Κλασσική παρατήρηση & παρατήρηση με υπολογιστή

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κλασσική παρατήρηση & παρατήρηση με υπολογιστή"

Transcript

1 Κλασσική παρατήρηση & παρατήρηση με υπολογιστή Πολλέςαπότιςεργασίεςσχεδίασης (αρχιτεκτονικό, μηχανολογικό σχέδιο, κινούμενα σχέδια) γίνονται με υπολογιστή Ο χρήστης θα πρέπει να μπορεί να παράξει «κλασικές» όψεις: Προσόψεις, κατόψεις, ισομετρικές όψεις

2 Κλασσική παρατήρηση Κάθε παρατήρηση καθορίζεται από τη σχετική θέση κάμερας-αντικειμένου. Τα περισσότερα αντικείμενα, ιδιαίτερα στην αρχιτεκτονική και στο μηχανολογικό σχέδιο αποτελούνται από επίπεδες πλευρές: κύριες όψεις. Πρόσοψή, κάτοψη, δεξιά όψη,... Οι πλευρές συνήθως ορθογώνιες μεταξύ τους: τρεις ορθογώνιες κατευθύνσεις/άξονες.

3 Κλασσική παρατήρηση

4 Ομοιότητες Από 3-D σε 2-D Αντικείμενα, παρατηρητής, επίπεδο προβολής, ευθείες προβολής, κέντρο προβολών (COP) COP: φακός κάμερας, κέντρο του πλαισίου της κάμερας. Όλες οι ευθείες προβολής διέρχονται από το COP. Επίπεδο προβολής (φιλμ): πίσω ή μπροστά από το COP

5

6 Είδη παρατήρησης/προβολών Επίπεδες γεωμετρικές προβολές Προβολή σε επίπεδο με χρήση ευθειών Διατηρούν τις ευθείες αλλά όχι απαραίτητα τις γωνίες. 1. Προοπτική παρατήρηση/προβολή Το COP σε πεπερασμένη απόσταση από το επίπεδο προβολής, οι ευθείες προβολής συναντώνται στο COP. Δεν διατηρεί την παραλληλία

7 Είδη παρατήρησης/προβολών 2. Παράλληλη παρατήρηση/ προβολή Το COP σε άπειρη απόσταση από το επίπεδο προβολής, οι ευθείες προβολής παράλληλες. Κατεύθυνση προβολής αντί του COP. Υποπερίπτωση της προοπτικής παρατήρησης Λόγω της σημασίας της την εξετάζουμε ως διαφορετική περίπτωση

8 Παράλληλες προβολές: Ορθογραφικές Οιευθείεςπροβολήςείναικάθετεςστο επίπεδο προβολής. Ορθογραφικές προβολές πολλαπλών όψεων Το επίπεδο προβολής παράλληλο σε μια κύρια όψη Πρόσοψη, κάτοψη, δεξιά όψη Φαίνονται μόνο οι αντίστοιχες πλευρές αντικειμένων που μοιάζουν με παραλληλεπίπεδα Διατήρηση αποστάσεων και γωνιών σε επίπεδα παράλληλα με το επίπεδο προβολής: κατάλληλες για μετρήσεις.

9 Παράλληλες ορθογραφικές προβολές πολλαπλών όψεων

10 Παράλληλες ορθογραφικές προβολές: Αξονομετρικές Ευθείες προβολής κάθετες στο επίπεδο προβολής. Το επίπεδο προβολής έχει οποιοδήποτε προσανατολισμό ως προς το αντικείμενο Ισομετρική προβολή : επίπεδο προβολής συμμετρικά ως προς όλες τις κύριες όψεις. Το επίπεδο προβολής τέμνει τους άξονες του αντικειμένου σε ίσες αποστάσεις από την αρχή

11 Παράλληλες ορθογραφικές προβολές: Αξονομετρικές Διμετρική προβολή : επίπεδο προβολής συμμετρικά ως προς δύο κύριες όψεις Το επίπεδο προβολής τέμνει τους δύο άξονες του αντικειμένου σε ίσες αποστάσεις από την αρχή Τριμετρική προβολή : γενική περίπτωση Το επίπεδο προβολής τέμνει τους άξονες του αντικειμένου σε διαφορετικές αποστάσεις από την αρχή Βλέπω όλες τις όψεις, χρήση σε αρχιτεκτονική

12 Παράλληλες ορθογραφικές προβολές: Αξονομετρικές

13 Παράλληλες ορθογραφικές προβολές: Αξονομετρικές Σμίκρυνση των αποστάσεων Ισομετρική προβολή: ίδια σμίκρυνση στους τρεις κύριους άξονες (επιτρέπει μετρήσεις) Διμετρική προβολή : ίδια σμίκρυνση σε δύο από τους τρεις άξονες Τριμετρική προβολή : διαφορετική σμίκρυνση σε κάθε άξονα. Διατήρηση παραλληλίας, όχι γωνιών

14 Παράλληλες προβολές: Πλάγιες Οιευθείεςπροβολήςόχικάθετεςστοεπίπεδο προβολής (γενικότερη περίπτωση) Cavalier (45 0 ), cabinet ( ) Ο φακός πλάγια ως προς το επίπεδο προβολής, κάμερα «φυσούνας» Γωνίες σε επίπεδα παράλληλα στο επίπεδο προβολής διατηρούνται. Δύσκολο να κατασκευαστούν με το χέρι, αφύσικες Μάτι: φακόςπαράλληλοςμετο πίσωμέρος Εύκολη κατασκευή στα γραφικά υπολογιστή

15 Παράλληλες προβολές: Πλάγιες

16 Προοπτικές προβολές Σμίκρυνση του μεγέθους με την απόσταση. Αυτό συμβαίνει στην φύση: τα αντικείμενα έχουν φυσική εμφάνιση. Δεν μπορούμε να κάνουμε μετρήσεις. Το κέντρο προβολών (φακός) συμμετρικά ως προς το επίπεδο προβολής (φιλμ, πίσω μέρος ματιού): συμμετρική (ορθή) πυραμίδα. Γραφικά με υπολογιστή: γενική προοπτική προβολή.

17 Κλασσικές προοπτικές προβολές Ενός δύο ή τριών σημείων ανάλογα με το πόσες από τις κύριες διευθύνσεις (άξονες) του αντικειμένου είναι παράλληλες με το επίπεδο προβολών. Τριών σημείων: κανένας κύριος άξονας παράλληλος με το επίπεδο προβολών Παράλληλες ευθείες στους τρεις κύριους άξονες του αντικειμένου τέμνονται σε τρία σημεία φυγής (vanishing points)

18 Κλασσικές προοπτικές προβολές Δύο σημείων: ένας κύριος άξονας παράλληλος με το επίπεδο προβολών Παράλληλες ευθείες σε δύο κύριους άξονες τέμνονται σε δύο σημεία φυγής Ενός σημείου: δύο κύριοι άξονες παράλληλοι με το επίπεδο προβολών Παράλληλες ευθείες σε έναν κύριο άξονα τέμνονται σε ένα σημείο φυγής

19 Κλασσικές προοπτικές προβολές

20 Προβολές Προβολές: επιλογή φακού και θέσης/διάστασης φιλμ. Προοπτική προβολή: ευρυγώνιος Παράλληλη προβολή: τηλεφακός Το είδος προβολής καθορίζεται από τον projection matrix. Με απευθείας καθορισμό Με χρήση ειδικών εντολών Projection matrix: μέρος της κατάστασης του συστήματος

21 Προοπτική Προβολή Συνήθως το φιλμ παράλληλο με το φακό Γενική περίπτωση το φιλμ σε πλάγια θέση Το επίπεδο προβολής ισοδύναμα μπροστά απότοφακόστηθέσηz=d (d<0) (x, y, z) σε (x p,y p,z p ) : προοπτικός μετασχηματισμός x z = x p d x p = x z / d y p y = z p z / d = d

22 Προοπτική Προβολή

23 Προοπτική Προβολή Προοπτική σμίκρυνση (foreshortening): ανομοιόμορφη ελάττωση μεγέθους Εξαρτώμενη από το z Προοπτικός μετασχηματισμός: διατηρεί ευθείες, δεν είναι συναφής, δεν είναι αντιστρέψιμος. Έχοντας το (x p,y p,z p ) δεν μπορώ να βρω το (x, y, z) Όλατασημείαπάνωστηνευθείαπροβολής μετασχηματίζονται (προβάλλονται) στο ίδιο σημείο.

