Sistem Koordinat dan Fungsi. Matematika Dasar. untuk Fakultas Pertanian. Uha Isnaini. Uhaisnaini.com. Matematika Dasar
|
|
- Περσεφόνη Κουταλιανός
- 7 χρόνια πριν
- Προβολές:
Transcript
1 untuk Fakultas Pertanian Uhaisnaini.com
2 Contents 1 Sistem Koordinat dan Fungsi
3 Sistem Koordinat dan Fungsi Sistem koordinat adalah suatu cara/metode untuk menentukan letak suatu titik. Ada beberapa macam system koordinat: Sistem Koordinat Cartesius, Sistem Koordinat Kutub, Sistem Koordinat Tabung, dan Sistem Koordinat Bola. Pada bagian ini hanya akan dibicarakan Sistem Koordinat Cartesius dan Sistem Koordinat Kutub saja.
4 Sistem Koordinat Cartesius Diberikan 2 garis lurus, satu mendatar (horizontal) selanjutnya disebut sumbu-x dan yang lain tegak (vertical) selanjutnya disebut sumbu-y. Perpotongan kedua sumbu tersebut dinamakan titik asal (origin) dan diberi tanda O. Titik-titik disebelah kanan dan atas O dipasangkan dengan bilangan-bilangan real positif sedangkan titik-titik di sebelah kiri dan bawah O dengan bilangan-bilangan real negatif.
5 Sistem Koordinat Cartesius Oleh ke dua sumbu, bidang datar (bidang koordinat) terbagi menjadi 4 daerah (kuadran), yaitu kuadran I, kuadran II, kuadran III, dan kuadran IV
6 Sistem Koordinat Cartesius Letak sebarang titik pada bidang dinyatakan dengan pasangan berurutan (x, y). Dalam hal ini, x disebut absis sedangkan y disebut ordinat.
7 Sistem Koordinat Kutub Pada sistem koordinat kutub, letak titik P pada bidang dinyatakan dengan pasangan bilangan real (r, θ) dengan r menyatakan jarak titik P ke titik O (disebut kutub) sedangkan θ adalah sudut antara sinar yang memancar dari titik O melewati titik P dengan sumbu x positif (disebut sumbu kutub).
8 Sistem Koordinat Kutub Secara umum, (r, θ) dapat pula dinyatakan : (r, θ + 2kπ) atau (r, θ + (2k + 1)π) dengan k bilangan bulat.
9 Hubungan SK Cartesius dengan SK Kutub Apabila kutub dan titik asal diimpitkan, demikian pula sumbu kutub dan sumbu x positif juga diimpitkan, maka kedudukan titik dapat digambarkan sebagai berikut:
10 Hubungan SK Cartesius dengan SK Kutub Dari rumus segitiga siku-siku diperoleh hubungan sebagai berikut : x = r cos θ, y = r sin θ dan r = x 2 + y 2, θ = arc tan ( y x ) Contoh : Nyatakan dalam SK Cartesius : 1 A(4, 2π 3 ) 2 B(5, π 4 ) 3 C(3, 5π 6 )
11 Hubungan SK Cartesius dengan SK Kutub Nyatakan dalam sistem koordinat kutub : 1 A(3, 3) 2 B(2, 2) 3 C(2, 2 3) Nyatakan persamaan berikut dalam SK yang lain: 1 r = 3 cos θ 2 r 2 = 1+ sin θ 3 x y = 0 4 y 2 = 1 4x
12 Relasi dan Fungsi Jika A dan B masing-masing himpunan yang tidak kosong maka A B = {(x, y) x A, y B} Relasi dari A ke B didefinisikan sebagai himpunan tak kosong R A B.
13 Fungsi Jika R adalah relasi dari A ke B dan x A berelasi R dengan y B maka ditulis: (x, y) R atau xry atau y = R(x) Definisi Diketahui R relasi dari A ke B. Apabila setiap x A berelasi R dengan tepat satu y B maka R disebut fungsi dari A ke B. Dengan kata lain, R disebut fungsi jika untuk setiap x, y A dengan x = y maka R(x) ada dan R(x) = R(y)
14 Fungsi Jika f merupakan fungsi dari himpunan A ke himpunan B, dituliskan f : A B A disebut daerah asal (domain) dan B disebut daerah kawan (kodomain) Jika tidak disebutkan, domain fungsi f dinotasikan D f adalah himpunan terbesar di dalam R sehingga f terdefinisikan. Range f, ditulis R f atau Im f merupakan himpunan elemen di B yang punya kawan di A Jika x A punya kawan y B maka dikatakan y merupakan bayangan x oleh f
15 Fungsi Carilah D f dan R f : 1 f (x) = 1 x+7 2 f (x) = x f (x) = x x+9 4 f (x) = 1 x +log (x 2 x 6)
16 Fungsi Surjektif, Fungsi Injektif, dan Fungsi Bijektif Perhatikan gambar, lihat perbedaannya
17 Fungsi Surjektif, Fungsi Injektif, dan Fungsi Bijektif Diketahui f fungsi dari A ke B. Apabila setiap anggota himpunan B mempunyai kawan anggota himpunan A, maka f disebut fungsi surjektif atau fungsi pada (onto function). Apabila setiap anggota himpunan B mempunyai yang kawan yang tunggal di A, maka f disebut fungsi injektif atau fungsi 1-1 (into function). Jika setiap anggota himpunan B mempunyai tepat satu kawan di A maka f disebut fungsi bijektif atau korespodensi 1 1. Dengan kata lain f bijektif jika dan hanya jika f surjektif dan injektif.
