Peta Konsep. 5.1 Sudut Positif dan Sudut Negatif Fungsi Trigonometri Bagi Sebarang Sudut FUNGSI TRIGONOMETRI
|
|
- Ξέρξης Βασιλικός
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Bab 5 FUNGSI TRIGONOMETRI Peta Konsep 5.1 Sudut Positif dan Sudut Negatif 5. 6 Fungsi Trigonometri Bagi Sebarang Sudut FUNGSI TRIGONOMETRI 5. Graf Fungsi Sinus, Kosinus dan Tangen 5.4 Identiti Asas 5.5 Rumus Penambahan dan Rumus Sudut Berganda 5. Graf Fungsi Sinus, Kosinus dan Tangen Hasil Pembelajaran Melakar graf fungsi trigonometri (a) = c + a sin b (b) = c + a kos b (c) = c + a tan b dengan a, b dan c ialah pemalar dan b > Menentukan bilangan penelesaian bagi persamaan trigonometri dengan menggunakan lakaran graf. Menelesaikan persamaan trigonometri dengan menggunakan graf-graf terlukis ( Sila Rujuk Modul Powerpoint Yang Disediakan Bersama ) 1
2 Hasil Pembelajaran 1: Melakar Graf Fungsi Trigonometri A. Graf Fungsi Sinus Amplitud = c + a sin b, kala kala a = amplitud b = bilangan kala dalam 6 atau c = bilangan anjakan 1. Lakarkan graf bagi setiap fungsi trigonometri berikut. Contoh 1: sin, (a) 4sin, Semak : a= b = 1 c = - Contoh : sin, (b) sin, Semak : a= b = c = -
3 (c) sin, (d) sin, Contoh : sin, (e) sin, Semak : a= - b = 1 c = Contoh 4 : sin 1, (f) sin 1, 1-1 Semak : a= b = 1 c = 1 Contoh 5 : sin (g) 5sin 1, Semak : a= b = 1 c = -
4 B. Graf Fungsi Kosinus = c + a cos b, a = amplitud b = bilangan kala dalam 6 atau c = bilangan anjakan kala kala. Lakarkan graf bagi setiap fungsi trigonometri berikut. Contoh 1 : cos, (a) cos, Semak : a= b = 1 - c = Contoh : cos, (b) cos, Semak : a= b = 1 c = 4
5 Contoh : cos 1, (e) cos 1, 4 Semak : a= b = 1 c = - Contoh 4 : cos, (f) 5cos, Semak : a= b = 1 c = - Contoh 5 : cos, (g) 4cos, Semak : 1 a= b = 1 c = -1 5
6 C. Graf Fungsi Tangen Asimtot = c + a tan b, a = amplitud b = bilangan kala dalam 6 atau c = bilangan anjakan Kala kala Contoh 1 : tan, (a) tan, - Contoh : tan, (b) tan, - Contoh : tan, (c) tan, - 6
7 Aktiviti Berkumpulan : JOM LAKAR Arahan : 1. Bentukkan kumpulan ( 4 orang satu kumpulan ). Setiap kumpulan mendapat sekeping papan putih ( saiz kecil ) dan pen marker atau kertas A4 ( beberapa helai ). Guru memaparkan soalan ini tahun demi tahun dan setiap kumpulan dikehendaki melakarkan graf fungsi trigonometri tersebut dalam masa minit. 4. Wakil setiap kumpulan akan mempamerkan jawapan masing-masing. 5. Guru memberi markah kepada hasilan pelajar. 5. Setelah selesai semua soalan ( mengikut kesuaian masa ). Guru memberi hadiah kepada kumpulan ang menang. 6. Guru membuat kesimpulan dan membincangkan analisis soalan secara keseluruhan. 7
8 Analisis Soalan SPM Kertas Bahagian A : ( 15) Tahun Jenis Graf Fungsi Trigonometri Julat Lakaran Graf kos 4 kos 18 5 kos 6 kos 7 kos 8 tan 9 kos 1 1 kos 11 sin 1 kos1 1 Tiada soalan lakaran graf 14 1 tan 15 kos 6 8
9 Hasil Pembelajaran : Menentukan bilangan penelesaian bagi persamaan trigonometri dengan menggunakan lakaran graf. Untuk menentukan bilangan penelesaian bagi sesuatu Info : persamaan trigonometri : (i) asingkan ungkapan trigonometri daripada ungkapan bukan trigonometri dahulu. (ii) kemudian, lakarkan kedua-dua gaf fungsi itu pada rajah ang sama. (iii) bilangan penelesian bagi persamaan trigonometri itu diwakili oleh bilangan titik persilangan bagi dua graf fungsi itu. Contoh 1 : Lakarkan graf kos 1, bagi. Daripada graf itu, (a) Natakan koordinat titik maksimum dan minimum bagi graf = kos + 1, (b) Tentukan bilangan penelesaian bagi persamaan trigonometri ( i ) kos 1, ( ii ) 4 kos 8 9
10 Penelesaian : Langkah 1: 1 Langkah : kos 1, bagi -1 (a) Daripada graf, koordinat titik maksimum ialah (, ) dan (, ). Koordinat titik minimum ialah (, ) (b) ( i ) Kos = -1 Kos + 1 = =kos+ 1 dan =, Daripada graf, terdapat satu titik persilangan bagi graf = kos + 1 dengan paksi-, Maka persamaan trigonometri kos = -1 mempunai satu penelesaian. (ii) 4ko 8 8 kos 4 kos Lakarkan graf 4 pada rajah ang sama. Daripada graf, terdapat satu titik persilangan bagi graf = kos +1 dengan graf 4 Maka persamaan trigonometri 4kos 8 mempunai satu penelesaian. 1
11 Contoh : (i) Lakarkan graf bagi = sin bagi. (ii) Seterusna, dengan menggunakan paksi ang sama, lukiskan satu garis lurus ang sesuai untuk mencari bilangan penelesaian bagi persamaan sin bagi. Natakan bilangan penelesaian itu. Penelesaian : ( i ) Tip Langkah penelesaian (i) Lakarkan graf (ii) Cari Persamaan garis lurus (iii) Lukiskan garis lurus sin 1 sin sin 1 1 Pilih atau nilai ang sesuai dan cari nilai ang sepadan (iv) Natakan bilangan titik penelesaian Plotkan garis lurus ini Bilangan penelesaian = 11