24 Νέα μορφή ομογενών συντεταγμένων x Αναπαράσταση σημείου y Επιστροφή στην κλασική μορφή p = z με διαίρεση με το w w Μετασχηματισμοί: πίνακες 4x4 με μεταβλητή την τελευταία γραμμή (όχι ). Το w αλλάζει κατά το μετασχηματισμό Μπορώ να υλοποιήσω μετασχηματισμούς προβολών (μη συναφείς).

25 Προοπτική Προβολή x x y M = y p = q = z z 0 0 1/ d 0 1 z / d Ο M ακολουθούμενος από προοπτική διαίρεση (perspective division) υλοποιεί προοπτική προβολή Η προοπτική διαίρεση μέρος της αλυσίδας γραφικών.

26 Ορθογραφική Προβολή Ειδική περίπτωση παράλληλης προβολής Το φίλμ παράλληλο στο φακό, COP στο άπειρο Για επίπεδο προβολής (φιλμ) στo z=0: xp x y p y = z p z

27 Προβολές στην OpenGL Πρέπει να λάβουμε υπ όψιν μας και το μέγεθος του φιλμ Είδος προβολής (προοπτική, παράλληλη) Ψαλιδισμός αντικειμένων Όγκος παρατήρησης: ποιο τμήμα του κόσμου βλέπουμε Γραφικά: πεπερασμένος όγκος παρατήρησης Κόλουρη πυραμίδα (frustum) Ορθογώνιο παραλληλεπίπεδο

28 Προβολές στην OpenGL Προοπτική προβολή: Το COP στηναρχήτουπλαισίουτηςκάμερας Πρέπει να ορίσω τις έξι πλευρές της πυραμίδας Με ειδικές εντολές: περιορισμένη ευελιξία Με απευθείας ορισμό του projection matrix

29 Προοπτική Προβολή & OpenGL glfrustum(xmin, xmax, ymin, ymax, near, far) Συντεταγμένες ως προς το σύστημα της κάμερας, η κάμερα στην αρχή, «κοιτάει» στα αρνητικά z. near & far θετικές τιμές: αποστάσεις από το COP, ορίζουν επίπεδα παράλληλα στο z=0 z=-far, z=-near Κοντινό παραλληλόγραμμο ψαλιδισμού: (xmin, ymin, -near), (xmax, ymax, -near)

30 Προοπτική Προβολή & OpenGL glfrustum(xmin, xmax, ymin, ymax, near, far)

31 Προοπτική Προβολή & OpenGL glmatrixmode(gl_projection) glloadidentity(); glfrustum(xmin, xmax, ymin, ymax, near, far) Η glfrustum κατασκευάζει κατάλληλο πίνακα και τον πολλαπλασιάζει με τον τρέχοντα projection matrix Η πυραμίδα δεν είναι απαραίτητα συμμετρική ως προς τον άξονα z (ορθή) xmin<>-xmax, ymin<>-ymax

32 Προοπτική Προβολή & OpenGL gluperspective(fovy, aspect, near, far) fovy: γωνία παρατήρησης στον y aspect: λόγος πλάτους / ύψους (x/y) near, far: όπως και στην glfrustum Συμμετρική πυραμίδα.

33 Παράλληλη Ορθογραφική Προβολή & OpenGL glortho(xmin, xmax, ymin, ymax, near, far): ορθογραφική προβολή Ορίζει παραλληλεπίπεδο παρατήρησης με πλευρέςπαράλληλεςπροςτουςάξονες Τα near, far αρνητικά ή θετικά τα επίπεδα ψαλιδισμού z=-near, z=-far μπορεί να είναι μπροστά η πίσω από την κάμερα Και τα αντικείμενα πίσω από την κάμερα προβάλλονται!

34 Παράλληλη Ορθογραφική Προβολή & OpenGL glortho(xmin, xmax, ymin, ymax, near, far): ορθογραφική προβολή

35 Υπολογισμός πινάκων προβολής Οι εντολές της OpenGL κατάλληλες για τις τυπικές προβολές Δεν επιτρέπουν π.χ. παράλληλη πλάγια προβολή Υπολογισμός των κατάλληλων πινάκων προβολής (Projection matrix)

36 Υπολογισμός πινάκων προβολής Τεχνική που θα ακολουθηθεί: κανονικοποίηση προβολών Μετατροπή όλων των προβολών σε ορθογραφικές Παραμόρφωση των αντικείμένων ώστε η ορθογραφική τους προβολή να δίνει την επιθυμητή προβολή

37 Υπολογισμός πινάκων παράλληλης ορθογραφικής προβολής Χωρισμόςτηςπροβολήςσεδύομέρη: Μετασχηματισμός του όγκου παρατήρησης σε έναν «κανονικό» όγκο με αντιστρεπτό μετασχηματισμό (αντίστοιχη παραμόρφωση των αντικειμένων) Περιγράφεται με συναφείς μετασχηματισμούς Απλή ορθογραφική προβολή στο z=0 (απαλοιφή του z): x p =x, y p =y, z p =0

38 Υπολογισμός πινάκων παράλληλης ορθογραφικής προβολής Projection matrix: το πρώτο τμήμα του μετασχηματισμού Οι συντεταγμένες παραμένουν στις 3 διαστάσεις (window coordinates): χρήσιμο για τον ψαλιδισμό, απομάκρυνση κρυμμένων επιφανειών κλπ μπορούν εύκολα να μετατραπούν σε 2 διαστάσεις (screen coordinates)

39 Υπολογισμός πινάκων παράλληλης ορθογραφικής M orth M transform προβολής M orth = Projection matrix: Μ transform

40 Υπολογισμός πινάκων παράλληλης ορθογραφικής προβολής Ο απλούστερος όγκος παρατήρησης: κεντραρισμένος στην αρχή και με επίπεδα ψαλιδισμού x= ± 1, y =± 1, z =± 1 Κανονικός όγκος παρατήρησης (default για την OpenGL) Μετασχηματισμός του όγκου που ορίζεται από την glortho στον κανονικό όγκο z max =-near z min =-far

41 Υπολογισμός πινάκων παράλληλης ορθογραφικής προβολής T( ( x + x )/2, ( y + y )/2, ( z + z )/2) max min max min max min S(2 /( x x ),2 /( y y ),2 /( z z )) P max min max min max min ( xmax + xmin ) 2/( xmax xmin ) 0 0 ( xmax xmin ) ( y + y ) 0 2( y y ) 0 max min max min ( ymax ymin ) = ST= ( zmax + zmin ) 0 0 2/( zmax zmin ) ( zmax zmin ) Για ακτίνες προβολής από το + τα στοιχεία (3, 3) & (3,4)του πίνακα με

42 Υπολογισμός πινάκων παράλληλης πλάγιας προβολής Η OpenGL δεν παρέχει αντίστοιχη συνάρτηση. Εκφράζεται από δύο γωνίες θ, φ. Μπροστά & πίσω επίπεδα ψαλιδισμού παράλληλα στο επίπεδο προβολής. Πάνω, αριστερά κλπ επίπεδα προβολής παράλληλα στην κατεύθυνση προβολής.

43 Υπολογισμός πινάκων παράλληλης πλάγιας προβολής

44 Υπολογισμός πινάκων παράλληλης πλάγιας προβολής tanθ = z x xp x = x zcotθ p 1 0 cotθ cotφ 0 P = z = p 0

45 Υπολογισμός πινάκων παράλληλης πλάγιας προβολής cotθ cotφ 0 P= MorthH(,) θφ = H:πίνακας στρέβλωσης (2 «αντίστροφες» στρεβλώσεις) Οι «πλάγιες» πλευρές του όγκου παρατήρησης γίνονται κάθετες στο επίπεδο προβολής (ορθογώνιο παραλληλεπίπεδο) Τα αντικείμενα στρεβλώνουν Η ορθογραφική προβολή τους είναι ταυτόσημη με την πλάγια προβολή των αρχικών σχημάτων

46 Υπολογισμός πινάκων παράλληλης πλάγιας προβολής

47 Υπολογισμός πινάκων παράλληλης πλάγιας προβολής Πρέπει να μετασχηματίσουμε το ορθογώνιο παραλληλεπίπεδο σε κανονικό όγκο παρατήρησης P= M STH orth Τα x min, x max, στον ST είναι οι συντεταγμένες του ορθ. παραλληλεπιπέδου που παίρνουμε μετά τη στρέβλωση.