18 Sifat-sifat fungsi Diberikan skalar real α dan fungsi-fungsi f dan g. (f + g)(x) = f (x) + g(x) (f g)(x) = f (x) g(x) (αf )(x) = αf (x) (f.g)(x) = f (x).g(x) ( f f (x) g )(x) = g(x), dengan g(x) 0. Domain masing-masing fungsi di atas adalah irisan domain f dan domain g, kecuali untuk f g, D f g = {x D f D g g(x) 0}.
19 Fungsi Invers Diberikan fungsi f : A B. Kebalikan (invers) fungsi f adalah relasi g dari B ke A sehingga g(f (x)) = x. Pada umumnya, invers suatu fungsi belum tentu merupakan fungsi. Apabila f : A B merupakan korespondensi 11, maka mudah ditunjukkan bahwa invers f juga merupakan fungsi. Fungsi ini disebut fungsi invers, ditulis dengan notasi f 1.
20 Fungsi Komposisi Diberikan fungsi f : A B dan g : B C. Definisi Fungsi komposisi dari g dan f, ditulis g o f, didefinisikan (g o f )(x) = g(f (x)), dengan domain D gof = {x D f f (x) D g }.
21 Latihan Diketahui f (x) = x + 1, g(x) = 1/x, h(x) = x 2. Carilah : 1 f + g 2 f o g g o f 3 fg + gh 4 (fg) 1
22 Grafik Fungsi Fungsi konstan: f (x) = c. Grafik fungsi ini berupa garis lurus sejajar sumbu x.
23 Grafik Fungsi Fungsi linear: f (x) = mx + n Grafik fungsi ini berupa garis lurus dengan gradien m dan melalui titik (0, n).
24 Grafik Fungsi Fungsi kuadrat: f (x) = ax 2 + bx + c, a 0. Grafik fungsi kuadrat berupa parabola. Diskriminan: D = b 2 4ac. Secara umum, grafik fungsi kuadrat ini dapat digambarkan sebagai berikut:
25 Grafik Fungsi Fungsi kubik: f (x) = a 3 x 3 + a 2 x + a 1 x + a 0, a 3 0.
26 Grafik Fungsi Fungsi f (x) yang dapat dinyatakan sebagai hasil bagi dua fungsi suku banyak f (x) = a 0 + a 1 x + + a n x n b 0 + b 1 x + + b n x n disebut fungsi pecah.
27 Grafik Fungsi Beberapa contoh grafik fungsi Irrasional
28 Grafik Fungsi Beberapa contoh grafik fungsi Trigonometri
29 Grafik Fungsi Beberapa contoh grafik fungsi Trigonometri
30 Grafik Fungsi Fungsi Eksponensial : Untuk a > 0, a 1, fungsi f dengan rumus f (x) = a x disebut fungsi eksponensial.
31 Grafik Fungsi Fungsi Logaritma : Untuk a > 0, a 1, y = a log x x = a y.
Matematika
Sistem Bilangan Real D3 Analis Kimia FMIPA Universitas Islam Indonesia Sistem Bilangan Real Himpunan: sekumpulan obyek/unsur dengan kriteria/syarat tertentu. 1 Himpunan mahasiswa D3 Analis Kimia angkatan
Kalkulus 1. Sistem Koordinat. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia. Sistem Koordinat
Kalkulus 1 Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Sistem koordinat adalah suatu cara/metode untuk menentukan letak suatu titik. Ada beberapa macam sistem koordinat, yaitu:
TINJAUAN PUSTAKA. Sekumpulan bilangan (rasional dan tak-rasional) yang dapat mengukur. bilangan riil (Purcell dan Varberg, 1987).
II. TINJAUAN PUSTAKA 2.1 Sistem Bilangan Riil Definisi Bilangan Riil Sekumpulan bilangan (rasional dan tak-rasional) yang dapat mengukur panjang, bersama-sama dengan negatifnya dan nol dinamakan bilangan
Kalkulus Multivariabel I
Fungsi Dua Peubah atau Lebih dan Statistika FMIPA Universitas Islam Indonesia 2015 dengan Dua Peubah Real dengan Dua Peubah Real Pada fungsi satu peubah f : D R R D adalah daerah asal (domain) suatu fungsi
Kalkulus Elementer. Nanda Arista Rizki, M.Si. Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Mulawarman 2018
Kalkulus Elementer Nanda Arista Rizki, M.Si. Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Mulawarman 2018 Nanda Arista Rizki, M.Si. Kalkulus Elementer 1/83 Referensi: 1 Dale Varberg, Edwin
Kalkulus 1. Sistem Bilangan Real. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia
Kalkulus 1 Sistem Bilangan Real Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Sistem Bilangan Real Himpunan: sekumpulan obyek/unsur dengan kriteria/syarat tertentu. 1 Himpunan mahasiswa
Kalkulus Multivariabel I
Limit dan Statistika FMIPA Universitas Islam Indonesia Operasi Aljabar pada Pembahasan pada limit untuk fungsi dua peubah adalah memberikan pengertian mengenai lim f (x, y) = L (x,y) (a,b) Masalahnya adalah
Hendra Gunawan. 16 April 2014
MA101 MATEMATIKA A Hendra Gunawan Semester II, 013/014 16 April 014 Kuliah yang Lalu 13.11 Integral Lipat Dua atas Persegi Panjang 13. Integral Berulang 13.3 33Integral Lipat Dua atas Daerah Bukan Persegi
KALKULUS LANJUT. Integral Lipat. Resmawan. 7 November Universitas Negeri Gorontalo. Resmawan (Math UNG) Integral Lipat 7 November / 57
