

Ιστορικά Στοιχεία. Παύλος Σ. Εφραιμίδης Παύλος Σ. Εφραιμίδης ΙΣΤΟΡΙΚΆ ΣΤΟΙΧΕΊΑ ΠΑΊΓΝΙΑ ΣΤΗΝ ΑΡΧΑΙΌΤΗΤΑ Παράδειγμα περιγραφής προβλήματος που ανάγεται σε παίγνιο συναντούμε ήδη από την αρχαιότητα, πχ. στην Πολιτεία του Πλάτωνα ο Σωκράτης περιγράφει

Διαβάστε περισσότερα

- Παράδειγμα 2. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να

- Παράδειγμα 2. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να - Παράδειγμα. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να αποκρούσει ένας τερματοφύλακας. - Αν οι δύο παίκτες επιλέξουν

Διαβάστε περισσότερα

Παιγνιακά Μοντέλα Σύγκρουσης και Συνεργασίας

Παιγνιακά Μοντέλα Σύγκρουσης και Συνεργασίας Επίκουρος Καθηγητής Ιωάννης Παραβάντης Τµήµα ιεθνών και Ευρωπαϊκών Σπουδών ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ Μάρτιος 2010 Παιγνιακά Μοντέλα Σύγκρουσης και Συνεργασίας 1. Εισαγωγή Στο παρόν φυλλάδιο παριστάνουµε περιπτώσεις

Διαβάστε περισσότερα

Διάλεξη 7. Θεωρία παιγνίων VA 28, 29

Διάλεξη 7. Θεωρία παιγνίων VA 28, 29 Διάλεξη 7 Θεωρία παιγνίων VA 28, 29 Θεωρία παιγνίων Στη θεωρία παιγνίων χρησιμοποιούμε υποδείγματα για τη στρατηγική συμπεριφορά των οικονομικών μονάδων που καταλαβαίνουν ότι οι ενέργειές τους επηρεάζουν

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Παιγνίων

Βασικές Έννοιες Θεωρίας Παιγνίων Παύλος Σ. Εφραιμίδης Περιεχόµενα Τι είναι η θεωρία παιγνίων Ο ρόλος ενός µαθηµατικού µοντέλου Το δίληµµα του φυλακισµένου Σηµείο ισορροπίας Nash Θεωρία Παιγνίων Η θεωρία παιγνίων (game theory) µας βοηθάει

Διαβάστε περισσότερα

10/3/17. Μικροοικονομική. Κεφάλαιο 29 Θεωρία παιγνίων. Μια σύγχρονη προσέγγιση. Εφαρµογές της θεωρίας παιγνίων. Τι είναι τα παίγνια;

10/3/17. Μικροοικονομική. Κεφάλαιο 29 Θεωρία παιγνίων. Μια σύγχρονη προσέγγιση. Εφαρµογές της θεωρίας παιγνίων. Τι είναι τα παίγνια; HA. VAIAN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 29 Θεωρία παιγνίων Θεωρία παιγνίων Η θεωρία παιγνίων βοηθά στην ανάλυση της στρατηγικής συμπεριφοράς από φορείς που κατανοούν ότι οι

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Βfi 1 2 Αfl 1 1, 2 0, 1 2 2, 1 1, 0

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Βfi 1 2 Αfl 1 1, 2 0, 1 2 2, 1 1, 0 ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Παίγνιο: Συμμετέχουν τουλάχιστον δύο παίκτες με τουλάχιστον δύο στρατηγικές ο καθένας και αντίθετα συμφέροντα. Το αποτέλεσμα για κάθε παίκτη καθορίζεται από τις συνδυασμένες επιλογές όλων

Διαβάστε περισσότερα

Κυριαρχία και μεικτές στρατηγικές Μεικτές στρατηγικές και κυριαρχία Είδαμε ότι μια στρατηγική του παίκτη i είναι κυριαρχούμενη, αν υπάρχει κάποια άλλη

Κυριαρχία και μεικτές στρατηγικές Μεικτές στρατηγικές και κυριαρχία Είδαμε ότι μια στρατηγική του παίκτη i είναι κυριαρχούμενη, αν υπάρχει κάποια άλλη Θεωρία παιγνίων: Μεικτές στρατηγικές και Ισορροπία Nash Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 18 Μαρτίου 2012 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Μεικτές στρατηγικές 18 Μαρτίου 2012 1 / 9 Κυριαρχία και μεικτές

Διαβάστε περισσότερα

Ορισμένες Κατηγορίες Αλγορίθμων

Ορισμένες Κατηγορίες Αλγορίθμων Ορισμένες Κατηγορίες Αλγορίθμων Παύλος Εφραιμίδης pefraimi ee.duth.gr Οριασμένες κατηγορίες αλγορίθμων 1 Αλγόριθμοι Προσέγγισης Υπολογιστικά προβλήματα τα οποία είναι NPhard δεν μπορούμε να τα λύσουμε

Διαβάστε περισσότερα

Notes. Notes. Notes. Notes Ε 10,10 0,3 Λ 3,0 2,2

Notes. Notes. Notes. Notes Ε 10,10 0,3 Λ 3,0 2,2 Θεωρία παιγνίων: Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 3 Δεκεμβρίου 2012 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Θεωρία παιγνίων: 3 Δεκεμβρίου 2012 1 / 21 -best responses Κυνήγι ελαφιού: Δυο κυνηγοί ταυτόχρονα

Διαβάστε περισσότερα

HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση

HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση HAL R. VARIAN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 29 Θεωρία παιγνίων Θεωρία παιγνίων Η θεωρία παιγνίων βοηθά στην ανάλυση της στρατηγικής συμπεριφοράς από φορείς που κατανοούν ότι