48 Υπολογισμός πινάκων προοπτικής προβολής Εύρεση του μετασχηματισμού που μετατρέπει ένα «κανονικό» frustum σε κανονικό όγκο παρατήρησης (κύβο). Μετασχηματισμός frustum γενικής μορφής σε «κανονικό» frustum.

49 Υπολογισμός πινάκων προοπτικής προβολής Κανονικό frustum: συμμετρικό, με γωνία όρασης 90 0 σε x & y και 45 0 με το επίπεδο προβολής

50 Υπολογισμός πινάκων προοπτικής προβολής Επίπεδα ψαλιδισμού x =± z z = z y =± z z = z max min 0 > z > z max min N = 0 0 α β

51 Υπολογισμός πινάκων προοπτικής προβολής x ' = x x '' = x/ z y ' = y y '' = y/ z z ' = α z+ β z '' = ( α + β / z) w' = z

52 Υπολογισμός πινάκων προοπτικής προβολής O N μετασχηματίζει τον όγκο παρατήρησης σε κανονικό όγκο παρατήρησης, επιλέγοντας κατάλληλα τα α, β. x =± z σε y =± z x y = = m1 m1 z=z max (μπροστά επίπεδο) σε z=z min (πίσω επίπεδο) σε z'' = ( α + β / z ) z '' = ( α + β / z ) min max

53 Υπολογισμός πινάκων προοπτικής Επιλέγω προβολής zmax + zmin 2zmax zmin α =, β = zmax zmin zmax zmin Το πίσω επίπεδο πάει στο z=-1, το μπροστά στο z=1 O Ν μετασχηματίζει την κόλουρη πυραμίδα σε ορθ. παραλληλεπίπεδο (κανονικό όγκο παρατήρησης) Πίνακας κανονικοποίησης προοπτικής Συνδυάζω με ορθογραφική προβολή Μ orth N Ορθογραφική προβολή στον μετασχηματισμένο όγκο δρα σαν προοπτική προβολή.

54 Υπολογισμός πινάκων προοπτικής προβολής

55 Πίνακες προοπτικής προβολής & OpenGL Η OpenGL (glfrustum) επιτρέπει και μη συμμετρική πυραμίδα. Υπολογισμός του γενικού πίνακα προοπτικήςπροβολήςμετασχηματίζοντας το frustum σε συμμετρικό με 45 0 γωνία και στη συνέχεια εφαρμόζοντας κανονικοποίηση προοπτικής.

56 Πίνακες προοπτικής προβολής & OpenGL Μετασχηματισμός της πυραμίδας σε συμμετρική με στρέβλωση x + x y + y max min max min (,, zmax ) σε(0,0, zmax ) 2 2 Η =Η x x + x y + y 2z 2z 1 min max 1 ( θφ, ) (cot ( ),cot ( min max )) x max max min =± max min min 2z x max z = z, z = z z max y =± y max 2z y max z

57 Πίνακες προοπτικής προβολής & OpenGL Μετασχηματισμός της κανονικής πυραμίδας σε πυραμίδα με 45 0 χωρίς να αλλάξουν τα μπροστά/πίσω επίπεδα με κλιμάκωση Θέλω πλευρικά επίπεδα ψαλιδισμού: x y =± z =± z S( 2 z /( x x ), 2 z /( y y ),1) max max min max max min

58 Πίνακες προοπτικής προβολής & OpenGL P Τώρα μπορώ να εφαρμόσω κανονικοποίηση προοπτικής ( xmax + xmin ) 2 zmax /( xmax xmin ) 0 0 ( xmax xmin ) ( ymax + ymin ) 0 2 zmax /( ymax ymin ) 0 ( ymax ymin ) = NSH = ( zmax + zmin ) 2zmax z min 0 0 ( zmax zmin ) ( zmax zmin ) Για ακτίνες προβολής από το + τα στοιχεία (3, 3) & (3,4)του πίνακα με αντίθετο πρόσημο.

Απαραίτητες αφού 3Δ αντικείμενα απεικονίζονται σε 2Δ συσκευές. Θέση παρατηρητή. 3Δ Μετασχ/σμός Παρατήρησης

Απαραίτητες αφού 3Δ αντικείμενα απεικονίζονται σε 2Δ συσκευές. Θέση παρατηρητή. 3Δ Μετασχ/σμός Παρατήρησης Προβολές Προβολές Απαραίτητες αφού 3Δ αντικείμενα απεικονίζονται σε Δ συσκευές. Θέσεις αντικειμένων και φωτεινών πηγών Θέση παρατηρητή 3Δ Μαθηματικά Μοντέλα 3Δ Μετασχ/σμοί Μοντέλου 3Δ Μετασχ/σμός Παρατήρησης

Διαβάστε περισσότερα

4ο Μάθημα Προβολές και Μετασχηματισμοί Παρατήρησης

4ο Μάθημα Προβολές και Μετασχηματισμοί Παρατήρησης 4ο Μάθημα Προβολές και Μετασχηματισμοί Παρατήρησης Γραφικα Τμήμα Πληροφορικής Πανεπιστήμιο Θεσσαλίας Ακ Έτος 2016-17 Εισαγωγή Προοπτική Προβολή Παράλληλη Προβολή Ορθογραφικές Προβολές Πλάγιες Παράλληλες

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Γεωμετρικός Πυρήνας Προβολικοί Μετασχηματισμοί

Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Γεωμετρικός Πυρήνας Προβολικοί Μετασχηματισμοί Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή Γεωμετρικός Πυρήνας Προβολικοί Μετασχηματισμοί Προβολικοί Μετασχηματισμοί Γενικός Ορισμός Μετασχηματισμός των σημείων ενός σημειακού χώρου διάστασης n σε σημεία

Διαβάστε περισσότερα

Περιεχόµενα ενότητας

Περιεχόµενα ενότητας Προβολές Περιεχόµενα ενότητας Μετασχηµατισµός αλλαγής οπτικής γωνίας Επίπεδο προβολής - Μητρώο προβολής Παράλληλη προβολή Πλάγια παράλληλη προβολή Προοπτική προβολή Πλάγια προοπτική προβολή Μετασχηµατισµός

Διαβάστε περισσότερα

Μετασχηματισμοί Παρατήρησης και Προβολές

Μετασχηματισμοί Παρατήρησης και Προβολές Μετασχ. Γραφικά Παρατήρησης Υπολογιστών και Προβολές Μετασχηματισμοί Παρατήρησης και Προβολές Γ. Γ. Παπαϊωάννου, - 2008 Στάδια Προβολής στο Επίπεδο Περνάμε από WCS στοτοπικόσύστημα συντεταγμένων του παρατηρητή

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΦΙΚΑ ΥΠΟΛΟΓΙΣΤΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΦΙΚΑ ΥΠΟΛΟΓΙΣΤΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΦΙΚΑ ΥΠΟΛΟΓΙΣΤΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ 1 η Σειρά Ασκήσεων Πλαίσια, γεωμετρικοί μετασχηματισμοί και προβολές 1. Y B (-1,2,0) A (-1,1,0) A (1,1,0)

Διαβάστε περισσότερα

ΤΜΗΜΑ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΜΑΘΗΜΑ: ΜΗΧΑΝΟΛΟΓΙΚΟ ΣΧΕΔΙΟ ΚΑΙ ΕΙΣΑΓΩΓΗ ΣΤΟ MCAD

ΤΜΗΜΑ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΜΑΘΗΜΑ: ΜΗΧΑΝΟΛΟΓΙΚΟ ΣΧΕΔΙΟ ΚΑΙ ΕΙΣΑΓΩΓΗ ΣΤΟ MCAD ΤΜΗΜΑ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΜΑΘΗΜΑ: ΜΗΧΑΝΟΛΟΓΙΚΟ ΣΧΕΔΙΟ ΚΑΙ ΕΙΣΑΓΩΓΗ ΣΤΟ MCAD ΜΕΘΟΔΟΙ ΠΡΟΒΟΛΗΣ Προοπτική Προβολή Στο προοπτικό σχέδιο η εικόνα του αντικειμένου παρουσιάζεται, όπως προβάλλεται στο χαρτί σχεδιάσεως

Διαβάστε περισσότερα

Γραφικά Ι. Ενότητα 4: Προβολές και Μετασχηματισμοί Παρατήρησης. Θεοχάρης Θεοχάρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Γραφικά Ι. Ενότητα 4: Προβολές και Μετασχηματισμοί Παρατήρησης. Θεοχάρης Θεοχάρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Γραφικά Ι Ενότητα 4: Προβολές και Μετασχηματισμοί Παρατήρησης Θεοχάρης Θεοχάρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ενότητα 4 Προβολές και Μετασχηματισμοί Παρατήρησης Εισαγωγή

