Kalkulus Multivariabel I
|
|
- Θέμις Αλεξανδρίδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Fungsi Dua Peubah atau Lebih dan Statistika FMIPA Universitas Islam Indonesia 2015
2 dengan Dua Peubah Real
3 dengan Dua Peubah Real Pada fungsi satu peubah f : D R R D adalah daerah asal (domain) suatu fungsi yang merupakan himpunan bagian dari R. Grafik fungsi f = {(x, y) y = f (x), x D f } berupa himpunan titik di R 2, berbentuk garis (lurus atau lengkung).
4 Contoh: Fungsi dengan Dua Peubah atau Lebih f (x) = x 2 + 5x + 6 dengan D f = {x : 5,..., 5}, maka dengan Dua Peubah Real
5 dengan Dua Peubah Real dengan Dua Peubah Real
6 dengan Dua Peubah Real Pada fungsi dua peubah f : D R 2 R D adalah daerah asal (domain) dari suatu fungsi yang merupakan himpunan bagian dari R 2 dan daerah hasilnya berupa himpunan nilai R. Grafik fungsi f = {(x, y, z) z = f (x, y), (x, y) D f } berupa himpunan di R 3, berbentuk luasan.
7 dengan Dua Peubah Real Contoh: Perhatikan! f (x, y) = 2x y 2 (1) g(x, y) = 2x y (2) f ( 1, 4) = 2( 1) 4 2 = 18 g( 1, 4) = 2( 1) 4 = 4
8 dengan Dua Peubah Real Grafik Fungsi f (x, y)
9 dengan Dua Peubah Real Grafik Fungsi g(x, y)
10 dengan Dua Peubah Real Himpunan D disebut daerah asal atau domain suatu fungsi. Jika tidak dinyatakan secara spesifik, maka D dinyatakan sebagai daerah asal alami (natural domain), yaitu himpunan seluruh titik (x, y) pada suatu bidang di mana fungsi tersebut masuk akal dan menghasilkan nilai bilangan real. 1 Untuk f (x, y) = 2x y 2 daerah asal alaminya adalah semua bilangan real 2 Untuk f (x, y) = 2x y daerah asal alaminya adalah D f = {(x, y) : x R, y 0}
11 dengan Dua Peubah Real Contoh: Tentukan daerah asal alami dari fungsi 1 f (x, y) = x 2 +y 2 25 x
12 dengan Dua Peubah Real Contoh: Tentukan daerah asal alami dari fungsi 1 f (x, y) = x 2 +y 2 25 x Solusi: Domain dari f adalah semua pasangan (x, y) yang memenuhi x 2 + y 2 25 dan x 0.
13 dengan Dua Peubah Real 2 f (x, y) = y x 2 x 2 +(y 1) 2
14 dengan Dua Peubah Real 2 f (x, y) = y x 2 x 2 +(y 1) 2 Solusi: Domain dari f adalah semua pasangan (x, y) yang memenuhi y x 2 dan (x, y) (0, 1).
15 dengan Dua Peubah Real 3. g(x, y, z) = x 2 + y 2 + z 2 16
16 dengan Dua Peubah Real 3. g(x, y, z) = x 2 + y 2 + z 2 16 Solusi: Domain dari g(x, y, z) adalah semua (x, y, z) yang memenuhi x 2 + y 2 + z 2 16.
17 dengan Dua Peubah Real Grafik fungsi dua peubah merupakan grafik fungsi z = f (x, y). Grafik ini berupa permukaan. Karena masing-masing (x, y) hanya berhubungan dengan satu nilai z, maka setiap garis yang tegak lurus terhadap bidang xy akan hanya memotong permukaan di satu titik.
18 dengan Dua Peubah Real Contoh: Tentukan domain dan range dari fungsi berikut kemudian sketsakan grafiknya. z = f (x, y) = 25 x 2 y 2
19 dengan Dua Peubah Real Domainnya adalah himpunan titik-titik (x, y) yang memenuhi x 2 + y 2 25, sedangkan rangenya adalah 0 z 5 karena semua nilai di dalam akar yang mungkin adalah bervariasi antara 0 dan 25.
20 dengan Dua Peubah Real Perhatikan jejak permukaan z = f (x, y) = 25 x 2 y 2 dengan bidang koordinat dengan bidang xy (z = 0): x 2 + y 2 = 25 dengan bidang yz (x = 0): y 2 + z 2 = 25 dengan bidang xz (y = 0): x 2 + z 2 = 25 untuk z = 3 3 = 25 x 2 y 2 atau x 2 + y 2 = 16, jadi pada bidang z = 3 yang sejajar dengan bidag xy, jejak berupa lingkaran yang berpusat di (0, 0, 3) dengan jari-jari 4 untuk z = 4 4 = 25 x 2 y 2 atau x 2 + y 2 = 9, jadi pada bidang z = 4 yang sejajar dengan bidag xy, jejak berupa lingkaran yang berpusat di (0, 0, 4) dengan jari-jari 3
21 dengan Dua Peubah Real Sehingga diperoleh grafik
22 Fungsi dengan Dua Peubah atau Lebih dengan Dua Peubah Real Sumber: Kalkulus Lanjut; Fungsi Skalar, Koko Martono
23 dengan Dua Peubah Real Turunan parsial dari fungsi z = f (x, y) terhadap x (y dianggap konstan), dinotasikan f x, f x, atau z x yaitu f x = lim f (x + h, y) f (x, y) h 0 h Turunan parsial dari fungsi z = f (x, y) terhadap y (x dianggap konstan), dinotasikan f y, f y, atau z y yaitu f y = lim f (x, y + h) f (x, y) h 0 h
24 dengan Dua Peubah Real Contoh: 1. Jika z = 2x 3 x 2 y 3 + 3y 2, carilah f x (1, 2) dan f y (1, 2).
