Bab 1 Mekanik Struktur

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Bab 1 Mekanik Struktur"

Transcript

1 Bab 1 Mekanik Struktur P E N S Y A R A H : D R. Y E E M E I H E O N G M O H D. N O R H A F I D Z B I N M O H D. J I M A S ( D B ) R E X Y N I R O AK P E T E R ( D B ) J O H A N A M I R U D I N B I N M O H D. Z A M E R I ( D B ) H A Z R U L H E L M I B I N J A M A L L U D D I N ( D B )

2 Takrifan Mekanik Struktur Mekanik Kajian tentang gerakan benda (daya yang menyebabkan gerakan). Struktur Sesuatu yang terbentuk daripada pelbagai bahagian hingga menjadi bentuk tertentu. Mekanik Struktur Kajian terhadap sifat-sifat dan kelakuan struktur apabila ia dikenakan beban atau daya.

3 Bebanan Graviti, Tekanan dan Tindakbalas Bebanan Graviti Keseimbangan Daya Tekanan Tindakbalas

4 Bebanan Graviti Rajah 1.4: Sebuah kotak diletakkan di atas satah mendatar. Hasil darab antara jisim, m dan tarikan graviti, g kotak tersebut akan menghasilkan daya. (Tarikan graviti : 9.81 msˉ²)

5 Tekanan dan Tindakbalas Tekanan Tindakbalas Luas permukaan sentuhan antara kotak dengan satah adalah A, maka tekanan, p yang di alami oleh permukaan dalam sentuhan ialah daya per unit luas; p=f/a (Unit tekanan Nmˉ²) Apabila jasad/kotak mengenakan daya sebanyak mg ke atas permukaan yang disentuhnya, maka terdapat daya tindakbalas, Ryang sama nilainya bertindak ke atas jasad itu. Tindakan daya tindakbalas ini berlawanan arah dengan daya yang dikenakan ke tas jasad. 1 N/m ² = 1 Pascal (Pa) 1kN/m ² = 1 kpa

6 Prinsip Keseimbangan Daya Prinsip keseimbangan daya ialah suatu jasad itu berada di dalam keseimbangan apabila: a. Jumlah daya kekiri sama dengan jumlah daya kekanan. ( Fx = Fx ) b. Jumlah daya ke atas sama dengan jumlah daya ke bawah. ( Fy = Fy ) c. Jumlah momen ikut jam sama dengan jumlah momen lawan jam. ( M = M )

7 Daya Suatu agen yang menghasilkan atau cenderung menghasilkan; memusnahkan atau cenderung memusnahkan pergerakan. 2 jenis daya Daya luaran Daya dalaman

8 Daya luaran P P Beban yang dikenakan ke atas struktur Meliput berat struktur dan berat beban yang dikenakan ke atas struktur a Tindakan daya luaran menghasilkan tindakbalas untuk memberi keseimbangan kepada struktur b

9 Daya dalaman Daya Dalaman Arah tindakan daya

10 Jenis-jenis daya dalaman dan luaran Daya paksi Daya ricih Daya lenturan Daya putiran

11 Daya paksi Daya yang bertindak bersudut tepat dengan luas keratan jasad Bertindah ke arah dalam (mampatan) atau bertindak ke arah luar (tegangan) Mengakibatkan ubah bentuk pemendekan dan pemanjangan

12 Daya ricih Daya lentur Daya yang bertindak serenjang/selari dengan luaspermukaan keratin Ia mengakibatkan ubahbentuk ricihan Sambungan bolt Rivet yang menanggung beban Dua momen senilai dan berlawanan arah pada kedua-dua hujung Ia mengakibatkan ubahbentuk lenturan Rasuk yang membawa beban

13 Daya putiran/kilasan Daya yang mengandungi dua momen yang sama nilai yang bertindak pada arah berlawanan di kedua-dua hujungnya Ia mengakibatkan putaran

14 JENIS-JENIS TUPANG/PENYOKONG Objek yang digunakan untuk menyokong atau menyangga suatu anggota struktur Terdapat 3 iaitu rola (roller support), pin (pin support) dan hujung terjempit (fixed end support)

15 ROLA (ROLLER SUPPORT) Keseimbangan tercapai kerana penyokong memberi daya tindakbalas terhadap beban yang dikenakan Penyokong rola hanya mampu memberi tindakbalas dalam arah menegak sahaja Penyokong rola bersudut tepat dengan satah penyokong ΣFy = 0

16

17 PIN (PIN SUPPORT) Penyokong jenis pin dapat memberikan dua arah tindakbalas iaitu arah menegak dan mendatar ΣFx = 0, Σfy = 0

18

19 HUJUNG TERIKAT (FIXED END SUPPORT) o Penyokong hujung terikat memberi tindakbalas dalam kedua-dua arah menegak dan mendatar o Penyokong memberi tindakbalas kepada momen o Penyokong memberi 3 daya tindakbalas iaitu arah menegak, mendatar dan momen o ΣFx = 0, Σfy = 0, ΣM = 0

20

21 Beban Tumpu Beban tumpu juga dikenali sebagai beban titik. Beban ini bertindak ke atas luas yang terlalu kecil dan boleh dianggap bertindak ke atas satu titik. Simbolnya anak panah dan unitnya N atau kn. (rajah 2.23)

22 Beban Teragih Seragam Beban ini boleh dianggap bertindak keseluruhan atau sebahagian rasuk dengan cara teragih seragam.(rajah 2.24) Unitnya N/m atau kn/m. Untuk memudahkan pengiraan tindakbalas, kita gunakan nilai jumlah beban yang dibawa dan mnganggapnya bertindak ditengahtengah jarak beban teragih seragam. Contohnya (rujuk 2.24), jika nilai beban teragih seragam 15 kn/m dan ia bertindak disepanjang rentang rasuk 4 m, jumlah beban yang ditanggung oleh rasuk ialah 15kN/m X 4 m = 60 kn dan bertindak 2 m dari penyokong.

23

24 Beban Momen Momen dihasilkan oleh sepasang daya. Daya ini bertindak pada suatu titik tertentu dan ia mengakibatkan pintalan berlaku pada titik tersebut. Ia bertindak mengikut arah pusingan jam atau melawan arah pusingan jam. Sekiranya ia bertindak mengikut arah pusingan jam, anggapkan nilainya positif dan arah momen melawan jam, anggapkan nilainya negatif. Unitnya ialah Nm atau knm. Momen dinyatakan dalam dua bentuk sebagaimana ditunjukkan dalam rajah 2.25 (a & b)

25

2 m. Air. 5 m. Rajah S1

2 m. Air. 5 m. Rajah S1 FAKULI KEJURUERAAN AL 1. Jika pintu A adalah segi empat tepat dan berukuran 2 m lebar (normal terhadap kertas), tentukan nilai daya hidrostatik yang bertindak pada pusat tekanan jika pintu ini tenggelam

Διαβάστε περισσότερα

Tegangan Permukaan. Kerja

Tegangan Permukaan. Kerja Tegangan Permukaan Kerja Cecair lebih cenderung menyesuaikan bentuknya ke arah yang luas permukaan yang minimum. Titisan cecair berbentuk sfera kerana nisbah luas permukaan terhadap isipadu adalah kecil.