12 Latihan Format SPM Kertas 1 (a) Lakarkan graf bagi = 5 sin bagi. [ 4 markah ] (b) Seterusna, dengan menggunakan paksi ang sama, lukiskan satu garis lurus ang sesuai untuk mencari bilangan penelesaian bagi persamaan 5 5 sin = bagi. Natakan bilangan penelesaian itu. [ markah ] (a) Lakarkan graf bagi = - kos bagi. [ markah] (b) Seterusna, dengan menggunakan paksi ang sama, lukiskan satu garis lurus ang sesuai untuk 4 mencari bilangan penelesaian bagi persamaan kos bagi. Natakan bilangan penelesaian itu. [4 markah] 1
13 (a) Lakarkan graf bagi = sin bagi. (b) Seterusna, dengan menggunakan paksi ang sama, lukiskan satu garis lurus ang sesuai untuk mencari bilangan penelesaian bagi persamaan bagi 4 sin bagi. Natakan bilangan penelesaian itu. [7 markah] 4 (a) Lakar graf bagi = kos + 1 untuk. [4 markah] (b) Jika garis = k dilukis pada paksi ang sama, cari julat nilai k atau nilai k jika k 1 = kos (i) tiada penelesaian, (ii) mempunai satu penelesaian. [ markah] 1
14 5 (a) Lakar graf tan untuk [ markah] (b) Seterusna, dengan menggunakan paksi ang sama, lukiskan satu garis lurus ang sesuai untuk mencari bilangan penelesaian bagi persamaan tan 6 untuk. Natakan bilangan penelesaian itu. [ markah] 6.(a) Lakarkan graf bagi = 5 kos bagi. [ 4 markah] (b) Seterusna, dengan menggunakan paksi ang sama, lukiskan satu garis lurus ang sesuai untuk mencari bilangan penelesaian bagi persamaan kos = bagi. Natakan bilangan penelesaian itu. [ markah ] 14
15 7.(a) Lakarkan graf bagi = sin bagi. [ markah ] (b) Seterusna, dengan menggunakan paksi ang sama, lukiskan satu graf ang sesuai untuk mencari bilangan penelesaian bagi persamaan sin = bagi. Natakan bilangan penelesaian itu. [ markah ] 8 (a) Lakarkan graf bagi = tan bagi.. (b) Seterusna, dengan menggunakan paksi ang sama, lukiskan satu garis lurus ang sesuai untuk mencari bilangan penelesaian bagi persamaan 4 tan bagi. Natakan bilangan penelesaian itu. [6 markah ] 15
16 9. (a) Lakarkan graf bagi sin bagi [4 markah] (b) Seterusna, menggunakan paksi ang sama, lakarkan satu garis lurus ang bersesuaian untuk mencari bilangan penelesaian bagi persamaan - + Natakan bilangan penelesaian tersebut. sin = for. [ markah] 1 (a) Lakarkan graf bagi = 1 kos bagi. [ 4 markah ] (b) Seterusna, dengan menggunakan paksi ang sama, lukiskan satu garis lurus ang sesuai untuk mencari bilangan penelesaian bagi persamaan 6 kos = + bagi. Natakan bilangan penelesaian itu. [ markah] Selamat mencuba..!!! 16
17 Permarkahan : Apa ang pelajar perlu tahu dan ingat Garis lengkung tidak boleh melebihi atau tidak menentuh garis amplitud Pada garis lurus, pelajar mesti fokus kepada nilai pintasan dan bentuk kecerunan Lakaran ang salah (i) (ii) Graf tajam graf mendatar Kalaan mestilah tepat dengan julat ang diberi dalam soalan 17
18 Jawaban : 1(a) 5 b ) 5 (a) Bil Penelesaian = 6 (b) 4 (a) + + cos = = 4 + Bila =, = Bila =, = 1 Bilangan Penelesaian = (b) 4 sin = 1 sin = = Bilangan Penelesaian = 5 18
19 4. (i) k >, k < 1 (ii) k = 1 5. / Lukis di atas paksi ang sama Bil. Penelesaian = 4 6. (a) (b) 5 kos = 1 + 7, Bil. penelesaian= 19
20 7. (a) (b) =, Bil. penelesaian = 8. (a) (b) = + 4, Bil.penelesaian= 9. (a) (b) = +, Bil. penelesaian = 8
21 1. (a) (b) =, Bil. penelesaian = Selamat Maju Jaa!! 1
BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1. Sudut Positif dan Sudut Negatif. Contoh
BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1 Sudut Positif dan Sudut Negatif Contoh Lukiskan setiap sudut berikut dengan menggunakan rajah serta tentukan sukuan mana sudut itu berada. (a)
BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1. Sudut Positif dan Sudut Negatif. Contoh
BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1 Sudut Positif dan Sudut Negatif Contoh Lukiskan setiap sudut berikut dengan menggunakan rajah serta tentukan sukuan mana sudut itu berada. (a)
MODUL 3 : KERTAS 2 Bahagian A [40 markah] (Jawab semua soalan dalam bahagian ini)
MODUL 3 [Kertas 2]: MATEMATIK TAMBAHAN JPNK 2015 Muka Surat: 1 1. Selesaikan persamaan serentak yang berikut: MODUL 3 : KERTAS 2 Bahagian A [40 markah] (Jawab semua soalan dalam bahagian ini) 2x y = 1,
(a) Nyatakan julat hubungan itu (b) Dengan menggunakan tatatanda fungsi, tulis satu hubungan antara set A dan set B. [2 markah] Jawapan:
MODUL 3 [Kertas 1]: MATEMATIK TAMBAHAN JPNK 015 Muka Surat: 1 Jawab SEMUA soalan. 1 Rajah 1 menunjukkan hubungan antara set A dan set B. 6 1 Set A Rajah 1 4 5 Set B (a) Nyatakan julat hubungan itu (b)
PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2005