25 dengan Dua Peubah Real Contoh: 1. Jika z = 2x 3 x 2 y 3 + 3y 2, carilah f x (1, 2) dan f y (1, 2). Penyelesaian:
26 dengan Dua Peubah Real Contoh: 1. Jika z = 2x 3 x 2 y 3 + 3y 2, carilah f x (1, 2) dan f y (1, 2). Penyelesaian: f x (x, y) = 6x 2 2xy 3 f x (1, 2) = 6(1 2 ) 2(1)(2 3 ) = 10 f y (x, y) = 3x 2 y 2 + 6y f y (1, 2) = 3(1 2 )(2 2 ) + 6(2) = 0
27 dengan Dua Peubah Real 2. Jika z = x 2 sin (xy 2 ), tentukan z x dan z y.
28 dengan Dua Peubah Real 2. Jika z = x 2 sin (xy 2 ), tentukan z x Penyelesaian: dan z y.
29 dengan Dua Peubah Real 2. Jika z = x 2 sin (xy 2 ), tentukan z x Penyelesaian: dan z y. z x = 2x sin (xy 2 ) + x 2 cos (xy 2 ) (y 2 ) = 2x sin (xy 2 ) + x 2 y 2 cos (xy 2 ) z y = x 2 cos (xy 2 ) (2xy) = 2x 3 y cos (xy 2 )
30 dengan Dua Peubah Real 3. Volume gas tertentu berhubungan dengan suhu T dan tekanan P-nya berdasarkan hukum gas PV = 10T, di mana V diukur dalam satuan inci kubik, P dalam satuan pon per inci kuadrat, dan T dalam derajat Kelvin (K). Jika V dijaga agar tetap konstan pada nilai 50, berapakah laju perubahan tekanan terhadap suhu ketika T = 200?
31 dengan Dua Peubah Real 3. Volume gas tertentu berhubungan dengan suhu T dan tekanan P-nya berdasarkan hukum gas PV = 10T, di mana V diukur dalam satuan inci kubik, P dalam satuan pon per inci kuadrat, dan T dalam derajat Kelvin (K). Jika V dijaga agar tetap konstan pada nilai 50, berapakah laju perubahan tekanan terhadap suhu ketika T = 200? Penyelesaian:
32 dengan Dua Peubah Real 3. Volume gas tertentu berhubungan dengan suhu T dan tekanan P-nya berdasarkan hukum gas PV = 10T, di mana V diukur dalam satuan inci kubik, P dalam satuan pon per inci kuadrat, dan T dalam derajat Kelvin (K). Jika V dijaga agar tetap konstan pada nilai 50, berapakah laju perubahan tekanan terhadap suhu ketika T = 200? Penyelesaian: Karena P = 10T P V, maka T = 10 V, jadi P T T =200,V =50 = = 1 5
33 yang Lebih Tinggi dengan Dua Peubah Real Jika f adalah fungsi dua peubah, maka turunan parsialnya f x dan f y juga fungsi dua peubah, sehingga kita dapat menghitung turunan parsial kedua dari f. Jika z = f (x, y), kita gunakan notasi: (f x ) x = f xx = x (f x ) y = f xy = y (f y ) x = f yx = x (f y ) y = f yy = y ( ) f x ( ) f x ( ) f y ( ) f y = 2 f x 2 = 2 f y x = 2 f x y = 2 f y 2
34 dengan Dua Peubah Real Contoh: Tentukan empat turunan parsial kedua dari f (x, y) = xe y sin (x/y) + x 3 y 2
35 dengan Dua Peubah Real Contoh: Tentukan empat turunan parsial kedua dari f (x, y) = xe y sin (x/y) + x 3 y 2 Penyelesaian:
36 dengan Dua Peubah Real Contoh: Tentukan empat turunan parsial kedua dari f (x, y) = xe y sin (x/y) + x 3 y 2 Penyelesaian: f x = e y 1 y cos (x/y) + 3x 2 y 2 f y = xe y + x y 2 cos (x/y) + 2x 3 y
37 dengan Dua Peubah Real f xx = 1 2 sin (x/y) + 6xy y 2 f yy = xe y + x 2 2x 3 sin (x/y) cos (x/y) + 2x y 4 y 3 f xy = f yx = e y x 1 sin (x/y) + y 3 y 2 cos (x/y) + 6x 2 y
38 Fungsi dengan Lebih dari Dua Peubah dengan Dua Peubah Real Misalkan f adalah fungsi dengan tiga peubah x, y, dan z. Turunan parsial f terhadap x dinyatakan dengan f x (x, y, z) didefinisikan sebagai f x (x, y, z) = lim h 0 f (x + h, y, z) f (x, y, z) h Jadi, f x (x, y, z) diperoleh dengan menurunkan fungsi f terhadap x dan memperlakukan y dan z sebagai konstanta. Begitu juga dengan turunan parsial terhadap y dan z.
39 dengan Dua Peubah Real Contoh: Tentukan f x, f y, dan f z dari fungsi f (x, y, z) = xy + 2yz + 3zx.
40 dengan Dua Peubah Real Contoh: Tentukan f x, f y, dan f z dari fungsi f (x, y, z) = xy + 2yz + 3zx. Penyelesaian:
41 dengan Dua Peubah Real Contoh: Tentukan f x, f y, dan f z dari fungsi f (x, y, z) = xy + 2yz + 3zx. Penyelesaian: f x = y + 3z f y = x + 2z f z = 2y + 3x
42 Fungsi dengan Dua Peubah atau Lebih dengan Dua Peubah Real 1. Tentukan daerah asal alami dari fungsi-fungsi berikut: a. f (x, y) = y x + xy b. f (x, y) = x 2 y + y c. f (x, y) = x 2 + y x 2 y 2 d. f (x, y) = y x 2 4 e. f (x, y) = 2x 2 4y + 1
43 dengan Dua Peubah Real 2. Tentukan semua turunan parsial pertama dari a. f (x, y) = cos (2x + 3y) b. f (x, y) = e y sin x c. f (x, y) = e y 2 x 2
44 dengan Dua Peubah Real 3. Tunjukkan bahwa fungsi f (x, y) = e x sin y memenuhi f xx + f yy = 0 dan f xy = f yx. 4. Volume V dari suatu silinder lingkaran tegak dinyatakan dengan V = πr 2 h, r adalah jari-jari dan h adalah tingginya. Jika h dipertahankan tetap pada h = 10 inci, tentukan laju perubahan V terhadap r jika r = 6 inci.