Διαβάστε περισσότερα

Rajah S1 menunjukkan talisawat dari jenis rata dengan dua sistem pacuan, digunakan untuk

Rajah S1 menunjukkan talisawat dari jenis rata dengan dua sistem pacuan, digunakan untuk SOALAN 1 Rajah S1 menunjukkan talisawat dari jenis rata dengan dua sistem pacuan, digunakan untuk menyambungkan dua takal yang terpasang kepada dua aci selari. Garispusat takal pemacu, pada motor adalah

Διαβάστε περισσότερα

Kuliah 4 Rekabentuk untuk kekuatan statik

Kuliah 4 Rekabentuk untuk kekuatan statik 4-1 Kuliah 4 Rekabentuk untuk kekuatan statik 4.1 KEKUATAN STATIK Beban statik merupakan beban pegun atau momen pegun yang bertindak ke atas sesuatu objek. Sesuatu beban itu dikatakan beban statik sekiranya

Διαβάστε περισσότερα

SMJ minyak seperti yang dilakarkan dalam Rajah S2. Minyak tersebut mempunyai. bahagian hujung cakera. Dengan data dan anggapan yang dibuat:

SMJ minyak seperti yang dilakarkan dalam Rajah S2. Minyak tersebut mempunyai. bahagian hujung cakera. Dengan data dan anggapan yang dibuat: SOALAN 1 Cakera dengan garis pusat d berputar pada halaju sudut ω di dalam bekas mengandungi minyak seperti yang dilakarkan dalam Rajah S2. Minyak tersebut mempunyai kelikatan µ. Anggap bahawa susuk halaju

Διαβάστε περισσότερα

Kuliah 2 Analisis Daya & Tegasan

Kuliah 2 Analisis Daya & Tegasan -1 Kuliah Analisis Daya & Tegasan.1 ANALISIS DAYA a. Kepentingan sebelum sebarang analisis kejuruteraan dapat dilakukan, kita mesti ketahui dulu dayadaya yang bertindak ke atas sesuatu objek. Kemudian

Διαβάστε περισσότερα

TH3813 Realiti Maya. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun

TH3813 Realiti Maya. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun TH383 Realiti Maa Transformasi 3D menggunakan multiplikasi matriks untuk hasilkan kompaun transformasi menggunakan kompaun transformasi - hasilkan sebarang transformasi dan ungkapkan sebagai satu transformasi

Διαβάστε περισσότερα

( 2 ( 1 2 )2 3 3 ) MODEL PT3 MATEMATIK A PUSAT TUISYEN IHSAN JAYA = + ( 3) ( 4 9 ) 2 (4 3 4 ) 3 ( 8 3 ) ( 3.25 )

( 2 ( 1 2 )2 3 3 ) MODEL PT3 MATEMATIK A PUSAT TUISYEN IHSAN JAYA = + ( 3) ( 4 9 ) 2 (4 3 4 ) 3 ( 8 3 ) ( 3.25 ) (1) Tentukan nilai bagi P, Q, dan R MODEL PT MATEMATIK A PUSAT TUISYEN IHSAN JAYA 1 P 0 Q 1 R 2 (4) Lengkapkan operasi di bawah dengan mengisi petak petak kosong berikut dengan nombor yang sesuai. ( 1

Διαβάστε περισσότερα

EEU104 - Teknologi Elektrik - Tutorial 11; Sessi 2000/2001 Litar magnet

EEU104 - Teknologi Elektrik - Tutorial 11; Sessi 2000/2001 Litar magnet UNIVERSITI SAINS MALAYSIA PUSAT PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK EEU104 - Teknologi Elektrik - Tutorial 11; Sessi 2000/2001 Litar magnet 1. Satu litar magnet mempunyai keengganan S = 4 x

Διαβάστε περισσότερα

Peta Konsep. 5.1 Sudut Positif dan Sudut Negatif Fungsi Trigonometri Bagi Sebarang Sudut FUNGSI TRIGONOMETRI

Peta Konsep. 5.1 Sudut Positif dan Sudut Negatif Fungsi Trigonometri Bagi Sebarang Sudut FUNGSI TRIGONOMETRI Bab 5 FUNGSI TRIGONOMETRI Peta Konsep 5.1 Sudut Positif dan Sudut Negatif 5. 6 Fungsi Trigonometri Bagi Sebarang Sudut FUNGSI TRIGONOMETRI 5. Graf Fungsi Sinus, Kosinus dan Tangen 5.4 Identiti Asas 5.5

Διαβάστε περισσότερα

KEKUATAN KELULI KARBON SEDERHANA

KEKUATAN KELULI KARBON SEDERHANA Makmal Mekanik Pepejal KEKUATAN KELULI KARBON SEDERHANA 1.0 PENGENALAN Dalam rekabentuk sesuatu anggota struktur yang akan mengalami tegasan, pertimbangan utama ialah supaya anggota tersebut selamat dari

Διαβάστε περισσότερα

LATIHAN. PENYUSUN: MOHD. ZUBIL BAHAK Sign. : FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA SKUDAI JOHOR

LATIHAN. PENYUSUN: MOHD. ZUBIL BAHAK Sign. : FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA SKUDAI JOHOR 1. a) Nyatakan dengan jelas Prinsip Archimedes tentang keapungan. b) Nyatakan tiga (3) syarat keseimbangan STABIL jasad terapung. c) Sebuah silinder bergaris pusat 15 cm dan tinggi 50 cm diperbuat daripada

Διαβάστε περισσότερα

SESI: MAC 2018 DSM 1021: SAINS 1. Kelas: DCV 2

SESI: MAC 2018 DSM 1021: SAINS 1. Kelas: DCV 2 SESI: MAC 2018 DSM 1021: SAINS 1 TOPIK 4.0: KERJA, TENAGA DAN KUASA Kelas: DCV 2 PENSYARAH: EN. MUHAMMAD AMIRUL BIN ABDULLAH COURSE LEARNING OUTCOMES (CLO): Di akhir LA ini, pelajar akan boleh: 1. Menerangkan

Διαβάστε περισσότερα

Unit PENGENALAN KEPADA LITAR ELEKTRIK OBJEKTIF AM OBJEKTIF KHUSUS

Unit PENGENALAN KEPADA LITAR ELEKTRIK OBJEKTIF AM OBJEKTIF KHUSUS PENGENALAN KEPADA LITAR ELEKTRIK OBJEKTIF AM Memahami konsep-konsep asas litar elektrik, arus, voltan, rintangan, kuasa dan tenaga elektrik. Unit OBJEKTIF KHUSUS Di akhir unit ini anda dapat : Mentakrifkan