3472/2 Matematik Tambahan Kertas 2 September 2005 2½ jam MAKTAB RENDAH SAINS MARA 3472/2 PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2005 MATEMATIK TAMBAHAN Kertas 2 Dua jam tiga puluh minit 3 4 7 2
TH3813 Realiti Maya. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun
TH383 Realiti Maa Transformasi 3D menggunakan multiplikasi matriks untuk hasilkan kompaun transformasi menggunakan kompaun transformasi - hasilkan sebarang transformasi dan ungkapkan sebagai satu transformasi
( 2 ( 1 2 )2 3 3 ) MODEL PT3 MATEMATIK A PUSAT TUISYEN IHSAN JAYA = + ( 3) ( 4 9 ) 2 (4 3 4 ) 3 ( 8 3 ) ( 3.25 )
(1) Tentukan nilai bagi P, Q, dan R MODEL PT MATEMATIK A PUSAT TUISYEN IHSAN JAYA 1 P 0 Q 1 R 2 (4) Lengkapkan operasi di bawah dengan mengisi petak petak kosong berikut dengan nombor yang sesuai. ( 1
SEKOLAH MENENGAH KEBANGSAAN MENUMBOK. PEPERIKSAAN AKHIR TAHUN 2015 MATEMATIK TINGKATAN 4 Kertas 2 Oktober Dua jam tiga puluh minit
NAMA TINGKATAN SEKOLAH MENENGAH KEBANGSAAN MENUMBOK PEPERIKSAAN AKHIR TAHUN 015 MATEMATIK TINGKATAN 4 Kertas Oktober ½ jam Dua jam tiga puluh minit JANGAN BUKA KERTAS SOALAN INI SEHINGGA DIBERITAHU 1.
Sistem Koordinat dan Fungsi. Matematika Dasar. untuk Fakultas Pertanian. Uha Isnaini. Uhaisnaini.com. Matematika Dasar
untuk Fakultas Pertanian Uhaisnaini.com Contents 1 Sistem Koordinat dan Fungsi Sistem Koordinat dan Fungsi Sistem koordinat adalah suatu cara/metode untuk menentukan letak suatu titik. Ada beberapa macam
SULIT 3472/2 SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 2. Dua jam tiga puluh minit
MATEMATIK TAMBAHAN Kertas 2 September 2013 2½ Jam SMK SERI MUARA, 36100 BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 2 Dua jam tiga puluh minit JANGAN BUKA KERTAS
Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua nilai yang mungkin bagi X.
BAB 8 : TABURAN KEBARANGKALIAN Sesi 1 Taburan Binomial A. Pembolehubah rawak diskret Contoh Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua
Kalkulus 1. Sistem Koordinat. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia. Sistem Koordinat
Kalkulus 1 Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Sistem koordinat adalah suatu cara/metode untuk menentukan letak suatu titik. Ada beberapa macam sistem koordinat, yaitu:
Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua nilai yang mungkin bagi X.
BAB 8 : TABURAN KEBARANGKALIAN Sesi 1 Taburan Binomial A. Pembolehubah rawak diskret Contoh Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua
Sudut positif. Sudut negatif. Rajah 7.1: Sudut
Bab 7 FUNGSI TRIGONOMETRI Dalam bab ini kita akan belajar secara ringkas satu kelas fungsi penting untuk penggunaan dipanggil fungsi trigonometri Fungsi trigonometri pada mulana timbul dalam pengajian
-9, P, -1, Q, 7, 11, R
Tunjukkan langkah-langkah penting dalam kerja mengira anda. Ini boleh membantu anda untuk mendapatkan markah. Anda dibenarkan menggunakan kalkulator saintifik. Jawab semua soalan 1 (a) Rajah 1(a) menunjukkan
FUNGSI P = {1, 2, 3} Q = {2, 4, 6, 8, 10}
FUNGSI KERTAS 1 P = {1,, 3} Q = {, 4, 6, 8, 10} 1. Berdasarkan maklumat di atas, hubungan P kepada Q ditakrifkan oleh set pasangan bertertib {(1, ), (1, 4), (, 6), (, 8)}. Nyatakan (a) imej bagi 1, (b)
Latihan PT3 Matematik Nama:.. Masa: 2 jam. 1 a) i) Buktikan bahawa 53 adalah nombor perdana. [1 markah]
Latihan PT3 Matematik Nama:.. Masa: 2 jam a) i) Buktikan bahawa 53 adalah nombor perdana. [ markah] ii) Berikut adalah tiga kad nombor. 30 20 24 Lakukan operasi darab dan bahagi antara nombor-nombor tersebut
SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM. MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JUMLAH
72/1 NAMA :. TINGKATAN : MATEMATIK TAMBAHAN Kertas 1 September 201 2 Jam SMK SERI MUARA, 6100 BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JANGAN BUKA KERTAS
Ciri-ciri Taburan Normal
1 Taburan Normal Ciri-ciri Taburan Normal Ia adalah taburan selanjar Ia adalah taburan simetri Ia adalah asimtot kepada paksi Ia adalah uni-modal Ia adalah keluarga kepada keluk Keluasan di bawah keluk
Jawab semua soalan. P -1 Q 0 1 R 2
Tunjukkan langkah langkah penting dalam kerja mengira anda. Ini boleh membantu anda untuk mendapatkan markah. Anda dibenarkan menggunakan kalkulator saintifik. 1. (a) Tentukan nilai P, Q dan R Jawab semua
JAWAPAN BAB 1 BAB 2 = = Bentuk Piawai
JAWAAN BAB Bentuk iawai. Angka Bererti (a) angka bererti angka bererti angka bererti (d) angka bererti (e) angka bererti (a). (d). (e). Bundarkan kepada angka bererti Faktor penghubung. as (a).. as (d).