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 Λύσεις 2η σειράς ασκήσεων Προθεσμία παράδοσης: 18 Μαίου 2015 Πρόβλημα 1. (14

Διαβάστε περισσότερα

Αλγοριθμική Θεωρία Παιγνίων

Αλγοριθμική Θεωρία Παιγνίων Αλγοριθμική Θεωρία Παιγνίων ιδάσκοντες: E. Ζάχος, Α. Παγουρτζής,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πολύπλοκα Συστήματα

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 2007 ιδάσκων : Ηλίας Κουτσουπιάς

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 2007 ιδάσκων : Ηλίας Κουτσουπιάς ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 007 ιδάσκων : Ηλίας Κουτσουπιάς Μάθηµα : Overview Of The Algorithmic Game Theory Ηµεροµηνία : 007/04/19 Σηµειώσεις : Ελενα Χατζηγιωργάκη,

Διαβάστε περισσότερα

Το Υπόδειγμα της Οριακής Τιμολόγησης

Το Υπόδειγμα της Οριακής Τιμολόγησης Το Υπόδειγμα της Οριακής Τιμολόγησης (ilgrom, Paul and John Roberts 98, imit Pricing and Entry under Incomplete Information) - Μια επιχείρηση ακολουθεί πολιτική οριακής τιμολόγησης (limit pricing) όταν

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΙΣΟΡΡΟΠΙΑ ΚΑΤΑ NASH ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΙΣΟΡΡΟΠΙΑ ΚΑΤΑ NASH ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΙΣΟΡΡΟΠΙΑ ΚΑΤΑ NASH ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 Συνέχεια από πριν.. Στο προηγούμενο μάθημα είδαμε ότι μπορούμε να επιλύσουμε παίγνια με την μέθοδο της απαλοιφής

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΠΑΙΓΝΙΑ ΜΗ ΕΝΙΚΟΥ ΑΘΡΟΙΣΜΑΤΟΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΠΑΙΓΝΙΑ ΜΗ ΕΝΙΚΟΥ ΑΘΡΟΙΣΜΑΤΟΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΠΑΙΓΝΙΑ ΜΗ ΕΝΙΚΟΥ ΑΘΡΟΙΣΜΑΤΟΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 Προηγούµενο Μάθηµα: Κυρίαρχη Στρατηγική- Κυριαρχούµενη στρατηγική-nash equilibrium Μια στρατηγική

Διαβάστε περισσότερα

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης 3 η Διάλεξη-Περιεχόμενα (1/2) Σημείο ή ζεύγος ισορροπίας κατά Nash Λύση ακολουθιακής κυριαρχίας και σημεία ισορροπίας Nash Αλγοριθμική εύρεση σημείων ισορροπίας

Διαβάστε περισσότερα

Βασικές Αρχές της Θεωρίας Παιγνίων

Βασικές Αρχές της Θεωρίας Παιγνίων Βασικές Αρχές της Θεωρίας Παιγνίων - Ορισμός. Αν οι επιλογές μιας επιχείρησης εξαρτώνται από την αναμενόμενη αντίδραση των υπόλοιπων επιχειρήσεων που συμμετέχουν στην αγορά, τότε υπάρχει στρατηγική αλληλεπίδραση

Διαβάστε περισσότερα

ΠΜΣ Ενέργειας, Τμήμα ΔΕΣ, ΠαΠει

ΠΜΣ Ενέργειας, Τμήμα ΔΕΣ, ΠαΠει ΠΜΣ Ενέργειας, Τμήμα ΔΕΣ, ΠαΠει Επίκουρος Καθηγητής (μόνιμος) 19 Δεκεμβρίου 2015 2 out of 45 3 out of 45 4 out of 45 5 out of 45 6 out of 45 7 out of 45 8 out of 45 Ένας λήπτης απόφασης (decision maker):

Διαβάστε περισσότερα

Λήψη απόφασης σε πολυπρακτορικό περιβάλλον. Θεωρία Παιγνίων

Λήψη απόφασης σε πολυπρακτορικό περιβάλλον. Θεωρία Παιγνίων Λήψη απόφασης σε πολυπρακτορικό περιβάλλον Θεωρία Παιγνίων Αβεβαιότητα παρουσία άλλου πράκτορα Μια άλλη πηγή αβεβαιότητας είναι η παρουσία άλλου πράκτορα στο περιβάλλον, ακόμα κι όταν ένας πράκτορας είναι

Διαβάστε περισσότερα

John Nash. Παύλος Στ. Εφραιµίδης. Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

John Nash. Παύλος Στ. Εφραιµίδης. Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ορισµένα αποτελέσµατα του τα σηµεία ισορροπίας Nash (NE Nash Equilibrium) ύπαρξη σηµείου

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 9: Απείρως επαναλαμβανόμενα παίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 9: Απείρως επαναλαμβανόμενα παίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 9: Απείρως επαναλαμβανόμενα παίγνια Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΘΕΜΑ 1 ο (2.5) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις Δευτέρα 3 Σεπτεμβρίου 2012 Διάρκεια εξέτασης: 3 ώρες (16:30-19:30)

Διαβάστε περισσότερα

Παίγνια Συμφόρησης. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο

Παίγνια Συμφόρησης. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο Παίγνια Συμφόρησης ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μοντέλο Ανάθεσης Πόρων Σύνολο πόρων Ε = { e 1,, e m }. Πόροι: ακμές δικτύου, υπηρεσίες