Kalkulus 1. Sistem Koordinat. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia. Sistem Koordinat
Kalkulus 1 Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Sistem koordinat adalah suatu cara/metode untuk menentukan letak suatu titik. Ada beberapa macam sistem koordinat, yaitu:
Matematika
Sistem Bilangan Real D3 Analis Kimia FMIPA Universitas Islam Indonesia Sistem Bilangan Real Himpunan: sekumpulan obyek/unsur dengan kriteria/syarat tertentu. 1 Himpunan mahasiswa D3 Analis Kimia angkatan
Sistem Koordinat dan Fungsi. Matematika Dasar. untuk Fakultas Pertanian. Uha Isnaini. Uhaisnaini.com. Matematika Dasar
untuk Fakultas Pertanian Uhaisnaini.com Contents 1 Sistem Koordinat dan Fungsi Sistem Koordinat dan Fungsi Sistem koordinat adalah suatu cara/metode untuk menentukan letak suatu titik. Ada beberapa macam
Kalkulus 1. Sistem Bilangan Real. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia
Kalkulus 1 Sistem Bilangan Real Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Sistem Bilangan Real Himpunan: sekumpulan obyek/unsur dengan kriteria/syarat tertentu. 1 Himpunan mahasiswa
Kalkulus Multivariabel I
Limit dan Statistika FMIPA Universitas Islam Indonesia Operasi Aljabar pada Pembahasan pada limit untuk fungsi dua peubah adalah memberikan pengertian mengenai lim f (x, y) = L (x,y) (a,b) Masalahnya adalah
A. Distribusi Gabungan
HANDOUT PERKULIAHAN Mata Kuliah Pokok Bahasan : Statistika Matematika : Distibusi Dua peubah Acak URAIAN POKOK PERKULIAHAN A. Distribusi Gabungan Definisi 1: Peubah Acak Berdimensi Dua Jika S merupakan
Sebaran Peluang Gabungan
Sebaran Peluang Gabungan Peubah acak dan sebaran peluangnya terbatas pada ruang sampel berdimensi satu. Dengan kata lain, hasil percobaan berasal dari peubah acak yan tunggal. Tetapi, pada banyak keadaan,
Persamaan Diferensial Parsial
Persamaan Diferensial Parsial Turunan Parsial f (, ) Jika berubah ubah sedangkan tetap, adalah fungsi dari dan turunanna terhadap adalah f (, ) f (, ) f (, ) lim 0 disebut turunan parsialpertama dari f
TINJAUAN PUSTAKA. Sekumpulan bilangan (rasional dan tak-rasional) yang dapat mengukur. bilangan riil (Purcell dan Varberg, 1987).
II. TINJAUAN PUSTAKA 2.1 Sistem Bilangan Riil Definisi Bilangan Riil Sekumpulan bilangan (rasional dan tak-rasional) yang dapat mengukur panjang, bersama-sama dengan negatifnya dan nol dinamakan bilangan
KALKULUS LANJUT. Integral Lipat. Resmawan. 7 November Universitas Negeri Gorontalo. Resmawan (Math UNG) Integral Lipat 7 November / 57
KALKULUS LANJUT Integral Lipat Resmawan Universitas Negeri Gorontalo 7 November 218 Resmawan (Math UNG) Integral Lipat 7 November 218 1 / 57 13.3. Integral Lipat Dua pada Daerah Bukan Persegipanjang 3.5
Kalkulus Elementer. Nanda Arista Rizki, M.Si. Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Mulawarman 2018
Kalkulus Elementer Nanda Arista Rizki, M.Si. Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Mulawarman 2018 Nanda Arista Rizki, M.Si. Kalkulus Elementer 1/83 Referensi: 1 Dale Varberg, Edwin
PERSAMAAN KUADRAT. 06. EBT-SMP Hasil dari
PERSAMAAN KUADRAT 0. EBT-SMP-00-8 Pada pola bilangan segi tiga Pascal, jumlah bilangan pada garis ke- a. 8 b. 6 c. d. 6 0. EBT-SMP-0-6 (a + b) = a + pa b + qa b + ra b + sab + b Nilai p q = 0 6 70 0. MA-77-
Konvergen dalam Peluang dan Distribusi
limiting distribution Andi Kresna Jaya andikresna@yahoo.com Jurusan Matematika July 5, 2014 Outline 1 Review 2 Motivasi 3 Konvergen dalam peluang 4 Konvergen dalam distribusi Back Outline 1 Review 2 Motivasi
Hendra Gunawan. 16 April 2014
MA101 MATEMATIKA A Hendra Gunawan Semester II, 013/014 16 April 014 Kuliah yang Lalu 13.11 Integral Lipat Dua atas Persegi Panjang 13. Integral Berulang 13.3 33Integral Lipat Dua atas Daerah Bukan Persegi
Pengantar Proses Stokastik
Bab 6: Rantai Markov Waktu Kontinu Statistika FMIPA Universitas Islam Indonesia Rantai Markov Waktu Kontinu Peluang Kesetimbangan Pada bab ini, kita akan belajar mengenai rantai markov waktu kontinu yang
S T A T I S T I K A OLEH : WIJAYA
S T A T I S T I K A OLEH : WIJAYA email : zeamays_hibrida@yahoo.com FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2009 II. SEBARAN PELUANG Ruang Contoh (S) adalah Himpunan semua kemungkinan
Pengantar Proses Stokastik
Bab 6: Rantai Markov Waktu Kontinu Statistika FMIPA Universitas Islam Indonesia Rantai Markov Waktu Kontinu Peluang Kesetimbangan Pada bab ini, kita akan belajar mengenai rantai markov waktu kontinu yang
Sebaran Kontinu HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNAND LOGO
Sebaran Kontinu HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNAND Kompetensi menguraikan ciri-ciri suatu kurva normal menentukan luas daerah dibawah kurva normal menerapkan sebaran normal dalam
Transformasi Koordinat 2 Dimensi
Transformasi Koordinat 2 Dimensi RG141227 - Sistem Koordinat dan Transformasi Semester Gasal 2016/2017 Ira M Anjasmara PhD Jurusan Teknik Geomatika Sistem Koordinat 2 Dimensi Digunakan untuk mempresentasikan
S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON
S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2010 SEBARAN PELUANG II. SEBARAN PELUANG Ruang Contoh (S) adalah Himpunan semua kemungkinan hasil suatu percobaan.