Διαβάστε περισσότερα

BAB 2 KEAPUNGAN DAN HIDROSTATIK

BAB 2 KEAPUNGAN DAN HIDROSTATIK BAB 2 KEAPUNGAN DAN HIDROSTATIK 2.1 Hukum Keapungan Archimedes Sebuah badan yang terendam di air ditindak oleh beberapa daya. Pertama ialah berat atau jisim badan itu sendiri yang dianggap bertindak ke

Διαβάστε περισσότερα

PERSAMAAN KUADRAT. 06. EBT-SMP Hasil dari

PERSAMAAN KUADRAT. 06. EBT-SMP Hasil dari PERSAMAAN KUADRAT 0. EBT-SMP-00-8 Pada pola bilangan segi tiga Pascal, jumlah bilangan pada garis ke- a. 8 b. 6 c. d. 6 0. EBT-SMP-0-6 (a + b) = a + pa b + qa b + ra b + sab + b Nilai p q = 0 6 70 0. MA-77-

Διαβάστε περισσότερα

Keterusan dan Keabadian Jisim

Keterusan dan Keabadian Jisim Pelajaran 8 Keterusan dan Keabadian Jisim OBJEKTIF Setelah selesai mempelajari Pelajaran ini anda sepatutnya dapat Mentakrifkan konsep kadar aliran jisim Mentakrifkan konsep kadar aliran Menerangkan konsep

Διαβάστε περισσότερα

Kalkulus 1. Sistem Bilangan Real. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia

Kalkulus 1. Sistem Bilangan Real. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia Kalkulus 1 Sistem Bilangan Real Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Sistem Bilangan Real Himpunan: sekumpulan obyek/unsur dengan kriteria/syarat tertentu. 1 Himpunan mahasiswa

Διαβάστε περισσότερα

DETERMINATION OF CFRP PLATE SHEAR MODULUS BY ARCAN TEST METHOD SHUKUR HJ. ABU HASSAN

DETERMINATION OF CFRP PLATE SHEAR MODULUS BY ARCAN TEST METHOD SHUKUR HJ. ABU HASSAN DETERMINATION OF CFRP PLATE SHEAR MODULUS BY ARCAN TEST METHOD SHUKUR HJ. ABU HASSAN OBJEKTIF KAJIAN Mendapatkan dan membandingkan nilai tegasan ricih, τ, dan modulus ricih, G, bagi plat CFRP yang berorientasi

Διαβάστε περισσότερα

Matematika

Matematika Sistem Bilangan Real D3 Analis Kimia FMIPA Universitas Islam Indonesia Sistem Bilangan Real Himpunan: sekumpulan obyek/unsur dengan kriteria/syarat tertentu. 1 Himpunan mahasiswa D3 Analis Kimia angkatan

Διαβάστε περισσότερα

ANALISIS LITAR ELEKTRIK OBJEKTIF AM

ANALISIS LITAR ELEKTRIK OBJEKTIF AM ANALSS LTA ELEKTK ANALSS LTA ELEKTK OBJEKTF AM Unit Memahami konsep-konsep asas Litar Sesiri, Litar Selari, Litar Gabungan dan Hukum Kirchoff. OBJEKTF KHUSUS Di akhir unit ini anda dapat : Menerangkan

Διαβάστε περισσότερα

Kalkulus Multivariabel I

Kalkulus Multivariabel I Fungsi Dua Peubah atau Lebih dan Statistika FMIPA Universitas Islam Indonesia 2015 dengan Dua Peubah Real dengan Dua Peubah Real Pada fungsi satu peubah f : D R R D adalah daerah asal (domain) suatu fungsi

Διαβάστε περισσότερα

BAB 2 PEMACU ELEKTRIK

BAB 2 PEMACU ELEKTRIK BAB 2 PEMACU ELEKTRIK PENGENALAN Kebanyakan perindustrian moden dan komersial menggunakan pemacu elektrik berbanding dengan pemacu mekanikal kerana terdapat banyak kelebihan. Di antaranya ialah : a) binaannya

Διαβάστε περισσότερα

Sistem Koordinat dan Fungsi. Matematika Dasar. untuk Fakultas Pertanian. Uha Isnaini. Uhaisnaini.com. Matematika Dasar

Sistem Koordinat dan Fungsi. Matematika Dasar. untuk Fakultas Pertanian. Uha Isnaini. Uhaisnaini.com. Matematika Dasar untuk Fakultas Pertanian Uhaisnaini.com Contents 1 Sistem Koordinat dan Fungsi Sistem Koordinat dan Fungsi Sistem koordinat adalah suatu cara/metode untuk menentukan letak suatu titik. Ada beberapa macam

Διαβάστε περισσότερα

EAS 353/3 Rekabentuk Struktur Konkrit Bertetulang

EAS 353/3 Rekabentuk Struktur Konkrit Bertetulang UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Pertama Sidang Akademik 2003/2004 September / Oktober 2003 EAS 353/3 Rekabentuk Struktur Konkrit Bertetulang Masa : 3 jam Arahan Kepada Calon: 1. Sila pastikan

Διαβάστε περισσότερα

Ciri-ciri Taburan Normal

Ciri-ciri Taburan Normal 1 Taburan Normal Ciri-ciri Taburan Normal Ia adalah taburan selanjar Ia adalah taburan simetri Ia adalah asimtot kepada paksi Ia adalah uni-modal Ia adalah keluarga kepada keluk Keluasan di bawah keluk

Διαβάστε περισσότερα

Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua nilai yang mungkin bagi X.

Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua nilai yang mungkin bagi X. BAB 8 : TABURAN KEBARANGKALIAN Sesi 1 Taburan Binomial A. Pembolehubah rawak diskret Contoh Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua

Διαβάστε περισσότερα

TINJAUAN PUSTAKA. Sekumpulan bilangan (rasional dan tak-rasional) yang dapat mengukur. bilangan riil (Purcell dan Varberg, 1987).

TINJAUAN PUSTAKA. Sekumpulan bilangan (rasional dan tak-rasional) yang dapat mengukur. bilangan riil (Purcell dan Varberg, 1987). II. TINJAUAN PUSTAKA 2.1 Sistem Bilangan Riil Definisi Bilangan Riil Sekumpulan bilangan (rasional dan tak-rasional) yang dapat mengukur panjang, bersama-sama dengan negatifnya dan nol dinamakan bilangan

Διαβάστε περισσότερα

Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua nilai yang mungkin bagi X.

Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua nilai yang mungkin bagi X. BAB 8 : TABURAN KEBARANGKALIAN Sesi 1 Taburan Binomial A. Pembolehubah rawak diskret Contoh Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua

Διαβάστε περισσότερα

ALIRAN BENDALIR UNGGUL

ALIRAN BENDALIR UNGGUL Bab 2 ALIRAN BENDALIR UNGGUL 2.1 Gerakan Zarah-zarah Bendalir Untuk analisis matematik gerakan bendalir, dua pendekatan biasanya digunakan: 1. Kaedah Lagrangian (a) Kajian pola aliran SATU zarah individu

Διαβάστε περισσότερα

ALIRAN LAPISAN SEMPADAN

ALIRAN LAPISAN SEMPADAN Bab 1 ALIRAN LAPISAN SEMPADAN 1.1 Kelikatan Kelikatan adalah sifat bendalir yang mengawal kadar alirannya. Ia terjadi disebabkan oleh cohesion yang wujud di antara zarah-zarah bendalir yang boleh diperhatikan

Διαβάστε περισσότερα

Fakulti Kejuruteraan Mekanikal Universiti Teknologi Malaysia. Mekanik Bendalir I KERJA RUMAH. Sem II Sesi 2003/04

Fakulti Kejuruteraan Mekanikal Universiti Teknologi Malaysia. Mekanik Bendalir I KERJA RUMAH. Sem II Sesi 2003/04 Fakulti Kejuruteraan Mekanikal Universiti Teknologi Malaysia Mekanik Bendalir I KERJA RUMAH Sem II Sesi 2003/04 Pensyarah: Mohd. Zubil Bahak mzubil@fkm.utm.my ext 34737 Arahan: Pelajar diwajibkan menghantar

Διαβάστε περισσότερα

FAKULTI KEJURUTERAAN ELEKTRIK UNIVERSITI TEKNOLOGI MALAYSIA MAKMAL ELEKTROTEKNIK : LENGKUK KEMAGNETAN ATAU CIRI B - H

FAKULTI KEJURUTERAAN ELEKTRIK UNIVERSITI TEKNOLOGI MALAYSIA MAKMAL ELEKTROTEKNIK : LENGKUK KEMAGNETAN ATAU CIRI B - H FAKULTI KEJURUTERAAN ELEKTRIK UNIVERSITI TEKNOLOGI MALAYSIA MAKMAL ELEKTROTEKNIK UJIKAJI TAJUK : E : LENGKUK KEMAGNETAN ATAU CIRI B - H 1. Tujuan : 2. Teori : i. Mendapatkan lengkuk kemagnetan untuk satu

Διαβάστε περισσότερα

RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN

RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN Jurnal Teknologi, 38(C) Jun 003: 5 8 Universiti Teknologi Malaysia RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN 5 RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN YEOH WENG KANG & JAMALUDIN MD. ALI Abstrak. Rumus untuk

Διαβάστε περισσότερα

KOLEJ VOKASIONAL MALAYSIA BAHAGIAN PENDIDIKAN TEKNIK DAN VOKASIONAL KEMENTERIAN PENDIDIKAN MALAYSIA

KOLEJ VOKASIONAL MALAYSIA BAHAGIAN PENDIDIKAN TEKNIK DAN VOKASIONAL KEMENTERIAN PENDIDIKAN MALAYSIA NO KAD PENGENALAN ANGKA GILIRAN KOLEJ VOKASIONAL MALAYSIA BAHAGIAN PENDIDIKAN TEKNIK DAN VOKASIONAL KEMENTERIAN PENDIDIKAN MALAYSIA DIPLOMA VOKASIONAL MALAYSIA SAINS DAN MATEMATIK BERSEPADU UNTUK APLIKASI

Διαβάστε περισσότερα

Latihan PT3 Matematik Nama:.. Masa: 2 jam. 1 a) i) Buktikan bahawa 53 adalah nombor perdana. [1 markah]

Latihan PT3 Matematik Nama:.. Masa: 2 jam. 1 a) i) Buktikan bahawa 53 adalah nombor perdana. [1 markah] Latihan PT3 Matematik Nama:.. Masa: 2 jam a) i) Buktikan bahawa 53 adalah nombor perdana. [ markah] ii) Berikut adalah tiga kad nombor. 30 20 24 Lakukan operasi darab dan bahagi antara nombor-nombor tersebut

Διαβάστε περισσότερα

Ukur Kejuruteraan DDPQ 1162 Ukur Tekimetri. Sakdiah Basiron

Ukur Kejuruteraan DDPQ 1162 Ukur Tekimetri. Sakdiah Basiron Ukur Kejuruteraan DDPQ 1162 Ukur Tekimetri Sakdiah Basiron TEKIMETRI PENGENALAN TAKIMETRI ADALAH SATU KAEDAH PENGUKURAN JARAK SECARA TIDAK LANGSUNG BAGI MENGHASILKAN JARAK UFUK DAN JARAK TEGAK KEGUNAAN

Διαβάστε περισσότερα

Konvergen dalam Peluang dan Distribusi

Konvergen dalam Peluang dan Distribusi limiting distribution Andi Kresna Jaya andikresna@yahoo.com Jurusan Matematika July 5, 2014 Outline 1 Review 2 Motivasi 3 Konvergen dalam peluang 4 Konvergen dalam distribusi Back Outline 1 Review 2 Motivasi

Διαβάστε περισσότερα

SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM. MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JUMLAH

SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM. MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JUMLAH 72/1 NAMA :. TINGKATAN : MATEMATIK TAMBAHAN Kertas 1 September 201 2 Jam SMK SERI MUARA, 6100 BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JANGAN BUKA KERTAS

Διαβάστε περισσότερα

LITAR ARUS ULANG ALIK (AU)

LITAR ARUS ULANG ALIK (AU) TA AUS UANG AK (AU) TA AUS UANG AK (AU) OBJEKTF AM Memahami litar asas arus Ulang alik dan litar sesiri yang mengandungi, dan. Unit OBJEKTF KHUSUS Di akhir unit ini anda dapat : Menjelaskan bahawa dalam

Διαβάστε περισσότερα

TOPIK 1 : KUANTITI DAN UNIT ASAS

TOPIK 1 : KUANTITI DAN UNIT ASAS 1.1 KUANTITI DAN UNIT ASAS Fizik adalah berdasarkan kuantiti-kuantiti yang disebut kuantiti fizik. Secara am suatu kuantiti fizik ialah kuantiti yang boleh diukur. Untuk mengukur kuantiti fizik, suatu

Διαβάστε περισσότερα

Keapungan. Objektif. Pendahuluan

Keapungan. Objektif. Pendahuluan Pelajaran 6 Pelajaran 6 Keapungan Ojektif Setelah hais mempelajari pelajaran ini, anda dapat Mentakrifkan Prinsip Archimedes Mentakrifkan rumus untuk pusat meta jasad terapung Memuat analisis mencari tinggi

Διαβάστε περισσότερα

TEORI PELUANG* TKS 6112 Keandalan Struktur. Pendahuluan

TEORI PELUANG* TKS 6112 Keandalan Struktur. Pendahuluan TKS 6112 Keandalan Struktur TEORI PELUANG* * www.zacoeb.lecture.ub.ac.id Pendahuluan Sebuah bangunan dirancang melalui serangkaian perhitungan yang cermat terhadap beban-beban rencana dan bangunan tersebut