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games

Διαβάστε περισσότερα

Α2 Β2 Γ2 2 Α1 1,0 5,-1-1,-2 9,-2 Β1 2,1-2,0 0,2 0,-1 Γ1 0,3 14,2 2,1 8,1 1 1,2 0,1 3,0-1,0

Α2 Β2 Γ2 2 Α1 1,0 5,-1-1,-2 9,-2 Β1 2,1-2,0 0,2 0,-1 Γ1 0,3 14,2 2,1 8,1 1 1,2 0,1 3,0-1,0 ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ιδάσκων: Ε. Πετράκης. Επαναληπτική Εξέταση: 15/09/99 Απαντήστε στα τρία από τα τέσσερα θέµατα. Όλα τα υποερωτήµατα βαθµολογούνται το ίδιο. 1. Θεωρήσατε ένα ολιγοπωλιακό κλάδο όπου τρεις

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 2: Ισορροπία Nash. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 2: Ισορροπία Nash. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 2: Ισορροπία Nash Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας

Διαβάστε περισσότερα

Μικροοικονομική Ι. Ενότητα # 6: Θεωρία παιγνίων Διδάσκων: Πάνος Τσακλόγλου Τμήμα: Διεθνών και Ευρωπαϊκών Οικονομικών Σπουδών

Μικροοικονομική Ι. Ενότητα # 6: Θεωρία παιγνίων Διδάσκων: Πάνος Τσακλόγλου Τμήμα: Διεθνών και Ευρωπαϊκών Οικονομικών Σπουδών Μικροοικονομική Ι Ενότητα # 6: Θεωρία παιγνίων Διδάσκων: Πάνος Τσακλόγλου Τμήμα: Διεθνών και Ευρωπαϊκών Οικονομικών Σπουδών Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού

Διαβάστε περισσότερα

Δημοπρασίες (Auctions)

Δημοπρασίες (Auctions) Δημοπρασίες (Auctions) Παύλος Στ. Εφραιμίδης Τομέας Λογισμικού και Ανάπτυξης Εφαρμογών Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Δημοπρασίες Σε μια δημοπρασία, κάποιο αγαθό πωλείται σε αυτόν

Διαβάστε περισσότερα

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Θεωρία Παιγνίων Μαρκωβιανά Παιχνίδια Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Μερική αρατηρησιµότητα POMDPs

Διαβάστε περισσότερα

Σηματοδοτικά Παίγνια και Τέλεια Μπεϊζιανή Ισορροπία

Σηματοδοτικά Παίγνια και Τέλεια Μπεϊζιανή Ισορροπία Σηματοδοτικά Παίγνια και Τέλεια Μπεϊζιανή Ισορροπία - Ορισμός. Ένα παίγνιο ονομάζεται παίγνιο πλήρους πληροφόρησης (game of complete information) όταν κάθε παίκτης διαθέτει πλήρη πληροφόρηση για τις συναρτήσεις

Διαβάστε περισσότερα

Ανταγωνιστική Ανάθεση Πόρων και Παίγνια Συμφόρησης

Ανταγωνιστική Ανάθεση Πόρων και Παίγνια Συμφόρησης Ανταγωνιστική Ανάθεση Πόρων και Παίγνια Συμφόρησης Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μοντέλο Ανάθεσης Πόρων Σύνολο πόρων Ε = { e 1,, e

Διαβάστε περισσότερα

Αλγοριθμική Θεωρία Παιγνίων: Εισαγωγή και Βασικές Έννοιες

Αλγοριθμική Θεωρία Παιγνίων: Εισαγωγή και Βασικές Έννοιες Αλγοριθμική Θεωρία Παιγνίων: Εισαγωγή και Βασικές Έννοιες ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πολύπλοκα Συστήματα αποτελούνται από πολλές

Διαβάστε περισσότερα

παίγνια και δίκτυα Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

παίγνια και δίκτυα Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών παίγνια και δίκτυα Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών 1 Διαδίκτυο (1) Είναι µάλλον αποδεκτό ότι το Διαδίκτυο έχει ξεπεράσει

Διαβάστε περισσότερα

Κεφάλαιο 2ο (α) Αµιγείς Στρατηγικές (β) Μεικτές Στρατηγικές (α) Αµιγείς Στρατηγικές. Επαναλαµβάνουµε:

Κεφάλαιο 2ο (α) Αµιγείς Στρατηγικές (β) Μεικτές Στρατηγικές (α) Αµιγείς Στρατηγικές. Επαναλαµβάνουµε: Κεφάλαιο 2 ο Μέχρι τώρα δώσαµε τα στοιχεία ενός παιγνίου σε µορφή δέντρου και σε µορφή µήτρας. Τώρα θα ορίσουµε τη στρατηγική στην αναλυτική µορφή του παιγνίου (η στρατηγική ορίζεται από κάθε στήλη ή γραµµή

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 3 (θεωρία παιγνίων) Οι δύο μεγαλύτερες τράπεζες μιας χώρας, Α και Β, εκτιμούν ότι μια άλλη τράπεζα, η Γ, θα κλείσει στο προσεχές διάστημα και πρόκειται να προχωρήσουν σε διαφημιστικές εκστρατείες

Διαβάστε περισσότερα

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης 1 η Διάλεξη Ορισμός Θεωρίας Παιγνίων και Παιγνίου Κατηγοριοποίηση παιγνίων Επίλυση παιγνίου Αξία (τιμή) παιγνίου Δίκαιο παίγνιο Αναπαράσταση Παιγνίου Με πίνακα Με

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΕΥΤΕΡΟ- ΚΥΡΙΑΡΧΟΥΜΕΝΗ ΣΤΡΑΤΗΓΙΚΗ- PRISONER S DILLEMA ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΕΥΤΕΡΟ- ΚΥΡΙΑΡΧΟΥΜΕΝΗ ΣΤΡΑΤΗΓΙΚΗ- PRISONER S DILLEMA ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΕΥΤΕΡΟ- ΚΥΡΙΑΡΧΟΥΜΕΝΗ ΣΤΡΑΤΗΓΙΚΗ- PRISONER S DILLEMA ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 ΚΟΙΝΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ Players-Παίκτες Rules- Κανόνες. Τιµωρείσαι εάν τους παραβιάσεις.