KALKULUS LANJUT Integral Lipat Resmawan Universitas Negeri Gorontalo 7 November 218 Resmawan (Math UNG) Integral Lipat 7 November 218 1 / 57 13.3. Integral Lipat Dua pada Daerah Bukan Persegipanjang 3.5
A. Distribusi Gabungan
HANDOUT PERKULIAHAN Mata Kuliah Pokok Bahasan : Statistika Matematika : Distibusi Dua peubah Acak URAIAN POKOK PERKULIAHAN A. Distribusi Gabungan Definisi 1: Peubah Acak Berdimensi Dua Jika S merupakan
PERSAMAAN KUADRAT. 06. EBT-SMP Hasil dari
PERSAMAAN KUADRAT 0. EBT-SMP-00-8 Pada pola bilangan segi tiga Pascal, jumlah bilangan pada garis ke- a. 8 b. 6 c. d. 6 0. EBT-SMP-0-6 (a + b) = a + pa b + qa b + ra b + sab + b Nilai p q = 0 6 70 0. MA-77-
Sebaran Peluang Gabungan
Sebaran Peluang Gabungan Peubah acak dan sebaran peluangnya terbatas pada ruang sampel berdimensi satu. Dengan kata lain, hasil percobaan berasal dari peubah acak yan tunggal. Tetapi, pada banyak keadaan,
LOGIKA MATEMATIKA. MODUL 1 Himpunan. Zuhair Jurusan Teknik Informatika Universitas Mercu Buana Jakarta 2012 年 04 月 08 日 ( 日 )
LOGIKA MATEMATIKA MODUL 1 Himpunan Zuhair Jurusan Teknik Informatika Universitas Mercu Buana Jakarta 2012 年 04 月 08 日 ( 日 ) Himpunan I. Definisi dan Notasi Himpunan adalah kumpulan sesuatu yang didefinisikan
Pengantar Proses Stokastik
Bab 6: Rantai Markov Waktu Kontinu Statistika FMIPA Universitas Islam Indonesia Rantai Markov Waktu Kontinu Peluang Kesetimbangan Pada bab ini, kita akan belajar mengenai rantai markov waktu kontinu yang
Pengantar Proses Stokastik
Bab 6: Rantai Markov Waktu Kontinu Statistika FMIPA Universitas Islam Indonesia Rantai Markov Waktu Kontinu Peluang Kesetimbangan Pada bab ini, kita akan belajar mengenai rantai markov waktu kontinu yang
Peta Konsep. 5.1 Sudut Positif dan Sudut Negatif Fungsi Trigonometri Bagi Sebarang Sudut FUNGSI TRIGONOMETRI
Bab 5 FUNGSI TRIGONOMETRI Peta Konsep 5.1 Sudut Positif dan Sudut Negatif 5. 6 Fungsi Trigonometri Bagi Sebarang Sudut FUNGSI TRIGONOMETRI 5. Graf Fungsi Sinus, Kosinus dan Tangen 5.4 Identiti Asas 5.5
Transformasi Koordinat 2 Dimensi
Transformasi Koordinat 2 Dimensi RG141227 - Sistem Koordinat dan Transformasi Semester Gasal 2016/2017 Ira M Anjasmara PhD Jurusan Teknik Geomatika Sistem Koordinat 2 Dimensi Digunakan untuk mempresentasikan
Transformasi Koordinat 3 Dimensi
Transformasi Koordinat 3 Dimensi RG141227 - Sistem Koordinat dan Transformasi Semester Gasal 2016/2017 Ira M Anjasmara PhD Jurusan Teknik Geomatika Sistem Koordinat Tiga Dimensi (3D) Digunakan untuk mendeskripsikan
Persamaan Diferensial Parsial
Persamaan Diferensial Parsial Turunan Parsial f (, ) Jika berubah ubah sedangkan tetap, adalah fungsi dari dan turunanna terhadap adalah f (, ) f (, ) f (, ) lim 0 disebut turunan parsialpertama dari f
Konvergen dalam Peluang dan Distribusi
limiting distribution Andi Kresna Jaya andikresna@yahoo.com Jurusan Matematika July 5, 2014 Outline 1 Review 2 Motivasi 3 Konvergen dalam peluang 4 Konvergen dalam distribusi Back Outline 1 Review 2 Motivasi
TH3813 Realiti Maya. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun
TH383 Realiti Maa Transformasi 3D menggunakan multiplikasi matriks untuk hasilkan kompaun transformasi menggunakan kompaun transformasi - hasilkan sebarang transformasi dan ungkapkan sebagai satu transformasi
Sebaran Kontinu HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNAND LOGO
Sebaran Kontinu HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNAND Kompetensi menguraikan ciri-ciri suatu kurva normal menentukan luas daerah dibawah kurva normal menerapkan sebaran normal dalam
BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1. Sudut Positif dan Sudut Negatif. Contoh
BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1 Sudut Positif dan Sudut Negatif Contoh Lukiskan setiap sudut berikut dengan menggunakan rajah serta tentukan sukuan mana sudut itu berada. (a)
BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1. Sudut Positif dan Sudut Negatif. Contoh
BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1 Sudut Positif dan Sudut Negatif Contoh Lukiskan setiap sudut berikut dengan menggunakan rajah serta tentukan sukuan mana sudut itu berada. (a)
Bilangan Euler(e) Rukmono Budi Utomo Pengampu: Prof. Taufiq Hidayat. March 5, 2016
Bilangan Euler(e) Rukmono Budi Utomo 30115301 Pengampu: Prof. Taufiq Hidayat March 5, 2016 Asal Usul Bilangan Euler e 1 1. Bilangan Euler 2 3 4 Asal Usul Bilangan Euler e Bilangan Euler atau e = 2, 7182818284...
