ΕΙΣΗΓΗΣΗ. Από τον Γιώργο Σ. Ταςςόπουλο. Επίτιμο Σχολικό Σφμβουλο Μαθηματικών. ΘΕΜΑ: Η Μαθηματική Λογική ωσ εργαλείο ζκφραςησ και κατανόηςησ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΙΣΗΓΗΣΗ. Από τον Γιώργο Σ. Ταςςόπουλο. Επίτιμο Σχολικό Σφμβουλο Μαθηματικών. ΘΕΜΑ: Η Μαθηματική Λογική ωσ εργαλείο ζκφραςησ και κατανόηςησ"

Transcript

1 ΕΙΣΗΓΗΣΗ Από τον Γιώργο Σ. Ταςςόπουλο Επίτιμο Σχολικό Σφμβουλο Μαθηματικών. ΘΕΜΑ: Η Μαθηματική Λογική ωσ εργαλείο ζκφραςησ και κατανόηςησ των Μαθηματικών του Λυκείου. (Ι) Στθ διδαςκαλία των Μακθματικϊν ςτο Γυμνάςιο, λογικό είναι να υπάρχει μια χαλαρότθτα ςτισ εκφράςεισ και μια ανοχι ςε ελλιπϊσ κακοριςμζνεσ ζννοιεσ. Στο Λφκειο όμωσ κα πρζπει να εκίςουμε τουσ μακθτζσ ςτθν πιο αυςτθρι προςζγγιςθ ακόμθ και με αναδρομζσ ςε γνωςτζσ, πλθμμελϊσ διατυπωμζνεσ προτάςεισ του Γυμναςίου. Ζχουμε διαπιςτϊςει ότι ςτθν πλειοψθφία τουσ οι μακθτζσ ςυγχζουν τισ άκρωσ απαραίτθτεσ ζννοιεσ «πρζπει» και «αρκεί», «αναγκαίο» και «ικανό», κακϊσ και μερικζσ αποδεικτικζσ μεκόδουσ όπωσ π.χ. τθν «Απαγωγι ςε άτοπο» με τθν «αντικετοαντιςτροφι» (Ακόμθ και ςτα ςχολικά βιβλία δεν τονίηεται ςαφϊσ θ αντιδιαςτολι). Οι ςωςτζσ εκφράςεισ ςε μια αποδεικτική διαδικαςία. Για να δείξουμε κάποια πρόταςθ δεν κα λζμε τι πρζπει αλλά τι αρκεί να αποδείξουμε. Π.χ. Για τα τρίγωνα Τ, Τϋ και για τα εμβαδά τουσ (Τ) και (Τϋ) θ ζκφραςθ «Για να είναι: Τ= Τϋ πρζπει (Τ)=(Τϋ)» ςθμαίνει: Τ= Τϋ (Τ)=( Τϋ) (). Θ αλικεια όμωσ τθσ (Τ)=( Τϋ) δεν εξαςφαλίηει τθν αλικεια τθσ Τ= Τϋ. Θ ζκφραςθ: Για να είναι (Τ)= (Τϋ) αρκεί Τ= Τϋ ςθμαίνει (Τ)= (Τϋ) Τ= Τϋ, ουςιαςτικά πρόκειται για τθν ίδια ςυνεπαγωγι (). Θ αλικεια όμωσ τθσ Τ= Τϋ εξαςφαλίηει τθν αλικεια τθσ (Τ)= (Τϋ). Για τθν αλικεια τθσ (Τ)= (Τϋ) λοιπόν θ ιςοδυναμία (Τ)= (Τϋ) Τ= Τϋ που ςυνικωσ χρθςιμοποιείται (κακϊσ), ςτθν περίπτωςι μασ και ψευδισ είναι και περιττι (χρειαηόμαςτε μόνο τθν (Τ)= (Τϋ) Τ= Τϋ). Αλλά και ςτθν αλθκι ιςοδυναμία (Τ)= (Τϋ) αυ α = αϋυ αϋ, θ ςυνεπαγωγι

2 (Τ)= (Τϋ) αυ α = αϋυ αϋ, είναι περιττι. Ανάλογα: x,y,αr,αx=αy x=y (ψευδζσ), ενϊ αx=αy x=y (αλθκζσ). Προςοχή: Αν κζλουμε να δείξουμε αx=αy κα ποφμε απλϊσ αρκεί x=y δθλαδι αx=αy x=y. Χωρίσ ποςοδείκτη θ πρϊτθ ςυνεπαγωγι δεν είναι πρόταςη (άλλοτε αλθκισ, άλλοτε ψευδισ). Αφού αληθεύει η πρόταςη «x,y,αr, x=y αx=αy» θα αληθεύει και η πρόταςη «x,y,αr, x=y αx=αy». Μποροφμε λοιπόν τότε με ςυμφωνία να παραλείπουμε τον ποςοδείκτθ, υπονοϊντασ το () και να γράφουμε απλϊσ: «Αν x,y,αr,τότε x=y αx=αy», όπωσ βουβά ςυμβαίνει ςτθν πράξθ. Όμοια: Αφοφ αλθκεφει θ πρόταςθ «xr, x +1>0» κα αλθκεφει και θ πρόταςθ «xr, x +1>0». Μποροφμε λοιπόν να γράφουμε απλοφςτερα: «Αν xr, τότε x +1>0». Θ ζκφραςθ, «αν xr τότε x 3 +1>0» δεν είναι πρόταςθ, όπωσ και θ ζκφραςθ: «Αν x,y,αr τότε αx=αy x=y». Είναι ςημαντικό να κατανοηθοφν οι ζννοιεσ αναγκαία ςυνθήκη και ικανή ςυνθήκη. Στθ ςυνεπαγωγι p q, λζμε ότι θ q είναι αναγκαία ςυνκικθ για να ιςχφει θ p. Δθλαδι χωρίσ τθν q δεν ιςχφει θ p. Π.χ. xr, x> x >4 (αλθκισ). Θ x >4 λοιπόν είναι αναγκαία ςυνκικθ για να ιςχφει θ x>, διότι αν x 4 τότε αποκλείεται να είναι x>. Εξάλλου θ p λζμε ότι είναι ικανι ςυνκικθ για τθν q. Όμωσ μπορεί να ιςχφει θ q χωρίσ να ιςχφει θ p. Π.χ. xr, x>6 x>4 (ιςοδφναμα x>4 x>6) (αλθκισ). Όμωσ πικανόν να ιςχφει θ x>4 χωρίσ να ιςχφει θ x>6. Π.χ. x=5 ι x= 9 11 ι x= κ.λ.π. Αποςαφήνιςη Αντιδιαςτολή δφο βαςικών μεθόδων. 1) Απαγωγή ςε άτοπο: Αν θ πρόταςθ Q δεν προκφπτει εφκολα από προθγοφμενεσ, τότε καταφεφγουμε ςτο ότι θ Q ιςοδυναμεί (ζχει τον ίδιο

3 πίνακα αλικειασ) με τθν ςυνεπαγωγι: Q (r r) (1) (Νόμοσ απαγωγισ ςε άτοπο), δθλαδι καταλιγουμε ςε αντίφαςθ (άτοπο). ) Αντιθετοαντιςτροφή: Θ ςυνεπαγωγι (pq) ιςοδυναμεί με ( q p ) (Νόμοσ αντικετοαντιςτροφισ). Αν θ Q είναι θ ςυνεπαγωγι (pq) τότε θ Q δεν είναι θ q αλλά θ δθλαδι θ p q οπότε θ (1) γίνεται: (p q) (r r). Θ ςυνεπαγωγι q (r r) δεν αποδεικνφει τθν (pq) αλλά τθν q. Μποροφμε τότε να χρθςιμοποιιςουμε τθν ςυνεπαγωγι: ( q p ) p q, (αντικετοαντιςτροφι). Παραδείγματα αντιθετοαντιςτροφήσ. 1) Θ ςυνεπαγωγι Βˆ Γˆ β γ, ιςοδυναμεί με β = γ Βˆ Γˆ (απλό με χριςθ τθσ διχοτόμου ΑΔ). ) Θ ςυνεπαγωγι (μ άρτιοσ μ άρτιοσ) ιςοδυναμεί με (μ περιττόσ μ περιττόσ) που επίςθσ είναι απλι, αφοφ: μ περιττόσ μ =κ+1 μ =(κ+1) μ = 4κ +4κ+1 μ = (κ +κ)+1 μ =λ+1 περιττόσ με μ, κ, κ +κ=λη. Παραδείγματα απαγωγήσ ςε άτοπο. 1) Να αποδειχκεί θ πρόταςθ: Q. Ζςτω Q, δθλαδι με Μ.Κ.Δ.(μ, ν)=1. Τότε = μ =ν μ=κ (κ) =ν ν =κ ν=λ Μ.Κ.Δ.(μ, ν), ενϊ Μ.Κ.Δ.(μ, ν)=1< (άτοπο), όπου κ, λ, μ, νν*. ) Για κάκε τριάδα ευκειϊν (ε 1 ), (ε ), (δ) ιςχφει θ ςυνεπαγωγι: ( 1) //( ) {θ (δ) τζμνει τθν (ε )}. ( ) έ ( 1) Απόδειξθ: Ζςτω ότι: ( 1) //( ) και {θ (δ) δεν τζμνει τθν (ε )}. Τότε κα ( ) έ ( 1) ζχουμε (δ) //(ε ) ι (δ) (ε ). Αν (δ) //(ε ), τότε ζχουμε από το Μ δφο παράλλθλεσ ςτθν (ε ), άτοπο.