Διαβάστε περισσότερα

OpenGL. Μετασχηματισμοί. Μάθημα: Γραφικά Υπολογιστών και Εικονική Πραγματικότητα. Κατερίνα Παπαδοπούλου /

OpenGL. Μετασχηματισμοί. Μάθημα: Γραφικά Υπολογιστών και Εικονική Πραγματικότητα. Κατερίνα Παπαδοπούλου / OpenGL Μετασχηματισμοί Κατερίνα Παπαδοπούλου / pakate@unipi.gr Μάθημα: Γραφικά Υπολογιστών και Εικονική Πραγματικότητα Τύποι μετασχηματισμών Μετασχηματισμοί μοντέλου (modeling transformations) με glmatrixmode

Διαβάστε περισσότερα

Γραφικά Υπολογιστών: Θέαση στις 3D

Γραφικά Υπολογιστών: Θέαση στις 3D 1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Θέαση στις 3D Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Περιεχόμενα Σήμερα θα δούμε τα παρακάτω θέματα: Μετασχηματισμοί

Διαβάστε περισσότερα

ΑΞΟΝΟΜΕΤΡΙΑ. Εισαγωγή

ΑΞΟΝΟΜΕΤΡΙΑ. Εισαγωγή ΑΞΟΝΟΜΕΤΡΙΑ Εισαγωγή Η προβολή τρισδιάστατου αντικειμένου πάνω σε δισδιάστατη επιφάνεια αποτέλεσε μια από τις βασικές αναζητήσεις μεθόδων απεικόνισης και απασχόλησε από πολύ παλιά τους ανθρώπους. Με την

Διαβάστε περισσότερα

ΘΕΜΑ : ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΜΕ 2 Σ.Φ ΙΣΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 28/9/2008 12:48 Όνομα: Λεκάκης Κωνσταντίνος καθ.

ΘΕΜΑ : ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΜΕ 2 Σ.Φ ΙΣΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 28/9/2008 12:48 Όνομα: Λεκάκης Κωνσταντίνος καθ. ΘΕΜΑ : ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΜΕ 2 Σ.Φ ΙΣΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ ΔΙΑΡΚΕΙΑ: 1 περιόδους 28/9/2008 12:48 καθ. Τεχνολογίας 28/9/2008 12:57 Προοπτικό σχέδιο με 2 Σημεία Φυγής Σημείο φυγής 1 Σημείο φυγής 2 Γωνία κτιρίου

Διαβάστε περισσότερα

Προβολές. Απαραίτητες αφού 3 αντικείµενα απεικονίζονται σε 2 συσκευές.

Προβολές. Απαραίτητες αφού 3 αντικείµενα απεικονίζονται σε 2 συσκευές. ροβολές Απαραίτητες αφού 3 αντικείµενα απεικονίζονται σε συσκευές. Θέσεις αντικειµένων και φωτεινών πηγών Θέση παρατηρητή 3 Μαθηµατικά Μοντέλα ΣΣΑ 3 Μετασχ/σµοί Μοντέλου ΣΣ (WCS) 3 Μετασχ/σµός αρατήρησης

Διαβάστε περισσότερα

Διαλέξεις #13-#14 Εισαγωγικά στοιχεία Προοπτική, Παράλληλη, Πλάγια Υπολογισμός Παράλληλης Προβολής Υπολογισμός Προοπτικής Προβολής Παραδείγματα

Διαλέξεις #13-#14 Εισαγωγικά στοιχεία Προοπτική, Παράλληλη, Πλάγια Υπολογισμός Παράλληλης Προβολής Υπολογισμός Προοπτικής Προβολής Παραδείγματα Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο Γραφικά με υπολογιστές Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διαλέξεις #13-#14 Εισαγωγικά στοιχεία Προοπτική, Παράλληλη, Πλάγια Υπολογισμός

Διαβάστε περισσότερα

Με τη συμπλήρωση της ενότητας αυτής ο/η μαθητής/τρια πρέπει:

Με τη συμπλήρωση της ενότητας αυτής ο/η μαθητής/τρια πρέπει: ΟΡΘΟΓΡΑΦΙΚΗ ΠΡΟΒΟΛΗ ΟΡΘΟΓΡΑΦΙΚΗ ΠΡΟΒΟΛΗ ΣΤΟΧΟΙ: Με τη συμπλήρωση της ενότητας αυτής ο/η μαθητής/τρια πρέπει: 1. Να αναγνωρίζει και να κατονομάζει τα διάφορα είδη προβολών. 2. Να αναγνωρίζει και να κατονομάζει

Διαβάστε περισσότερα

Γραφικά Υπολογιστών: Προοπτικές Προβολές (Perspective Projections)

Γραφικά Υπολογιστών: Προοπτικές Προβολές (Perspective Projections) 1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Προοπτικές Προβολές (Perspective Projections) Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Contents Μια ματιά για

Διαβάστε περισσότερα

ΤΕΧΝΙΚΟΥ ΣΧΕΔΙΟΥ. (Μέρος πρώτο)

ΤΕΧΝΙΚΟΥ ΣΧΕΔΙΟΥ. (Μέρος πρώτο) ΤΕΙ ΛΑΡΙΣΑΣ - Παράρτημα Καρδίτσας ΤΜΗΜΑ ΣΧΕΔΙΑΣΜΟΥ & ΤΕΧΝΟΛΟΓΙΑΣ ΞΥΛΟΥ ΕΠΙΠΛΟΥ ΣΗΜΕΙΩΣΕΙΣ ΤΕΧΝΙΚΟΥ ΣΧΕΔΙΟΥ ΙΙ (Μέρος πρώτο) - ΠΛΑΓΙΑ ΠΡΟΒΟΛΗ - ΑΞΟΝΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ - ΑΝΟΧΕΣ - ΣΥΝΑΡΜΟΓΕΣ ΚΟΛΛΑΤΟΣ ΓΕΩΡΓΙΟΣ

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Κεφάλαιο. Για να δημιουργήσουμε τρισδιάστατα αντικείμενα, που μπορούν να παρασταθούν στην οθόνη του υπολογιστή ως ένα σύνολο από γραμμές, επίπεδες πολυγωνικές επιφάνειες ή ακόμη και από ένα συνδυασμό από

Διαβάστε περισσότερα

ΣΚΙΑΓΡΑΦΙΑ. Γενικές αρχές και έννοιες

ΣΚΙΑΓΡΑΦΙΑ. Γενικές αρχές και έννοιες ΣΚΙΑΓΡΑΦΙΑ Γενικές αρχές και έννοιες Στο σύστημα προβολής κατά Monge δεν μας δίνεται η δυνατότητα ν αντιληφθούμε άμεσα τα αντικείμενα του χώρου, παρά μόνο αφού συνδυάσουμε τις δύο προβολές του αντικειμένου

Διαβάστε περισσότερα

1.2 Στοιχεία Μηχανολογικού Σχεδίου

1.2 Στοιχεία Μηχανολογικού Σχεδίου 1.2 Στοιχεία Μηχανολογικού Σχεδίου Τα µηχανολογικά σχέδια, ανάλογα µε τον τρόπο σχεδίασης διακρίνονται στις παρακάτω κατηγορίες: Σκαριφήµατα Κανονικά µηχανολογικά σχέδια Προοπτικά σχέδια Σχηµατικές παραστάσεις.

Διαβάστε περισσότερα

Μαθηματικό υπόβαθρο. Κεφάλαιο 3. Μαθησιακοί στόχοι. 3.1 Εισαγωγή. 3.2 Σημεία και διανύσματα

Μαθηματικό υπόβαθρο. Κεφάλαιο 3. Μαθησιακοί στόχοι. 3.1 Εισαγωγή. 3.2 Σημεία και διανύσματα Κεφάλαιο 3 Μαθηματικό υπόβαθρο Μαθησιακοί στόχοι Μετά την ολοκλήρωση αυτού του κεφαλαίου, ο αναγνώστης θα είναι σε θέση: Να γνωρίζει τις βασικές ιδιότητες και να πραγματοποιεί πράξεις των σημείων και των

Διαβάστε περισσότερα

Στο προοπτικό ανάγλυφο για τη ευθεία του ορίζοντα χρησιμοποιούμε ένα δεύτερο κατακόρυφο επίπεδο Π 1

Στο προοπτικό ανάγλυφο για τη ευθεία του ορίζοντα χρησιμοποιούμε ένα δεύτερο κατακόρυφο επίπεδο Π 1 ΠΡΟΟΠΤΙΚΟ ΑΝΑΓΛΥΦΟ Το προοπτικό ανάγλυφο, όπως το επίπεδο προοπτικό, η στερεοσκοπική εικόνα κ.λπ. είναι τρόποι παρουσίασης και απεικόνισης των αρχιτεκτονικών συνθέσεων. Το προοπτικό ανάγλυφο είναι ένα

Διαβάστε περισσότερα

1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων?