Ukur Kejuruteraan DDPQ 1162 Ukur Tekimetri. Sakdiah Basiron
Ukur Kejuruteraan DDPQ 1162 Ukur Tekimetri Sakdiah Basiron TEKIMETRI PENGENALAN TAKIMETRI ADALAH SATU KAEDAH PENGUKURAN JARAK SECARA TIDAK LANGSUNG BAGI MENGHASILKAN JARAK UFUK DAN JARAK TEGAK KEGUNAAN
S T A T I S T I K A OLEH : WIJAYA
S T A T I S T I K A OLEH : WIJAYA email : zeamays_hibrida@yahoo.com FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2009 II. SEBARAN PELUANG Ruang Contoh (S) adalah Himpunan semua kemungkinan
ANALISIS LITAR ELEKTRIK OBJEKTIF AM
ANALSS LTA ELEKTK ANALSS LTA ELEKTK OBJEKTF AM Unit Memahami konsep-konsep asas Litar Sesiri, Litar Selari, Litar Gabungan dan Hukum Kirchoff. OBJEKTF KHUSUS Di akhir unit ini anda dapat : Menerangkan
S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON
S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2010 SEBARAN PELUANG II. SEBARAN PELUANG Ruang Contoh (S) adalah Himpunan semua kemungkinan hasil suatu percobaan.
(a) Nyatakan julat hubungan itu (b) Dengan menggunakan tatatanda fungsi, tulis satu hubungan antara set A dan set B. [2 markah] Jawapan:
MODUL 3 [Kertas 1]: MATEMATIK TAMBAHAN JPNK 015 Muka Surat: 1 Jawab SEMUA soalan. 1 Rajah 1 menunjukkan hubungan antara set A dan set B. 6 1 Set A Rajah 1 4 5 Set B (a) Nyatakan julat hubungan itu (b)
Pumping Lemma. Semester Ganjil 2013 Jum at, Dosen pengasuh: Kurnia Saputra ST, M.Sc
Semester Ganjil 2013 Jum at, 08.11.2013 Dosen pengasuh: Kurnia Saputra ST, M.Sc Email: kurnia.saputra@gmail.com Jurusan Informatika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Syiah Kuala
S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON
S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2011 SEBARAN PELUANG II. SEBARAN PELUANG Ruang Contoh (S) adalah Himpunan semua kemungkinan hasil suatu percobaan.
SOALMANDIRITINGKATSMA/MA/Sederajat ASAHTERAMPILMATEMATIKA(ASTRAMATIKA)XX I
SOALMANDIRITINGKATSMA/MA/Sederajat ASAHTERAMPILMATEMATIKA(ASTRAMATIKA)XX I 1-cos(x-a) 1.Hasildari lim =. x a (x-a)sin3(x-a) 2.Jumlahnsukupertamaderetaritmetikaadalah Sn =5 n 2-7n. Jikaasukupertamadanbbedaderettersebut,maka13a+3b=.
Rajah S1 menunjukkan talisawat dari jenis rata dengan dua sistem pacuan, digunakan untuk
SOALAN 1 Rajah S1 menunjukkan talisawat dari jenis rata dengan dua sistem pacuan, digunakan untuk menyambungkan dua takal yang terpasang kepada dua aci selari. Garispusat takal pemacu, pada motor adalah
2 m. Air. 5 m. Rajah S1
FAKULI KEJURUERAAN AL 1. Jika pintu A adalah segi empat tepat dan berukuran 2 m lebar (normal terhadap kertas), tentukan nilai daya hidrostatik yang bertindak pada pusat tekanan jika pintu ini tenggelam
BAB 4 PERENCANAAN TANGGA
BAB 4 PERENCANAAN TANGGA 4. Uraian Umum Tangga merupakan bagian dari struktur bangunan bertingkat yang penting sebagai penunjang antara struktur bangunan lantai dasar dengan struktur bangunan tingkat atasnya.
RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN
Jurnal Teknologi, 38(C) Jun 003: 5 8 Universiti Teknologi Malaysia RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN 5 RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN YEOH WENG KANG & JAMALUDIN MD. ALI Abstrak. Rumus untuk
TOPIK 1 : KUANTITI DAN UNIT ASAS
1.1 KUANTITI DAN UNIT ASAS Fizik adalah berdasarkan kuantiti-kuantiti yang disebut kuantiti fizik. Secara am suatu kuantiti fizik ialah kuantiti yang boleh diukur. Untuk mengukur kuantiti fizik, suatu
artinya vektor nilai rata-rata dari kelompok ternak pertama sama dengan kelompok ternak kedua artinya kedua vektor nilai-rata berbeda
LAMPIRAN 48 Lampiran 1. Perhitungan Manual Statistik T 2 -Hotelling pada Garut Jantan dan Ekor Tipis Jantan Hipotesis: H 0 : U 1 = U 2 H 1 : U 1 U 2 Rumus T 2 -Hotelling: artinya vektor nilai rata-rata
Pengantar Proses Stokastik
Bab 3: Diskrit Statistika FMIPA Universitas Islam Indonesia Ilustrasi 1 Matriks Peluang Transisi Matriks Stokastik Chapman-Komogorov Equations Peluang Transisi Tak Bersyarat Perilaku bunuh diri kini kian
SEE 3533 PRINSIP PERHUBUNGAN Bab III Pemodulatan Sudut. Universiti Teknologi Malaysia
SEE 3533 PRINSIP PERHUBUNGAN Bab III Universiti Teknologi Malaysia 1 Pengenalan Selain daripada teknik pemodulatan amplitud, terdapat juga teknik lain yang menggunakan isyarat memodulat untuk mengubah
( 2 ( 1 2 )2 3 3 ) MODEL PT3 MATEMATIK A PUSAT TUISYEN IHSAN JAYA = + ( 3) ( 4 9 ) 2 (4 3 4 ) 3 ( 8 3 ) ( 3.25 )
(1) Tentukan nilai bagi P, Q, dan R MODEL PT MATEMATIK A PUSAT TUISYEN IHSAN JAYA 1 P 0 Q 1 R 2 (4) Lengkapkan operasi di bawah dengan mengisi petak petak kosong berikut dengan nombor yang sesuai. ( 1
Bab 1 Mekanik Struktur
Bab 1 Mekanik Struktur P E N S Y A R A H : D R. Y E E M E I H E O N G M O H D. N O R H A F I D Z B I N M O H D. J I M A S ( D B 1 4 0 0 1 1 ) R E X Y N I R O AK P E T E R ( D B 1 4 0 2 5 9 ) J O H A N
Tegangan Permukaan. Kerja
Tegangan Permukaan Kerja Cecair lebih cenderung menyesuaikan bentuknya ke arah yang luas permukaan yang minimum. Titisan cecair berbentuk sfera kerana nisbah luas permukaan terhadap isipadu adalah kecil.