Kalkulus Multivariabel I
Limit dan Statistika FMIPA Universitas Islam Indonesia Operasi Aljabar pada Pembahasan pada limit untuk fungsi dua peubah adalah memberikan pengertian mengenai lim f (x, y) = L (x,y) (a,b) Masalahnya adalah
TOPIK 1 : KUANTITI DAN UNIT ASAS
1.1 KUANTITI DAN UNIT ASAS Fizik adalah berdasarkan kuantiti-kuantiti yang disebut kuantiti fizik. Secara am suatu kuantiti fizik ialah kuantiti yang boleh diukur. Untuk mengukur kuantiti fizik, suatu
Kertas soalan ini mengandungi 20 halaman bercetak.
3472/1 NAMA :. TINGKATAN : MATEMATIK TAMBAHAN Kertas 1 September 2013 2 Jam SMK SERI MUARA, 36100 BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JANGAN BUKA
JAWAPAN. = (a + 2b) (a b) = 3b Jujukan ini bukan J.A. sebab beza antara sebarang dua sebutan berturutan adalah tidak sama. 3. d 1 = T 2 T 1 =
JAWAPAN BAB : JANJANG. A. d T T ( ) ( ) d T T ( ) Jujukan ini ialah J.A. sebab beza antara sebarang dua sebutan berturutan adalah sama, iaitu.. d T T (a b) (a + b) b d T T (a + b) (a b) b Jujukan ini bukan
ANALISIS LITAR ELEKTRIK OBJEKTIF AM
ANALSS LTA ELEKTK ANALSS LTA ELEKTK OBJEKTF AM Unit Memahami konsep-konsep asas Litar Sesiri, Litar Selari, Litar Gabungan dan Hukum Kirchoff. OBJEKTF KHUSUS Di akhir unit ini anda dapat : Menerangkan
Ukur Kejuruteraan DDPQ 1162 Ukur Tekimetri. Sakdiah Basiron
Ukur Kejuruteraan DDPQ 1162 Ukur Tekimetri Sakdiah Basiron TEKIMETRI PENGENALAN TAKIMETRI ADALAH SATU KAEDAH PENGUKURAN JARAK SECARA TIDAK LANGSUNG BAGI MENGHASILKAN JARAK UFUK DAN JARAK TEGAK KEGUNAAN
SULIT 1449/2 1449/2 NO. KAD PENGENALAN Matematik Kertas 2 September ANGKA GILIRAN LOGO DAN NAMA SEKOLAH PEPERIKSAAN PERCUBAAN SPM 2007
SULIT 1449/2 1449/2 NO. KAD PENGENALAN Matematik Kertas 2 September ANGKA GILIRAN 2007 2 2 1 jam LOGO DAN NAMA SEKOLAH PEPERIKSAAN PERCUBAAN SPM 2007 MATEMATIK Kertas 2 Dua jam tiga puluh minit JANGAN
RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN
Jurnal Teknologi, 38(C) Jun 003: 5 8 Universiti Teknologi Malaysia RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN 5 RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN YEOH WENG KANG & JAMALUDIN MD. ALI Abstrak. Rumus untuk
KONSEP ASAS & PENGUJIAN HIPOTESIS
KONSEP ASAS & PENGUJIAN HIPOTESIS HIPOTESIS Hipotesis = Tekaan atau jangkaan terhadap penyelesaian atau jawapan kepada masalah kajian Contoh: Mengapakah suhu bilik kuliah panas? Tekaan atau Hipotesis???
SIJIL VOKASIONAL MALAYSIA A03101 PENILAIAN AKHIR SEMESTER 1 SESI 1/2015 Matematik Bahagian A Mei
A00 LEMBAGA PEPERIKSAAN KEMENTERIAN PENDIDIKAN MALAYSIA SIJIL VOKASIONAL MALAYSIA A00 PENILAIAN AKHIR SEMESTER SESI /205 Matematik Bahagian A Mei 2 jam Satu jam tiga puluh minit JANGAN BUKA KERTAS SOALAN
Transformasi Koordinat 2 Dimensi
Transformasi Koordinat 2 Dimensi RG141227 - Sistem Koordinat dan Transformasi Semester Gasal 2016/2017 Ira M Anjasmara PhD Jurusan Teknik Geomatika Sistem Koordinat 2 Dimensi Digunakan untuk mempresentasikan
PERSAMAAN KUADRAT. 06. EBT-SMP Hasil dari
PERSAMAAN KUADRAT 0. EBT-SMP-00-8 Pada pola bilangan segi tiga Pascal, jumlah bilangan pada garis ke- a. 8 b. 6 c. d. 6 0. EBT-SMP-0-6 (a + b) = a + pa b + qa b + ra b + sab + b Nilai p q = 0 6 70 0. MA-77-
Hendra Gunawan. 16 April 2014
MA101 MATEMATIKA A Hendra Gunawan Semester II, 013/014 16 April 014 Kuliah yang Lalu 13.11 Integral Lipat Dua atas Persegi Panjang 13. Integral Berulang 13.3 33Integral Lipat Dua atas Daerah Bukan Persegi
KALKULUS LANJUT. Integral Lipat. Resmawan. 7 November Universitas Negeri Gorontalo. Resmawan (Math UNG) Integral Lipat 7 November / 57
KALKULUS LANJUT Integral Lipat Resmawan Universitas Negeri Gorontalo 7 November 218 Resmawan (Math UNG) Integral Lipat 7 November 218 1 / 57 13.3. Integral Lipat Dua pada Daerah Bukan Persegipanjang 3.5
Disediakan oleh Guru Matematik Tingkatan 4 GEORGE DAVID
Disediakan oleh Guru Matematik Tingkatan 4 GEORGE DAVID 1.1.15 MATHEMATIK TINGKATAN 4 TAHUN 2015 KANDUNGAN MUKA SURAT 1. Bentuk Piawai 3 2. Ungkapan & Persamaan Kuadratik 4 3. Sets 5 Penggal 1 4 Penaakulan