1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων? ΣΧΕΔΙΑΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ - Εξεταστέα ύλη Β εξαμήνου 2011 1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων? Τρεις μέθοδοι προβολών

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ Εισαγωγή /4 Το σχήμα και το μέγεθος των δισδιάστατων αντικειμένων περιγράφονται με τις καρτεσιανές συντεταγμένες x, y. Με εφαρμογή γεωμετρικών μετασχηματισμών στο μοντέλο

Διαβάστε περισσότερα

Διδάσκων: Φοίβος Μυλωνάς

Διδάσκων: Φοίβος Μυλωνάς Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο Γραφικά με υπολογιστές Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #08 Αποκοπή (εισαγωγή) Σημειακή Αποκοπή Αποκοπή Ευθύγραμμων Τμημάτων (line

Διαβάστε περισσότερα

Φύλλο 2. Δράσεις με το λογισμικό Cabri-geometry 3D

Φύλλο 2. Δράσεις με το λογισμικό Cabri-geometry 3D 1 Φύλλο 2 Δράσεις με το λογισμικό Cabri-geometry 3D Το περιβάλλον του λογισμικού αυτού είναι παρόμοιο με το αντίστοιχο λογισμικό του Cabri II. Περιέχει γενικές εντολές και εικονίδια που συμπεριλαμβάνουν

Διαβάστε περισσότερα

Γραφικά Υπολογιστών: Αποκοπή στις 3D Διαστάσεις

Γραφικά Υπολογιστών: Αποκοπή στις 3D Διαστάσεις ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Αποκοπή στις 3D Διαστάσεις Πασχάλης Ράπτης ttp://aetos.it.teite.gr/~praptis praptis@it.teite.gr 2 Περιεχόμενα Θα δούμε μερικά demos προοπτικών προβολών

Διαβάστε περισσότερα

Μετασχηματισμός Παρατήρησης

Μετασχηματισμός Παρατήρησης Μετασχηματισμός Παρατήρησης Παγκόσμιο Σύστημα Συντεταγμένων Σύστημα Συντεταγμένων Παρατηρητή. Σύνθεση βασικών μετασχηματισμών. Καθορίζει όρια αποκοπής & παραμέτρους προβολής Θα εξετάσουμε ΜΠ Ι και Θέσεις

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

Τεχνικό Σχέδιο. Ενότητα 5: Στοιχεία για την Αξονομετρική Προβολή. Σταματίνα Γ. Μαλικούτη Τμήμα Πολιτικών Μηχανικών Τ.Ε.

Τεχνικό Σχέδιο. Ενότητα 5: Στοιχεία για την Αξονομετρική Προβολή. Σταματίνα Γ. Μαλικούτη Τμήμα Πολιτικών Μηχανικών Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τεχνικό Σχέδιο Ενότητα 5: Στοιχεία για την Αξονομετρική Προβολή Σταματίνα Γ. Μαλικούτη Τμήμα Πολιτικών Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

Συναφείς µετασχηµατισµοί:

Συναφείς µετασχηµατισµοί: Μετασχηµατισµοί Μετασχηµατισµός: απεικόνιση ενός σηµείου ή διανύσµατος σε άλλο σηµείο ή διάνυσµα Q=T(P), v=r(u) Οµογενείς συντεταγµένες: ενιαίος ορισµός q=f(p) Γενική περίπτωση: υπολογισµός για κάθε σηµείο

Διαβάστε περισσότερα

ισδιάστατοι μετασχηματισμοί ΚΕΦΑΛΑΙΟ 4: ισδιάστατοι γεωμετρικοί μετασχηματισμοί

ισδιάστατοι μετασχηματισμοί ΚΕΦΑΛΑΙΟ 4: ισδιάστατοι γεωμετρικοί μετασχηματισμοί ΚΕΦΑΛΑΙΟ 4: ισδιάστατοι γεωμετρικοί μετασχηματισμοί Πολλά προβλήματα λύνονται μέσω δισδιάστατων απεικονίσεων ενός μοντέλου. Μεταξύ αυτών και τα προβλήματα κίνησης, όπως η κίνηση ενός συρόμενου μηχανισμού.

Διαβάστε περισσότερα

Στο Κεφάλαιο 5 µελετώντας την προβολή του τρισδιάστατου χώρου στο επίπεδο της κάµερας εξετάστηκε

Στο Κεφάλαιο 5 µελετώντας την προβολή του τρισδιάστατου χώρου στο επίπεδο της κάµερας εξετάστηκε Κεφάλαιο 6 Αποκοπή (clipping) Στο Κεφάλαιο 5 µελετώντας την προβολή του τρισδιάστατου χώρου στο επίπεδο της κάµερας εξετάστηκε η διαδικασία προβολής µεµονωµένων σηµείων και µόνο προς το τέλος του κεφαλαίου

Διαβάστε περισσότερα

Τεχνικό Σχέδιο. Ενότητα 2: Μηχανολογικό Σχέδιο - Σχεδίαση όψεων

Τεχνικό Σχέδιο. Ενότητα 2: Μηχανολογικό Σχέδιο - Σχεδίαση όψεων Τεχνικό Σχέδιο Ενότητα 2: Μηχανολογικό Σχέδιο - Σχεδίαση όψεων Διάλεξη 2η Παναγής Βοβός Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών ΤΕΧΝΙΚΟ ΣΧΕΔΙΟ ΣΧΕΔΙΑΣΗ ΤΡΙΣΔΙΑΣΤΑΤΩΝ

Διαβάστε περισσότερα

Θεωρία μετασχηματισμών

Θεωρία μετασχηματισμών Μήτρα Μετασχηματισμού Η γεωμετρία ενός αντικειμένου μπορεί να παρουσιαστεί από ένα σύνολο σημείων κατανεμημένων σε διάφορα επίπεδα. Έτσι λοιπόν ένα πλήθος δεδομένων για κάποιο αντικείμενο μπορεί να αναπαρασταθεί

Διαβάστε περισσότερα

β. Πιο κάτω από τη βάση τοποθετούμε το εστιακό σημείο του παρατηρητή, σε κάτοψη.

β. Πιο κάτω από τη βάση τοποθετούμε το εστιακό σημείο του παρατηρητή, σε κάτοψη. Προβολές σε άλλα επίπεδα - Προοπτικές απεικονίσεις Μπορεί να γίνει προβολή ως προς σημείο το οποίο μπορεί να είναι το ανθρώπινο μάτι, ή ακριβέστερα το εστιακό σημείο του ανθρώπινου ματιού: Η απεικόνιση

Διαβάστε περισσότερα

πάχος 0 πλάτος 2a μήκος

πάχος 0 πλάτος 2a μήκος B1) Δεδομένου του τύπου E = 2kλ/ρ που έχει αποδειχθεί στο μάθημα και περιγράφει το ηλεκτρικό πεδίο Ε μιας άπειρης γραμμής φορτίου με γραμμική πυκνότητα φορτίου λ σε σημείο Α που βρίσκεται σε απόσταση ρ

Διαβάστε περισσότερα

Διάλεξη #10. Διδάσκων: Φοίβος Μυλωνάς. Γραφικά με υπολογιστές. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο.