4 Αν (δ) (ε ), τότε θ (ε ), δθλαδι θ (δ), τζμνει τθν (ε 1 ),ενϊ (ε )//(ε 1 ), άτοπο. Παρατήρηςη: Το επικίνδυνο ς αυτζσ τισ περιπτϊςεισ (pq) είναι να μθν διατυπωκεί ςωςτά θ q. Στο προθγοφμενο παράδειγμα θ περίπτωςθ (δ) (ε ), ςχεδόν ςε όλα τα βιβλία παραλείπεται. Ανάλογα πρζπει να τονιςτεί ότι θ μεταβατικι ιδιότθτα τθσ παραλλθλίασ δεν ιςχφει, δθλαδι θ ςυνεπαγωγι ( 1) //( ) ( 1) //( 3) δεν ιςχφει για κάκε τριάδα ευκειϊν (ε 1 ), (ε ), (ε 3 ), αφοφ ( ) //( 3) πικανόν (ε 1 ) (ε 3 ). Κίνδυνοι που ελλοχεφουν ςτισ ερωτήςεισ Σωςτοφ Λάθουσ. (ΙΙ) Θεωροφν ταυτόςθμεσ τισ ζννοιεσ «αδφνατθ εξίςωςθ» και «εξίςωςθ που δεν ορίηεται» κακϊσ και τισ ζννοιεσ «ψευδισ πρόταςθ» και «ζκφραςθ που δεν ζχει νόθμα» π.χ.(0x=5 και -x 1 x ),( 5<0 και - 5.). Ζκφραςθ τθσ μορφισ x x κεωρείται «ψευδισ πρόταςθ» ενϊ δεν είναι καν πρόταςθ, αλλά προταςιακόσ τφποσ. Επίςθσ για παράδειγμα ςτο βιβλίο τθσ Ά Γυμναςίου ηθτείται από τουσ μακθτζσ να χαρακτθρίςουν ωσ αλθκι ι ψευδι μια ιςότθτα τθσ μορφισ: αααα=α 3 (1). Το αναμενόμενο από τουσ ςυγγραφείσ είναι να απαντιςουν ότι θ (1) είναι ψευδισ. Όμωσ για α{1,0} είναι προφανϊσ αλθκισ. Σε κζμα εξετάςεων Λυκείου ηθτικθκε να χαρακτθρίςουν ωσ αλθκι ι ψευδι τθ ςυνεπαγωγι: (α +β =0 α = 0 ι β = 0). Ο εξεταςτισ βζβαια τθ κεϊρθςε ψευδι διότι το αλθκζσ τουσ είπε, είναι: (α +β =0 α = 0 και β = 0). Δεν παρατιρθςε όμωσ ότι: (α=0 και β=0) (α=0 ι β=0). (Αν ιςχφει θ πρόταςθ: Ο (χ) είναι καθηγητήσ και δικηγόροσ τότε ιςχφει προφανϊσ και θ πρόταςθ: Ο (χ) είναι καθηγητήσ ή δικηγόροσ).

5 (ΙΙΙ) Πρζπει να γίνουν ςαφείσ και κατανοθτζσ οι διαδικαςίεσ εφρεςθσ και απόδειξθσ. Διαδικαςίεσ εφρεςησ Η Μζθοδοσ Ανάλυςησ Σφνθεςησ ωσ μια Ευρετική διαδικαςία και αντιδιαςτολή από την Αναλυτική Μζθοδο απόδειξησ (Μζθοδο του αρκεί). Γεωμετρικό πρόβλημα Αντιςτοιχία Γεωμετρικοφ με Αλγεβρικό πρόβλημα. Να καταςκευαςτεί τρίγωνο ΑΒΓ με ΑΒ = γ, ΑΓ = β, ˆ = ωˆ, όπου γ, β, ωˆ δοςμζνα. 1 ο ςτάδιο (Ανάλυςη). Ζςτω ΑΒΓ τρίγωνο με τισ παραπάνω ιδιότθτεσ. Στθν πλευρά Γχ γωνίασ χ ˆ y = ωˆ ορίηεται το Α ϊςτε ΓΑ = β, οπότε πλζον το Β κα είναι ςθμείο τομισ τθσ Γy με τον κφκλο (Α, γ). ο ςτάδιο (ςφνθεςη ή ζλεγχοσ περιοριςμών). Ο περιοριςμόσ εδϊ είναι όλεσ οι καταςκευζσ να γίνονται με κανόνα και διαβιτθ. ωˆ Πικανόν να κζλαμε ˆ = ι ΑΓ = 3 που δεν καταςκευάηονται εν γζνει. 3 3 ο ςτάδιο (Απόδειξη Διερεφνηςη) επζχει κζςθ επαλικευςθσ. Για να ζχουμε λφςθ πρζπει γαθ = β θμω = β θμ(180 0 ωˆ ). Αν 90 0 < ωˆ < τότε το Βϋ απορρίπτεται. Αν 0 0 < ωˆ 90 0 τότε ζχουμε το πολφ λφςεισ. Αν γ < β θμω, δεν ζχουμε λφςθ. Αντίςτοιχο Αλγεβρικό πρόβλημα Να λυκεί ςτο Q θ εξίςωςθ:

6 - x = 3x (1). 1 ο ςτάδιο (επζχει κζςθ ανάλυςθσ): Ζςτω x 0 μια ρίηα τθσ (1). Τότε: x 0 και - x 0 = 3x 0 (). Αλλά: () x 0 = (3x 0 ) 9x 0 11x 0 + = 0 x 0 {1, 9 }. ο ςτάδιο: (ζλεγχοσ περιοριςμϊν αντίςτοιχο τθσ ςφνκεςθσ). Ο περιοριςμόσ εδϊ είναι x 0 Q. Πικανόν να βρίςκαμε x 0 = οπότε: x 0 = 4 και x 0 <0 x 0 = - Q. 3 ο ςτάδιο (Επαλήθευςη) επζχει κζςθ Απόδειξθσ Διερεφνθςθσ. Για να ζχουμε λφςθ πρζπει x 0. Αν x 0 = 1, επαλθκεφεται θ (1). Αν x 0 = 9, δεν επαλθκεφεται θ (1). Στθν εξίςωςθ x 8 3x (i), για τθν τιμι x 0 =3 που επαλθκεφει τθν 3 x = (83x) 3 δεν κα ποφμε ότι θ (i) δεν επαλθκεφεται, αλλά ότι δεν ζχει καν νόθμα, αφοφ x 0 = - 1 < 0, όπωσ ακριβϊσ το Β ϋγy, ςτο αντίςτοιχο γεωμετρικό πρόβλθμα. Στθν παραπάνω διαδικαςία (Ανάλυςθ Σφνκεςθ) ι ςαφζςτερα (Ευκφ Αντίςτροφο) καταφεφγουμε βζβαια, όταν δεν μποροφμε θ δε ςυμφζρει να προςδιορίςουμε το ηθτοφμενο αντικείμενο (άγνωςτο τρίγωνο ι αρικμό ι ςυνάρτθςθ κ.λ.π.) με ιςοδυναμίεσ, που είναι το ςφνθκεσ. Διαδικαςίεσ απόδειξησ Για να αποδείξουμε μια πρόταςθ π.χ. τθν κοινότοπθ: xr, x + 1 x (1) δεν κάνουμε Ανάλυςθ (όπωσ ςτθ Γεωμετρία) δθλαδι με τθν ζννοια: Ζςτω ότι ιςχφει θ (1). Τότε: (1) xr, x + 1 x 0 xr, (x 1) 0 (), ϊςτε να διαπιςτϊςουμε ότι θ () ιςχφει, διότι θ () είναι αναγκαία ςυνκικθ

7 τθσ (1) και πικανόν όχι ικανι. Η Αναλυτική μζθοδοσ είναι η μζθοδοσ του αρκεί που μασ οδθγεί φυςιολογικά ςτθν αφετθρία τθσ απόδειξθσ, δθλαδι ςε μια ικανι ςυνκικθ για τθν (1). Γράφουμε λοιπόν: Για να ιςχφει θ (1), αρκεί xr, x + 1 x 0 (), δθλαδι (1) () και για να ιςχφει θ (), αρκεί: xr, (x 1) 0 (3), δθλαδι () (3). Θ (3) όμωσ ιςχφει. Άρα ιςχφουν και οι (), (1). Όταν λζμε ότι για να ιςχφει θ: (1), αρκεί να ιςχφει θ 3 3α+β 6γ (), δεν εννοοφμε ότι από τθν (1) με απαλοιφι παρονομαςτϊν καταλιγουμε ςτθ (), αλλά ότι από τθ () διαιρϊντασ και τα δφο μζλθ τθσ με 6 καταλιγουμε ςτθν (1). Διαπιςτϊνουμε τελικά ότι: Αν γράψουμε αντ αυτοφ τισ ιςοδυναμίεσ: (1) () (3), τότε οι ςυνεπαγωγζσ: (1) () (3) είναι περιττζσ και ςε άλλθ περίπτωςθ (όπωσ θ ακόλουκθ) πικανόν να μθν ιςχφουν, οπότε αποτελοφν ρίςκο, αν δεν ελεγχκεί θ ιςχφ τουσ. Παράδειγμα Για κάκε x, yr, ιςχφει θ ςυνεπαγωγι: x+ y x + y. Απόδειξη: Με βάςθ τθ γνωςτι ανιςότθτα: x + y 1 (x+1), για να ιςχφει θ x + y (1), αρκεί 1 να ιςχφει θ (x+1) (), δθλαδι (1) (). Ομοίωσ για να ιςχφει θ (), αρκεί να ιςχφει θ (x+y) 4 (3), δθλαδι () (3). Πράγματι θ (3) προκφπτει από τθν υπόκεςθ με τετραγωνιςμό. Β τρόποσ: Θζτουμε x + y - = κ με κ0 (μετατροπι ανιςότθτασ ςε ιςότθτα) και αναγόμαςτε ςτθν ικανι ςυνκικθ: x (κ+)x + κ + 4κ+ 0 με διακρίνουςα Δ = -4κ(κ+4) 0. Βαςικι επιδίωξθ ςτο Λφκειο κα πρζπει να είναι οι γνϊςεισ που δόκθκαν ςτο Γυμνάςιο χωρίσ ςυγκεκριμζνθ διάταξθ (ενελλικτικι διαδικαςία ι ςπειροειδισ μάκθςθ) να τεκοφν ςε λογικι αλλθλουχία. Για παράδειγμα δεν μπορεί οι ιδιότθτεσ

8 των παραλλιλων να προθγοφνται τθσ ιςότθτασ τριγϊνων. Εκεί ζγινε χριςθ εννοιϊν χωρίσ ςαφι οριςμό. Εδϊ αντίκετα κα πρζπει ο οριςμόσ να είναι ςαφισ και να μθν περιζχει πρωκφςτερα ςτοιχεία π.χ. Οριςμόσ απόλυτθσ τιμισ ωσ απόςταςθσ,οφτε πλεονάηοντα ςτοιχεία π.χ. οριςμόσ ορκογωνίου ωσ παραλλθλογράμμου με όλεσ τισ γωνίεσ ορκζσ. Θζματα που εκφεφγουν των ορίων του Λυκείου καλό είναι να τονίηεται ότι γι αυτό το λόγο παραλείπεται θ απόδειξι τουσ και όχι να τα κεωροφμε εποπτικϊσ προφανι π.χ. τομι κφκλων, κεϊρθμα Bolzano κ.τ.λ.

ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΙΚΗΣ ΛΟΓΙΚΗΣ

ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΙΚΗΣ ΛΟΓΙΚΗΣ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΙΚΗΣ ΛΟΓΙΚΗΣ Λογικι πρόταςθ: Με τον όρο λογικι πρόταςθ (ι απλά πρόταςθ) ςτα μακθματικά, εννοοφμε μια ζκφραςθ με πλιρεσ νόθμα που δζχεται τον χαρακτθριςμό ι μόνο αλθκισ ι μόνο ψευδισ. Παραδείγματα:

Διαβάστε περισσότερα

ΑΝΣΙΣΡΟΦΗ ΤΝΑΡΣΗΗ. f y x y f A αντιςτοιχίηεται ςτο μοναδικό x A για το οποίο. Παρατθριςεισ Ιδιότθτεσ τθσ αντίςτροφθσ ςυνάρτθςθσ 1. Η. f A τθσ f.

ΑΝΣΙΣΡΟΦΗ ΤΝΑΡΣΗΗ. f y x y f A αντιςτοιχίηεται ςτο μοναδικό x A για το οποίο. Παρατθριςεισ Ιδιότθτεσ τθσ αντίςτροφθσ ςυνάρτθςθσ 1. Η. f A τθσ f. .. Αντίςτροφθ ςυνάρτθςθ Ζςτω θ ςυνάρτθςθ : A θ οποία είναι " ". Τότε ορίηεται μια νζα ςυνάρτθςθ, θ μζςω τθσ οποίασ το κάκε ιςχφει y. : A με Η νζα αυτι ςυνάρτθςθ λζγεται αντίςτροφθ τθσ. y y A αντιςτοιχίηεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση Συγγραφή:

Διαβάστε περισσότερα

ΦΥΕ 14 ΑΚΑΔ. ΕΤΟΣ Η ΕΡΓΑΣΙΑ. Ημερομηνία παράδοςησ: 12 Νοεμβρίου (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 10 μονάδεσ θ κάκε μία)

ΦΥΕ 14 ΑΚΑΔ. ΕΤΟΣ Η ΕΡΓΑΣΙΑ. Ημερομηνία παράδοςησ: 12 Νοεμβρίου (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 10 μονάδεσ θ κάκε μία) ΦΥΕ ΑΚΑΔ. ΕΤΟΣ 007-008 Η ΕΡΓΑΣΙΑ Ημερομηνία παράδοςησ: Νοεμβρίου 007 (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 0 μονάδεσ θ κάκε μία) Άςκηςη α) Να υπολογιςκεί θ προβολι του πάνω ςτο διάνυςμα όταν: (.

Διαβάστε περισσότερα

8 τριγωνομετρία. βαςικζσ ζννοιεσ. γ ςφω. εφω και γ. κεφάλαιο

8 τριγωνομετρία. βαςικζσ ζννοιεσ. γ ςφω. εφω και γ. κεφάλαιο κεφάλαιο 8 τριγωνομετρία Α βαςικζσ ζννοιεσ τθν τριγωνομετρία χρθςιμοποιοφμε τουσ τριγωνομετρικοφσ αρικμοφσ, οι οποίοι ορίηονται ωσ εξισ: θμω = απζναντι κάκετθ πλευρά υποτείνουςα Γ ςυνω = εφω = προςκείμενθ

Διαβάστε περισσότερα

Πλαγιογώνια Συςτήματα Συντεταγμζνων Γιϊργοσ Καςαπίδθσ

Πλαγιογώνια Συςτήματα Συντεταγμζνων Γιϊργοσ Καςαπίδθσ Πρόλογοσ το άρκρο αυτό κα δοφμε πωσ διαμορφϊνονται κάποιεσ ζννοιεσ όπωσ το εςωτερικό γινόμενο διανυςμάτων, οι ςυνκικεσ κακετότθτασ και παραλλθλίασ διανυςμάτων και ευκειϊν, ο ςυντελεςτισ διευκφνςεωσ διανφςματοσ

Διαβάστε περισσότερα

ςυςτιματα γραμμικϊν εξιςϊςεων

ςυςτιματα γραμμικϊν εξιςϊςεων κεφάλαιο 7 Α ςυςτιματα γραμμικϊν εξιςϊςεων αςικζσ ζννοιεσ Γραμμικά, λζγονται τα ςυςτιματα εξιςϊςεων ςτα οποία οι άγνωςτοι εμφανίηονται ςτθν πρϊτθ δφναμθ. Σα γραμμικά ςυςτιματα με δφο εξιςϊςεισ και δφο

Διαβάστε περισσότερα

lim x και lim f(β) f(β). (β > 0)

lim x και lim f(β) f(β). (β > 0) . Δίνεται θ παραγωγίςιμθ ςτο * α, β + ( 0 < α < β ) ςυνάρτθςθ f για τθν οποία ιςχφουν: f(α) lim (-) a και lim ( f(β)) = Να δείξετε ότι: α. f(α) < α και f(β) > β β. Αν g() = τότε θ C f και C g ζχουν ζνα

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ

Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ Λουκάσ Βλάχοσ Τμιμα Φυςικισ Α.Π.Θ. Θεςςαλονίκθ, 2014 Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ

Διαβάστε περισσότερα

α) Στο μιγαδικό επίπεδο οι εικόνεσ δφο ςυηυγϊν μιγαδικϊν είναι ςθμεία ςυμμετρικά ωσ προσ τον πραγματικό άξονα

α) Στο μιγαδικό επίπεδο οι εικόνεσ δφο ςυηυγϊν μιγαδικϊν είναι ςθμεία ςυμμετρικά ωσ προσ τον πραγματικό άξονα ΘΕΜΑ Α ΠΑΝΕΛΛΗΝΙΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ ΚΑΙ ΕΠΑΛ ΟΜΑΔΑ Β ΔΕΤΣΕΡΑ 8 ΜΑΪΟΤ ΕΞΕΣΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΣΙΚΑ ΘΕΣΙΚΗ ΚΑΙ ΣΕΧΝΟΛΟΓΙΚΗ ΚΑΣΕΤΘΤΝΗ ΤΝΟΛΟ ΕΛΙΔΩΝ: ΣΕΕΡΙ A. Ζςτω μια ςυνάρτθςθ f θ

Διαβάστε περισσότερα

Η γραφικι παράςταςθ τθσ ςυνάρτθςθσ f(x)=αx+β είναι μια ευκεία με εξίςωςθ y=αx+β θ οποία τζμνει τον άξονα των y ςτο ςθμείο Β(0,β) και ζχει κλίςθ λ=α.

Η γραφικι παράςταςθ τθσ ςυνάρτθςθσ f(x)=αx+β είναι μια ευκεία με εξίςωςθ y=αx+β θ οποία τζμνει τον άξονα των y ςτο ςθμείο Β(0,β) και ζχει κλίςθ λ=α. ε καρτεςιανό ςφςτθμα ςυντεταγμζνων Οxy δίνεται ευκεία ε. Σί ονομάηουμε : α) γωνία που ςχθματίηει θ ευκεία ε με τον άξονα xϋx; β) ςυντελεςτι διευκφνςεωσ τθσ ευκείασ ε; ΑΠΑΝΤΗΣΗ α) Παρατιρθςθ β) Παρατιρθςθ

Διαβάστε περισσότερα

1. Αν θ ςυνάρτθςθ είναι ΠΟΛΤΩΝΤΜΙΚΗ τότε το πεδίο οριςμοφ είναι το διότι για κάκε x θ f(x) δίνει πραγματικό αρικμό.

1. Αν θ ςυνάρτθςθ είναι ΠΟΛΤΩΝΤΜΙΚΗ τότε το πεδίο οριςμοφ είναι το διότι για κάκε x θ f(x) δίνει πραγματικό αρικμό. ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΑ ΝΑ ΒΡΙΚΟΤΜΕ ΣΟ ΠΕΔΙΟ ΟΡΙΜΟΤ ΤΝΑΡΣΗΗ Για να οριςκεί μια ςυνάρτθςθ πρζπει να δοκοφν δφο ςτοιχεία : Σο πεδίο οριςμοφ τθσ Α και Η τιμι τθσ f() για κάκε Α. Οριςμζνεσ φορζσ μασ δίνουν μόνο τον

Διαβάστε περισσότερα

Ένα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν:

Ένα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν: Μζθοδος Simplex Η πλζον γνωςτι και περιςςότερο χρθςιμοποιουμζνθ μζκοδοσ για τθν επίλυςθ ενόσ γενικοφ προβλιματοσ γραμμικοφ προγραμματιςμοφ, είναι θ μζκοδοσ Simplex θ οποία αναπτφχκθκε από τον George Dantzig.

Διαβάστε περισσότερα

Δείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8

Δείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8 Δείκτεσ Διαχείριςθ Μνιμθσ Βαγγζλθσ Οικονόμου Διάλεξθ 8 Δείκτεσ Κάκε μεταβλθτι ςχετίηεται με μία κζςθ ςτθν κφρια μνιμθ του υπολογιςτι. Κάκε κζςθ ςτθ μνιμθ ζχει τθ δικι τθσ ξεχωριςτι διεφκυνςθ. Με άμεςθ

Διαβάστε περισσότερα

ΝΟΕΜΒΡΙΟ Ημερομηνία: 12/11/2016 Ώρα Εξέτασης: 10:00-12:00

ΝΟΕΜΒΡΙΟ Ημερομηνία: 12/11/2016 Ώρα Εξέτασης: 10:00-12:00 ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΕΠΑΡΧΙΑΚΟ ΔΙΑΓΩΝΙΜΟ ΝΟΕΜΒΡΙΟ 016 Α ΓΤΜΝΑΙΟΤ Ημερομηνία: 1/11/016 Ώρα Εξέτασης: 10:00-1:00 ΟΔΗΓΙΕ: 1. Να λφςετε όλα τα κζματα, αιτιολογϊντασ πλιρωσ τισ απαντιςεισ ςασ.. Κάκε

Διαβάστε περισσότερα

ΚΩΝΣΑΝΣΙΝΟ ΑΛ. ΝΑΚΟ ΜΑΘΗΜΑΣΙΚΟ M.Sc ΧΟΛΙΚΟ ΤΜΒΟΤΛΟ Πτυχ. ΚΟΙΝΩΝΙΚΗ ΟΙΚΟΝΟΜΙΑ

ΚΩΝΣΑΝΣΙΝΟ ΑΛ. ΝΑΚΟ ΜΑΘΗΜΑΣΙΚΟ M.Sc ΧΟΛΙΚΟ ΤΜΒΟΤΛΟ Πτυχ. ΚΟΙΝΩΝΙΚΗ ΟΙΚΟΝΟΜΙΑ 1 ΚΩΝΣΑΝΣΙΝΟ ΑΛ. ΝΑΚΟ ΜΑΘΗΜΑΣΙΚΟ M.Sc ΧΟΛΙΚΟ ΤΜΒΟΤΛΟ Πτυχ. ΚΟΙΝΩΝΙΚΗ ΟΙΚΟΝΟΜΙΑ.ΣΙΡΚΑ 8 και ΑΝΣΤΠΑ 30100 ΑΓΡΙΝΙΟ Email: nakosk@sch.gr Σηλ 64105400 κι.69749695 ΜΕΓΙΣΑ-ΕΛΑΧΙΣΑ ΧΩΡΙ ΠΑΡΑΓΩΓΟΤ 3 ΕΙΣΑΓΩΓΗ Σα

Διαβάστε περισσότερα

Το Ρολφεδρο. Ζδρεσ: ΑΗΘΔ, ΗΘΚΕ, ΕΚΓΒ, ΔΓΚΘ, ΑΒΓΔ. Κορυφζσ: Α, Β, Γ, Δ, Ε,Η Θ, Κ. Διαγϊνιοσ: ΑΚ. Ακμζσ: ΑΒ, ΒΓ, ΓΔ, ΑΔ,.