Bab 1 Mekanik Struktur
Bab 1 Mekanik Struktur P E N S Y A R A H : D R. Y E E M E I H E O N G M O H D. N O R H A F I D Z B I N M O H D. J I M A S ( D B 1 4 0 0 1 1 ) R E X Y N I R O AK P E T E R ( D B 1 4 0 2 5 9 ) J O H A N
Kemahiran Hidup Bersepadu Kemahiran Teknikal 76
LOGO SEKOLAH Nama Sekolah UJIAN BERTULIS 2 Jam Kemahiran Hidup Bersepadu Kemahiran Teknikal 76 NAMA :..... ANGKA GILIRAN : TERHAD 2 BAHAGIAN A [60 markah] Jawab semua soalan pada bahagian ini di ruang
Matematika
Sistem Bilangan Real D3 Analis Kimia FMIPA Universitas Islam Indonesia Sistem Bilangan Real Himpunan: sekumpulan obyek/unsur dengan kriteria/syarat tertentu. 1 Himpunan mahasiswa D3 Analis Kimia angkatan
Kalkulus 1. Sistem Bilangan Real. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia
Kalkulus 1 Sistem Bilangan Real Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Sistem Bilangan Real Himpunan: sekumpulan obyek/unsur dengan kriteria/syarat tertentu. 1 Himpunan mahasiswa
SMJ minyak seperti yang dilakarkan dalam Rajah S2. Minyak tersebut mempunyai. bahagian hujung cakera. Dengan data dan anggapan yang dibuat:
SOALAN 1 Cakera dengan garis pusat d berputar pada halaju sudut ω di dalam bekas mengandungi minyak seperti yang dilakarkan dalam Rajah S2. Minyak tersebut mempunyai kelikatan µ. Anggap bahawa susuk halaju
Rajah S1 menunjukkan talisawat dari jenis rata dengan dua sistem pacuan, digunakan untuk
SOALAN 1 Rajah S1 menunjukkan talisawat dari jenis rata dengan dua sistem pacuan, digunakan untuk menyambungkan dua takal yang terpasang kepada dua aci selari. Garispusat takal pemacu, pada motor adalah
Kalkulus Multivariabel I
Fungsi Dua Peubah atau Lebih dan Statistika FMIPA Universitas Islam Indonesia 2015 dengan Dua Peubah Real dengan Dua Peubah Real Pada fungsi satu peubah f : D R R D adalah daerah asal (domain) suatu fungsi
TOPIK 2 : MENGGAMBARKAN OBJEK
2.1 SIMETRI Definisi paksi simetri : Satu garis lipatan pada suatu bentuk geometri supaya bentuk itu dapat bertindih tepat apabila dilipat. Sesuatu bentuk geometri mungkin mempunyai lebih daripada satu
TINJAUAN PUSTAKA. Sekumpulan bilangan (rasional dan tak-rasional) yang dapat mengukur. bilangan riil (Purcell dan Varberg, 1987).
II. TINJAUAN PUSTAKA 2.1 Sistem Bilangan Riil Definisi Bilangan Riil Sekumpulan bilangan (rasional dan tak-rasional) yang dapat mengukur panjang, bersama-sama dengan negatifnya dan nol dinamakan bilangan
Kuliah 4 Rekabentuk untuk kekuatan statik
4-1 Kuliah 4 Rekabentuk untuk kekuatan statik 4.1 KEKUATAN STATIK Beban statik merupakan beban pegun atau momen pegun yang bertindak ke atas sesuatu objek. Sesuatu beban itu dikatakan beban statik sekiranya
Keterusan dan Keabadian Jisim
Pelajaran 8 Keterusan dan Keabadian Jisim OBJEKTIF Setelah selesai mempelajari Pelajaran ini anda sepatutnya dapat Mentakrifkan konsep kadar aliran jisim Mentakrifkan konsep kadar aliran Menerangkan konsep
KEKUATAN KELULI KARBON SEDERHANA
Makmal Mekanik Pepejal KEKUATAN KELULI KARBON SEDERHANA 1.0 PENGENALAN Dalam rekabentuk sesuatu anggota struktur yang akan mengalami tegasan, pertimbangan utama ialah supaya anggota tersebut selamat dari
2 m. Air. 5 m. Rajah S1
FAKULI KEJURUERAAN AL 1. Jika pintu A adalah segi empat tepat dan berukuran 2 m lebar (normal terhadap kertas), tentukan nilai daya hidrostatik yang bertindak pada pusat tekanan jika pintu ini tenggelam
SEE 3533 PRINSIP PERHUBUNGAN Bab III Pemodulatan Sudut. Universiti Teknologi Malaysia
SEE 3533 PRINSIP PERHUBUNGAN Bab III Universiti Teknologi Malaysia 1 Pengenalan Selain daripada teknik pemodulatan amplitud, terdapat juga teknik lain yang menggunakan isyarat memodulat untuk mengubah
JAWAPAN. (b) Bilangan kad dalam Bentuk N = 3N 2 (c) (i) 148 (ii) Bentuk (a) 5, 5 6 (b) (i) 100, 101 (ii) 46, 46 (c) (i)