Διαβάστε περισσότερα

Hendra Gunawan. 16 April 2014

Hendra Gunawan. 16 April 2014 MA101 MATEMATIKA A Hendra Gunawan Semester II, 013/014 16 April 014 Kuliah yang Lalu 13.11 Integral Lipat Dua atas Persegi Panjang 13. Integral Berulang 13.3 33Integral Lipat Dua atas Daerah Bukan Persegi

Διαβάστε περισσότερα

(a) Nyatakan julat hubungan itu (b) Dengan menggunakan tatatanda fungsi, tulis satu hubungan antara set A dan set B. [2 markah] Jawapan:

(a) Nyatakan julat hubungan itu (b) Dengan menggunakan tatatanda fungsi, tulis satu hubungan antara set A dan set B. [2 markah] Jawapan: MODUL 3 [Kertas 1]: MATEMATIK TAMBAHAN JPNK 015 Muka Surat: 1 Jawab SEMUA soalan. 1 Rajah 1 menunjukkan hubungan antara set A dan set B. 6 1 Set A Rajah 1 4 5 Set B (a) Nyatakan julat hubungan itu (b)

Διαβάστε περισσότερα

Kalkulus Multivariabel I

Kalkulus Multivariabel I Limit dan Statistika FMIPA Universitas Islam Indonesia Operasi Aljabar pada Pembahasan pada limit untuk fungsi dua peubah adalah memberikan pengertian mengenai lim f (x, y) = L (x,y) (a,b) Masalahnya adalah

Διαβάστε περισσότερα

SEE 3533 PRINSIP PERHUBUNGAN Bab III Pemodulatan Sudut. Universiti Teknologi Malaysia

SEE 3533 PRINSIP PERHUBUNGAN Bab III Pemodulatan Sudut. Universiti Teknologi Malaysia SEE 3533 PRINSIP PERHUBUNGAN Bab III Universiti Teknologi Malaysia 1 Pengenalan Selain daripada teknik pemodulatan amplitud, terdapat juga teknik lain yang menggunakan isyarat memodulat untuk mengubah

Διαβάστε περισσότερα

ELEKTRIK KEMAHIRAN TEKNIKAL : BAB 1

ELEKTRIK KEMAHIRAN TEKNIKAL : BAB 1 MAKTAB RENDAH Add SAINS your company MARA BENTONG slogan Bab 1 ELEKTRIK KEMAHIRAN TEKNIKAL : BAB 1 LOGO Kandungan 1 Jenis Litar Elektrik 2 Meter Pelbagai 3 Unit Kawalan Utama 4 Kuasa Elektrik 1 1.1 Jenis

Διαβάστε περισσότερα

PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK

PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK 2 SKEMA MODUL PECUTAN AKHIR 20 No Jawapan Pembahagian (a) 00000 0000 0000 Jumlah 000 TIM00 #0300 TIM00 000 000 0M END Simbol dan data betul : 8 X 0.5M = 4M

Διαβάστε περισσότερα

TOPIK 2 : MENGGAMBARKAN OBJEK

TOPIK 2 : MENGGAMBARKAN OBJEK 2.1 SIMETRI Definisi paksi simetri : Satu garis lipatan pada suatu bentuk geometri supaya bentuk itu dapat bertindih tepat apabila dilipat. Sesuatu bentuk geometri mungkin mempunyai lebih daripada satu

Διαβάστε περισσότερα

SESI: MAC 2018 DSM 1021: SAINS 1 DCV 2 PENSYARAH: EN. MUHAMMAD AMIRUL BIN ABDULLAH

SESI: MAC 2018 DSM 1021: SAINS 1 DCV 2 PENSYARAH: EN. MUHAMMAD AMIRUL BIN ABDULLAH SESI: MAC 2018 DSM 1021: SAINS 1 DCV 2 PENSYARAH: EN. MUHAMMAD AMIRUL BIN ABDULLAH TOPIK 1.0: KUANTITI FIZIK DAN PENGUKURAN COURSE LEARNING OUTCOMES (CLO): Di akhir LA ini, pelajar akan boleh: CLO3: Menjalankan

Διαβάστε περισσότερα

Perubahan dalam kuantiti diminta bagi barang itu bergerak disepanjang keluk permintaan itu.

Perubahan dalam kuantiti diminta bagi barang itu bergerak disepanjang keluk permintaan itu. BAB 3 : ISI RUMAH SEBAGAI PENGGUNA SPM2004/A/S3 (a) Rajah tersebut menunjukkan keluk permintaan yang mencerun ke bawah dari kiri ke kanan. Ia menunjukkan hubungan negatif antara harga dengan kuantiti diminta.

Διαβάστε περισσότερα

BAB 2 PEMODULATAN AMPLITUD

BAB 2 PEMODULATAN AMPLITUD BAB MODULATAN LITUD enghantaran iyarat yang engandungi akluat elalui atu aluran perhubungan eerlukan anjakan frekueni iyarat akluat kepada julat frekueni yang euai untuk penghantaran - roe ini diapai elalui

Διαβάστε περισσότερα

KALKULUS LANJUT. Integral Lipat. Resmawan. 7 November Universitas Negeri Gorontalo. Resmawan (Math UNG) Integral Lipat 7 November / 57

KALKULUS LANJUT. Integral Lipat. Resmawan. 7 November Universitas Negeri Gorontalo. Resmawan (Math UNG) Integral Lipat 7 November / 57 KALKULUS LANJUT Integral Lipat Resmawan Universitas Negeri Gorontalo 7 November 218 Resmawan (Math UNG) Integral Lipat 7 November 218 1 / 57 13.3. Integral Lipat Dua pada Daerah Bukan Persegipanjang 3.5

Διαβάστε περισσότερα

Kalkulus Elementer. Nanda Arista Rizki, M.Si. Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Mulawarman 2018

Kalkulus Elementer. Nanda Arista Rizki, M.Si. Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Mulawarman 2018 Kalkulus Elementer Nanda Arista Rizki, M.Si. Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Mulawarman 2018 Nanda Arista Rizki, M.Si. Kalkulus Elementer 1/83 Referensi: 1 Dale Varberg, Edwin

Διαβάστε περισσότερα

Pelajaran 9. Persamaan Bernoulli. Setelah selesai mempelajari Pelajaran ini anda sepatutnya dapat

Pelajaran 9. Persamaan Bernoulli. Setelah selesai mempelajari Pelajaran ini anda sepatutnya dapat Pelajaran 9 Persamaan Bernoulli OBJEKTIF Setelah selesai memelajari Pelajaran ini anda seatutnya daat Mentakrifkan konse kadar aliran jisim Mentakrifkan konse kadar aliran Menerangkan konse halaju urata

Διαβάστε περισσότερα

KONSEP ASAS & PENGUJIAN HIPOTESIS

KONSEP ASAS & PENGUJIAN HIPOTESIS KONSEP ASAS & PENGUJIAN HIPOTESIS HIPOTESIS Hipotesis = Tekaan atau jangkaan terhadap penyelesaian atau jawapan kepada masalah kajian Contoh: Mengapakah suhu bilik kuliah panas? Tekaan atau Hipotesis???