Διάλεξη #10. Διδάσκων: Φοίβος Μυλωνάς. Γραφικά με υπολογιστές. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο Γραφικά με υπολογιστές Διδάσκων: Φοίβος Μυλωνάς fmlonas@ionio.gr Διάλεξη # Δ Μετασχηματισμοί (γενικά) Γραμμικοί Μετασχηματισμοί Απλοί Συσχετισμένοι

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Ορισμός: Έστω Α, Β R. Πραγματική συνάρτηση πραγματικής μεταβλητής από το σύνολο Α στο σύνολο Β ονομάζουμε την διαδικασία κατά την οποία κάθε στοιχείο του συνόλου

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΡΟΜΠΟΤΙΚΗ - ΣΥΝΟΨΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΡΟΜΠΟΤΙΚΗ - ΣΥΝΟΨΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΡΟΜΠΟΤΙΚΗ - Π. ΑΣΒΕΣΤΑΣ E MAIL: pasv@uniwa.gr Εφαρμογές ρομποτικής στην Ιατρική Κλασσική χειρουργική Ορθοπεδικές επεμβάσεις Νευροχειρουργική Ακτινοθεραπεία Αποκατάσταση φυσιοθεραπεία 2 Βασικοί

Διαβάστε περισσότερα

ΚΑΤΑΣΚΕΥΗ ΠΡΟΟΠΤΙΚΟΥ ΣΕ ΠΛΑΓΙΟ ΠΙΝΑΚΑ ΣΕ ΠΕΡΙΒΑΛΛΟΝ CAD

ΚΑΤΑΣΚΕΥΗ ΠΡΟΟΠΤΙΚΟΥ ΣΕ ΠΛΑΓΙΟ ΠΙΝΑΚΑ ΣΕ ΠΕΡΙΒΑΛΛΟΝ CAD ΣΕ ΠΕΡΙΒΑΛΛΟΝ CAD Σύμφωνα με τους ορισμούς, το προοπτικό είναι η κεντρική προβολή (από τη θέση του ματιού του παρατηρητή) ενός σχήματος πάνω στο επίπεδο του πίνακα. Οι παράλληλες ευθείες του αρχικού σχήματος

Διαβάστε περισσότερα

Κεφάλαιο 8. Οπτικοποίηση Απαλοιφή

Κεφάλαιο 8. Οπτικοποίηση Απαλοιφή Κεφάλαιο 8. Οπτικοποίηση Απαλοιφή Oι οπτικές επιδράσεις, που μπορεί να προκαλέσει μια εικόνα στους χρήστες, αποτελούν ένα από τα σπουδαιότερα αποτελέσματα των λειτουργιών γραφικών με Η/Υ. Τον όρο της οπτικοποίησης

Διαβάστε περισσότερα

Μετασχηματισμοί Μοντελοποίησης (modeling transformations)

Μετασχηματισμοί Μοντελοποίησης (modeling transformations) Μετασχηματισμοί Δ Μετασχηματισμοί Μοντελοποίησης (modeling trnformtion) Καθορισμός μετασχηματισμών των αντικειμένων Τα αντικείμενα περιγράφονται στο δικό τους σύστημα συντεταγμένων Επιτρέπει την χρήση

Διαβάστε περισσότερα

2ο Μάθημα Μετασχηματισμοί 2Δ/3Δ και Συστήματα Συντεταγμένων

2ο Μάθημα Μετασχηματισμοί 2Δ/3Δ και Συστήματα Συντεταγμένων 2ο Μάθημα Μετασχηματισμοί 2Δ/3Δ και Συστήματα Συντεταγμένων Γραφικα Τμήμα Πληροφορικής Πανεπιστήμιο Θεσσαλίας Ακ Έτος 2016-17 Σύνοψη του σημερινού μαθήματος 1 Εισαγωγή 2 Επανάληψη 3 Συσχετισμένοι 4 Γραμμικοί

Διαβάστε περισσότερα

ΕΠΙΦΑΝΕΙΕΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ

ΕΠΙΦΑΝΕΙΕΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ ΚΕΦΑΛΑΙΟ 1 ΕΠΙΦΑΝΕΙΕΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 1 Γενικά Επειδή οι επιφάνειε δευτέρου βαθμού συναντώνται συχνά στη μελέτη των συναρτήσεων πολλών μεταβλητών θεωρούμε σκόπιμο να τι περιγράψουμε στην αρχή του βιβλίου

Διαβάστε περισσότερα

3. Τρισδιάστατα γραφικά

3. Τρισδιάστατα γραφικά 3. Τρισδιάστατα γραφικά 3.1 Τρισδιάστατες γραφικές παραστάσεις συναρτήσεων δύο μεταβλητών. Μία συνάρτηση δύο μεταβλητών μπορεί να θεωρηθεί ως μία τρισδιάστατη επιφάνεια. Η βασική εντολή σχεδίασης, του

Διαβάστε περισσότερα

1.3 Σχεδίαση µε ελεύθερο χέρι (Σκαρίφηµα)

1.3 Σχεδίαση µε ελεύθερο χέρι (Σκαρίφηµα) 20 1.3 Σχεδίαση µε ελεύθερο χέρι (Σκαρίφηµα) 1.3.1 Ορισµός- Είδη - Χρήση Σκαρίφηµα καλείται η εικόνα ενός αντικειµένου ή εξαρτήµατος που µεταφέρεται σε χαρτί µε ελεύθερο χέρι (χωρίς όργανα σχεδίασης ή

Διαβάστε περισσότερα

ΣΤΟΧΟΙ: Με τη συμπλήρωση της ενότητας αυτής ο/η μαθητής/τρια πρέπει:

ΣΤΟΧΟΙ: Με τη συμπλήρωση της ενότητας αυτής ο/η μαθητής/τρια πρέπει: ΤΟΜΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση της ενότητας αυτής ο/η μαθητής/τρια πρέπει: 1. Να αναγνωρίζει τη σημασία της τομής. 2. Να επιλέγει τη θέση των επιπέδων τομής. 3. Να σχεδιάζει και να συμβολίζει τα επίπεδα

Διαβάστε περισσότερα

Μέτρηση του όγκου και του εμβαδού ορθών πρισμάτων Κανονική Πυραμίδα 1 Βάσης) (Απόστημα) 2 1 ό Βάσης) (Ύψος) 3

Μέτρηση του όγκου και του εμβαδού ορθών πρισμάτων Κανονική Πυραμίδα 1 Βάσης) (Απόστημα) 2 1 ό Βάσης) (Ύψος) 3 Βασικά σύνολα αριθμών -Σύνολο φυσικών: Ν = {0,., } ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ -Σύνολο ακεραίων: Ζ= { -.-.0.,, } Συμβολίζουμε με ν=κ και τους άρτιους και τους περιττούς αντίστοιχα. * -Σύνολο ρητών: Q =, Z &

Διαβάστε περισσότερα

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή Αντιστροφή Υποθέτουμε ότι υπάρχει ένας κανόνας ο οποίος επιτρέπει την μετάβαση από ένα σχήμα σε ένα άλλο, με τέτοιο τρόπο ώστε το δεύτερο σχήμα να είναι τελείως ορισμένο όταν το πρώτο είναι δοσμένο και

Διαβάστε περισσότερα

2 Ο ΚΕΦΑΛΑΙΟ Ενότητα 5.

2 Ο ΚΕΦΑΛΑΙΟ Ενότητα 5. Ευθεία Ο ΚΕΦΑΛΑΙΟ Ενότητα 5. Εξίσωση γραμμής Συντελεστής διεύθυνσης ευθείας Συνθήκες καθετότητας και παραλληλίας ευθειών Εξίσωση ευθείας ειδικές περιπτώσεις Σχόλιο Το σημείο είναι ο θεμελιώδης λίθος της

Διαβάστε περισσότερα

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 6: Γεωμετρικά σχήματα και μεγέθη δύο και τριών διαστάσεων Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία

Διαβάστε περισσότερα

Μετασχηµατισµοί 2 &3

Μετασχηµατισµοί 2 &3 Μετασχηµατισµοί &3 Περιγράφονται σαν σύνθεση βασικών: µετατόπιση, αλλαγή κλίµακας,περιστροφή, στρέβλωση Χωρίζονται σε γεωµετρικούς (εδώ) και αξόνων (αντίστροφοι) Θέσεις αντικειµένων και φωτεινών πηγών

Διαβάστε περισσότερα

Εισαγωγή Αποκοπή ευθείας σε 2Δ Αποκοπή πολυγώνου σε 2Δ Αποκοπή σε 3Δ. 3ο Μάθημα Αποκοπή. Γραφικα. Ευάγγελος Σπύρου

Εισαγωγή Αποκοπή ευθείας σε 2Δ Αποκοπή πολυγώνου σε 2Δ Αποκοπή σε 3Δ. 3ο Μάθημα Αποκοπή. Γραφικα. Ευάγγελος Σπύρου Εισαγωγή Αποκοπή ευθείας σε 2Δ Αποκοπή πολυγώνου σε 2Δ Αποκοπή σε 3Δ Γραφικα Τμήμα Πληροφορικής Πανεπιστήμιο Θεσσαλίας Ακ Έτος 2016-17 Εισαγωγή Αποκοπή ευθείας σε 2Δ Αποκοπή πολυγώνου σε 2Δ Αποκοπή σε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