Διαβάστε περισσότερα

Στατικά Παίγνια Ελλιπούς Πληροφόρησης

Στατικά Παίγνια Ελλιπούς Πληροφόρησης ΣΤΑΤΙΚΑ ΠΑΙΓΝΙΑ ΕΛΛΙΠΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ 67 Στατικά Παίγνια Ελλιπούς Πληροφόρησης ΣΤΟ ΠΑΡOΝ ΚΕΦAΛΑΙΟ ξεκινά η ανάλυση των παιγνίων ελλιπούς πληροφόρησης, τα οποία ονομάζονται και μπεϋζιανά παίγνια (bayesa

Διαβάστε περισσότερα

Αποτροπή Εισόδου: Το Υπόδειγμα των Spence-Dixit

Αποτροπή Εισόδου: Το Υπόδειγμα των Spence-Dixit Αποτροπή Εισόδου: Το Υπόδειγμα των pence-dixit pence, Michael 977, Entry, apacity, Investment and Oligopolisting Pricing Dixit, Avinash 979, A Model of Duopoly uggesting a Theory of Entry Barriers - Στο

Διαβάστε περισσότερα

Ολιγοπωλιακή Ισορροπία

Ολιγοπωλιακή Ισορροπία Ολιγοπωλιακή Ισορροπία - Χρησιμοποιούμε τις βασικές αρχές της θεωρίας παιγνίων για να εξετάσουμε τη στρατηγική αλληλεπίδραση των επιχειρήσεων σε ατελώς ανταγωνιστικές αγορές, εστιάζοντας την προσοχή μας

Διαβάστε περισσότερα

HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση

HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση HAL R. VARIAN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 28 Ολιγοπώλιο Ολιγοπώλιο Ένα μονοπώλιο είναι ένας κλάδος που αποτελείται από μία μόνο εταιρεία. Ένα δυοπώλιο είναι ένας κλάδος

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Άσκηση αυτοαξιολόγησης 4 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών CS-593 Game Theory 1. For the game depicted below, find the mixed strategy

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 6η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

10/3/17. Κεφάλαιο 28 Ολιγοπώλιο. Μικροοικονομική. Ολιγοπώλιο. Ολιγοπώλιο. Ανταγωνισµός ποσότητας. Μια σύγχρονη προσέγγιση

10/3/17. Κεφάλαιο 28 Ολιγοπώλιο. Μικροοικονομική. Ολιγοπώλιο. Ολιγοπώλιο. Ανταγωνισµός ποσότητας. Μια σύγχρονη προσέγγιση 0/3/7 HAL R. VARIAN Μικροοικονομική Μια σύγχρονη προσέγγιση 3 η έκδοση Κεφάλαιο 8 Ολιγοπώλιο Ολιγοπώλιο Ένα μονοπώλιο είναι ένας κλάδος που αποτελείται από μία μόνο εταιρεία. Ένα δυοπώλιο είναι ένας κλάδος

Διαβάστε περισσότερα

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας Θεωρία Παιγνίων Μελέτη στοιχείων που χαρακτηρίζουν καταστάσεις ανταγωνιστικής άλληλεξάρτησης με έμφαση στη διαδικασία λήψης αποφάσεων περισσοτέρων από ένα ληπτών απόφασης (αντιπάλων). Παίγνια δύο παικτών

Διαβάστε περισσότερα

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων - Στο υπόδειγμα ertrand, οι επιχειρήσεις, παράγουν ένα ομοιογενές αγαθό, οπότε η τιμή είναι η μοναδική μεταβλητή που ενδιαφέρει τους καταναλωτές και οι καταναλωτές

Διαβάστε περισσότερα

Κεφάλαιο 4. Στο προηγούµενο κεφάλαιο ορίσαµε την ισορροπία κατά Nash και είδαµε ότι µια ισορροπία

Κεφάλαιο 4. Στο προηγούµενο κεφάλαιο ορίσαµε την ισορροπία κατά Nash και είδαµε ότι µια ισορροπία Κεφάλαιο 4 Στο προηγούµενο κεφάλαιο ορίσαµε την ισορροπία κατά Nash και είδαµε ότι µια ισορροπία κατά Nash είναι: (α) ένα διάνυσµα από στρατηγικές, έτσι ώστε δεδοµένων των υπολοίπων στρατηγικών, ο παίκτης

Διαβάστε περισσότερα

Solution Concepts. Παύλος Στ. Εφραιµίδης. Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Solution Concepts. Παύλος Στ. Εφραιµίδης. Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Ισορροπία Nash αγνές στρατηγικές µικτές στρατηγικές Κυρίαρχες στρατηγικές Rationalizability