Διαβάστε περισσότερα

Sebaran Kontinu HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNAND LOGO

Sebaran Kontinu HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNAND LOGO Sebaran Kontinu HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNAND Kompetensi menguraikan ciri-ciri suatu kurva normal menentukan luas daerah dibawah kurva normal menerapkan sebaran normal dalam

Διαβάστε περισσότερα

A. Distribusi Gabungan

A. Distribusi Gabungan HANDOUT PERKULIAHAN Mata Kuliah Pokok Bahasan : Statistika Matematika : Distibusi Dua peubah Acak URAIAN POKOK PERKULIAHAN A. Distribusi Gabungan Definisi 1: Peubah Acak Berdimensi Dua Jika S merupakan

Διαβάστε περισσότερα

FIZIK. Daya dan Gerakan TINGKATAN 4. Cikgu Khairul Anuar. Cikgu Desikan SMK Changkat Beruas, Perak. Bab 2. SMK Seri Mahkota, Kuantan.

FIZIK. Daya dan Gerakan TINGKATAN 4. Cikgu Khairul Anuar. Cikgu Desikan SMK Changkat Beruas, Perak. Bab 2. SMK Seri Mahkota, Kuantan. FIZIK TINGKATAN 4 Bab 2 Daya dan Gerakan Disunting oleh Cikgu Desikan SMK Changkat Beruas, Perak Cikgu Khairul Anuar Dengan kolaborasi bersama SMK Seri Mahkota, Kuantan FIZIK TINGKATAN 4 2016 Bab 2 Daya

Διαβάστε περισσότερα

FIZIK DAN PENGUKURAN DALAM KEHIDUPAN HARIAN

FIZIK DAN PENGUKURAN DALAM KEHIDUPAN HARIAN TOPIK 1 FIZIK DAN PENGUKURAN DALAM KEHIDUPAN HARIAN Sinopsis Sains fizik adalah berasaskan beberapa prinsip dan melibatkan perkembangan konsep. Aplikasi prinsip-prinsip dan konsep-konsep biasanya melibatkan

Διαβάστε περισσότερα

SEMESTER 1 : BACHELOR PENDIDIKAN (SAINS RENDAH) 2012 TAJUK KURSUS : Fizik dalam Konteks Kehidupan Harian

SEMESTER 1 : BACHELOR PENDIDIKAN (SAINS RENDAH) 2012 TAJUK KURSUS : Fizik dalam Konteks Kehidupan Harian SEMESTER 1 : BACHELOR PENDIDIKAN (SAINS RENDAH) 2012 TAJUK KURSUS : Fizik dalam Konteks Kehidupan Harian KOD KURSUS SCE3105 MATA KREDIT : 3 (2 + 1) PENGENALAN Kursus ini meneroka idea dan amalan fizik

Διαβάστε περισσότερα

MODUL 3 : KERTAS 2 Bahagian A [40 markah] (Jawab semua soalan dalam bahagian ini)

MODUL 3 : KERTAS 2 Bahagian A [40 markah] (Jawab semua soalan dalam bahagian ini) MODUL 3 [Kertas 2]: MATEMATIK TAMBAHAN JPNK 2015 Muka Surat: 1 1. Selesaikan persamaan serentak yang berikut: MODUL 3 : KERTAS 2 Bahagian A [40 markah] (Jawab semua soalan dalam bahagian ini) 2x y = 1,

Διαβάστε περισσότερα

EAG 345/2 - Analisis Geoteknik

EAG 345/2 - Analisis Geoteknik UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Pertama Sidang Akademik 004/05 Oktober 004 EAG 345/ - Analisis Geoteknik Masa : 3 jam Arahan Kepada Calon: 1. Sila pastikan kertas peperiksaan ini mengandungi

Διαβάστε περισσότερα

Kalkulus 1. Sistem Koordinat. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia. Sistem Koordinat

Kalkulus 1. Sistem Koordinat. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia. Sistem Koordinat Kalkulus 1 Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Sistem koordinat adalah suatu cara/metode untuk menentukan letak suatu titik. Ada beberapa macam sistem koordinat, yaitu:

Διαβάστε περισσότερα

PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2005

PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2005 3472/2 Matematik Tambahan Kertas 2 September 2005 2½ jam MAKTAB RENDAH SAINS MARA 3472/2 PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2005 MATEMATIK TAMBAHAN Kertas 2 Dua jam tiga puluh minit 3 4 7 2

Διαβάστε περισσότερα

BAB 3 PERENCANAAN TANGGA

BAB 3 PERENCANAAN TANGGA BAB 3 PERENCANAAN TANGGA 3.1. Uraian Umum Semakin sedikit tersedianya luas lahan yang digunakan untuk membangun suatu bangunan menjadikan perencana lebih inovatif dalam perencanaan, maka pembangunan tidak

Διαβάστε περισσότερα

S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON

S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2011 SEBARAN PELUANG II. SEBARAN PELUANG Ruang Contoh (S) adalah Himpunan semua kemungkinan hasil suatu percobaan.

Διαβάστε περισσότερα

SULIT 3472/2 SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 2. Dua jam tiga puluh minit

SULIT 3472/2 SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 2. Dua jam tiga puluh minit MATEMATIK TAMBAHAN Kertas 2 September 2013 2½ Jam SMK SERI MUARA, 36100 BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 2 Dua jam tiga puluh minit JANGAN BUKA KERTAS

Διαβάστε περισσότερα

BAB 1 PENDAHULUAN 1.1 PENGENALAN

BAB 1 PENDAHULUAN 1.1 PENGENALAN 1 BAB 1 PENDAHULUAN 1.1 PENGENALAN Injap adalah alat yang mengatur, mengarahkan atau mengawal aliran udara. Kegunaan injap adalah untuk mengendalikan sebuah proses cairan, dalam posisi terbuka cecair akan

Διαβάστε περισσότερα

S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON

S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2010 SEBARAN PELUANG II. SEBARAN PELUANG Ruang Contoh (S) adalah Himpunan semua kemungkinan hasil suatu percobaan.