Pengantar Proses Stokastik
Bab 3: Diskrit Statistika FMIPA Universitas Islam Indonesia Ilustrasi 1 Perilaku bunuh diri kini kian menjadi-jadi. Hesti (nama sebenarnya) adalah sebuah contoh. Dia pernah melakukan percobaan bunuh diri,
TOPIK 2 : MENGGAMBARKAN OBJEK
2.1 SIMETRI Definisi paksi simetri : Satu garis lipatan pada suatu bentuk geometri supaya bentuk itu dapat bertindih tepat apabila dilipat. Sesuatu bentuk geometri mungkin mempunyai lebih daripada satu
KEKUATAN KELULI KARBON SEDERHANA
Makmal Mekanik Pepejal KEKUATAN KELULI KARBON SEDERHANA 1.0 PENGENALAN Dalam rekabentuk sesuatu anggota struktur yang akan mengalami tegasan, pertimbangan utama ialah supaya anggota tersebut selamat dari
TEORI PELUANG* TKS 6112 Keandalan Struktur. Pendahuluan
TKS 6112 Keandalan Struktur TEORI PELUANG* * www.zacoeb.lecture.ub.ac.id Pendahuluan Sebuah bangunan dirancang melalui serangkaian perhitungan yang cermat terhadap beban-beban rencana dan bangunan tersebut
BAB 4 PERENCANAAN TANGGA
BAB 4 PERENCANAAN TANGGA 4.1. Uraian Umum Tangga merupakan bagian dari struktur bangunan bertingkat yang penting sebagai penunjang antara struktur bangunan lantai dasar dengan struktur bangunan tingkat
SMJ minyak seperti yang dilakarkan dalam Rajah S2. Minyak tersebut mempunyai. bahagian hujung cakera. Dengan data dan anggapan yang dibuat:
SOALAN 1 Cakera dengan garis pusat d berputar pada halaju sudut ω di dalam bekas mengandungi minyak seperti yang dilakarkan dalam Rajah S2. Minyak tersebut mempunyai kelikatan µ. Anggap bahawa susuk halaju
BAB 3 PERENCANAAN TANGGA
BAB 3 PERENCANAAN TANGGA 3.1. Uraian Umum Semakin sedikit tersedianya luas lahan yang digunakan untuk membangun suatu bangunan menjadikan perencana lebih inovatif dalam perencanaan, maka pembangunan tidak
ADLN Perpustakaan Universitas Airlangga. Misalkan terdapat N buah besaran A µ dalam sistem koordinat {x µ } dan N
Lampiran 1 Tensor dan Operasinya Skalar,Vektor dan Tensor Misalkan terdapat N buah besaran A µ dalam sistem koordinat {x µ } dan N buah besaran A µ dalam sistem koordinat lain {x µ } dengan µ = 1, 2, 3...,
PENGEMBANGAN INSTRUMEN
PENGEMBANGAN INSTRUMEN OLEH : IRFAN (A1CI 08 007) PEND. MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS HALUOLEO KENDARI 2012 A. Definisi Konseptual Keterampilan sosial merupakan kemampuan
LABORATORIUM STATISTIK DAN OPTIMASI INDUSTRI FAKULTAS TEKNIK PROGRAM STUDI TEKNIK INDUSTRI UNIVERSITAS PEMBANGUNAN NASIONAL VETERAN JAWA TIMUR
TNR 1 space 1.15 LABORATORIUM STATISTIK DAN OPTIMASI INDUSTRI FAKULTAS TEKNIK PROGRAM STUDI TEKNIK INDUSTRI UNIVERSITAS PEMBANGUNAN NASIONAL VETERAN JAWA TIMUR LAPORAN RESMI MODUL III TNR 1 Space.0 STATISTIK
Sudut positif. Sudut negatif. Rajah 7.1: Sudut
Bab 7 FUNGSI TRIGONOMETRI Dalam bab ini kita akan belajar secara ringkas satu kelas fungsi penting untuk penggunaan dipanggil fungsi trigonometri Fungsi trigonometri pada mulana timbul dalam pengajian
Ciri-ciri Taburan Normal
1 Taburan Normal Ciri-ciri Taburan Normal Ia adalah taburan selanjar Ia adalah taburan simetri Ia adalah asimtot kepada paksi Ia adalah uni-modal Ia adalah keluarga kepada keluk Keluasan di bawah keluk
Klasifikasi bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua
Matematika, 1999, Jilid 15, bil. 1, hlm. 37 43 c Jabatan Matematik, UTM. Klasifikasi bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua Nor Haniza Sarmin Jabatan Matematik, Fakulti
L A M P I R A N. Universitas Sumatera Utara
L A M P I R A N LAMPIRAN I PENILAIAN POSTUR KERJA AKTUAL Postur Kerja Memindahkan Biscuit ke Mesin Timbang Manual Tabel A Tabel B Bagian Tubuh Skor Bagian Tubuh Skor Lengan Atas 1 Batang Tubuh 2 Lengan
STRUKTUR BAJA 2 TKS 1514 / 3 SKS PROGRAM STUDI TEKNIK SIPIL UNIVERSITAS JEMBER
STRUKTUR BAJA 2 TKS 1514 / 3 SKS PROGRAM STUDI TEKNIK SIPIL UNIVERSITAS JEMBER Winda Tri Wahyuningtyas Gati Annisa Hayu Plate Girder Plate girder adalah balok besar yang dibuat dari susunan yang disatukan
MA4181 PENGANTAR PROSES STOKASTIK Bab 2 Peluang dan Eks
MA4181 PENGANTAR PROSES STOKASTIK Bab 2 Peluang dan SMART AND STOCHASTIC MA4181 PENGANTAR PROSES STOKASTIK Bab 2 Peluang dan SMART AND STOCHASTIC Ilustrasi Fungsi Peluang Bersama Peluang Bersama - Diskrit