Διαβάστε περισσότερα

Συνδυαστικά Παίγνια. ιαµόρφωση Παιγνίων. Θέµατα σε Πάιγνια Μηδενικού Αθροίσµατος

Συνδυαστικά Παίγνια. ιαµόρφωση Παιγνίων. Θέµατα σε Πάιγνια Μηδενικού Αθροίσµατος Συνδυαστικά Παίγνια 1. Σε ένα παιγνίδι 2 παικτών µηδενικού αθροίσµατος οι παίκτες αναγγέλουν εναλλάξ ένα αριθµό µεταξύ {2,3,4}. Ο παίκτης που κάνει το άθροισµα των αριθµών που έχουν αναγγελθεί να φθάσει

Διαβάστε περισσότερα

Ενημερωτική Διαφοροποίηση Προϊόντος: Ο Ρόλος της Διαφήμισης

Ενημερωτική Διαφοροποίηση Προϊόντος: Ο Ρόλος της Διαφήμισης Ενημερωτική Διαφοροποίηση Προϊόντος: Ο Ρόλος της Διαφήμισης - Οι επιχειρήσεις δεν ανταγωνίζονται μόνο ως προς τις τιμές στις οποίες επιλέγουν να πουλήσουν τα προϊόντα τους. - Ο μη-τιμολογιακός ανταγωνισμός

Διαβάστε περισσότερα

Ανταγωνιστική Ανάθεση Πόρων και Παίγνια Συμφόρησης

Ανταγωνιστική Ανάθεση Πόρων και Παίγνια Συμφόρησης Ανταγωνιστική Ανάθεση Πόρων και Παίγνια Συμφόρησης ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συστήματα με Ιδιοτελείς (και Ανταγωνιστικούς) Χρήστες

Διαβάστε περισσότερα

Πληθυσμιακή και Ποσοτική Γενετική. Εξέλιξη

Πληθυσμιακή και Ποσοτική Γενετική. Εξέλιξη Πληθυσμιακή και Ποσοτική Γενετική Εξέλιξη Σύνοψη Οι πληθυσμοί χαρακτηρίζονται από τις συχνότητες των γενοτύπων και των αλληλομόρφων τους Κάθε πληθυσμός έχει τη δική του γενετική «δομή» Μπορούμε να μετρήσουμε

Διαβάστε περισσότερα

B 1 A 1 B 2 A 2. t 1. t 3 w. t 2 A 3 B 3. t 4. t 5

B 1 A 1 B 2 A 2. t 1. t 3 w. t 2 A 3 B 3. t 4. t 5 Κεφάλαιο 3 Δυναμικά παίγνια 3.1 Εισαγωγή Μέχρι στιγμής έχουμε αναλύσει παίγνια στα οποία όλοι οι παίκτες επιλέγουν τις στρατηγικές τους ταυτόχρονα. Αυτή η υπόθεση όμως δεν είναι πάντα κατάλληλη. Σε πολλές

Διαβάστε περισσότερα

Τμήμα Διεθνών και Ευρωπαϊκών Σπουδών. Ιωάννης Παραβάντης. Επίκουρος Καθηγητής. Απρίλιος 2016

Τμήμα Διεθνών και Ευρωπαϊκών Σπουδών. Ιωάννης Παραβάντης. Επίκουρος Καθηγητής. Απρίλιος 2016 Τμήμα Διεθνών και Ευρωπαϊκών Σπουδών Ιωάννης Παραβάντης Επίκουρος Καθηγητής Απρίλιος 2016 Το κλασσικό μοντέλο του διλήμματος των φυλακισμένων (prisoner s dilemma) προβλέπει τις ακόλουθες ανταμοιβές ( )

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΙ ΠΑΤΡΑΣ ΤΕΙ ΠΑΤΡΑΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΏΝ ΠΑΙΓΝΙΩΝ- ΠΡΟΓΡΑΜΜΑ GAMBIT

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΙ ΠΑΤΡΑΣ ΤΕΙ ΠΑΤΡΑΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΏΝ ΠΑΙΓΝΙΩΝ- ΠΡΟΓΡΑΜΜΑ GAMBIT ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Α Κ Α Η Μ Α Ι Κ Ο Ε Τ Ο Σ 2 0 1 1-2 0 1 2 ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΏΝ ΠΑΙΓΝΙΩΝ- ΠΡΟΓΡΑΜΜΑ GAMBIT Ο συγκεκριµένος οδηγός για το πρόγραµµα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 8: Πεπερασμένα επαναλαμβανόμενα παίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 8: Πεπερασμένα επαναλαμβανόμενα παίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 8: Πεπερασμένα επαναλαμβανόμενα παίγνια Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

1. Επιλογή Ποιότητας στην Ολιγοπωλιακή Αγορά: Κάθετη Διαφοροποίηση Προϊόντος

1. Επιλογή Ποιότητας στην Ολιγοπωλιακή Αγορά: Κάθετη Διαφοροποίηση Προϊόντος . Επιλογή Ποιότητας στην Ολιγοπωλιακή Αγορά: Κάθετη Διαφοροποίηση Προϊόντος - Ορισμός. Αν η αύξηση του επιπέδου ενός χαρακτηριστικού που διαφοροποιεί τα προϊόντα των επιχειρήσεων ωφελεί κάποιους καταναλωτές

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I.

ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I. ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I. Γενικά Σε μαθήματα όπως η επιχειρησιακή έρευνα και ή λήψη αποφάσεων αναφέραμε τις αποφάσεις κάτω από συνθήκες βεβαιότητας, στις οποίες και εφαρμόζονται κυρίως οι τεχνικές της επιχειρησιακής

Διαβάστε περισσότερα

Κεφάλαιο 8 ο Τ 3, 1-1, -1 Χ -1, -1 1, 3

Κεφάλαιο 8 ο Τ 3, 1-1, -1 Χ -1, -1 1, 3 Κεφάλαιο 8 ο Συνεχίζουµε µε τις µεικτές στρατηγικές. Θα δούµε τώρα ένα παράδειγµα στο οποίο υπάρχουνε ισορροπίες κατά Nash σε αµιγείς στρατηγικές αλλά πέρα από αυτό υπάρχει και µια ισορροπία κατά Nash

Διαβάστε περισσότερα

2. Διαφήμιση σε Αγορές όπου υπάρχουν πολλές Επιχειρήσεις

2. Διαφήμιση σε Αγορές όπου υπάρχουν πολλές Επιχειρήσεις . Διαφήμιση σε Αγορές όπου υπάρχουν πολλές Επιχειρήσεις Α. Ενημερωτική Διαφήμιση στη Μονοπωλιακά Ανταγωνιστική Αγορά (Butters, Gerard 977, Equilibrium Distribution of Prices and Advertising) -To υπόδειγμα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις Παρασκευή 16 Οκτωβρίου 2007 ιάρκεια εξέτασης: 3 ώρες (15:00-18:00) ΘΕΜΑ 1

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 9η: Basics of Game Theory Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 9η: Basics of Game Theory Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 9η: Basics of Game Theory Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Course Outline Part II: Mathematical Tools Firms - Basics of Industrial

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 9: Λύσεις παιγνίων δύο παικτών

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 9: Λύσεις παιγνίων δύο παικτών Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 9: Λύσεις παιγνίων δύο παικτών Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΕΞΕΛΙΚΤΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΝΤΕΤΕΡΜΙΝΙΣΤΙΚΑ ΚΑΙ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ

ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΕΞΕΛΙΚΤΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΝΤΕΤΕΡΜΙΝΙΣΤΙΚΑ ΚΑΙ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΕΞΕΛΙΚΤΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΝΤΕΤΕΡΜΙΝΙΣΤΙΚΑ ΚΑΙ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ Αργύριος Κ. Δημητριάδης ΕΡΓΑΣΙΑ Που υποβλήθηκε στο Τμήμα Στατιστικής

Διαβάστε περισσότερα

Κεφάλαιο 7ο. max(p 1 c)(α bp 1 +dp 2 )

Κεφάλαιο 7ο. max(p 1 c)(α bp 1 +dp 2 ) Κεφάλαιο 7ο Μιλήσαµε στο προηγούµενο κεφάλαιο για το τι θα συµβεί αν οι επιχειρήσεις ανταγωνίζονται σε τιµές. Επιπλέον µιλήσαµε για το πως αποδεικνύεται το παράδοξο του Bertrand και καθώς επίσης και για

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΚΡΙΤΗΡΙΟΥ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΗ : ΒΙΟΛΟΓΙΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: ΜΕΝΤΕΛΙΚΗ ΚΛΗΡΟΝΟΜΙΚΟΤΗΤΑ ΗΜΕΡΟΜΗΝΙΑ: ΦΡΟΝΤΙΣΤΗΡΙΟ: ΒΑΚΑΛΗΣ

ΑΠΑΝΤΗΣΕΙΣ ΚΡΙΤΗΡΙΟΥ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΗ : ΒΙΟΛΟΓΙΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: ΜΕΝΤΕΛΙΚΗ ΚΛΗΡΟΝΟΜΙΚΟΤΗΤΑ ΗΜΕΡΟΜΗΝΙΑ: ΦΡΟΝΤΙΣΤΗΡΙΟ: ΒΑΚΑΛΗΣ ΑΠΑΝΤΗΣΕΙΣ ΚΡΙΤΗΡΙΟΥ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΗ : ΒΙΟΛΟΓΙΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: ΜΕΝΤΕΛΙΚΗ ΚΛΗΡΟΝΟΜΙΚΟΤΗΤΑ ΗΜΕΡΟΜΗΝΙΑ: ΦΡΟΝΤΙΣΤΗΡΙΟ: ΒΑΚΑΛΗΣ ΘΕΜΑ 1 Ο 1. α 2. γ 3. β 4. β 5. β ΘΕΜΑ 2 Ο Α. Ένας αυτοσωμικός

Διαβάστε περισσότερα

F NF. t 1 = S. F NF F -1, 1 2, -1 NF 0, 2 0, 0 t 1 = W

F NF. t 1 = S. F NF F -1, 1 2, -1 NF 0, 2 0, 0 t 1 = W Κεφάλαιο 5 Στατικά παίγνια με ελλιπή πληροφόρηση 5.1 Εισαγωγή Στα προηγούμενα κεφάλαια υποθέσαμε ότι όλοι οι παίκτες γνωρίζουν όλα τα χαρακτηριστικά του παιγνίου (υπόθεση πλήρους πληροφόρησης). Σε περιπτώσεις

Διαβάστε περισσότερα

Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ «ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ» Του σπουδαστή ΚΑΡΑΜΙΓΚΟΥ ΘΕΜΙΣΤΟΚΛΗ

Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ «ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ» Του σπουδαστή ΚΑΡΑΜΙΓΚΟΥ ΘΕΜΙΣΤΟΚΛΗ Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ «ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ» Του σπουδαστή ΚΑΡΑΜΙΓΚΟΥ ΘΕΜΙΣΤΟΚΛΗ Επιβλέπων Δρ. ΓΕΡΟΝΤΙΔΗΣ ΙΩΑΝΝΗΣ Αναπληρωτής Καθηγητής ΚΑΒΑΛΑ 2006 0 ΠΕΡΙΕΧΟΜΕΝA Σελίδα ΕIΣΑΓΩΓΗ 3 ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΠΕΜΠΤΟ ΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΠΕΜΠΤΟ ΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΠΕΜΠΤΟ ΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 Προηγούµενα Μαθήµατα: Παίχτες: είναι αυτοί που λαµβάνουν τις αποφάσεις. Ένα παίγνιο πρέπει

Διαβάστε περισσότερα

Rubinstein. (x 2, 1 x 2 ) = (0, 1).