S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON
S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2011 SEBARAN PELUANG II. SEBARAN PELUANG Ruang Contoh (S) adalah Himpunan semua kemungkinan hasil suatu percobaan.
SOALMANDIRITINGKATSMA/MA/Sederajat ASAHTERAMPILMATEMATIKA(ASTRAMATIKA)XX I
SOALMANDIRITINGKATSMA/MA/Sederajat ASAHTERAMPILMATEMATIKA(ASTRAMATIKA)XX I 1-cos(x-a) 1.Hasildari lim =. x a (x-a)sin3(x-a) 2.Jumlahnsukupertamaderetaritmetikaadalah Sn =5 n 2-7n. Jikaasukupertamadanbbedaderettersebut,maka13a+3b=.
LOGIKA MATEMATIKA. MODUL 1 Himpunan. Zuhair Jurusan Teknik Informatika Universitas Mercu Buana Jakarta 2012 年 04 月 08 日 ( 日 )
LOGIKA MATEMATIKA MODUL 1 Himpunan Zuhair Jurusan Teknik Informatika Universitas Mercu Buana Jakarta 2012 年 04 月 08 日 ( 日 ) Himpunan I. Definisi dan Notasi Himpunan adalah kumpulan sesuatu yang didefinisikan
TH3813 Realiti Maya. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun
TH383 Realiti Maa Transformasi 3D menggunakan multiplikasi matriks untuk hasilkan kompaun transformasi menggunakan kompaun transformasi - hasilkan sebarang transformasi dan ungkapkan sebagai satu transformasi
artinya vektor nilai rata-rata dari kelompok ternak pertama sama dengan kelompok ternak kedua artinya kedua vektor nilai-rata berbeda
LAMPIRAN 48 Lampiran 1. Perhitungan Manual Statistik T 2 -Hotelling pada Garut Jantan dan Ekor Tipis Jantan Hipotesis: H 0 : U 1 = U 2 H 1 : U 1 U 2 Rumus T 2 -Hotelling: artinya vektor nilai rata-rata
Transformasi Koordinat 3 Dimensi
Transformasi Koordinat 3 Dimensi RG141227 - Sistem Koordinat dan Transformasi Semester Gasal 2016/2017 Ira M Anjasmara PhD Jurusan Teknik Geomatika Sistem Koordinat Tiga Dimensi (3D) Digunakan untuk mendeskripsikan
2 m. Air. 5 m. Rajah S1
FAKULI KEJURUERAAN AL 1. Jika pintu A adalah segi empat tepat dan berukuran 2 m lebar (normal terhadap kertas), tentukan nilai daya hidrostatik yang bertindak pada pusat tekanan jika pintu ini tenggelam
Bilangan Euler(e) Rukmono Budi Utomo Pengampu: Prof. Taufiq Hidayat. March 5, 2016
Bilangan Euler(e) Rukmono Budi Utomo 30115301 Pengampu: Prof. Taufiq Hidayat March 5, 2016 Asal Usul Bilangan Euler e 1 1. Bilangan Euler 2 3 4 Asal Usul Bilangan Euler e Bilangan Euler atau e = 2, 7182818284...
MA4181 PENGANTAR PROSES STOKASTIK Bab 2 Peluang dan Eks
MA4181 PENGANTAR PROSES STOKASTIK Bab 2 Peluang dan SMART AND STOCHASTIC MA4181 PENGANTAR PROSES STOKASTIK Bab 2 Peluang dan SMART AND STOCHASTIC Ilustrasi Fungsi Peluang Bersama Peluang Bersama - Diskrit
Ukur Kejuruteraan DDPQ 1162 Ukur Tekimetri. Sakdiah Basiron
Ukur Kejuruteraan DDPQ 1162 Ukur Tekimetri Sakdiah Basiron TEKIMETRI PENGENALAN TAKIMETRI ADALAH SATU KAEDAH PENGUKURAN JARAK SECARA TIDAK LANGSUNG BAGI MENGHASILKAN JARAK UFUK DAN JARAK TEGAK KEGUNAAN
( 2 ( 1 2 )2 3 3 ) MODEL PT3 MATEMATIK A PUSAT TUISYEN IHSAN JAYA = + ( 3) ( 4 9 ) 2 (4 3 4 ) 3 ( 8 3 ) ( 3.25 )
(1) Tentukan nilai bagi P, Q, dan R MODEL PT MATEMATIK A PUSAT TUISYEN IHSAN JAYA 1 P 0 Q 1 R 2 (4) Lengkapkan operasi di bawah dengan mengisi petak petak kosong berikut dengan nombor yang sesuai. ( 1
RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN
Jurnal Teknologi, 38(C) Jun 003: 5 8 Universiti Teknologi Malaysia RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN 5 RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN YEOH WENG KANG & JAMALUDIN MD. ALI Abstrak. Rumus untuk
Pengantar Proses Stokastik
Bab 3: Diskrit Statistika FMIPA Universitas Islam Indonesia Ilustrasi 1 Perilaku bunuh diri kini kian menjadi-jadi. Hesti (nama sebenarnya) adalah sebuah contoh. Dia pernah melakukan percobaan bunuh diri,
Peta Konsep. 5.1 Sudut Positif dan Sudut Negatif Fungsi Trigonometri Bagi Sebarang Sudut FUNGSI TRIGONOMETRI
Bab 5 FUNGSI TRIGONOMETRI Peta Konsep 5.1 Sudut Positif dan Sudut Negatif 5. 6 Fungsi Trigonometri Bagi Sebarang Sudut FUNGSI TRIGONOMETRI 5. Graf Fungsi Sinus, Kosinus dan Tangen 5.4 Identiti Asas 5.5
Pengantar Proses Stokastik
Bab 3: Diskrit Statistika FMIPA Universitas Islam Indonesia Ilustrasi 1 Matriks Peluang Transisi Matriks Stokastik Chapman-Komogorov Equations Peluang Transisi Tak Bersyarat Perilaku bunuh diri kini kian
(a) Nyatakan julat hubungan itu (b) Dengan menggunakan tatatanda fungsi, tulis satu hubungan antara set A dan set B. [2 markah] Jawapan:
MODUL 3 [Kertas 1]: MATEMATIK TAMBAHAN JPNK 015 Muka Surat: 1 Jawab SEMUA soalan. 1 Rajah 1 menunjukkan hubungan antara set A dan set B. 6 1 Set A Rajah 1 4 5 Set B (a) Nyatakan julat hubungan itu (b)
LABORATORIUM STATISTIK DAN OPTIMASI INDUSTRI FAKULTAS TEKNIK PROGRAM STUDI TEKNIK INDUSTRI UNIVERSITAS PEMBANGUNAN NASIONAL VETERAN JAWA TIMUR
TNR 1 space 1.15 LABORATORIUM STATISTIK DAN OPTIMASI INDUSTRI FAKULTAS TEKNIK PROGRAM STUDI TEKNIK INDUSTRI UNIVERSITAS PEMBANGUNAN NASIONAL VETERAN JAWA TIMUR LAPORAN RESMI MODUL III TNR 1 Space.0 STATISTIK
BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1. Sudut Positif dan Sudut Negatif. Contoh
BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1 Sudut Positif dan Sudut Negatif Contoh Lukiskan setiap sudut berikut dengan menggunakan rajah serta tentukan sukuan mana sudut itu berada. (a)
BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1. Sudut Positif dan Sudut Negatif. Contoh
BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1 Sudut Positif dan Sudut Negatif Contoh Lukiskan setiap sudut berikut dengan menggunakan rajah serta tentukan sukuan mana sudut itu berada. (a)
ANALISIS LITAR ELEKTRIK OBJEKTIF AM
ANALSS LTA ELEKTK ANALSS LTA ELEKTK OBJEKTF AM Unit Memahami konsep-konsep asas Litar Sesiri, Litar Selari, Litar Gabungan dan Hukum Kirchoff. OBJEKTF KHUSUS Di akhir unit ini anda dapat : Menerangkan
Tegangan Permukaan. Kerja
Tegangan Permukaan Kerja Cecair lebih cenderung menyesuaikan bentuknya ke arah yang luas permukaan yang minimum. Titisan cecair berbentuk sfera kerana nisbah luas permukaan terhadap isipadu adalah kecil.
ADLN Perpustakaan Universitas Airlangga. Misalkan terdapat N buah besaran A µ dalam sistem koordinat {x µ } dan N
Lampiran 1 Tensor dan Operasinya Skalar,Vektor dan Tensor Misalkan terdapat N buah besaran A µ dalam sistem koordinat {x µ } dan N buah besaran A µ dalam sistem koordinat lain {x µ } dengan µ = 1, 2, 3...,
PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2005
3472/2 Matematik Tambahan Kertas 2 September 2005 2½ jam MAKTAB RENDAH SAINS MARA 3472/2 PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2005 MATEMATIK TAMBAHAN Kertas 2 Dua jam tiga puluh minit 3 4 7 2
Bab 1 Mekanik Struktur
Bab 1 Mekanik Struktur P E N S Y A R A H : D R. Y E E M E I H E O N G M O H D. N O R H A F I D Z B I N M O H D. J I M A S ( D B 1 4 0 0 1 1 ) R E X Y N I R O AK P E T E R ( D B 1 4 0 2 5 9 ) J O H A N
TEORI PELUANG* TKS 6112 Keandalan Struktur. Pendahuluan
TKS 6112 Keandalan Struktur TEORI PELUANG* * www.zacoeb.lecture.ub.ac.id Pendahuluan Sebuah bangunan dirancang melalui serangkaian perhitungan yang cermat terhadap beban-beban rencana dan bangunan tersebut
Pumping Lemma. Semester Ganjil 2013 Jum at, Dosen pengasuh: Kurnia Saputra ST, M.Sc
Semester Ganjil 2013 Jum at, 08.11.2013 Dosen pengasuh: Kurnia Saputra ST, M.Sc Email: kurnia.saputra@gmail.com Jurusan Informatika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Syiah Kuala
MODUL 3 : KERTAS 2 Bahagian A [40 markah] (Jawab semua soalan dalam bahagian ini)
MODUL 3 [Kertas 2]: MATEMATIK TAMBAHAN JPNK 2015 Muka Surat: 1 1. Selesaikan persamaan serentak yang berikut: MODUL 3 : KERTAS 2 Bahagian A [40 markah] (Jawab semua soalan dalam bahagian ini) 2x y = 1,
Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua nilai yang mungkin bagi X.
BAB 8 : TABURAN KEBARANGKALIAN Sesi 1 Taburan Binomial A. Pembolehubah rawak diskret Contoh Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua
Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua nilai yang mungkin bagi X.
BAB 8 : TABURAN KEBARANGKALIAN Sesi 1 Taburan Binomial A. Pembolehubah rawak diskret Contoh Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua
Perubahan dalam kuantiti diminta bagi barang itu bergerak disepanjang keluk permintaan itu.
BAB 3 : ISI RUMAH SEBAGAI PENGGUNA SPM2004/A/S3 (a) Rajah tersebut menunjukkan keluk permintaan yang mencerun ke bawah dari kiri ke kanan. Ia menunjukkan hubungan negatif antara harga dengan kuantiti diminta.
KONSEP ASAS & PENGUJIAN HIPOTESIS
KONSEP ASAS & PENGUJIAN HIPOTESIS HIPOTESIS Hipotesis = Tekaan atau jangkaan terhadap penyelesaian atau jawapan kepada masalah kajian Contoh: Mengapakah suhu bilik kuliah panas? Tekaan atau Hipotesis???