Θέση και Προσανατολισμός

Θέση και Προσανατολισμός Κεφάλαιο 2 Θέση και Προσανατολισμός 2-1 Εισαγωγή Προκειμένου να μπορεί ένα ρομπότ να εκτελέσει κάποιο έργο, πρέπει να διαθέτει τρόπο να περιγράφει τα εξής: Τη θέση και προσανατολισμό του τελικού στοιχείου

Διαβάστε περισσότερα

Τεχνικό Σχέδιο - CAD

Τεχνικό Σχέδιο - CAD Τεχνικό Σχέδιο - CAD Τρισδιάστατοι Μετασχηματισμοί ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Τρισδιάστατη Αλλαγή κλίμακας [ ] [ ] [ ] j e a j e a û ù

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ & ΓΡΑΦΙΚΩΝ. Τρισδιάστατοι γεωμετρικοί μετασχηματισμοί

ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ & ΓΡΑΦΙΚΩΝ. Τρισδιάστατοι γεωμετρικοί μετασχηματισμοί ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ & ΓΡΑΦΙΚΩΝ Γ Ρ Α Φ Ι Κ Α Τρισδιάστατοι γεωμετρικοί μετασχηματισμοί εξιόστροφο σύστημα Θετικές περιστροφές ως προς τους άξονες συντεταγμένων x, y, z Αριστερόστροφο Σύστημα Αναπαράσταση

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις.

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ : ΣΥΝΑΡΤΗΣΗ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ [Υποκεφάλαιο. Μονότονες συναρτήσεις Αντίστροφη συνάρτηση του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα.

Διαβάστε περισσότερα

cos ϑ sin ϑ sin ϑ cos ϑ

cos ϑ sin ϑ sin ϑ cos ϑ ΜΕΜ 102 Γεωμετρία και Γραμμική Άλγεβρα Διάλεξη 33 Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης Νοε 2014 Χ.Κουρουνιώτης (Παν.Κρήτης) ΜΕΜ 102-33 Νοε 2014 1 / 11 Μετασχηματισμοί του επιπέδου Πολλοί μετασχηματισμοί

Διαβάστε περισσότερα

Παραδείγματα διπλών oλοκληρωμάτων Γ. Λυχναρόπουλος

Παραδείγματα διπλών oλοκληρωμάτων Γ. Λυχναρόπουλος Παραδείγματα διπλών oλοκληρωμάτων Γ. Λυχναρόπουλος Παράδειγμα Να υπολογισθεί με τρόπους το ολοκλήρωμα I d d 0 Η ολοκλήρωση, όπως φαίνεται από τα άκρα ολοκλήρωσης, γίνεται πάνω στο ορθογώνιο χωρίο R 0,,

Διαβάστε περισσότερα

Ένας απλός και γρήγορος αλγόριθμος για την αποκοπή γραμμών στο Scratch

Ένας απλός και γρήγορος αλγόριθμος για την αποκοπή γραμμών στο Scratch Ένας απλός και γρήγορος αλγόριθμος για την αποκοπή γραμμών στο Scratch Ματθές Δημήτριος 1, Μαγουλάς Αντώνιος 2 1 Εκπαιδευτικός Πληροφορικής ΠΕ86, dimmat@gmail.com 2 Εκπαιδευτικός Πληροφορικής ΠΕ03, amagul@yahoo.com

Διαβάστε περισσότερα

με τόξο ακτίνας R 43 1.2.14 Σύνδεση ευθείας τ με δύο τόξα ακτίνας R και R 1

με τόξο ακτίνας R 43 1.2.14 Σύνδεση ευθείας τ με δύο τόξα ακτίνας R και R 1 Πρόλογος 19 1 1.1 ΒΑΣΙΚΟΙ ΚΑΝΟΝΙΣΜΟΙ ΚΑΙ ΟΡΓΑΝΑ ΣΧΕΔΙΟΥ 21 1.1.1 Χαρτί σχεδίου 21 1.1.2 Κανονισμοί στο σχέδιο 21 1.1.3 Τοποθέτηση του χαρτιού 23 1.1.4 Αναδίπλωση 23 1.1.5 Υπόμνημα 24 1.1.6 Κλίμακα 25 1.1.7

Διαβάστε περισσότερα

Κεφάλαιο 7. Τρισδιάστατα Μοντέλα

Κεφάλαιο 7. Τρισδιάστατα Μοντέλα Κεφάλαιο 7. 7.1 ομές εδομένων για Γραφικά Υπολογιστών. Οι δομές δεδομένων αποτελούν αντικείμενο της επιστήμης υπολογιστών. Κατά συνέπεια πρέπει να γνωρίζουμε πώς οργανώνονται τα γεωμετρικά δεδομένα, προκειμένου

Διαβάστε περισσότερα

1. Ιδιότητες φακών. 1 Λεπτοί φακοί. 2 Απριλίου Βασικές έννοιες

1. Ιδιότητες φακών. 1 Λεπτοί φακοί. 2 Απριλίου Βασικές έννοιες . Ιδιότητες φακών 2 Απριλίου 203 Λεπτοί φακοί. Βασικές έννοιες Φακός είναι ένα οπτικό σύστημα με δύο διαθλαστικές επιφάνειες. Ο απλούστερος φακός έχει δύο σφαιρικές επιφάνειες αρκετά κοντά η μία με την

Διαβάστε περισσότερα

Μετασχηµατισµοί συντεταγµένων

Μετασχηµατισµοί συντεταγµένων Μετασχηµατισµοί συντεταγµένων Περιεχόµενα ενότητας: Έννοια και χρησιµότητα του µετασχηµατισµού συντεταγµένων Μητρώα µετασχηµατισµού Συντεταγµένες µοντέλου Μετασχηµατισµός µοντέλου Στοιχειώδεις µετασχηµατισµοί

Διαβάστε περισσότερα

f(x) = και στην συνέχεια

f(x) = και στην συνέχεια ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση. Στις συναρτήσεις μπορούμε να μετασχηματίσουμε πρώτα τον τύπο τους και μετά να βρίσκουμε το πεδίο ορισμού τους; Όχι. Το πεδίο ορισμού της συνάρτησης το βρίσκουμε πριν μετασχηματίσουμε

Διαβάστε περισσότερα

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/2017. Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης. dy dx = 2y + x 2 y 2 2x

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/2017. Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης. dy dx = 2y + x 2 y 2 2x Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/017 Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης dx y + x y. x Παρατηρούμε ότι η δ.ε. είναι ομογενής. Πράγματι, dx y x + 1 x y x y x + 1 (

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ

ΚΑΤΑΝΟΜΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ ΚΑΤΑΝΟΜΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ Σε αντίθεση με την διακριτή τυχαία μεταβλητή, μία συνεχής τυχαία μεταβλητή παίρνει μη-αριθμήσιμο (συνεχές) πλήθος τιμών. Δεν μπορούμε να καταγράψουμε το σύνολο των τιμών

Διαβάστε περισσότερα

1 ΘΕΩΡΙΑΣ...με απάντηση

1 ΘΕΩΡΙΑΣ...με απάντηση 1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.

Διαβάστε περισσότερα

α) Κύκλος από δύο δοσµένα σηµεία Α, Β. Το ένα από τα δύο σηµεία ορίζεται ως κέντρο αν το επιλέξουµε πρώτο. β) Κύκλος από δοσµένο σηµείο και δοσµένο ευ

α) Κύκλος από δύο δοσµένα σηµεία Α, Β. Το ένα από τα δύο σηµεία ορίζεται ως κέντρο αν το επιλέξουµε πρώτο. β) Κύκλος από δοσµένο σηµείο και δοσµένο ευ ΕΙΣΑΓΩΓΗ ΣΤΟ ΛΟΓΙΣΜΙΚΟ SKETCHPAD ΜΕΡΟΣ Α Μιλώντας για ένα λογισµικό δυναµικής γεωµετρίας καλό θα ήταν να διακρίνουµε αρχικά 3 οµάδες εργαλείων µε τα οποία µπορούµε να εργαστούµε µέσα στο συγκεκριµένο περιβάλλον.