Rubinstein. (x 2, 1 x 2 ) = (0, 1). Κεφάλαιο 8 Διαπραγματεύσεις: μη συνεργατική προσέγγιση 8.1 Εισαγωγή Στο κεφάλαιο αυτό θα εξετάσουμε τη μη συνεργατική προσέγγιση στη θεωρία διαπραγμάτευσης. Θα στηριχτούμε στην υπόθεση ότι οι συμμετέχοντες

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Σημειώσεις μαθημάτων

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Σημειώσεις μαθημάτων ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Σημειώσεις μαθημάτων Περιεχόμενα ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ... 2 Σκοπός... 2 Μαθησιακοί στόχοι... 2 1. Παίγνια και λήψη αποφάσεων... 2 2. Μαθηματική διατύπωση παιγνίων... 6 3. Παίγνια μηδενικού αθροίσματος

Διαβάστε περισσότερα

ΕΜΠΕΙΡΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΤΗΣ NASH ΙΣΟΡΡΟΠΙΑΣ

ΕΜΠΕΙΡΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΤΗΣ NASH ΙΣΟΡΡΟΠΙΑΣ ΕΜΠΕΙΡΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΤΗΣ NASH ΙΣΟΡΡΟΠΙΑΣ ΒΛΑΧΟΠΟΥΛΟΥ ΑΘΑΝΑΣΙΑ (Α.Μ. 11/08) ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Επιβλέπων καθηγητής: Παπαναστασίου Ιωάννης Εξεταστές : Νούλας Αθανάσιος Ζαπράνης Αχιλλέας ιατµηµατικό Πρόγραµµα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις 1 Φεβρουαρίου 26 ιάρκεια εξέτασης: 3 ώρες (15:-18:) ΘΕΜΑ 1 ο (2.5) Κάθε ένας

Διαβάστε περισσότερα

Οικονομία των ΜΜΕ. Ενότητα 8: Παίγνια και ολιγοπωλιακές επιχειρήσεις

Οικονομία των ΜΜΕ. Ενότητα 8: Παίγνια και ολιγοπωλιακές επιχειρήσεις ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Παίγνια και ολιγοπωλιακές επιχειρήσεις Γιώργος Τσουρβάκας, Αναπληρωτής Καθηγητής Τμήμα Δημοσιογραφίας και ΜΜΕ Σχολή Οικονομικών

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

ΔΗΜΙΟΥΡΓΙΑ ΕΝΟΣ ΝΕΟΥ ΠΟΛΙΤΙΚΟΥ ΚΟΜΜΑΤΟΣ ΚΑΙ ΠΟΛΙΤΙΚΗ ΙΣΟΡΡΟΠΙΑ: ΜΙΑ ΕΦΑΡΜΟΓΗ ΤΗΣ ΘΕΩΡΙΑΣ ΤΩΝ ΠΑΙΓΝΙΩΝ

ΔΗΜΙΟΥΡΓΙΑ ΕΝΟΣ ΝΕΟΥ ΠΟΛΙΤΙΚΟΥ ΚΟΜΜΑΤΟΣ ΚΑΙ ΠΟΛΙΤΙΚΗ ΙΣΟΡΡΟΠΙΑ: ΜΙΑ ΕΦΑΡΜΟΓΗ ΤΗΣ ΘΕΩΡΙΑΣ ΤΩΝ ΠΑΙΓΝΙΩΝ «ΣΠΟΥΔΑΙ», Τόμος 52, Τείχος 4ο, (2002), Πανεπιστήμιο Πειραιώς / «SPOUDAI», Vol. 52, No 4, (2002), University of Piraeus ΔΗΜΙΟΥΡΓΙΑ ΕΝΟΣ ΝΕΟΥ ΠΟΛΙΤΙΚΟΥ ΚΟΜΜΑΤΟΣ ΚΑΙ ΠΟΛΙΤΙΚΗ ΙΣΟΡΡΟΠΙΑ: ΜΙΑ ΕΦΑΡΜΟΓΗ ΤΗΣ

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 7: Τέλεια ισορροπία Nash για υποπαίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 7: Τέλεια ισορροπία Nash για υποπαίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 7: Τέλεια ισορροπία Nash για υποπαίγνια Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές.

ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές. ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές. Α 1 Α 2 Α 3 Β 1 Β 2 Β 3 1, -1 0, 0-1, 0 0, 0 0, 6 10, -1 2, 0 10, -1-1, -1 Α 1 Α 2 Α 3 Β 1 Β

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς. Τμήμα Οργάνωση και Διοίκηση Επιχειρήσεων

Πανεπιστήμιο Πειραιώς. Τμήμα Οργάνωση και Διοίκηση Επιχειρήσεων Πανεπιστήμιο Πειραιώς Τμήμα Οργάνωση και Διοίκηση Επιχειρήσεων Πρόγραμμα Μεταπτυχιακών Σπουδών «Διοίκηση Επιχειρήσεων Ολική Ποιότητα με Διεθνή Προσανατολισμό» Μεταπτυχιακή Διατριβή Τίτλος Διατριβής «Θεωρία