Διαβάστε περισσότερα

JAWAPAN BAB 1 BAB 2. x y x y x y Asas Nombor

JAWAPAN BAB 1 BAB 2. x y x y x y Asas Nombor sas Nombor. Nombor dalam sas Dua, sas Lapan dan sas Lima (a) (e) (f) (g) (a) (e) (a) (e) (f) (g) (h) (i) (j) (k) (a) (e) (a) as as (a) 9 (a) (e) (a) 9 (a) (a) (e) 9 (a) as 9 as JWN (e) (f) (a) (a) (a)

Διαβάστε περισσότερα

DAFTAR NOTASI. adalah jarak antara dua pengaku vertikal, mm. adalah luas efektif penampang, mm2. adalah luas efektif pelat sayap, mm2

DAFTAR NOTASI. adalah jarak antara dua pengaku vertikal, mm. adalah luas efektif penampang, mm2. adalah luas efektif pelat sayap, mm2 DAFTAR NOTASI SNI 03-1729-2002 A a A e A f a r A s A w b b f b cf b s C b C r C v D d d b d c adalah luas penampang, mm2 adalah jarak antara dua pengaku vertikal, mm adalah luas efektif penampang, mm2

Διαβάστε περισσότερα

BAB V DESAIN TULANGAN STRUKTUR

BAB V DESAIN TULANGAN STRUKTUR BAB V DESAIN TULANGAN STRUKTUR 5.1 Output Penulangan Kolom Dari Program Etabs ( gedung A ) Setelah syarat syarat dalam pemodelan struktur sudah memenuhi syarat yang di tentukan dalam peraturan SNI, maka

Διαβάστε περισσότερα

gram positif yang diuji adalah Bacillus subtilis, Staphylococcus aureus ATCC 25923,

gram positif yang diuji adalah Bacillus subtilis, Staphylococcus aureus ATCC 25923, 3.2.2 Penskrinan aktiviti antimikrob Ekstrak metanol sampel Cassia alata L. dan Cassia tora L. dijalankan penskrinan aktiviti antimikrob dengan beberapa jenis mikrob yang patogenik kepada manusia seperti

Διαβάστε περισσότερα

MENGENALI FOTON DAN PENGQUANTUMAN TENAGA

MENGENALI FOTON DAN PENGQUANTUMAN TENAGA MENGENALI FOTON DAN PENGQUANTUMAN TENAGA Oleh Mohd Hafizudin Kamal Sebelum wujudnya teori gelombang membujur oleh Huygens pada tahun 1678, cahaya dianggap sebagai satu aliran zarah-zarah atau disebut juga

Διαβάστε περισσότερα

SEKOLAH MENENGAH KEBANGSAAN MENUMBOK. PEPERIKSAAN AKHIR TAHUN 2015 MATEMATIK TINGKATAN 4 Kertas 2 Oktober Dua jam tiga puluh minit

SEKOLAH MENENGAH KEBANGSAAN MENUMBOK. PEPERIKSAAN AKHIR TAHUN 2015 MATEMATIK TINGKATAN 4 Kertas 2 Oktober Dua jam tiga puluh minit NAMA TINGKATAN SEKOLAH MENENGAH KEBANGSAAN MENUMBOK PEPERIKSAAN AKHIR TAHUN 015 MATEMATIK TINGKATAN 4 Kertas Oktober ½ jam Dua jam tiga puluh minit JANGAN BUKA KERTAS SOALAN INI SEHINGGA DIBERITAHU 1.

Διαβάστε περισσότερα

Sebaran Peluang Gabungan

Sebaran Peluang Gabungan Sebaran Peluang Gabungan Peubah acak dan sebaran peluangnya terbatas pada ruang sampel berdimensi satu. Dengan kata lain, hasil percobaan berasal dari peubah acak yan tunggal. Tetapi, pada banyak keadaan,

Διαβάστε περισσότερα

ALIRAN BOLEH MAMPAT SATU DIMENSI

ALIRAN BOLEH MAMPAT SATU DIMENSI Bab 3 ALIRAN BOLEH MAMPAT SATU DIMENSI 3.1 Bendalir Tak Boleh Mampat dan Boleh Mampat Bendalir tak boleh mampat tidak wujud dalam praktis. Sebutan ini sebenarnya digunakan untuk merujuk kepada bendalir

Διαβάστε περισσότερα

S T A T I S T I K A OLEH : WIJAYA

S T A T I S T I K A OLEH : WIJAYA S T A T I S T I K A OLEH : WIJAYA email : zeamays_hibrida@yahoo.com FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2009 II. SEBARAN PELUANG Ruang Contoh (S) adalah Himpunan semua kemungkinan

Διαβάστε περισσότερα

13 M. Syuhaimi.indd 149 5/28/10 4:21:43 PM

13 M. Syuhaimi.indd 149 5/28/10 4:21:43 PM 1 4 Kumpulan Penyelidikan Komputer dan Sekuriti Rangkaian, Jabatan Kejuruteraan Elektrik, Elektronik dan Sistem, Fakulti Kejuruteraan dan Alam Bina, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor,

Διαβάστε περισσότερα

Klasifikasi bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua

Klasifikasi bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua Matematika, 1999, Jilid 15, bil. 1, hlm. 37 43 c Jabatan Matematik, UTM. Klasifikasi bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua Nor Haniza Sarmin Jabatan Matematik, Fakulti

Διαβάστε περισσότερα

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 6: Rantai Markov Waktu Kontinu Statistika FMIPA Universitas Islam Indonesia Rantai Markov Waktu Kontinu Peluang Kesetimbangan Pada bab ini, kita akan belajar mengenai rantai markov waktu kontinu yang

Διαβάστε περισσότερα

BAB III PERHITUNGAN TANGGA DAN PELAT. Gedung Kampus di Kota Palembang yang terdiri dari 11 lantai tanpa basement

BAB III PERHITUNGAN TANGGA DAN PELAT. Gedung Kampus di Kota Palembang yang terdiri dari 11 lantai tanpa basement BAB III PERHITUNGAN TANGGA DAN PELAT 3.1. Analisis Beban Gravitasi Beban gravitasi adalah beban ang bekerja pada portal dan berupa beban mati serta beban hidup. Bangunan ang akan dianalisis pada penulisan

Διαβάστε περισσότερα

Sudut positif. Sudut negatif. Rajah 7.1: Sudut

Sudut positif. Sudut negatif. Rajah 7.1: Sudut Bab 7 FUNGSI TRIGONOMETRI Dalam bab ini kita akan belajar secara ringkas satu kelas fungsi penting untuk penggunaan dipanggil fungsi trigonometri Fungsi trigonometri pada mulana timbul dalam pengajian

Διαβάστε περισσότερα

LITAR ELEKTRIK 1 EET101/4. Pn. Samila Mat Zali

LITAR ELEKTRIK 1 EET101/4. Pn. Samila Mat Zali LITAR ELEKTRIK 1 EET101/4 Pn. Samila Mat Zali STRUKTUR KURSUS Peperiksaan Akhir : 50% Ujian teori : 10% Mini projek : 10% Amali/praktikal : 30% 100% OBJEKTIF KURSUS Mempelajari komponen-komponen utama

Διαβάστε περισσότερα

BAB 4 HASIL KAJIAN. dengan maklumat latar belakang responden, impak modal sosial terhadap prestasi