Το Ρολφεδρο. Ζδρεσ: ΑΗΘΔ, ΗΘΚΕ, ΕΚΓΒ, ΔΓΚΘ, ΑΒΓΔ. Κορυφζσ: Α, Β, Γ, Δ, Ε,Η Θ, Κ. Διαγϊνιοσ: ΑΚ. Ακμζσ: ΑΒ, ΒΓ, ΓΔ, ΑΔ,. Το Ρολφεδρο Ζδρεσ: ΑΗΘΔ, ΗΘΚΕ, ΕΚΓΒ, ΔΓΚΘ, ΑΒΓΔ Κορυφζσ: Α, Β, Γ, Δ, Ε,Η Θ, Κ Διαγϊνιοσ: ΑΚ Ακμζσ: ΑΒ, ΒΓ, ΓΔ, ΑΔ,. Θ Ρριςματικι - Ρρίςμα οσ Οριςμόσ οσ Οριςμόσ Δίδεται μια Θ κλειςτι κυρτι πολυγωνικι γραμμι,

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Α ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ IMC (Key Stage II) 9 Μαρτίου 2016 ΧΡΟΝΟΣ: 2 ΩΡΕΣ Λύςεισ : Πρόβλημα 1 (α) Να βρείτε τθν τιμι του για να ιςχφει θ πιο κάτω ςχζςθ: (β) Ο Ανδρζασ τελειϊνει

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 11 η : Μζγιςτα και Ελάχιςτα Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 5 η : Μερικι Παράγωγοσ Ι Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Α) Ενδεικτικϋσ απαντόςεισ των θεμϊτων

Α) Ενδεικτικϋσ απαντόςεισ των θεμϊτων Πανελλόνιεσ εξετϊςεισ Γ Τϊξησ 2011 Ανϊπτυξη Εφαρμογών ςε Προγραμματιςτικό Περιβϊλλον ΘΕΜΑ Α Α) Ενδεικτικϋσ απαντόςεισ των θεμϊτων Α1. Σ/Λ 1. Σωςτι 2. Σωςτι 3. Λάκοσ 4. Λάκοσ 5. Λάκοσ Α2. Σ/Λ 1. Σωςτι 2.

Διαβάστε περισσότερα

Διάδοση θερμότητας σε μία διάσταση

Διάδοση θερμότητας σε μία διάσταση Διάδοση θερμότητας σε μία διάσταση Η θεωρητική μελζτη που ακολουθεί πραγματοποιήθηκε με αφορμή την εργαςτηριακή άςκηςη μζτρηςησ του ςυντελεςτή θερμικήσ αγωγιμότητασ του αλουμινίου, ςτην οποία διαγωνίςτηκαν

Διαβάστε περισσότερα

Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό. μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ

Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό. μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ Για τθν ανάδειξθ του κζματοσ κα λφνουμε κάποια προβλιματα

Διαβάστε περισσότερα

ΕΙΑΓΩΓΗ ΣΗ ΦΙΛΟΟΦΙΑ ΕΝΟΣΗΣΑ 6. ΕΠΙΧΕΙΡΗΜΑΣΟΛΟΓΙΑ ΚΑΙ ΛΟΓΙΚΗ

ΕΙΑΓΩΓΗ ΣΗ ΦΙΛΟΟΦΙΑ ΕΝΟΣΗΣΑ 6. ΕΠΙΧΕΙΡΗΜΑΣΟΛΟΓΙΑ ΚΑΙ ΛΟΓΙΚΗ ΕΙΑΓΩΓΗ ΣΗ ΦΙΛΟΟΦΙΑ Σομέας Ανθρωπιστικών Κοινωνικών Επιστημών και Δικαίου χολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών ΕΝΟΣΗΣΑ 6. ΕΠΙΧΕΙΡΗΜΑΣΟΛΟΓΙΑ ΚΑΙ ΛΟΓΙΚΗ Κώστας Θεολόγου ΑΔΕΙΑ ΧΡΗΗ Το παρόν

Διαβάστε περισσότερα

ΑΔΡΑΝΕΙΑ ΜΑΘΗΣΕ: ΜΑΡΙΑΝΝΑ ΠΑΡΑΘΤΡΑ ΑΝΑΣΑΗ ΠΟΤΛΙΟ ΠΑΝΑΓΙΩΣΗ ΠΡΟΔΡΟΜΟΤ ΑΝΑΣΑΙΑ ΠΟΛΤΧΡΟΝΙΑΔΟΤ ΙΩΑΝΝΑ ΠΕΝΓΚΟΤ

ΑΔΡΑΝΕΙΑ ΜΑΘΗΣΕ: ΜΑΡΙΑΝΝΑ ΠΑΡΑΘΤΡΑ ΑΝΑΣΑΗ ΠΟΤΛΙΟ ΠΑΝΑΓΙΩΣΗ ΠΡΟΔΡΟΜΟΤ ΑΝΑΣΑΙΑ ΠΟΛΤΧΡΟΝΙΑΔΟΤ ΙΩΑΝΝΑ ΠΕΝΓΚΟΤ ΑΔΡΑΝΕΙΑ ΜΑΘΗΣΕ: ΜΑΡΙΑΝΝΑ ΠΑΡΑΘΤΡΑ ΑΝΑΣΑΗ ΠΟΤΛΙΟ ΠΑΝΑΓΙΩΣΗ ΠΡΟΔΡΟΜΟΤ ΑΝΑΣΑΙΑ ΠΟΛΤΧΡΟΝΙΑΔΟΤ ΙΩΑΝΝΑ ΠΕΝΓΚΟΤ Οριςμόσ: Με τον όρο αδράνεια ςτθ Φυςικι ονομάηεται θ χαρακτθριςτικι ιδιότθτα των ςωμάτων να αντιςτζκονται

Διαβάστε περισσότερα

Αν η ςυνάρτηςη ƒ είναι ςυνεχήσ ςτο να προςδιορίςετε το α.

Αν η ςυνάρτηςη ƒ είναι ςυνεχήσ ςτο να προςδιορίςετε το α. 1 AΣΚΗΣΕΙΣ 1. Να υπολογιςθοφν τα παρακάτω όρια Ι. ΙΙ. ΙΙΙ. Ιν. ν. νι. νιι. νιιι. 2. Να βρεθοφν τα όρια Ι. ΙΙ. 3. Αν ƒ(χ)= α. Να βρείτε το πεδίο οριςμοφ Β. Να βρείτε τα όρια Ι. ΙΙ. 4. Δίνεται η ςυνάρτηςη

Διαβάστε περισσότερα

Μαθηματική Λογική και Απόδειξη

Μαθηματική Λογική και Απόδειξη Μαθηματική Λογική και Απόδειξη Σύντομο ιστορικό σημείωμα: Η πρώτη απόδειξη στην ιστορία των μαθηματικών, αποδίδεται στο Θαλή το Μιλήσιο (~600 π.χ.). Ο Θαλής απέδειξε, ότι η διάμετρος διαιρεί τον κύκλο

Διαβάστε περισσότερα

x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό.

x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό. Κωδικοποιητές Ο κωδικοποιθτισ (nor) είναι ζνα κφκλωμα το οποίο διακζτει n γραμμζσ εξόδου και το πολφ μζχρι m = 2 n γραμμζσ ειςόδου και (m 2 n ). Οι ζξοδοι παράγουν τθν κατάλλθλθ λζξθ ενόσ δυαδικοφ κϊδικα

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium V Στατιςτική Συμπεραςματολογία Ι Σημειακζσ Εκτιμήςεισ Διαςτήματα Εμπιςτοςφνησ Στατιςτική Συμπεραςματολογία (Statistical Inference) Το πεδίο τθσ Στατιςτικισ Συμπεραςματολογία,

Διαβάστε περισσότερα

ΜΑ032: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Εαρινό εξάμηνο , Διδάςκων: Γιώργοσ Γεωργίου ΕΝΔΙΑΜΕΗ ΕΞΕΣΑΗ, 21 Μαρτίου, 2012 Διάρκεια: 2 ώρεσ

ΜΑ032: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Εαρινό εξάμηνο , Διδάςκων: Γιώργοσ Γεωργίου ΕΝΔΙΑΜΕΗ ΕΞΕΣΑΗ, 21 Μαρτίου, 2012 Διάρκεια: 2 ώρεσ ΜΑ: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Εαρινό εξάμηνο -, Διδάςκων: Γιώργοσ Γεωργίου ΕΝΔΙΑΜΕΗ ΕΞΕΣΑΗ, Μαρτίου, Διάρκεια: ώρεσ ΟΝΟΜΑ: Αρ. Πολ. Σαυτ. Πρόβλημα. Θεωροφμε τα διανφςματα u =,,,, v =,,,4, w =,,,, (α) Υπολογίςτε

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 4 η : Όρια και Συνζχεια Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Παράςταςη ςυμπλήρωμα ωσ προσ 1

Παράςταςη ςυμπλήρωμα ωσ προσ 1 Δρ. Χρήστος Ηλιούδης Θζματα διάλεξησ ΣΤ1 Προςθεςη αφαίρεςη ςτο ΣΤ1 2 ή ΣΤ1 Ονομάηουμε ςυμπλιρωμα ωσ προσ μειωμζνθ βάςθ R ενόσ μθ προςθμαςμζνου αρικμοφ Χ = ( Χ θ-1 Χ θ-2... Χ 0 ) R ζναν άλλον αρικμό Χ'

Διαβάστε περισσότερα

3 ο ΓΥΜΝΑΣΙΟ ΤΡΙΚΑΛΩΝ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΑΣ Γ ΓΥΜΝΑΣΙΟΥ