Διαβάστε περισσότερα

Κεφάλαιο 5: ΜΕΝΔΕΛΙΚΗ ΚΛΗΡΟΝΟΜΙΚΟΤΗΤΑ

Κεφάλαιο 5: ΜΕΝΔΕΛΙΚΗ ΚΛΗΡΟΝΟΜΙΚΟΤΗΤΑ Κεφάλαιο 5: ΜΕΝΔΕΛΙΚΗ ΚΛΗΡΟΝΟΜΙΚΟΤΗΤΑ -ΘΕΩΡΙΑ- Κληρονομικότητα: Η ιδιότητα των ατόμων να μοιάζουν με τους προγόνους τους. Κληρονομικοί χαρακτήρες: Οι ιδιότητες που κληρονομούνται στους απογόνους. Γενετική:

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2017

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2017 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2017 2η σειρά ασκήσεων Προθεσμία παράδοσης: 16 Ιουνίου 2017 Πρόβλημα 1. (18 μονάδες)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΜΕΤΑΠΤΥΧΙΑΚΟ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Master in Business Administration - M.B.A.)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΜΕΤΑΠΤΥΧΙΑΚΟ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Master in Business Administration - M.B.A.) ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Master in Business Administration - M.B.A.) ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΗΣ ΣΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΣΤΗΜΗ ΠΑΤΡΑ 2014 ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

ΟΙΚ 362 ΔΟΜΗ ΚΑΙ ΣΤΡΑΤΗΓΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ 7 η Σειρά Ασκήσεων. (Επιλογή Ποιότητας και Κάθετη Διαφοροποίηση Προϊόντος)

ΟΙΚ 362 ΔΟΜΗ ΚΑΙ ΣΤΡΑΤΗΓΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ 7 η Σειρά Ασκήσεων. (Επιλογή Ποιότητας και Κάθετη Διαφοροποίηση Προϊόντος) ΟΙΚ 6 ΔΟΜΗ ΚΑΙ ΣΤΡΑΤΗΓΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ 7 η Σειρά Ασκήσεων (Επιλογή Ποιότητας και Κάθετη Διαφοροποίηση Προϊόντος). Υποθέτουμε ότι η αγορά ενός προϊόντος είναι μονοπωλιακή και η αντίστροφη συνάρτηση ζήτησης

Διαβάστε περισσότερα

Notes. Notes. Notes. Notes

Notes. Notes. Notes. Notes Θεωρία Καταναλωτή: Αβεβαιότητα Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 9 Οκτωβρίου 0 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Θεωρία Καταναλωτή: Αβεβαιότητα 9 Οκτωβρίου 0 / 5 Ανάγκη θεωρίας επιλογής υπό αβεβαιότητα

Διαβάστε περισσότερα

Κεφάλαιο 5 R (2, 3) R (3, 0)

Κεφάλαιο 5 R (2, 3) R (3, 0) Κεφάλαιο 5 Θα ξεκινήσουµε το κεφάλαιο αυτό βλέποντας ένα ακόµη παράδειγµα αναφορικά µε την ισορροπία που προκύπτει από την οπισθογενή επαγωγή (backwards induction) και την ισορροπία κατά Nash στην στρατηγική

Διαβάστε περισσότερα

Παίγνια Συμφόρησης και Ανταγωνιστική Ανάθεση Πόρων

Παίγνια Συμφόρησης και Ανταγωνιστική Ανάθεση Πόρων Παίγνια Συμφόρησης και Ανταγωνιστική Ανάθεση Πόρων Δημήτρης Φωτάκης Πολύπλοκα Συστήματα αποτελούνται από πολλές (ετερογενείς) συνιστώσες που αλληλεπιδρούν. Συμπεριφορά συστήματος δεν συνάγεται από χαρακτηριστικά

Διαβάστε περισσότερα

Συμπληρωματικές Σημειώσεις για τη Διάλεξη 8

Συμπληρωματικές Σημειώσεις για τη Διάλεξη 8 Συμπληρωματικές Σημειώσεις για τη Διάλεξη 8 Ένα από τα παράδοξα της ισορροπίας Nash που μπορεί να θεωρηθεί και σαν αδυναμία της είναι ότι σε κάποια παίγνια οι παίκτες έχουν μεγαλύτερο όφελος αν δεν διαλέξουν

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ EKΤΟ ΔΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ II ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ EKΤΟ ΔΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ II ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ EKΤΟ ΔΥΝΑΜΙΚΑ ΠΑΙΓΝΙΑ ΠΛΗΡΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ II ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 Προηγούμενα Μαθήματα: Παίχτες: είναι αυτοί που λαμβάνουν τις αποφάσεις. Ένα παίγνιο πρέπει

Διαβάστε περισσότερα

Οι Εξελικτικοί Αλγόριθμοι (ΕΑ) είναι καθολικοί στοχαστικοί αλγόριθμοι βελτιστοποίησης, εμπνευσμένοι από τις βασικές αρχές της φυσικής εξέλιξης.

Οι Εξελικτικοί Αλγόριθμοι (ΕΑ) είναι καθολικοί στοχαστικοί αλγόριθμοι βελτιστοποίησης, εμπνευσμένοι από τις βασικές αρχές της φυσικής εξέλιξης. Οι Εξελικτικοί Αλγόριθμοι (ΕΑ) είναι καθολικοί στοχαστικοί αλγόριθμοι βελτιστοποίησης, εμπνευσμένοι από τις βασικές αρχές της φυσικής εξέλιξης. Ένα από τα γνωστότερα παραδείγματα των ΕΑ είναι ο Γενετικός

Διαβάστε περισσότερα