MODUL 3 : KERTAS 2 Bahagian A [40 markah] (Jawab semua soalan dalam bahagian ini)
MODUL 3 [Kertas 2]: MATEMATIK TAMBAHAN JPNK 2015 Muka Surat: 1 1. Selesaikan persamaan serentak yang berikut: MODUL 3 : KERTAS 2 Bahagian A [40 markah] (Jawab semua soalan dalam bahagian ini) 2x y = 1,
PERENCANAAN JALAN ALTERNATIF & PERKERASAN LENTUR TANJUNG SERDANG KOTABARU,KALIMANTAN SELATAN KM KM 7+000
PERENCANAAN JALAN ALTERNATIF & PERKERASAN LENTUR TANJUNG SERDANG KOTABARU,KALIMANTAN SELATAN KM 4+000 KM 7+000 LATAR BELAKANG TUJUAN DAN BATASAN MASALAH METODOLOGI PERENCANAAN HASIL Semakin meningkatnya
SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM. MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JUMLAH
72/1 NAMA :. TINGKATAN : MATEMATIK TAMBAHAN Kertas 1 September 201 2 Jam SMK SERI MUARA, 6100 BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JANGAN BUKA KERTAS
CADASTRE SURVEY (SGHU 2313)
CADASTRE SURVEY (SGHU 2313) WEEK 8-ADJUSTMENT OF OBSERVED DATA SR DR. TAN LIAT CHOON 07-5530844 016-4975551 1 OUTLINE Accuracy of field observations Misclosure in cadastre survey Bearing ('m' and 'c' correction
Kuliah 4 Rekabentuk untuk kekuatan statik
4-1 Kuliah 4 Rekabentuk untuk kekuatan statik 4.1 KEKUATAN STATIK Beban statik merupakan beban pegun atau momen pegun yang bertindak ke atas sesuatu objek. Sesuatu beban itu dikatakan beban statik sekiranya
Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua nilai yang mungkin bagi X.
BAB 8 : TABURAN KEBARANGKALIAN Sesi 1 Taburan Binomial A. Pembolehubah rawak diskret Contoh Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua
Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua nilai yang mungkin bagi X.
BAB 8 : TABURAN KEBARANGKALIAN Sesi 1 Taburan Binomial A. Pembolehubah rawak diskret Contoh Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua
Pembinaan Homeomorfisma dari Sfera ke Elipsoid
Matematika, 003, Jilid 19, bil., hlm. 11 138 c Jabatan Matematik, UTM. Pembinaan Homeomorfisma dari Sfera ke Elipsoid Liau Lin Yun & Tahir Ahmad Jabatan Matematik, Fakulti Sains Universiti Teknologi Malasia
Unit PENGENALAN KEPADA LITAR ELEKTRIK OBJEKTIF AM OBJEKTIF KHUSUS
PENGENALAN KEPADA LITAR ELEKTRIK OBJEKTIF AM Memahami konsep-konsep asas litar elektrik, arus, voltan, rintangan, kuasa dan tenaga elektrik. Unit OBJEKTIF KHUSUS Di akhir unit ini anda dapat : Mentakrifkan
ALIRAN BENDALIR UNGGUL
Bab 2 ALIRAN BENDALIR UNGGUL 2.1 Gerakan Zarah-zarah Bendalir Untuk analisis matematik gerakan bendalir, dua pendekatan biasanya digunakan: 1. Kaedah Lagrangian (a) Kajian pola aliran SATU zarah individu
EEU104 - Teknologi Elektrik - Tutorial 11; Sessi 2000/2001 Litar magnet
UNIVERSITI SAINS MALAYSIA PUSAT PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK EEU104 - Teknologi Elektrik - Tutorial 11; Sessi 2000/2001 Litar magnet 1. Satu litar magnet mempunyai keengganan S = 4 x
Disediakan oleh Guru Matematik Tingkatan 4 GEORGE DAVID
Disediakan oleh Guru Matematik Tingkatan 4 GEORGE DAVID 1.1.15 MATHEMATIK TINGKATAN 4 TAHUN 2015 KANDUNGAN MUKA SURAT 1. Bentuk Piawai 3 2. Ungkapan & Persamaan Kuadratik 4 3. Sets 5 Penggal 1 4 Penaakulan
PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2005
3472/2 Matematik Tambahan Kertas 2 September 2005 2½ jam MAKTAB RENDAH SAINS MARA 3472/2 PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2005 MATEMATIK TAMBAHAN Kertas 2 Dua jam tiga puluh minit 3 4 7 2
Jawab semua soalan. P -1 Q 0 1 R 2
Tunjukkan langkah langkah penting dalam kerja mengira anda. Ini boleh membantu anda untuk mendapatkan markah. Anda dibenarkan menggunakan kalkulator saintifik. 1. (a) Tentukan nilai P, Q dan R Jawab semua
Teorem Titik Tetap Pemetaan 2 Mengecut Pada Ruang 2 Metrik
Matematika, 1999, Jilid 15, bil. 2, hlm. 135 141 c Jabatan Matematik, UTM. Teorem Titik Tetap Pemetaan 2 Mengecut Pada Ruang 2 Metrik Mashadi Jurusan Matematika Universitas Riau Kampus Bina Widya Panam
Perubahan dalam kuantiti diminta bagi barang itu bergerak disepanjang keluk permintaan itu.