JAWAAN BAB ola dan Jujukan. ola (a),, 9, (f), (g). Jujukan (a) Tambah kepada setiap nombor untuk memperoleh nombor seterusna. Tambah integer semakin besar, bermula dengan, kepada setiap nombor untuk memperoleh
JAWAPAN. Poligon II. 2.1 Poligon Sekata 1 (a) (b) (c) (d) 2 (a) (b) (c) 3 (a) 4, 4 (b) 5, 5 (c) 4 (d) 5 4 (a) (c)
A Sudut dan Garis II. iri-ciri Sudut ang erkaitan dengan Garis Rentas Lintang dan Garis Selari (a) (i) A p dan s, q dan t (iii) q dan s (iv) q dan r (i) AF dan E a dan c, dan z (iii) b dan d, c dan e,
LOGIKA MATEMATIKA. MODUL 1 Himpunan. Zuhair Jurusan Teknik Informatika Universitas Mercu Buana Jakarta 2012 年 04 月 08 日 ( 日 )
LOGIKA MATEMATIKA MODUL 1 Himpunan Zuhair Jurusan Teknik Informatika Universitas Mercu Buana Jakarta 2012 年 04 月 08 日 ( 日 ) Himpunan I. Definisi dan Notasi Himpunan adalah kumpulan sesuatu yang didefinisikan
HMT 221 FONETIK DAN FONOLOGI BAHASA MALAYSIA
UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Kedua Sidang Akademik 2006/2007 April 2007 HMT 221 FONETIK DAN FONOLOGI BAHASA MALAYSIA Masa : 3 jam Sila pastikan bahawa kertas peperiksaan ini mengandungi
SIJIL VOKASIONAL MALAYSIA PENILAIAN AKHIR SEMESTER 3 SESI 1/2014 TEKNOLOGI ELEKTRIK Kertas Teori Mei
NO. KAD PENGENALAN ANGKA GILIRAN LEMAGA PEPERIKSAAN KEMENTERIAN PENDIDIKAN MALAYSIA SIJIL VOKASIONAL MALAYSIA PENILAIAN AKHIR SEMESTER 3 SESI 1/2014 TEKNOLOGI ELEKTRIK Kertas Teori ETE Mei 1 _ 1 jam Satu
Transformasi Koordinat 3 Dimensi
Transformasi Koordinat 3 Dimensi RG141227 - Sistem Koordinat dan Transformasi Semester Gasal 2016/2017 Ira M Anjasmara PhD Jurusan Teknik Geomatika Sistem Koordinat Tiga Dimensi (3D) Digunakan untuk mendeskripsikan
EEU104 - Teknologi Elektrik - Tutorial 11; Sessi 2000/2001 Litar magnet
UNIVERSITI SAINS MALAYSIA PUSAT PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK EEU104 - Teknologi Elektrik - Tutorial 11; Sessi 2000/2001 Litar magnet 1. Satu litar magnet mempunyai keengganan S = 4 x
Pembinaan Homeomorfisma dari Sfera ke Elipsoid
Matematika, 003, Jilid 19, bil., hlm. 11 138 c Jabatan Matematik, UTM. Pembinaan Homeomorfisma dari Sfera ke Elipsoid Liau Lin Yun & Tahir Ahmad Jabatan Matematik, Fakulti Sains Universiti Teknologi Malasia
UNTUK EDARAN DI DALAM JABATAN FARMASI SAHAJA
UNTUK EDARAN DI DALAM JABATAN FARMASI SAHAJA KEPUTUSAN MESYUARAT KALI KE 63 JAWATANKUASA FARMASI DAN TERAPEUTIK HOSPITAL USM PADA 24 SEPTEMBER 2007 (BAHAGIAN 1) DAN 30 OKTOBER 2007 (BAHAGIAN 2) A. Ubat
CADASTRE SURVEY (SGHU 2313)
CADASTRE SURVEY (SGHU 2313) WEEK 8-ADJUSTMENT OF OBSERVED DATA SR DR. TAN LIAT CHOON 07-5530844 016-4975551 1 OUTLINE Accuracy of field observations Misclosure in cadastre survey Bearing ('m' and 'c' correction
JAWAPAN BAB 1 BAB 2. x y x y x y Asas Nombor
sas Nombor. Nombor dalam sas Dua, sas Lapan dan sas Lima (a) (e) (f) (g) (a) (e) (a) (e) (f) (g) (h) (i) (j) (k) (a) (e) (a) as as (a) 9 (a) (e) (a) 9 (a) (a) (e) 9 (a) as 9 as JWN (e) (f) (a) (a) (a)
Klasifikasi bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua
Matematika, 1999, Jilid 15, bil. 1, hlm. 37 43 c Jabatan Matematik, UTM. Klasifikasi bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua Nor Haniza Sarmin Jabatan Matematik, Fakulti
2.1 Pengenalan. Untuk isyarat berkala, siri Fourier digunakan untuk mendapatkan spektrum frekuensi dalam bentuk spektrum garisan.
. JELMAAN FOURIER DAN PENGGUNAANNYA. Pengenalan Unuk isyara berkala, siri Fourier digunakan unuk mendapakan spekrum frekuensi dalam benuk spekrum garisan. Unuk isyara ak berkala, garisan-garisan spekrum
Persamaan Diferensial Parsial
Persamaan Diferensial Parsial Turunan Parsial f (, ) Jika berubah ubah sedangkan tetap, adalah fungsi dari dan turunanna terhadap adalah f (, ) f (, ) f (, ) lim 0 disebut turunan parsialpertama dari f
Tegangan Permukaan. Kerja
Tegangan Permukaan Kerja Cecair lebih cenderung menyesuaikan bentuknya ke arah yang luas permukaan yang minimum. Titisan cecair berbentuk sfera kerana nisbah luas permukaan terhadap isipadu adalah kecil.