PENGEMBANGAN INSTRUMEN
PENGEMBANGAN INSTRUMEN OLEH : IRFAN (A1CI 08 007) PEND. MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS HALUOLEO KENDARI 2012 A. Definisi Konseptual Keterampilan sosial merupakan kemampuan
SMJ minyak seperti yang dilakarkan dalam Rajah S2. Minyak tersebut mempunyai. bahagian hujung cakera. Dengan data dan anggapan yang dibuat:
SOALAN 1 Cakera dengan garis pusat d berputar pada halaju sudut ω di dalam bekas mengandungi minyak seperti yang dilakarkan dalam Rajah S2. Minyak tersebut mempunyai kelikatan µ. Anggap bahawa susuk halaju
STRUKTUR BAJA 2 TKS 1514 / 3 SKS PROGRAM STUDI TEKNIK SIPIL UNIVERSITAS JEMBER
STRUKTUR BAJA 2 TKS 1514 / 3 SKS PROGRAM STUDI TEKNIK SIPIL UNIVERSITAS JEMBER Winda Tri Wahyuningtyas Gati Annisa Hayu Plate Girder Plate girder adalah balok besar yang dibuat dari susunan yang disatukan
Keterusan dan Keabadian Jisim
Pelajaran 8 Keterusan dan Keabadian Jisim OBJEKTIF Setelah selesai mempelajari Pelajaran ini anda sepatutnya dapat Mentakrifkan konsep kadar aliran jisim Mentakrifkan konsep kadar aliran Menerangkan konsep
Model Mangsa Pemangsa dengan Pengaruh Musim
Model Mangsa Pemangsa dengan Pengaruh Musim Yudi Arpa #1, Muhammad Subhan #, Riry Sriningsih # #Jurusan Matematika, Universitas Negeri Padang Jl. Prof. Dr. Hamka Air Tawar Padang, 25131, Telp. (0751) 444648,
-9, P, -1, Q, 7, 11, R
Tunjukkan langkah-langkah penting dalam kerja mengira anda. Ini boleh membantu anda untuk mendapatkan markah. Anda dibenarkan menggunakan kalkulator saintifik. Jawab semua soalan 1 (a) Rajah 1(a) menunjukkan
SULIT 3472/2 SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 2. Dua jam tiga puluh minit
MATEMATIK TAMBAHAN Kertas 2 September 2013 2½ Jam SMK SERI MUARA, 36100 BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 2 Dua jam tiga puluh minit JANGAN BUKA KERTAS
TOPIK 1 : KUANTITI DAN UNIT ASAS
1.1 KUANTITI DAN UNIT ASAS Fizik adalah berdasarkan kuantiti-kuantiti yang disebut kuantiti fizik. Secara am suatu kuantiti fizik ialah kuantiti yang boleh diukur. Untuk mengukur kuantiti fizik, suatu
Sudut positif. Sudut negatif. Rajah 7.1: Sudut
Bab 7 FUNGSI TRIGONOMETRI Dalam bab ini kita akan belajar secara ringkas satu kelas fungsi penting untuk penggunaan dipanggil fungsi trigonometri Fungsi trigonometri pada mulana timbul dalam pengajian
Pembinaan Homeomorfisma dari Sfera ke Elipsoid
Matematika, 003, Jilid 19, bil., hlm. 11 138 c Jabatan Matematik, UTM. Pembinaan Homeomorfisma dari Sfera ke Elipsoid Liau Lin Yun & Tahir Ahmad Jabatan Matematik, Fakulti Sains Universiti Teknologi Malasia
BAB 4 PERENCANAAN TANGGA
BAB 4 PERENCANAAN TANGGA 4. Uraian Umum Tangga merupakan bagian dari struktur bangunan bertingkat yang penting sebagai penunjang antara struktur bangunan lantai dasar dengan struktur bangunan tingkat atasnya.
Unit PENGENALAN KEPADA LITAR ELEKTRIK OBJEKTIF AM OBJEKTIF KHUSUS
PENGENALAN KEPADA LITAR ELEKTRIK OBJEKTIF AM Memahami konsep-konsep asas litar elektrik, arus, voltan, rintangan, kuasa dan tenaga elektrik. Unit OBJEKTIF KHUSUS Di akhir unit ini anda dapat : Mentakrifkan
Jawab semua soalan. P -1 Q 0 1 R 2
Tunjukkan langkah langkah penting dalam kerja mengira anda. Ini boleh membantu anda untuk mendapatkan markah. Anda dibenarkan menggunakan kalkulator saintifik. 1. (a) Tentukan nilai P, Q dan R Jawab semua
SIJIL VOKASIONAL MALAYSIA A03101 PENILAIAN AKHIR SEMESTER 1 SESI 1/2015 Matematik Bahagian A Mei
A00 LEMBAGA PEPERIKSAAN KEMENTERIAN PENDIDIKAN MALAYSIA SIJIL VOKASIONAL MALAYSIA A00 PENILAIAN AKHIR SEMESTER SESI /205 Matematik Bahagian A Mei 2 jam Satu jam tiga puluh minit JANGAN BUKA KERTAS SOALAN
MA5283 STATISTIKA Bab 2 Peluang
MA5283 STATISTIKA Bab 2 Peluang Orang Cerdas Belajar Statistika Silabus Silabus dan Tujuan Ruang sampel dan kejadian, konsep peluang, peluang bersyarat, Teorema Bayes. Tujuan Silabus dan Tujuan 1 Mendefinisikan
KEKUATAN KELULI KARBON SEDERHANA
Makmal Mekanik Pepejal KEKUATAN KELULI KARBON SEDERHANA 1.0 PENGENALAN Dalam rekabentuk sesuatu anggota struktur yang akan mengalami tegasan, pertimbangan utama ialah supaya anggota tersebut selamat dari
INVESTIGASI EMPIRIS KEKUATAN UJI KPSS. Oleh MUHAMMAD FAJAR
INVESTIGASI EMPIRIS KEKUATAN UJI KPSS Oleh MUHAMMAD FAJAR 2016 ABSTRAK Judul Penelitian : Investigasi Empirik Kekuatan Uji KPSS Kata Kunci : Uji KPSS, Data Generating Process, Persentase Keputusan Salah
EEU104 - Teknologi Elektrik - Tutorial 11; Sessi 2000/2001 Litar magnet
UNIVERSITI SAINS MALAYSIA PUSAT PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK EEU104 - Teknologi Elektrik - Tutorial 11; Sessi 2000/2001 Litar magnet 1. Satu litar magnet mempunyai keengganan S = 4 x
SEE 3533 PRINSIP PERHUBUNGAN Bab III Pemodulatan Sudut. Universiti Teknologi Malaysia
SEE 3533 PRINSIP PERHUBUNGAN Bab III Universiti Teknologi Malaysia 1 Pengenalan Selain daripada teknik pemodulatan amplitud, terdapat juga teknik lain yang menggunakan isyarat memodulat untuk mengubah
Rajah S1 menunjukkan talisawat dari jenis rata dengan dua sistem pacuan, digunakan untuk
SOALAN 1 Rajah S1 menunjukkan talisawat dari jenis rata dengan dua sistem pacuan, digunakan untuk menyambungkan dua takal yang terpasang kepada dua aci selari. Garispusat takal pemacu, pada motor adalah
LATIHAN. PENYUSUN: MOHD. ZUBIL BAHAK Sign. : FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA SKUDAI JOHOR
1. a) Nyatakan dengan jelas Prinsip Archimedes tentang keapungan. b) Nyatakan tiga (3) syarat keseimbangan STABIL jasad terapung. c) Sebuah silinder bergaris pusat 15 cm dan tinggi 50 cm diperbuat daripada
Kertas soalan ini mengandungi 20 halaman bercetak.