3 ο ΓΥΜΝΑΣΙΟ ΤΡΙΚΑΛΩΝ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΑΣ Γ ΓΥΜΝΑΣΙΟΥ 3 ο ΓΥΜΝΑΣΙΟ ΤΡΙΚΑΛΩΝ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΑΣ Γ ΓΥΜΝΑΣΙΟΥ 1) Τίτλοσ τθσ ζρευνασ: «Ποια είναι θ επίδραςθ τθσ κερμοκραςίασ ςτθ διαλυτότθτα των ςτερεϊν ςτο νερό;» 2) Περιγραφι του ςκοποφ τθσ ζρευνασ: Η ζρευνα

Διαβάστε περισσότερα

Λαμβάνοντασ υπόψη ότι κατά την πρόςθεςη δφο δυαδικϊν ψηφίων ιςχφει: Κρατοφμενο

Λαμβάνοντασ υπόψη ότι κατά την πρόςθεςη δφο δυαδικϊν ψηφίων ιςχφει: Κρατοφμενο Αριθμητικά κυκλώματα Ημιαθροιστής (Half Adder) Ο ημιαθροιςτήσ είναι ζνα κφκλωμα το οποίο προςθζτει δφο δυαδικά ψηφία (bits) και δίνει ωσ αποτζλεςμα το άθροιςμά τουσ και το κρατοφμενο. Με βάςη αυτή την

Διαβάστε περισσότερα

Ανάλυςη κλειςτϊν δικτφων

Ανάλυςη κλειςτϊν δικτφων Ανάλυςη κλειςτϊν δικτφων Θ ανάλυςθ κλειςτϊν δικτφων ςτθρίηεται ςτθ διατιρθςθ τθσ μάηασ και τθσ ενζργειασ. Σε ζνα τυπικό βρόχο ABCDA υπάρχει ζνασ αρικμόσ από κόμβουσ, εδϊ A,B,C,D, ςτουσ οποίουσ ιςχφει θ

Διαβάστε περισσότερα

Ιδιότθτεσ πεδίων Γενικζσ.

Ιδιότθτεσ πεδίων Γενικζσ. Οι ιδιότθτεσ των πεδίων διαφζρουν ανάλογα με τον τφπο δεδομζνων που επιλζγουμε. Ορίηονται ςτο κάτω μζροσ του παρακφρου ςχεδίαςθσ του πίνακα, ςτθν καρτζλα Γενικζσ. Ιδιότθτα: Μζγεκοσ πεδίου (Field size)

Διαβάστε περισσότερα

ΕΝΟΣΗΣΑ 3: ΧΡΗΗ ΕΡΓΑΛΕΙΩΝ ΕΚΦΡΑΗ ΚΑΙ ΔΗΜΙΟΤΡΓΙΑ

ΕΝΟΣΗΣΑ 3: ΧΡΗΗ ΕΡΓΑΛΕΙΩΝ ΕΚΦΡΑΗ ΚΑΙ ΔΗΜΙΟΤΡΓΙΑ ΕΝΟΣΗΣΑ 3: ΧΡΗΗ ΕΡΓΑΛΕΙΩΝ ΕΚΦΡΑΗ ΚΑΙ Επεξεργαςτισ Κειμζνου, Μορφοποίθςθ κειμζνου, Αποκικευςθ -Ανάκτθςθ εργαςίασ, Αντιγραφι - Μεταφορά κειμζνου, Γραμματοςειρά (Font), Ειςαγωγι εικόνασ ςε κείμενο Μία από

Διαβάστε περισσότερα

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ 1. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στόχος Να γνωρίζουν οι μαθητές: να αξιοποιούν το σύμβολο της συνεπαγωγής και της ισοδυναμίας να αξιοποιούν τους συνδέσμους «ή», «και» ΕΙΣΑΓΩΓΗ Η συννενόηση μεταξύ των ανθρώπων

Διαβάστε περισσότερα

ΑΝΩΣΕΡΑ ΜΑΘΗΜΑΣΙΚΑ. Διαφορικόσ και Ολοκληρωτικόσ Λογιςμόσ Δφο ή Περιςςοτζρων Μεταβλητϊν

ΑΝΩΣΕΡΑ ΜΑΘΗΜΑΣΙΚΑ. Διαφορικόσ και Ολοκληρωτικόσ Λογιςμόσ Δφο ή Περιςςοτζρων Μεταβλητϊν ΑΝΩΣΕΡΑ ΜΑΘΗΜΑΣΙΚΑ Διαφορικόσ και Ολοκληρωτικόσ Λογιςμόσ Δφο ή Περιςςοτζρων Μεταβλητϊν 1 υναρτιςεισ Περιςςοτζρων Μεταβλθτϊν Παράδειγμα.(E.F. Dbois S =επιφάνεια ςϊματοσ W =βάροσ ςϊματοσ H =φψοσ ςϊματοσ

Διαβάστε περισσότερα

Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο του Άβακα

Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο του Άβακα Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο του Άβακα Αυτζσ οι οδθγίεσ ζχουν ςτόχο λοιπόν να βοθκιςουν τουσ εκπαιδευτικοφσ να καταςκευάςουν τισ δικζσ τουσ δραςτθριότθτεσ με το μοντζλο του Άβακα. Παρουςίαςη

Διαβάστε περισσότερα

Πειραματικι Ψυχολογία (ΨΧ66)

Πειραματικι Ψυχολογία (ΨΧ66) Πειραματικι Ψυχολογία (ΨΧ66) Διάλεξη 7 Σεχνικζσ για τθν επίτευξθ ςτακερότθτασ Πζτροσ Ροφςςοσ Μζθοδοι για την επίτευξη του ελζγχου Μζςω του κατάλλθλου ςχεδιαςμοφ του πειράματοσ (ςτόχοσ είναι θ εξάλειψθ

Διαβάστε περισσότερα

ΑΞΙΟΛΟΓΗΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ

ΑΞΙΟΛΟΓΗΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΑΞΙΟΛΟΓΗΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ Ειςαγωγή Τπάρχουν τρία επίπεδα ςτα οποία καλείςτε να αξιολογιςετε το εργαςτιριο D-ID: Νζα κζματα Σεχνολογία Διδακτικι Νέα θέματα Σο εργαςτιριο κα ειςαγάγουν τουσ ςυμμετζχοντεσ

Διαβάστε περισσότερα

Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα

Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα Περιεχόμενα Ζννοια δομισ Οριςμόσ δομισ Διλωςθ μεταβλθτϊν Απόδοςθ Αρχικϊν τιμϊν Αναφορά ςτα μζλθ μιασ δομισ Ζνκεςθ Δομισ Πίνακεσ Δομϊν Η ζννοια τθσ δομισ Χρθςιμοποιιςαμε

Διαβάστε περισσότερα

Η γλώςςα προγραμματιςμού C

Η γλώςςα προγραμματιςμού C Η γλώςςα προγραμματιςμού C Οι εντολζσ επανάλθψθσ (while, do-while, for) Γενικά για τισ εντολζσ επανάλθψθσ Συχνά ςτο προγραμματιςμό είναι επικυμθτι θ πολλαπλι εκτζλεςθ μιασ ενότθτασ εντολϊν, είτε για ζνα

Διαβάστε περισσότερα

Δ ιαγώνιςμα ς το μάθημα Ανάπτυξη Εφαρμογών ςε Προγ ραμματιςτικό Περιβάλ λον

Δ ιαγώνιςμα ς το μάθημα Ανάπτυξη Εφαρμογών ςε Προγ ραμματιςτικό Περιβάλ λον Δ ιαγώνιςμα ς το μάθημα Ανάπτυξη Εφαρμογών ςε Προγ ραμματιςτικό Περιβάλ λον Ο ν ο μ α τ ε π ώ ν υ μ ο : _ Θ Ε Μ Α 1 ο Α. Ν α χ α ρ α κ τ θ ρ ι ς τ ο φ ν ο ι α κ ό λ ο υ κ ε σ π ρ ο τ ά ς ε ι σ μ ε τ ο

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ. Φιλιοποφλου Ειρινθ

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ. Φιλιοποφλου Ειρινθ ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ Φιλιοποφλου Ειρινθ Προςθήκη νζων πεδίων Ασ υποκζςουμε ότι μετά τθ δθμιουργία του πίνακα αντιλαμβανόμαςτε ότι ζχουμε ξεχάςει κάποια πεδία. Είναι ζνα πρόβλθμα το οποίο

Διαβάστε περισσότερα

ΔΛΛΗΝΙΚΗ ΓΗΜΟΚΡΑΣΙΑ ΤΠΟΤΡΓΔΙΟ ΠΑΙΓΔΙΑ ΚΑΙ ΘΡΗΚΔΤΜΑΣΩΝ ----- Βαθμόρ Αζθαλείαρ: Να διαηηπηθεί μέσπι: Βαθ. Πποηεπαιόηηηαρ:

ΔΛΛΗΝΙΚΗ ΓΗΜΟΚΡΑΣΙΑ ΤΠΟΤΡΓΔΙΟ ΠΑΙΓΔΙΑ ΚΑΙ ΘΡΗΚΔΤΜΑΣΩΝ ----- Βαθμόρ Αζθαλείαρ: Να διαηηπηθεί μέσπι: Βαθ. Πποηεπαιόηηηαρ: ΔΛΛΗΝΙΚΗ ΓΗΜΟΚΡΑΣΙΑ ΤΠΟΤΡΓΔΙΟ ΠΑΙΓΔΙΑ ΚΑΙ ΘΡΗΚΔΤΜΑΣΩΝ ----- ΔΝΙΑΙΟ ΓΙΟΙΚΗΣΙΚΟ ΣΟΜΔΑ Π/ΘΜΙΑ & Γ/ΘΜΙΑ ΔΚΠ/Η Γ/ΝΗ ΠΟΤΓΩΝ Γ/ΘΜΙΑ ΔΚΠ/Η ΣΜΗΜΑ Α ----- Σασ. Γ/νζη: Ανδπέα Παπανδπέος 37 Σ.Κ. Πόλη: 15180 Μαπούζι

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 7 η : Σφνκετεσ Συναρτιςεισ Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Γενικά Μακθματικά ΙΙ

Γενικά Μακθματικά ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Ενότθτα 8 θ : Σειρζσ Taylor και Πεπλεγμζνεσ Συναρτιςεισ Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χριςθσ Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο)

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Ιοφνιοσ 2013 Περιεχόμενα: Ειςαγωγή... 3 1.Εθνικό Τυπογραφείο... 3 1.1. Είςοδοσ... 3 1.2. Αρχική Οθόνη... 4 1.3. Διεκπεραίωςη αίτηςησ...