BAB 3 : ISI RUMAH SEBAGAI PENGGUNA SPM2004/A/S3 (a) Rajah tersebut menunjukkan keluk permintaan yang mencerun ke bawah dari kiri ke kanan. Ia menunjukkan hubungan negatif antara harga dengan kuantiti diminta.
LITAR ARUS ULANG ALIK (AU)
TA AUS UANG AK (AU) TA AUS UANG AK (AU) OBJEKTF AM Memahami litar asas arus Ulang alik dan litar sesiri yang mengandungi, dan. Unit OBJEKTF KHUSUS Di akhir unit ini anda dapat : Menjelaskan bahawa dalam
Daftar notasi. jarak s 2, mm 2. lebar dari muka tekan komponen struktur, mm.
LAMPIRAN 467 Daftar notasi E c = modulus elastisitas beton, MPa. Es = modulus elastisitas baja tulangan non-prategang, MPa. f c = kuat tekan beton yang disyaratkan pada umur 28 hari, MPa. h = tinggi total
BAB III PERENCANAAN DAN GAMBAR
digilib.uns.ac.id 7 BAB III PERENCANAAN DAN GAMBAR 3.1. Skema dan Prinsip Kerja Alat Gambar 3.1. Meja kerja portabel. Prinsip kerja dari meja kerja portabel ini adalah meja kerja yang mempunyai massa yang
BAB III PERHITUNGAN TANGGA DAN PELAT. Gedung Kampus di Kota Palembang yang terdiri dari 11 lantai tanpa basement
BAB III PERHITUNGAN TANGGA DAN PELAT 3.1. Analisis Beban Gravitasi Beban gravitasi adalah beban ang bekerja pada portal dan berupa beban mati serta beban hidup. Bangunan ang akan dianalisis pada penulisan
Kuasa Dua Tensor Yang Tak Abelan bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua
Matematika, 1999, Jilid 15, bil., hlm. 143 156 c Jabatan Matematik, UTM. Kuasa Dua Tensor Yang Tak Abelan bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua Nor Haniza Sarmin Jabatan
FUNGSI P = {1, 2, 3} Q = {2, 4, 6, 8, 10}
FUNGSI KERTAS 1 P = {1,, 3} Q = {, 4, 6, 8, 10} 1. Berdasarkan maklumat di atas, hubungan P kepada Q ditakrifkan oleh set pasangan bertertib {(1, ), (1, 4), (, 6), (, 8)}. Nyatakan (a) imej bagi 1, (b)
KEMENTERIAN PELAJARAN MALAYSIA
KEMENTERIAN PELAJARAN MALAYSIA DOKUMEN STANDARD PRESTASI MATEMATIK TINGKATAN 2 FALSAFAH PENDIDIKAN KEBANGSAAN Pendidikan di Malaysia adalah satu usaha berterusan ke arah memperkembangkan lagi potensi individu
Pemerihalan Data. Pemerihalan Data. Sukatan kecenderungan memusat. Pengenalan. Min. Min 1/14/2011
Pemerihalan Data Pemerihalan Data PM DR KMISH OSMN Sukatan kecenderungan memusat Sukatan kedudukan Sukatan serakan Sukatan serakan relatif Ukuran korelasi G603 1 G603 Pengenalan Mengeluarkan maklumat daripada
SESI: MAC 2018 DSM 1021: SAINS 1 DCV 2 PENSYARAH: EN. MUHAMMAD AMIRUL BIN ABDULLAH
SESI: MAC 2018 DSM 1021: SAINS 1 DCV 2 PENSYARAH: EN. MUHAMMAD AMIRUL BIN ABDULLAH TOPIK 1.0: KUANTITI FIZIK DAN PENGUKURAN COURSE LEARNING OUTCOMES (CLO): Di akhir LA ini, pelajar akan boleh: CLO3: Menjalankan
Latihan PT3 Matematik Nama:.. Masa: 2 jam. 1 a) i) Buktikan bahawa 53 adalah nombor perdana. [1 markah]
Latihan PT3 Matematik Nama:.. Masa: 2 jam a) i) Buktikan bahawa 53 adalah nombor perdana. [ markah] ii) Berikut adalah tiga kad nombor. 30 20 24 Lakukan operasi darab dan bahagi antara nombor-nombor tersebut
gram positif yang diuji adalah Bacillus subtilis, Staphylococcus aureus ATCC 25923,
3.2.2 Penskrinan aktiviti antimikrob Ekstrak metanol sampel Cassia alata L. dan Cassia tora L. dijalankan penskrinan aktiviti antimikrob dengan beberapa jenis mikrob yang patogenik kepada manusia seperti
DAFTAR ISI. Halaman Judul Pengesahan Persetujuan Persembahan Abstrak Abstact Kata Pengantar