3472/1 NAMA :. TINGKATAN : MATEMATIK TAMBAHAN Kertas 1 September 2013 2 Jam SMK SERI MUARA, 36100 BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JANGAN BUKA
KURIKULUM STANDARD SEKOLAH RENDAH DUNIA MUZIK
KEMENTERIAN PELAJARAN MALAYSIA KURIKULUM STANDARD SEKOLAH RENDAH DUNIA MUZIK TAHUN TIGA DOKUMEN STANDARD KURIKULUM STANDARD SEKOLAH RENDAH (KSSR) MODUL TERAS TEMA DUNIA MUZIK TAHUN TIGA BAHAGIAN PEMBANGUNAN
Daftar notasi. jarak s 2, mm 2. lebar dari muka tekan komponen struktur, mm.
LAMPIRAN 467 Daftar notasi E c = modulus elastisitas beton, MPa. Es = modulus elastisitas baja tulangan non-prategang, MPa. f c = kuat tekan beton yang disyaratkan pada umur 28 hari, MPa. h = tinggi total
Latihan PT3 Matematik Nama:.. Masa: 2 jam. 1 a) i) Buktikan bahawa 53 adalah nombor perdana. [1 markah]
Latihan PT3 Matematik Nama:.. Masa: 2 jam a) i) Buktikan bahawa 53 adalah nombor perdana. [ markah] ii) Berikut adalah tiga kad nombor. 30 20 24 Lakukan operasi darab dan bahagi antara nombor-nombor tersebut
CADASTRE SURVEY (SGHU 2313)
CADASTRE SURVEY (SGHU 2313) WEEK 8-ADJUSTMENT OF OBSERVED DATA SR DR. TAN LIAT CHOON 07-5530844 016-4975551 1 OUTLINE Accuracy of field observations Misclosure in cadastre survey Bearing ('m' and 'c' correction
FUNGSI P = {1, 2, 3} Q = {2, 4, 6, 8, 10}
FUNGSI KERTAS 1 P = {1,, 3} Q = {, 4, 6, 8, 10} 1. Berdasarkan maklumat di atas, hubungan P kepada Q ditakrifkan oleh set pasangan bertertib {(1, ), (1, 4), (, 6), (, 8)}. Nyatakan (a) imej bagi 1, (b)
SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM. MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JUMLAH
72/1 NAMA :. TINGKATAN : MATEMATIK TAMBAHAN Kertas 1 September 201 2 Jam SMK SERI MUARA, 6100 BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JANGAN BUKA KERTAS
LITAR ELEKTRIK 1 EET101/4. Pn. Samila Mat Zali
LITAR ELEKTRIK 1 EET101/4 Pn. Samila Mat Zali STRUKTUR KURSUS Peperiksaan Akhir : 50% Ujian teori : 10% Mini projek : 10% Amali/praktikal : 30% 100% OBJEKTIF KURSUS Mempelajari komponen-komponen utama
BAB 2 PEMODULATAN AMPLITUD
BAB MODULATAN LITUD enghantaran iyarat yang engandungi akluat elalui atu aluran perhubungan eerlukan anjakan frekueni iyarat akluat kepada julat frekueni yang euai untuk penghantaran - roe ini diapai elalui
Klasifikasi bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua
Matematika, 1999, Jilid 15, bil. 1, hlm. 37 43 c Jabatan Matematik, UTM. Klasifikasi bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua Nor Haniza Sarmin Jabatan Matematik, Fakulti
BAB III PERHITUNGAN TANGGA DAN PELAT. Gedung Kampus di Kota Palembang yang terdiri dari 11 lantai tanpa basement
BAB III PERHITUNGAN TANGGA DAN PELAT 3.1. Analisis Beban Gravitasi Beban gravitasi adalah beban ang bekerja pada portal dan berupa beban mati serta beban hidup. Bangunan ang akan dianalisis pada penulisan
BAB 2 KEAPUNGAN DAN HIDROSTATIK
BAB 2 KEAPUNGAN DAN HIDROSTATIK 2.1 Hukum Keapungan Archimedes Sebuah badan yang terendam di air ditindak oleh beberapa daya. Pertama ialah berat atau jisim badan itu sendiri yang dianggap bertindak ke
UNTUK EDARAN DI DALAM JABATAN FARMASI SAHAJA
UNTUK EDARAN DI DALAM JABATAN FARMASI SAHAJA KEPUTUSAN MESYUARAT KALI KE 63 JAWATANKUASA FARMASI DAN TERAPEUTIK HOSPITAL USM PADA 24 SEPTEMBER 2007 (BAHAGIAN 1) DAN 30 OKTOBER 2007 (BAHAGIAN 2) A. Ubat
ALIRAN LAPISAN SEMPADAN
Bab 1 ALIRAN LAPISAN SEMPADAN 1.1 Kelikatan Kelikatan adalah sifat bendalir yang mengawal kadar alirannya. Ia terjadi disebabkan oleh cohesion yang wujud di antara zarah-zarah bendalir yang boleh diperhatikan
SELAMAT DATANG KE KULIAH 12 EX2023 MAKROEKONOMI II FAKULTI EKONOMI UNIVERSITI KEBANGSAAN MALAYSIA