Διαβάστε περισσότερα

Πολυπλέκτες. 0 x 0 F = S x 0 + Sx 1 1 x 1

Πολυπλέκτες. 0 x 0 F = S x 0 + Sx 1 1 x 1 Πολυπλέκτες Ο πολυπλζκτθσ (multipleer - ) είναι ζνα ςυνδυαςτικό κφκλωμα που επιλζγει δυαδικι πλθροφορία μιασ από πολλζσ γραμμζσ ειςόδου και τθν κατευκφνει ςε μια και μοναδικι γραμμι εξόδου. Η επιλογι μιασ

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη

Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

Λφσεις των θεμάτων ΣΕΣΑΡΣΘ 18 MAΪΟΤ 2016 ΜΑΘΘΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ (ΚΑΣΕΤΘΤΝΘ)

Λφσεις των θεμάτων ΣΕΣΑΡΣΘ 18 MAΪΟΤ 2016 ΜΑΘΘΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ (ΚΑΣΕΤΘΤΝΘ) ΑΠΟΛΤΣΗΡΙΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΘΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ (ΚΑΣΕΤΘΤΝΘ) ΣΕΣΑΡΣΘ 8 MAΪΟΤ 6 Λφσεις των θεμάτων Ζκδοση η (8/5/6, 3:) Οι ααντιςεισ

Διαβάστε περισσότερα

ΕΡΓΑΣΗΡΙΟ ΕΦΑΡΜΟΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΡΓΑΣΗΡΙΟ ΕΦΑΡΜΟΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ Στο εργαςτιριο αυτό κα δοφμε πωσ μποροφμε να προςομοιϊςουμε μια κίνθςθ χωρίσ τθ χριςθ εξειδικευμζνων εργαλείων, παρά μόνο μζςω ενόσ προγράμματοσ λογιςτικϊν φφλλων, όπωσ είναι το Calc και το Excel. Τα δφο

Διαβάστε περισσότερα

ΜΑ270: ΑΡΙΘΜΗΣΙΚΗ ΑΝΑΛΤΗ Ι Χειμερινό εξάμθνο , Διδάςκων: Γιώργοσ Γεωργίου ΕΝΔΙΑΜΕΗ ΕΞΕΣΑΗ, Διάρκεια: 2 ώρεσ 21 Νοεμβρίου, 2009

ΜΑ270: ΑΡΙΘΜΗΣΙΚΗ ΑΝΑΛΤΗ Ι Χειμερινό εξάμθνο , Διδάςκων: Γιώργοσ Γεωργίου ΕΝΔΙΑΜΕΗ ΕΞΕΣΑΗ, Διάρκεια: 2 ώρεσ 21 Νοεμβρίου, 2009 ΜΑ270: ΑΡΙΘΜΗΣΙΚΗ ΑΝΑΛΤΗ Ι Χειμερινό εξάμθνο 2009-200, Διδάςκων: Γιώργοσ Γεωργίου ΕΝΔΙΑΜΕΗ ΕΞΕΣΑΗ, Διάρκεια: 2 ώρεσ 2 Νοεμβρίου, 2009 ΟΝΟΜΑ: Αρ. Πολ. Σαυτ. Πρόβλθμα Διατυπϊςτε τουσ οριςμοφσ των πιο κάτω:

Διαβάστε περισσότερα

ΕΙΑΓΩΓΗ ΣΗ ΥΙΛΟΟΥΙΑ ΕΝΟΣΗΣΑ 5. ΣΟ ΕΠΙΦΕΙΡΗΜΑ ΣΟΤ ΠΟΛΙΣΙΜΙΚΟΤ ΦΕΣΙΚΙΜΟΤ

ΕΙΑΓΩΓΗ ΣΗ ΥΙΛΟΟΥΙΑ ΕΝΟΣΗΣΑ 5. ΣΟ ΕΠΙΦΕΙΡΗΜΑ ΣΟΤ ΠΟΛΙΣΙΜΙΚΟΤ ΦΕΣΙΚΙΜΟΤ ΕΙΑΓΩΓΗ ΣΗ ΥΙΛΟΟΥΙΑ Σομέας Ανθρωπιστικών Κοινωνικών Επιστημών και Δικαίου χολή Εφαρμοσμένων Μαθηματικών και Υυσικών Επιστημών ΕΝΟΣΗΣΑ 5. ΣΟ ΕΠΙΦΕΙΡΗΜΑ ΣΟΤ ΠΟΛΙΣΙΜΙΚΟΤ ΦΕΣΙΚΙΜΟΤ Κώστας Θεολόγου ΑΔΕΙΑ ΦΡΗΗ

Διαβάστε περισσότερα

Σχεδίαςη Σφγχρονων Ακολουθιακών Κυκλωμάτων

Σχεδίαςη Σφγχρονων Ακολουθιακών Κυκλωμάτων Σχεδίαςη Σφγχρονων Ακολουθιακών Κυκλωμάτων Πίνακεσ Διζγερςησ των FF Όπωσ είδαμε κατά τθ μελζτθ των FF, οι χαρακτθριςτικοί πίνακεσ δίνουν τθν τιμι τθσ επόμενθσ κατάςταςθσ κάκε FF ωσ ςυνάρτθςθ τθσ παροφςασ

Διαβάστε περισσότερα

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο)

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Πάτρα, 2013 Περιεχόμενα: Ειςαγωγή... 4 1. Επιμελητήριο... Error! Bookmark not defined. 1.1 Διαχειριςτήσ Αιτήςεων Επιμελητηρίου...

Διαβάστε περισσότερα

ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ 4.1

ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ 4.1 ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ 4. Να γίνει πρόγραμμα το οποίο να επιλφει το Διαγώνιο Σφςτθμα: A ι το ςφςτθμα : ι ςε μορφι εξιςώςεων το ςφςτθμα : Αλγόρικμοσ m(). Διαβάηουμε τθν τιμι του ( θ διάςταςθ του Πίνακα Α )..

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγικά μαθήματος. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγικά μαθήματος. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Εισαγωγικά μαθήματος Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφθμάτων Χάρθσ Παπαδόπουλοσ Γενικά για το μάκθμα ΌΛΟΙ όςοι ενδιαφζρονται

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΚΗΕΙ ΓΕΩΜΕΣΡΙΑ Α ΛΤΚΕΙΟΤ

ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΚΗΕΙ ΓΕΩΜΕΣΡΙΑ Α ΛΤΚΕΙΟΤ ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΚΗΕΙ ΓΕΩΜΕΣΡΙΑ Α ΛΤΚΕΙΟΤ 1. Από τυχαίο ςθμείο Γ θμικυκλίου διαμζτρου ΑΒ φζρω παράλλθλθ προσ τθν ΑΒ, που τζμνει το θμικφκλιο ςτο Δ. i. Να δείξετε ότι το τετράπλευρο ΑΒΓΔ που ςχθματίηεται είναι

Διαβάστε περισσότερα

Πανεπιςτιμιο Κφπρου ΟΙΚ 223: Μακθματικά για οικονομολόγουσ ΙΙ Διδάςκων:

Πανεπιςτιμιο Κφπρου ΟΙΚ 223: Μακθματικά για οικονομολόγουσ ΙΙ Διδάςκων: Πανεπιςτιμιο Κφπρου ΟΙΚ 3: Μακθματικά για οικονομολόγουσ ΙΙ Διδάςκων: Φάμπιο Αντωνίου τοιχεία Επικοινωνίασ: email: fantoniou@aueb.gr ; fabio@ucy.ac.cy Σθλ:893683 Προςωπικι Ιςτοςελίδα: fantoniou.wordpress.com

Διαβάστε περισσότερα

ΘΕΜΑ 2 Σε ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ είναι =80. Παίρνουμε τυχαίο σημείο Ε στην πλευρά ΒΓ και κατόπιν τα σημεία Δ και Ζ στις πλευρές ΑΒ και ΑΓ

ΘΕΜΑ 2 Σε ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ είναι =80. Παίρνουμε τυχαίο σημείο Ε στην πλευρά ΒΓ και κατόπιν τα σημεία Δ και Ζ στις πλευρές ΑΒ και ΑΓ Σε ισοσκελές τρίγωνο ΑΒΓ με ΑΒ=ΑΓ είναι =80. Παίρνουμε τυχαίο σημείο Ε στην πλευρά ΒΓ και κατόπιν τα σημεία Δ και Ζ στις πλευρές ΑΒ και ΑΓ αντίστοιχα έτσι ώστε ΒΔ=ΒΕ και ΓΕ=ΓΖ. α) Να υπολογίσετε τις γωνίες

Διαβάστε περισσότερα

CP VIOLATION in b system ΜΑΑΝΤΗΣ ΑΛΕΞΑΝΔΟΣ --ΣΑΒΒΙΔΗΣ ΓΙΩΓΟΣ

CP VIOLATION in b system ΜΑΑΝΤΗΣ ΑΛΕΞΑΝΔΟΣ --ΣΑΒΒΙΔΗΣ ΓΙΩΓΟΣ CP VIOLATION in b system ΜΑΑΝΤΗΣ ΑΛΕΞΑΝΔΟΣ --ΣΑΒΒΙΔΗΣ ΓΙΩΓΟΣ PARITY (ΟΜΟΤΙΜΙΑ) P & ΣΥΖΥΓΙΑ ΦΟΤΙΟΥ C Τι είναι θ parity; Τι είναι θ ςυηυγία φορτίου; Το C αντιςτρζφει και τον λεπτονικό και βαρυονικό αρικμό.

Διαβάστε περισσότερα

Αυτόνομοι Πράκτορες. Αναφορά Εργασίας Εξαμήνου. Το αστέρι του Aibo και τα κόκαλα του

Αυτόνομοι Πράκτορες. Αναφορά Εργασίας Εξαμήνου. Το αστέρι του Aibo και τα κόκαλα του Αυτόνομοι Πράκτορες Αναφορά Εργασίας Εξαμήνου Το αστέρι του Aibo και τα κόκαλα του Jaohar Osman Η πρόταςθ εργαςίασ που ζκανα είναι το παρακάτω κείμενο : - ξ Aibo αγαπάει πάρα πξλύ ρα κόκαλα και πάμρα ρα

Διαβάστε περισσότερα

Σχόλιο. Παρατηρήσεις. Παρατηρήσεις. p q p. , p1 p2

Σχόλιο. Παρατηρήσεις. Παρατηρήσεις. p q p. , p1 p2 A. ΠΡΟΤΑΣΕΙΣ Στα Μαθηµατικά χρησιµοποιούµε προτάσεις οι οποίες µπορούν να χαρακτηριστούν ως αληθείς (α) ή ψευδείς (ψ). Τις προτάσεις συµβολίζουµε µε τα τελευταία µικρά γράµµατα του Λατινικού αλφαβήτου:

Διαβάστε περισσότερα

δ) Αf=R-{ 2}=(-,-2)U(-2,2)U(2,+ ). f (x) f(x) ε) Αf=R- 3 =(-,- 3 )U(- 3, 3 )U( 3,+ ).