KOLEJ VOKASIONAL MALAYSIA BAHAGIAN PENDIDIKAN TEKNIK DAN VOKASIONAL KEMENTERIAN PENDIDIKAN MALAYSIA
NO KAD PENGENALAN ANGKA GILIRAN KOLEJ VOKASIONAL MALAYSIA BAHAGIAN PENDIDIKAN TEKNIK DAN VOKASIONAL KEMENTERIAN PENDIDIKAN MALAYSIA DIPLOMA VOKASIONAL MALAYSIA SAINS DAN MATEMATIK BERSEPADU UNTUK APLIKASI
Sebaran Peluang Gabungan
Sebaran Peluang Gabungan Peubah acak dan sebaran peluangnya terbatas pada ruang sampel berdimensi satu. Dengan kata lain, hasil percobaan berasal dari peubah acak yan tunggal. Tetapi, pada banyak keadaan,
PEPERIKSAAN PERCUBAAN SPM /1 PRINSIP ELEKTRIK DAN ELEKTRONIK Kertas 1 September 2 ½ jam Dua jam tiga puluh minit
SULIT Nama :. 2 8201/1 Kelas :. NO. KAD PENGENALAN: ANGKA GILIRAN: SEKOLAH MENENGAH VOKASIONAL ZON TENGAH PEPERIKSAAN PERCUBAAN SPM 2011 8201/1 PRINSIP ELEKTRIK DAN ELEKTRONIK Kertas 1 September 2 ½ jam
SESI: MAC 2018 DSM 1021: SAINS 1 DCV 2 PENSYARAH: EN. MUHAMMAD AMIRUL BIN ABDULLAH
SESI: MAC 2018 DSM 1021: SAINS 1 DCV 2 PENSYARAH: EN. MUHAMMAD AMIRUL BIN ABDULLAH TOPIK 1.0: KUANTITI FIZIK DAN PENGUKURAN COURSE LEARNING OUTCOMES (CLO): Di akhir LA ini, pelajar akan boleh: CLO3: Menjalankan
KEMENTERIAN PELAJARAN MALAYSIA
KEMENTERIAN PELAJARAN MALAYSIA DOKUMEN STANDARD PRESTASI MATEMATIK TINGKATAN 2 FALSAFAH PENDIDIKAN KEBANGSAAN Pendidikan di Malaysia adalah satu usaha berterusan ke arah memperkembangkan lagi potensi individu
Konvergen dalam Peluang dan Distribusi
limiting distribution Andi Kresna Jaya andikresna@yahoo.com Jurusan Matematika July 5, 2014 Outline 1 Review 2 Motivasi 3 Konvergen dalam peluang 4 Konvergen dalam distribusi Back Outline 1 Review 2 Motivasi
Jawab semua soalan. 2. Maklumat berikut adalah tentang tanggam dalam reka bentuk dan teknologi
Panitia Kemahiran Hidup KBSM Jerantut Bahagian A [ 60 markah] Jawab semua soalan 1. Tandakan ( ) bagi cara pemakaian yang betul ketika di bengkel dan (x) yang salah pada petak yang disediakan. Memastikan
Kalkulus Elementer. Nanda Arista Rizki, M.Si. Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Mulawarman 2018
Kalkulus Elementer Nanda Arista Rizki, M.Si. Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Mulawarman 2018 Nanda Arista Rizki, M.Si. Kalkulus Elementer 1/83 Referensi: 1 Dale Varberg, Edwin
BAB 2 PEMODULATAN AMPLITUD
BAB MODULATAN LITUD enghantaran iyarat yang engandungi akluat elalui atu aluran perhubungan eerlukan anjakan frekueni iyarat akluat kepada julat frekueni yang euai untuk penghantaran - roe ini diapai elalui
SKEMA PERCUBAAN SPM 2017 MATEMATIK TAMBAHAN KERTAS 2
SKEMA PERCUBAAN SPM 07 MATEMATIK TAMBAHAN KERTAS SOALAN. a) y k ( ) k 8 k py y () p( ) ()( ) p y 90 0 0., y,, Luas PQRS 8y 8 y Perimeter STR y 8 7 7 y66 8 6 6 6 6 8 0 0, y, y . a).. h( h) h h h h h h 0
TH3813 Realiti Maya. Membina Dunia VRML. Struktur asas VRML. Teknik asas. Memahami header. Contoh fail VRML. Fail VRML mengandungi
TH3813 Realiti Maya Membina Objek Membina Dunia VRML 1 2 Teknik asas Struktur asas VRML untuk bangunkan sebuah dunia VRML, bina dahulu cebisan- cebisan objek dalam satu fail, seperti dinding, tiang dan
BAB 5 DAPATAN KAJIAN DAN PERBINCANGAN Pengenalan
BAB DAPATAN KAJIAN DAN PERBINCANGAN Pengenalan Kajian ini adalah untuk meneroka Metakognisi dan Regulasi Metakognisi murid berpencapaian tinggi, sederhana dan rendah dalam kalangan murid tingkatan empat
UJIAN SUMATIF 2 SIJIL PELAJARAN MALAYSIA 2013 SAINS TAMBAHAN
1 4561/3 Sains Tambahan Kertas 3 Mei 2013 1 ½ jam NAMA : TINGKATAN : JABATAN PELAJARAN NEGERI TERENGGANU UJIAN SUMATIF 2 SIJIL PELAJARAN MALAYSIA 2013 SAINS TAMBAHAN Kertas 3 Satu jam tiga puluh minit
EAG 345/2 - Analisis Geoteknik
UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Pertama Sidang Akademik 004/05 Oktober 004 EAG 345/ - Analisis Geoteknik Masa : 3 jam Arahan Kepada Calon: 1. Sila pastikan kertas peperiksaan ini mengandungi
ELEKTRIK KEMAHIRAN TEKNIKAL : BAB 1
MAKTAB RENDAH Add SAINS your company MARA BENTONG slogan Bab 1 ELEKTRIK KEMAHIRAN TEKNIKAL : BAB 1 LOGO Kandungan 1 Jenis Litar Elektrik 2 Meter Pelbagai 3 Unit Kawalan Utama 4 Kuasa Elektrik 1 1.1 Jenis
PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK
PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK 2 SKEMA MODUL PECUTAN AKHIR 20 No Jawapan Pembahagian (a) 00000 0000 0000 Jumlah 000 TIM00 #0300 TIM00 000 000 0M END Simbol dan data betul : 8 X 0.5M = 4M
gram positif yang diuji adalah Bacillus subtilis, Staphylococcus aureus ATCC 25923,
3.2.2 Penskrinan aktiviti antimikrob Ekstrak metanol sampel Cassia alata L. dan Cassia tora L. dijalankan penskrinan aktiviti antimikrob dengan beberapa jenis mikrob yang patogenik kepada manusia seperti
A. Distribusi Gabungan