SELAMAT DATANG KE KULIAH 12 EX2023 MAKROEKONOMI II FAKULTI EKONOMI UNIVERSITI KEBANGSAAN MALAYSIA Prof. Madya Dr. Mohd Zainudin Saleh mzsaleh@ukm.my www.ukm.my/zainudin 29/01/2004 Kuliah 12 1 MAKROEKONOMI
DAFTAR ISI. Halaman Judul Pengesahan Persetujuan Persembahan Abstrak Abstact Kata Pengantar
DAFTAR ISI Halaman Judul i Pengesahan ii Persetujuan iii Persembahan iv Abstrak v Abstact vi Kata Pengantar vii Daftar Isi viii Daftar Tabel xi Daftar Gambar xii Daftar Lampiran xiii Notasi dan Singkatan
DAFTAR NOTASI. adalah jarak antara dua pengaku vertikal, mm. adalah luas efektif penampang, mm2. adalah luas efektif pelat sayap, mm2
DAFTAR NOTASI SNI 03-1729-2002 A a A e A f a r A s A w b b f b cf b s C b C r C v D d d b d c adalah luas penampang, mm2 adalah jarak antara dua pengaku vertikal, mm adalah luas efektif penampang, mm2
Kuasa Dua Tensor Yang Tak Abelan bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua
Matematika, 1999, Jilid 15, bil., hlm. 143 156 c Jabatan Matematik, UTM. Kuasa Dua Tensor Yang Tak Abelan bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua Nor Haniza Sarmin Jabatan
BAB 3 PERENCANAAN TANGGA
BAB 3 PERENCANAAN TANGGA 3.1. Uraian Umum Semakin sedikit tersedianya luas lahan yang digunakan untuk membangun suatu bangunan menjadikan perencana lebih inovatif dalam perencanaan, maka pembangunan tidak
FAKULTI KEJURUTERAAN ELEKTRIK UNIVERSITI TEKNOLOGI MALAYSIA MAKMAL ELEKTROTEKNIK : LENGKUK KEMAGNETAN ATAU CIRI B - H
FAKULTI KEJURUTERAAN ELEKTRIK UNIVERSITI TEKNOLOGI MALAYSIA MAKMAL ELEKTROTEKNIK UJIKAJI TAJUK : E : LENGKUK KEMAGNETAN ATAU CIRI B - H 1. Tujuan : 2. Teori : i. Mendapatkan lengkuk kemagnetan untuk satu
PERENCANAAN JALAN ALTERNATIF & PERKERASAN LENTUR TANJUNG SERDANG KOTABARU,KALIMANTAN SELATAN KM KM 7+000
PERENCANAAN JALAN ALTERNATIF & PERKERASAN LENTUR TANJUNG SERDANG KOTABARU,KALIMANTAN SELATAN KM 4+000 KM 7+000 LATAR BELAKANG TUJUAN DAN BATASAN MASALAH METODOLOGI PERENCANAAN HASIL Semakin meningkatnya
REKABENTUK PERMUKAAN BENTUK BEBAS MENGGUNAKAN PERSAMAAN PEMBEZAAN SEPARA (PPS) Oleh ZAINOR RIDZUAN BIN YAHYA
REKABENTUK PERMUKAAN BENTUK BEBAS MENGGUNAKAN PERSAMAAN PEMBEZAAN SEPARA (PPS) Oleh ZAINOR RIDZUAN BIN YAHYA Tesis yang diserahkan untuk memenuhi keperluan bagi Ijazah Sarjana Sains (Matematik) Jun 2008
Teorem Titik Tetap Pemetaan 2 Mengecut Pada Ruang 2 Metrik
Matematika, 1999, Jilid 15, bil. 2, hlm. 135 141 c Jabatan Matematik, UTM. Teorem Titik Tetap Pemetaan 2 Mengecut Pada Ruang 2 Metrik Mashadi Jurusan Matematika Universitas Riau Kampus Bina Widya Panam
DAFTAR LAMPIRAN. Lampiran 2. Penetapan derajat infeksi mikoriza arbuskular
DAFTAR LAMPIRAN Lampiran 1. Data analisis awal tanah Jenis Analisis Satuan Nilai Kriteria ph H 2 O - 4,56 Masam C-Organik % 1,75 Rendah N-Total % 0,22 Sedang C/N Ratio - 7,95 Rendah P-tersedia (ppm) ppm
ANALISIS KORELASI DEBIT BANJIR RENCANA UNTUK BERBAGAI KONDISI KETERSEDIAAN DATA DI DAERAH KHUSUS IBUKOTA JAKARTA ABSTRAK
ANALISIS KORELASI DEBIT BANJIR RENCANA UNTUK BERBAGAI KONDISI KETERSEDIAAN DATA DI DAERAH KHUSUS IBUKOTA JAKARTA Agung M Alamsyah NRP : 9521037 NIRM : 41077011950298 Pembimbing : Dr. Ir. Agung Bagiawan
BAB 4 PERENCANAAN TANGGA
BAB 4 PERENCANAAN TANGGA 4.1. Uraian Umum Tangga merupakan bagian dari struktur bangunan bertingkat yang penting sebagai penunjang antara struktur bangunan lantai dasar dengan struktur bangunan tingkat
BAB V DESAIN TULANGAN STRUKTUR
BAB V DESAIN TULANGAN STRUKTUR 5.1 Output Penulangan Kolom Dari Program Etabs ( gedung A ) Setelah syarat syarat dalam pemodelan struktur sudah memenuhi syarat yang di tentukan dalam peraturan SNI, maka
TOPIK 2 : MENGGAMBARKAN OBJEK
2.1 SIMETRI Definisi paksi simetri : Satu garis lipatan pada suatu bentuk geometri supaya bentuk itu dapat bertindih tepat apabila dilipat. Sesuatu bentuk geometri mungkin mempunyai lebih daripada satu