δ) Αf=R-{ 2}=(-,-2)U(-2,2)U(2,+ ). f (x) f(x) ε) Αf=R- 3 =(-,- 3 )U(- 3, 3 )U( 3,+ ). ΡΑΡΑΝΙΚΟΛΑΟΥ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ ) Nα μελετιςετε ωσ προσ τθ μονοτονία τισ ςυναρτιςεισ: β) f ( ) α) f ( ) γ) f ( ) δ) Αf=R-{ }=(-,-)U(-,)U(,+ ) ( 4) ( 4) ( 4) fϋ()= ( 4) f ( ) δ) f ( ) ε)

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ; ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά

Διαβάστε περισσότερα

ΒΙΟΛΟΓΟΙ ΓΙΑ ΦΥΣΙΚΟΥΣ

ΒΙΟΛΟΓΟΙ ΓΙΑ ΦΥΣΙΚΟΥΣ ΦΥΣΙΚΗ vs ΒΙΟΛΟΓΙΑ ΒΙΟΛΟΓΟΙ ΓΙΑ ΦΥΣΙΚΟΥΣ «Προτείνω να αναπτφξουμε πρώτα αυτό που κα μποροφςε να ζχει τον τίτλο: «ιδζεσ ενόσ απλοϊκοφ φυςικοφ για τουσ οργανιςμοφσ». Κοντολογίσ, τισ ιδζεσ που κα μποροφςαν

Διαβάστε περισσότερα

ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ. Αντώνης Μαϊργιώτης

ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ. Αντώνης Μαϊργιώτης ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ Αντώνης Μαϊργιώτης Να γραφεί αλγόριθμοσ με τη βοήθεια διαγράμματοσ ροήσ, που να υπολογίζει το εμβαδό Ε ενόσ τετραγώνου με μήκοσ Α. ΑΡΧΗ ΔΙΑΒΑΣΕ

Διαβάστε περισσότερα

Εργαςτιριο Βάςεων Δεδομζνων

Εργαςτιριο Βάςεων Δεδομζνων Εργαςτιριο Βάςεων Δεδομζνων 2010-2011 Μάθημα 1 ο 1 Ε. Σςαμούρα Σμήμα Πληροφορικήσ ΑΠΘ Σκοπόσ του 1 ου εργαςτθριακοφ μακιματοσ Σκοπόσ του πρϊτου εργαςτθριακοφ μακιματοσ είναι να μελετιςουμε ερωτιματα επιλογισ

Διαβάστε περισσότερα

ΔΙΠΛΨΜΑΣΙΚΗ ΕΡΓΑΙΑ. Η πποβολική τυή σηρ μεσπικήρ ςσιρ κλαςςικέρ γεωμεσπίερ. και διδακσικέρ πποεκσάςειρ ΚΨΣΑ ΓΕΨΡΓΙΟ

ΔΙΠΛΨΜΑΣΙΚΗ ΕΡΓΑΙΑ. Η πποβολική τυή σηρ μεσπικήρ ςσιρ κλαςςικέρ γεωμεσπίερ. και διδακσικέρ πποεκσάςειρ ΚΨΣΑ ΓΕΨΡΓΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΑΘΗΝΨΝ ΠΑΝΕΠΙΣΗΜΙΟ ΚΤΠΡΟΤ ΣΜΗΜΑ MΑΘΗΜΑΣΙΚΨΝ ΣΜΗΜΑ ΜΑΘΗΜΑΣΙΚΨΝ ΚΑΙ ΣΑΣΙΣΙΚΗ ΣΜΗΜΑ ΜΕΘΟΔΟΛΟΓΙΑ, ΙΣΟΡΙΑ ΣΜΗΜΑ ΕΠΙΣΗΜΨΝ ΑΓΨΓΗ ΚΑΙ ΘΕΨΡΙΑ ΣΗ ΕΠΙΣΗΜΗ ΣΜΗΜΑ ΥΙΛΟΟΥΙΑ ΠΑΙΔΑΓΨΓΙΚΗ & ΧΤΦΟΛΟΓΙΑ Διαπανεπιςτημιακό

Διαβάστε περισσότερα

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Κεφάλαιο 4 Αςαφείσ Συνεπαγωγέσ

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Κεφάλαιο 4 Αςαφείσ Συνεπαγωγέσ ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Κεφάλαιο 4 Αςαφείσ Συνεπαγωγέσ Επιμέλεια: Πέτροσ Π. Γρουμπόσ, Κακθγθτισ Βάια Κ. Γκουντρουμάνη, Υπ. Διδάκτωρ Τμιμα Ηλεκτρολόγων Μθχανικϊν & Τεχνολογίασ Υπολογιςτϊν Άδειεσ Χριςθσ Το παρόν

Διαβάστε περισσότερα

Δείκτεσ απόδοςθσ υλικών

Δείκτεσ απόδοςθσ υλικών Δείκτεσ απόδοςθσ υλικών Κάκε ςυνδυαςμόσ λειτουργίασ, περιοριςμϊν και ςτόχων, οδθγεί ςε ζνα μζτρο τθσ απόδοςθσ τθσ λειτουργίασ του εξαρτιματοσ και περιζχει μια ομάδα ιδιοτιτων των υλικϊν. Αυτι θ ομάδα των

Διαβάστε περισσότερα

HY437 Αλγόριθμοι CAD

HY437 Αλγόριθμοι CAD HY437 Αλγόριθμοι CAD Διδάςκων: Χ. Σωτηρίου http://inf-server.inf.uth.gr/courses/ce437/ 1 Περιεχόμενα Σφνολα και Σχζςεισ Πράξεισ Συνόλων Κατθγορίεσ Σχζςεων Σχζςεισ Ιςοδυναμίασ, Διάταςθσ, Συμβατότθτασ Συναρτιςεισ

Διαβάστε περισσότερα

Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R

Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R Ενότητα 6 η : Η Μζθοδοσ Μ και η Μζθοδοσ των Δφο Φάςεων Κων/νοσ Κουνετάσ, Επίκουροσ Κακθγθτισ Νίκοσ Χατηθςταμοφλου, Υπ. Δρ. Οικονομικισ Επιςτιμθσ

Διαβάστε περισσότερα

Η αυτεπαγωγή ενός δακτυλίου

Η αυτεπαγωγή ενός δακτυλίου Η αυτεπαγωγή ενός δακτυλίου Υποκζςτε ότι κρατάτε ςτο χζρι ςασ ζναν μεταλλικό δακτφλιο διαμζτρου πχ 5 cm. Ζνασ φυςικόσ πικανότθτα κα προβλθματιςτεί: τι αυτεπαγωγι ζχει άραγε; Νομίηω κα ιταν μια καλι ιδζα

Διαβάστε περισσότερα

Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2

Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Δρ. Χρήζηος Ηλιούδης Μθ Προςθμαςμζνοι Ακζραιοι Εφαρμογζσ (ςε οποιαδιποτε περίπτωςθ δεν χρειάηονται αρνθτικοί αρικμοί) Καταμζτρθςθ. Διευκυνςιοδότθςθ.

Διαβάστε περισσότερα

Πρόςβαςη και δήλωςη μαθημάτων ςτον Εφδοξο

Πρόςβαςη και δήλωςη μαθημάτων ςτον Εφδοξο Πρόςβαςη και δήλωςη μαθημάτων ςτον Εφδοξο Τι πρζπει να γνωρίηω πριν ξεκινιςω τθν διαδικαςία 1. Να ζχω κωδικοφσ από τον Κζντρο Δικτφου του ΤΕΙ Ακινασ (είναι αυτοί με τουσ οποίουσ ζχω πρόςβαςθ ςτο αςφρματο

Διαβάστε περισσότερα

Μάκθςθ Κατανομϊν Πικανότθτασ και Ομαδοποίθςθ

Μάκθςθ Κατανομϊν Πικανότθτασ και Ομαδοποίθςθ Μάκθςθ Κατανομϊν Πικανότθτασ και Ομαδοποίθςθ Κϊςτασ Διαμαντάρασ Τμιμα Πλθροφορικισ ΤΕΙ Θεςςαλονίκθσ 1 Μάκθςθ κατανομισ πικανότθτασ Σε όλθ τθν ανάλυςθ μζχρι τϊρα ζγινε ςιωπθρά θ παραδοχι ότι γνωρίηουμε

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών με Σχεςιακέσ Βάςεισ Δεδομένων

Ανάπτυξη Εφαρμογών με Σχεςιακέσ Βάςεισ Δεδομένων Ανάπτυξη Εφαρμογών με Σχεςιακέσ Βάςεισ Δεδομένων Δρ. Θεοδώρου Παύλοσ theodorou@uoc.gr Περιεχόμενα Τι είναι οι Βάςεισ Δεδομζνων (DataBases) Τι είναι Σφςτθμα Διαχείριςθσ Βάςεων Δεδομζνων (DBMS) Οι Στόχοι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου)

ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου) ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου) 19 Μαρτίου 2011 10:00-11:15 3 point/μονάδες 1) Στθν πιο κάτω εικόνα πρζπει να υπάρχει αρικμόσ ςε κάκε κουκκίδα ϊςτε το άκροιςμα των αρικμϊν ςτα άκρα κάκε ευκφγραμμου τμιματοσ

Διαβάστε περισσότερα

Πωσ δημιουργώ μάθημα ςτο e-class του ΠΣΔ [επίπεδο 1]

Πωσ δημιουργώ μάθημα ςτο e-class του ΠΣΔ [επίπεδο 1] Το e-class του Πανελλινιου Σχολικοφ Δίκτυου [ΠΣΔ/sch.gr] είναι μια πολφ αξιόλογθ και δοκιμαςμζνθ πλατφόρμα για αςφγχρονο e-learning. Ανικει ςτθν κατθγορία του ελεφκερου λογιςμικοφ. Αρχίηουμε από τθ διεφκυνςθ

Διαβάστε περισσότερα

Θεςιακά ςυςτιματα αρίκμθςθσ

Θεςιακά ςυςτιματα αρίκμθςθσ Θεςιακά ςυςτιματα αρίκμθςθσ Δρ. Χρήστος Ηλιούδης αρικμθτικό ςφςτθμα αρίκμθςθσ (Number System) Αξία (value) παράςταςθ Οι αξίεσ (π.χ. το βάροσ μιασ ποςότθτασ μιλων) μποροφν να παραςτακοφν με πολλοφσ τρόπουσ

Διαβάστε περισσότερα

1. Με βάςθ το διάγραμμα ςκζψθσ που ςασ δίνετε να λφςετε τισ αςκιςεισ που ακολουκοφν.