BAB 4 HASIL KAJIAN. dengan maklumat latar belakang responden, impak modal sosial terhadap prestasi BAB 4 HASIL KAJIAN 4.1 Pengenalan Bahagian ini menghuraikan tentang keputusan analisis kajian yang berkaitan dengan maklumat latar belakang responden, impak modal sosial terhadap prestasi pendidikan pelajar

Διαβάστε περισσότερα

UJIKAJI 1 : PENYEDIAAN SPESIMEN DAN KAJIAN METALOGRAFI KELULI KARBON

UJIKAJI 1 : PENYEDIAAN SPESIMEN DAN KAJIAN METALOGRAFI KELULI KARBON Makmal Sains Bahan UJIKAJI 1 : PENYEDIAAN SPESIMEN DAN KAJIAN METALOGRAFI KELULI KARBON (1) Tujuan (a) (b) Mempelajari teknik penyediaan spesimen Mempelajari metalografi keluli karbon yang telah mengalami

Διαβάστε περισσότερα

Transformasi Koordinat 2 Dimensi

Transformasi Koordinat 2 Dimensi Transformasi Koordinat 2 Dimensi RG141227 - Sistem Koordinat dan Transformasi Semester Gasal 2016/2017 Ira M Anjasmara PhD Jurusan Teknik Geomatika Sistem Koordinat 2 Dimensi Digunakan untuk mempresentasikan

Διαβάστε περισσότερα

SELAMAT DATANG KE KULIAH 12 EX2023 MAKROEKONOMI II FAKULTI EKONOMI UNIVERSITI KEBANGSAAN MALAYSIA

SELAMAT DATANG KE KULIAH 12 EX2023 MAKROEKONOMI II FAKULTI EKONOMI UNIVERSITI KEBANGSAAN MALAYSIA SELAMAT DATANG KE KULIAH 12 EX2023 MAKROEKONOMI II FAKULTI EKONOMI UNIVERSITI KEBANGSAAN MALAYSIA Prof. Madya Dr. Mohd Zainudin Saleh mzsaleh@ukm.my www.ukm.my/zainudin 29/01/2004 Kuliah 12 1 MAKROEKONOMI

Διαβάστε περισσότερα

Pembinaan Homeomorfisma dari Sfera ke Elipsoid

Pembinaan Homeomorfisma dari Sfera ke Elipsoid Matematika, 003, Jilid 19, bil., hlm. 11 138 c Jabatan Matematik, UTM. Pembinaan Homeomorfisma dari Sfera ke Elipsoid Liau Lin Yun & Tahir Ahmad Jabatan Matematik, Fakulti Sains Universiti Teknologi Malasia

Διαβάστε περισσότερα

SISTEM KOLOID. Pengenalan. Pengkelasan koloid

SISTEM KOLOID. Pengenalan. Pengkelasan koloid SISTEM KOLOID Pengenalan Kajian mengenai koloid bermula pada awal kurun ke 19 oleh Graham. Sistem koloid yang mula dikaji ialah jelatin dan gam. Perkataan koloid adalah berasal dari perkataan Greek yang

Διαβάστε περισσότερα

Persamaan Diferensial Parsial

Persamaan Diferensial Parsial Persamaan Diferensial Parsial Turunan Parsial f (, ) Jika berubah ubah sedangkan tetap, adalah fungsi dari dan turunanna terhadap adalah f (, ) f (, ) f (, ) lim 0 disebut turunan parsialpertama dari f

Διαβάστε περισσότερα

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 6: Rantai Markov Waktu Kontinu Statistika FMIPA Universitas Islam Indonesia Rantai Markov Waktu Kontinu Peluang Kesetimbangan Pada bab ini, kita akan belajar mengenai rantai markov waktu kontinu yang

Διαβάστε περισσότερα

SIJIL VOKASIONAL MALAYSIA A03101 PENILAIAN AKHIR SEMESTER 1 SESI 1/2015 Matematik Bahagian A Mei

SIJIL VOKASIONAL MALAYSIA A03101 PENILAIAN AKHIR SEMESTER 1 SESI 1/2015 Matematik Bahagian A Mei A00 LEMBAGA PEPERIKSAAN KEMENTERIAN PENDIDIKAN MALAYSIA SIJIL VOKASIONAL MALAYSIA A00 PENILAIAN AKHIR SEMESTER SESI /205 Matematik Bahagian A Mei 2 jam Satu jam tiga puluh minit JANGAN BUKA KERTAS SOALAN

Διαβάστε περισσότερα

SARJANA MUDA KEJURUTERAAN MEKANIKAL FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA PEPERIKSAAN AKHIR SEMESTER DISEMBER SESI 1999/2000

SARJANA MUDA KEJURUTERAAN MEKANIKAL FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA PEPERIKSAAN AKHIR SEMESTER DISEMBER SESI 1999/2000 SARJANA MUDA KEJURUTERAAN MEKANIKAL FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA PEPERIKSAAN AKHIR SEMESTER DISEMBER SESI 1999/2000 KOD MATAPELAJARAN : SMJ 3403 NAMA MATAPELAJARAN : TERMODINAMIK

Διαβάστε περισσότερα

BAB 4 PERENCANAAN TANGGA

BAB 4 PERENCANAAN TANGGA BAB 4 PERENCANAAN TANGGA 4. Uraian Umum Tangga merupakan bagian dari struktur bangunan bertingkat yang penting sebagai penunjang antara struktur bangunan lantai dasar dengan struktur bangunan tingkat atasnya.

Διαβάστε περισσότερα

Pelajaran 1 BENDALIR : PENGENALAN OBJEKTIF PELAJARAN. 1 Mentakrif tabiat bendalir.

Pelajaran 1 BENDALIR : PENGENALAN OBJEKTIF PELAJARAN. 1 Mentakrif tabiat bendalir. Bendalir: Pengenalan 1 Pelajaran 1 BENDALIR : PENGENALAN OBJEKTIF PELAJARAN Setelah selesai mengikuti pelajaran ini anda seharusna dapat: 1 Mentakrif tabiat bendalir. 2 Mengenalpasti bila konsep mekanik

Διαβάστε περισσότερα

BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1. Sudut Positif dan Sudut Negatif. Contoh

BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1. Sudut Positif dan Sudut Negatif. Contoh BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1 Sudut Positif dan Sudut Negatif Contoh Lukiskan setiap sudut berikut dengan menggunakan rajah serta tentukan sukuan mana sudut itu berada. (a)

Διαβάστε περισσότερα

BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1. Sudut Positif dan Sudut Negatif. Contoh

BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1. Sudut Positif dan Sudut Negatif. Contoh BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1 Sudut Positif dan Sudut Negatif Contoh Lukiskan setiap sudut berikut dengan menggunakan rajah serta tentukan sukuan mana sudut itu berada. (a)

Διαβάστε περισσότερα