DAFTAR ISI Halaman Judul i Pengesahan ii Persetujuan iii Persembahan iv Abstrak v Abstact vi Kata Pengantar vii Daftar Isi viii Daftar Tabel xi Daftar Gambar xii Daftar Lampiran xiii Notasi dan Singkatan
JAWAPAN. = (a + 2b) (a b) = 3b Jujukan ini bukan J.A. sebab beza antara sebarang dua sebutan berturutan adalah tidak sama. 3. d 1 = T 2 T 1 =
JAWAPAN BAB : JANJANG. A. d T T ( ) ( ) d T T ( ) Jujukan ini ialah J.A. sebab beza antara sebarang dua sebutan berturutan adalah sama, iaitu.. d T T (a b) (a + b) b d T T (a + b) (a b) b Jujukan ini bukan
BAB V DESAIN TULANGAN STRUKTUR
BAB V DESAIN TULANGAN STRUKTUR 5.1 Output Penulangan Kolom Dari Program Etabs ( gedung A ) Setelah syarat syarat dalam pemodelan struktur sudah memenuhi syarat yang di tentukan dalam peraturan SNI, maka
1 Bahan manakah yang TIDAK merupakan makromolekul (molekul raksasa)? 2 Bahan berikut merupakan oligomer bagi hasil pempolimeran etilena (etena).
ahagian 1 ahan manakah yang TIK merupakan makromolekul (molekul raksasa)? selulosa kanji getah asli garam biasa 2 ahan berikut merupakan oligomer bagi hasil pempolimeran etilena (etena). dekana sikloheksena
ELEKTRIK KEMAHIRAN TEKNIKAL : BAB 1
MAKTAB RENDAH Add SAINS your company MARA BENTONG slogan Bab 1 ELEKTRIK KEMAHIRAN TEKNIKAL : BAB 1 LOGO Kandungan 1 Jenis Litar Elektrik 2 Meter Pelbagai 3 Unit Kawalan Utama 4 Kuasa Elektrik 1 1.1 Jenis
LITAR ELEKTRIK 1 EET101/4. Pn. Samila Mat Zali
LITAR ELEKTRIK 1 EET101/4 Pn. Samila Mat Zali STRUKTUR KURSUS Peperiksaan Akhir : 50% Ujian teori : 10% Mini projek : 10% Amali/praktikal : 30% 100% OBJEKTIF KURSUS Mempelajari komponen-komponen utama
BAB 2 PEMODULATAN AMPLITUD
BAB MODULATAN LITUD enghantaran iyarat yang engandungi akluat elalui atu aluran perhubungan eerlukan anjakan frekueni iyarat akluat kepada julat frekueni yang euai untuk penghantaran - roe ini diapai elalui
Keterusan dan Keabadian Jisim
Pelajaran 8 Keterusan dan Keabadian Jisim OBJEKTIF Setelah selesai mempelajari Pelajaran ini anda sepatutnya dapat Mentakrifkan konsep kadar aliran jisim Mentakrifkan konsep kadar aliran Menerangkan konsep
LATIHAN. PENYUSUN: MOHD. ZUBIL BAHAK Sign. : FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA SKUDAI JOHOR
1. a) Nyatakan dengan jelas Prinsip Archimedes tentang keapungan. b) Nyatakan tiga (3) syarat keseimbangan STABIL jasad terapung. c) Sebuah silinder bergaris pusat 15 cm dan tinggi 50 cm diperbuat daripada
2.1 Pengenalan. Untuk isyarat berkala, siri Fourier digunakan untuk mendapatkan spektrum frekuensi dalam bentuk spektrum garisan.
. JELMAAN FOURIER DAN PENGGUNAANNYA. Pengenalan Unuk isyara berkala, siri Fourier digunakan unuk mendapakan spekrum frekuensi dalam benuk spekrum garisan. Unuk isyara ak berkala, garisan-garisan spekrum
BAB 2 KEAPUNGAN DAN HIDROSTATIK
BAB 2 KEAPUNGAN DAN HIDROSTATIK 2.1 Hukum Keapungan Archimedes Sebuah badan yang terendam di air ditindak oleh beberapa daya. Pertama ialah berat atau jisim badan itu sendiri yang dianggap bertindak ke
Keapungan. Objektif. Pendahuluan
Pelajaran 6 Pelajaran 6 Keapungan Ojektif Setelah hais mempelajari pelajaran ini, anda dapat Mentakrifkan Prinsip Archimedes Mentakrifkan rumus untuk pusat meta jasad terapung Memuat analisis mencari tinggi
BAB 4 PERENCANAAN TANGGA
BAB 4 PERENCANAAN TANGGA 4.1. Dasar Perencanaan 4.1.1. Gambaran Umum Gambar 4.1. Tampak Atas Rencana Tangga Gambar 4.. Detail Rencana Tangga 8 9 4.1.. Identifikasi Data dari perencanaan tangga yakni :