1. Με βάςθ το διάγραμμα ςκζψθσ που ςασ δίνετε να λφςετε τισ αςκιςεισ που ακολουκοφν. 1. Με βάςθ το διάγραμμα ςκζψθσ που ςασ δίνετε να λφςετε τισ αςκιςεισ που ακολουκοφν. =c V c=, V= V c = P V R T R T V= P Α. Να υπολογιςτεί ο όγκοσ μετρθμζνοσ ςε stp ςυνκικεσ 1,6gr CH 4 (Ar C=1,H=1) B. Nα

Διαβάστε περισσότερα

ΥΡΟΝΣΙΣΗΡΙΟ Μ. Ε. ΚΑΙ ΚΕΝΣΡΟ ΙΔΙΑΙΣΕΡΩΝ ΜΑΘΗΜΑΣΩΝ «ΚΤΡΙΣΗ» ΔΙΑΓΩΝΙΜΑ ΘΕΜΑΣΑ Β ΛΤΚΕΙΟΤ ΥΕΒΡΟΤΑΡΙΟ 2018 ΑΕΠΠ

ΥΡΟΝΣΙΣΗΡΙΟ Μ. Ε. ΚΑΙ ΚΕΝΣΡΟ ΙΔΙΑΙΣΕΡΩΝ ΜΑΘΗΜΑΣΩΝ «ΚΤΡΙΣΗ» ΔΙΑΓΩΝΙΜΑ ΘΕΜΑΣΑ Β ΛΤΚΕΙΟΤ ΥΕΒΡΟΤΑΡΙΟ 2018 ΑΕΠΠ ΥΡΟΝΣΙΣΗΡΙΟ Μ. Ε. ΚΑΙ ΚΕΝΣΡΟ ΙΔΙΑΙΣΕΡΩΝ ΜΑΘΗΜΑΣΩΝ «ΚΤΡΙΣΗ» ΔΙΑΓΩΝΙΜΑ ΘΕΜΑΣΑ Β ΛΤΚΕΙΟΤ ΥΕΒΡΟΤΑΡΙΟ 2018 ΘΕΜΑ Α ΑΕΠΠ Α1. Για κακεμία από τισ παρακάτω προτάςεισ να χαρακτθρίςετε με ΣΩΣΤΟ ι ΛΑΘΟΣ 1. Η ζκφραςθ

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Στοιχεία προτασιακής λογικής Περιεχόμενα

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΖσ ΒΆΕΩΝ ΔΕΔΟΜΖΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΥΟΤ. Ειρινθ Φιλιοποφλου

ΕΦΑΡΜΟΓΖσ ΒΆΕΩΝ ΔΕΔΟΜΖΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΥΟΤ. Ειρινθ Φιλιοποφλου ΕΦΑΡΜΟΓΖσ ΒΆΕΩΝ ΔΕΔΟΜΖΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΥΟΤ Ειρινθ Φιλιοποφλου Ειςαγωγι Ο Παγκόςμιοσ Ιςτόσ (World Wide Web - WWW) ι πιο απλά Ιςτόσ (Web) είναι μία αρχιτεκτονικι για τθν προςπζλαςθ διαςυνδεδεμζνων εγγράφων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ Περιεχόμενα : Α) Προτάσεις-Σύνθεση προτάσεων Β)Απόδειξη μιας πρότασης Α 1 ) Τι είναι πρόταση Β 1 ) Βασικές έννοιες Α ) Συνεπαγωγή Β ) Βασικές μέθοδοι απόδειξης Α 3 ) Ισοδυναμία

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΤΟΤ. Φιλιοποφλου Ειρινθ

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΤΟΤ. Φιλιοποφλου Ειρινθ ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΤΟΤ Φιλιοποφλου Ειρινθ Βάςθ Δεδομζνων Βάζη δεδομένων είναι μια οπγανωμένη ζςλλογή πληποθοπιών οι οποίερ πποζδιοπίζοςν ένα ζςγκεκπιμένο θέμα.χπηζιμεύοςν ζηην Σςλλογή

Διαβάστε περισσότερα

ΚΤΚΛΩΜΑ RLC Ε ΕΙΡΑ (Απόκριςη ςε ημιτονοειδή είςοδο)

ΚΤΚΛΩΜΑ RLC Ε ΕΙΡΑ (Απόκριςη ςε ημιτονοειδή είςοδο) ΚΤΚΛΩΜΑ RLC Ε ΕΙΡΑ (Απόκριςη ςε ημιτονοειδή είςοδο) χήμα Κφκλωμα RLC ςε ςειρά χήμα 2 Διανυςματικι παράςταςθ τάςεων και ρεφματοσ Ζςτω ότι ςτο κφκλωμα του ςχιματοσ που περιλαμβάνει ωμικι, επαγωγικι και χωρθτικι

Διαβάστε περισσότερα

4. Πότε δφο ποςά ονομάηονται ανάλογα ; 5. Να ςυμπλθρϊςετε τα κενά ςτισ παρακάτω προτάςεισ i) θ γραφικι παράςταςθ τθσ ςυνάρτθςθσ είναι

4. Πότε δφο ποςά ονομάηονται ανάλογα ; 5. Να ςυμπλθρϊςετε τα κενά ςτισ παρακάτω προτάςεισ i) θ γραφικι παράςταςθ τθσ ςυνάρτθςθσ είναι επιςτροφι ΘΕΩΡΙΑ 1. Ποια γωνία λζγεται εγγεγραμμζνθ ; 2. Ποια είναι θ ςχζςθ μεταξφ μιασ εγγεγραμμζνθσ γωνίασ και τθσ επίκεντρθσ που ζχουν το ίδιο αντίςτοιχο τόξο; 3. Να ςυμπλθρϊςετε τισ παρακάτω προτάςεισ

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Γενικά Μαθηματικά ΙΙ Ενότητα 10 η : Εφαρμογζσ Διανυςματικών Συναρτιςεων Λουκάσ Βλάχοσ Κακθγθτισ Αςτροφυςικισ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΑΝΑΠΣΤΞΘ ΕΦΑΡΜΟΓΩΝ Ε ΠΡΟΓΡΑΜΜΑΣΙΣΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 3 ο ΓΕΝΙΚΟ ΛΤΚΕΙΟ Ν. ΜΤΡΝΘ- ΕΠΙΜΕΛΕΙΑ: ΠΤΡΙΔΑΚΘ Λ.

ΑΝΑΠΣΤΞΘ ΕΦΑΡΜΟΓΩΝ Ε ΠΡΟΓΡΑΜΜΑΣΙΣΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 3 ο ΓΕΝΙΚΟ ΛΤΚΕΙΟ Ν. ΜΤΡΝΘ- ΕΠΙΜΕΛΕΙΑ: ΠΤΡΙΔΑΚΘ Λ. Ερωτήςεισ Προβλήματα Α. Σημειώςτε δεξιά από κάθε πρόταςη το γράμμα Σ αν η πρόταςη είναι ςωςτή και το γράμμα Λ αν είναι λάθοσ. 1. Θ περατότθτα ενόσ αλγορίκμου αναφζρεται ςτο γεγονόσ ότι καταλιγει ςτθ λφςθ

Διαβάστε περισσότερα

Ενδεικτικζσ Λφςεισ Θεμάτων

Ενδεικτικζσ Λφςεισ Θεμάτων c AM (t) x(t) ΤΕΙ Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σειρά Β Ειςηγητήσ: Δρ Απόςτολοσ Γεωργιάδησ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Ενδεικτικζσ Λφςεισ Θεμάτων Θζμα 1 ο (1 μον.) Ζςτω περιοδικό ςιμα πλθροφορίασ με περίοδο.

Διαβάστε περισσότερα

Ενδεικτική Οργάνωςη Ενοτήτων. Α Σάξη. Διδ. 1 ΕΝΟΣΗΣΑ 1. 6 Ομαδοποίθςθ, Μοτίβα,

Ενδεικτική Οργάνωςη Ενοτήτων. Α Σάξη. Διδ. 1 ΕΝΟΣΗΣΑ 1. 6 Ομαδοποίθςθ, Μοτίβα, Ενδεικτική Οργάνωςη Ενοτήτων Α Σάξη Α/ Μαθηματικό περιεχόμενο Δείκτεσ Επιτυχίασ Ώρεσ Α Διδ. 1 ΕΝΟΣΗΣΑ 1 Αλ1.1 υγκρίνουν και ταξινομοφν αντικείμενα ςφμφωνα με κάποιο χαρακτθριςτικό/κριτιριο/ιδιότθτά Ομαδοποίθςθ,

Διαβάστε περισσότερα

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Περιφέρειες)

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Περιφέρειες) Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Περιφέρειες) Ιούνιοσ 2013 Περιεχόμενα: Ειςαγωγή... 3 1. Περιφζρεια... 3 1.1 Διαχειριςτήσ Αιτήςεων Περιφζρειασ... 3 1.1.1. Είςοδοσ... 3 1.1.2. Αρχική

Διαβάστε περισσότερα

ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι

ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι Παράςταςη κινητήσ υποδιαςτολήσ ςφμφωνα με το πρότυπο ΙΕΕΕ Δρ. Χρήστος Ηλιούδης το πρότυπο ΙΕΕΕ 754 ζχει χρθςιμοποιθκεί ευρζωσ ςε πραγματικοφσ υπολογιςτζσ. Το πρότυπο αυτό κακορίηει δφο βαςικζσ μορφζσ κινθτισ

Διαβάστε περισσότερα

Σφντομεσ Οδθγίεσ Χριςθσ

Σφντομεσ Οδθγίεσ Χριςθσ Σφντομεσ Οδθγίεσ Χριςθσ Περιεχόμενα 1. Επαφζσ... 3 2. Ημερολόγιο Επιςκζψεων... 4 3. Εκκρεμότθτεσ... 5 4. Οικονομικά... 6 5. Το 4doctors ςτο κινθτό ςου... 8 6. Υποςτιριξθ... 8 2 1. Επαφζσ Στισ «Επαφζσ»

Διαβάστε περισσότερα

Συγγραφι επιςτθμονικισ εργαςίασ. Η κορφφωςθ τθσ προςπάκειάσ μασ

Συγγραφι επιςτθμονικισ εργαςίασ. Η κορφφωςθ τθσ προςπάκειάσ μασ Συγγραφι επιςτθμονικισ εργαςίασ Η κορφφωςθ τθσ προςπάκειάσ μασ Περίγραμμα Ειςήγηςησ Στάδια υλοποίθςθσ τθσ επιςτθμονικισ εργαςίασ Δομι επιςτθμονικισ / πτυχιακισ εργαςίασ Ζθτιματα ερευνθτικισ και ακαδθμαϊκισ

Διαβάστε περισσότερα