HANDOUT PERKULIAHAN Mata Kuliah Pokok Bahasan : Statistika Matematika : Distibusi Dua peubah Acak URAIAN POKOK PERKULIAHAN A. Distribusi Gabungan Definisi 1: Peubah Acak Berdimensi Dua Jika S merupakan
FEEDER UNIT PROTECTION
FEEDER UNIT PROTECTION ILSAS 27sep-8oct 2004 Subra@prot_kl 1 OBJEKTIF Para hadirin dapat mentakrifkan prinsip asas Arus Mengeliling dan kegunaannya dalam Perlindungan Pilot Wire jenis Solkor-RF tanpa sebarang
ALIRAN BENDALIR UNGGUL
Bab 2 ALIRAN BENDALIR UNGGUL 2.1 Gerakan Zarah-zarah Bendalir Untuk analisis matematik gerakan bendalir, dua pendekatan biasanya digunakan: 1. Kaedah Lagrangian (a) Kajian pola aliran SATU zarah individu
EAS 353/3 Rekabentuk Struktur Konkrit Bertetulang
UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Pertama Sidang Akademik 2003/2004 September / Oktober 2003 EAS 353/3 Rekabentuk Struktur Konkrit Bertetulang Masa : 3 jam Arahan Kepada Calon: 1. Sila pastikan
FAKULTI KEJURUTERAAN ELEKTRIK UNIVERSITI TEKNOLOGI MALAYSIA MAKMAL ELEKTROTEKNIK : LENGKUK KEMAGNETAN ATAU CIRI B - H
FAKULTI KEJURUTERAAN ELEKTRIK UNIVERSITI TEKNOLOGI MALAYSIA MAKMAL ELEKTROTEKNIK UJIKAJI TAJUK : E : LENGKUK KEMAGNETAN ATAU CIRI B - H 1. Tujuan : 2. Teori : i. Mendapatkan lengkuk kemagnetan untuk satu
SESI: MAC 2018 DSM 1021: SAINS 1. Kelas: DCV 2
SESI: MAC 2018 DSM 1021: SAINS 1 TOPIK 4.0: KERJA, TENAGA DAN KUASA Kelas: DCV 2 PENSYARAH: EN. MUHAMMAD AMIRUL BIN ABDULLAH COURSE LEARNING OUTCOMES (CLO): Di akhir LA ini, pelajar akan boleh: 1. Menerangkan
REKABENTUK PERMUKAAN BENTUK BEBAS MENGGUNAKAN PERSAMAAN PEMBEZAAN SEPARA (PPS) Oleh ZAINOR RIDZUAN BIN YAHYA
REKABENTUK PERMUKAAN BENTUK BEBAS MENGGUNAKAN PERSAMAAN PEMBEZAAN SEPARA (PPS) Oleh ZAINOR RIDZUAN BIN YAHYA Tesis yang diserahkan untuk memenuhi keperluan bagi Ijazah Sarjana Sains (Matematik) Jun 2008
Kuliah 2 Analisis Daya & Tegasan
-1 Kuliah Analisis Daya & Tegasan.1 ANALISIS DAYA a. Kepentingan sebelum sebarang analisis kejuruteraan dapat dilakukan, kita mesti ketahui dulu dayadaya yang bertindak ke atas sesuatu objek. Kemudian
Bahagian A [ 60 markah] Jawab semua soalan
Bahagian A [ 60 markah] Jawab semua soalan 1. Tandakan ( ) bagi cara pemakaian yang betul ketika di bengkel dan (x) yang salah pada petak yang disediakan. Memastikan rambut pendek, rapi dan kemas. Menanggalkan
HMT Morfologi dan Sintaksis Lanjutan
UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Kedua Sidang Akademik 2001/2002 Februari/Mac 2002 HMT 504 - Morfologi dan Sintaksis Lanjutan Masa : 3 jam Sila pastikan bahawa kertas peperiksaan ini mengandungi
Sebaran Kontinu HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNAND LOGO
Sebaran Kontinu HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNAND Kompetensi menguraikan ciri-ciri suatu kurva normal menentukan luas daerah dibawah kurva normal menerapkan sebaran normal dalam
Unit PENGENALAN KEPADA LITAR ELEKTRIK OBJEKTIF AM OBJEKTIF KHUSUS
PENGENALAN KEPADA LITAR ELEKTRIK OBJEKTIF AM Memahami konsep-konsep asas litar elektrik, arus, voltan, rintangan, kuasa dan tenaga elektrik. Unit OBJEKTIF KHUSUS Di akhir unit ini anda dapat : Mentakrifkan
Kuasa Dua Tensor Yang Tak Abelan bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua
Matematika, 1999, Jilid 15, bil., hlm. 143 156 c Jabatan Matematik, UTM. Kuasa Dua Tensor Yang Tak Abelan bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua Nor Haniza Sarmin Jabatan
LATIHAN. PENYUSUN: MOHD. ZUBIL BAHAK Sign. : FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA SKUDAI JOHOR
1. a) Nyatakan dengan jelas Prinsip Archimedes tentang keapungan. b) Nyatakan tiga (3) syarat keseimbangan STABIL jasad terapung. c) Sebuah silinder bergaris pusat 15 cm dan tinggi 50 cm diperbuat daripada
ALIRAN LAPISAN SEMPADAN
Bab 1 ALIRAN LAPISAN SEMPADAN 1.1 Kelikatan Kelikatan adalah sifat bendalir yang mengawal kadar alirannya. Ia terjadi disebabkan oleh cohesion yang wujud di antara zarah-zarah bendalir yang boleh diperhatikan
S T A T I S T I K A OLEH : WIJAYA
S T A T I S T I K A OLEH : WIJAYA email : zeamays_hibrida@yahoo.com FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2009 II. SEBARAN PELUANG Ruang Contoh (S) adalah Himpunan semua kemungkinan
LITAR ELEKTRIK 1 EET101/4. Pn. Samila Mat Zali
LITAR ELEKTRIK 1 EET101/4 Pn. Samila Mat Zali STRUKTUR KURSUS Peperiksaan Akhir : 50% Ujian teori : 10% Mini projek : 10% Amali/praktikal : 30% 100% OBJEKTIF KURSUS Mempelajari komponen-komponen utama
UNIT 5 PENUKAR AU-AT (PENERUS)
PENUKAR AU-AT (PENERUS) E4140/UNIT 5/1 UNIT 5 PENUKAR AU-AT (PENERUS) OBJEKTIF Objektif am : Mengenali dan memahami jenis-jenis litar penukaran penukar AU-AT (Penerus) Objektif khusus : Di akhir unit ini