Διαβάστε περισσότερα

Η Αρχή του Ήρωνος και η Ανάκλαση του Φωτός

Η Αρχή του Ήρωνος και η Ανάκλαση του Φωτός Σχεδιασμός Υλοποίηση: Αλκιβιάδης Γ. Τζελέπης, M.Sc Mathematics, Model High School Evangeliki of Smirni. Η Αρχή του Ήρωνος και η Ανάκλαση του Φωτός Το Πρόβλημα Να αποδειχθεί ο νόμος της ανάκλασης: Μία φωτεινή

Διαβάστε περισσότερα

Περιοχή εργασίας. Τμ. Γραφιστικής (Γραφιστική με Η/Υ - In Design) 2

Περιοχή εργασίας. Τμ. Γραφιστικής (Γραφιστική με Η/Υ - In Design) 2 Περιοχή εργασίας A. Παράθυρο εγγράφου B. Συγκέντρωση πινάκων συμπτυγμένων σε εικονίδια Γ. Γραμμή τίτλου πίνακα Δ. Γραμμή μενού E. Γραμμή επιλογών Στ. Παλέτα εργαλείων Ζ. Κουμπί σύμπτυξης σε εικονίδια Η.

Διαβάστε περισσότερα

14 η εβδομάδα (27/01/2017) Έγιναν οι ασκήσεις 39, 41 και 42. Έγινε επανάληψη και λύθηκαν ερωτήματα και απορίες.

14 η εβδομάδα (27/01/2017) Έγιναν οι ασκήσεις 39, 41 και 42. Έγινε επανάληψη και λύθηκαν ερωτήματα και απορίες. 14 η εβδομάδα (27/01/2017) Έγιναν οι ασκήσεις 39, 41 και 42. Έγινε επανάληψη και λύθηκαν ερωτήματα και απορίες. 13 η εβδομάδα (20/01/2017) Έγιναν οι ασκήσεις 31, 32, 33, 34, 36 και 37 11 η 12 η εβδομάδα

Διαβάστε περισσότερα

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Η πρώτη οθόνη μετά την εκτέλεση του προγράμματος διαφέρει κάπως από τα προηγούμενα λογισμικά, αν και έχει αρκετά κοινά στοιχεία. Αποτελείται

Διαβάστε περισσότερα

Επίλυση Συστήματος Γραμμικών Διαφορικών Εξισώσεων

Επίλυση Συστήματος Γραμμικών Διαφορικών Εξισώσεων Επίλυση Συστήματος Γραμμικών Διαφορικών Εξισώσεων. Γραμμικοί Μετασχηματισμοί Ανυσμάτων Θεωρούμε χώρο δύο διαστάσεων και συμβατικά ένα ορθογώνιο σύστημα αξόνων για την περιγραφή κάθε ανύσματος του χώρου

Διαβάστε περισσότερα

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Λογισμός 3 Ασκήσεις. Μιχάλης Μαριάς Τμήμα Α.Π.Θ.

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Λογισμός 3 Ασκήσεις. Μιχάλης Μαριάς Τμήμα Α.Π.Θ. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Λογισμός 3 Μιχάλης Μαριάς Τμήμα Α.Π.Θ. Θεσσαλονίκη, 2015 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Κλασικη ιαφορικη Γεωµετρια

Κλασικη ιαφορικη Γεωµετρια Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Σχολη Θετικων Επιστηµων, Τµηµα Μαθηµατικων, Τοµεας Γεωµετριας Κλασικη ιαφορικη Γεωµετρια Πρώτη Εργασία, 2018-19 1 Προαπαιτούµενες γνώσεις και ϐασική προετοιµασία

Διαβάστε περισσότερα

) = Απόσταση σημείου από ευθεία. Υπολογισμός Εμβαδού Τριγώνου. και A

) = Απόσταση σημείου από ευθεία. Υπολογισμός Εμβαδού Τριγώνου. και A [Επιλογή Ιαν.. Εμβαδόν Τριγώνου ΣΤΟΧΟΙ: Ο µαθητής ϖρέϖει: να είναι ικανός να υϖολογίζει την αϖόσταση σηµείου αϖό ευθεία να είναι ικανός να υϖολογίζει το εµβαδό ενός τριγώνου αϖό τις συντεταγµένες των κορυφών

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

lim f ( x) x + f ( x) x a x a x a 2x 1

lim f ( x) x + f ( x) x a x a x a 2x 1 Ασύµπτωτες γραφικής παραστάσεως συναρτήσεως Ασύµπτωτες της γραφικής παραστάσεως συναρτήσεως y f ( ) ονοµάζονται οι ευθείες που για πολύ µικρές ή µεγάλες τιµές των, y προσεγγίζουν ικανοποιητικά την γραφική

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2 η Μηχανολογικά Κατασκευαστικά Σχέδια

ΕΝΟΤΗΤΑ 2 η Μηχανολογικά Κατασκευαστικά Σχέδια ΕΝΟΤΗΤΑ 2 η Μηχανολογικά Κατασκευαστικά Σχέδια Μάθημα 2.6 Τρισδιάστατη στερεά μοντελοποίηση εξαρτημάτων ημιουργία ενός τρισδιάστατου μοντέλου από ένα σχέδιο δύο διαστάσεων. Ορθές προβολές (Top, Bottom,

Διαβάστε περισσότερα

Μεθοδολογία Έλλειψης

Μεθοδολογία Έλλειψης Μεθοδολογία Έλλειψης Έλλειψη ονομάζεται ο γεωμετρικός τόπος των σημείων, των οποίων το άθροισμα των αποστάσεων από δύο σταθερά σημεία Ε και Ε είναι σταθερό και μεγαλύτερο από την απόσταση (ΕΕ ). Στη Φύση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ

ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ Ένα «ανοικτό» αρχείο, δηλαδή επεξεργάσιμο που όλοι μπορούν να συμμετέχουν είτε προσθέτοντας είτε διορθώνοντας υλικό. Μετά

Διαβάστε περισσότερα

1 x και y = - λx είναι κάθετες

1 x και y = - λx είναι κάθετες Κεφάλαιο ο: ΕΥΘΕΙΑ Ερωτήσεις του τύπου «Σωστό-Λάθος» 1. * Συντελεστής διεύθυνσης μιας ευθείας (ε) είναι η εφαπτομένη της γωνίας που σχηματίζει η ευθεία (ε) με τον άξονα. Σ Λ. * Ο συντελεστής διεύθυνσης

Διαβάστε περισσότερα

Βασικές Γεωμετρικές έννοιες

Βασικές Γεωμετρικές έννοιες Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο

Διαβάστε περισσότερα

Μαθηματική Εισαγωγή Συναρτήσεις

Μαθηματική Εισαγωγή Συναρτήσεις Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας Διανύσματα Καστοριά,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: ΑΠΕΙΚΟΝΙΣΗ ΚΑΙ ΑΠΟΚΟΠΗ

ΚΕΦΑΛΑΙΟ 5: ΑΠΕΙΚΟΝΙΣΗ ΚΑΙ ΑΠΟΚΟΠΗ ΚΕΦΑΛΑΙΟ 5: ΑΠΕΙΚΟΝΙΣΗ ΚΑΙ ΑΠΟΚΟΠΗ Ένα γεωμετρικό μοντέλο είναι μια αριθμητική περιγραφή ενός αντικειμένου, που περιλαμβάνει το μέγεθος, το σχήμα, καθώς και άλλες ιδιότητές του. Η περιγραφή του μοντέλου

Διαβάστε περισσότερα

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις 1. Εισαγωγή Δίνεται η συνάρτηση μεταφοράς = = 1 + 6 + 11 + 6 = + 6 + 11 + 6 =. 2 Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις L = 0 # και L $ % &'

Διαβάστε περισσότερα

δίου ορισμού, μέσου του τύπου εξαρτημένης μεταβλητής του πεδίου τιμών που λέγεται εικόνα της f για x α f α.

δίου ορισμού, μέσου του τύπου εξαρτημένης μεταβλητής του πεδίου τιμών που λέγεται εικόνα της f για x α f α. 3.1 Η έννοια της συνάρτησης Ορισμοί Συνάρτηση f από ένα συνόλου Α σε ένα σύνολο Β είναι μια αντιστοιχία των στοιχείων του Α στα στοιχεία του Β, κατά την οποία κάθε στοιχείο του Α αντιστοιχεί σε ένα μόνο

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών

Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή Γεωμετρικός Πυρήνας Γεωμετρικός Πυρήνας Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών Γεωμετρικός Πυρήνας Εξομάλυνση Σημεία Καμπύλες Επιφάνειες

Διαβάστε περισσότερα

Εισαγωγή στην OpenGL: μέρος 2ο

Εισαγωγή στην OpenGL: μέρος 2ο Εισαγωγή στην OpenGL: μέρος 2ο Μετασχηματισμοί στην OpenGL Η OpenGL υποστηρίζει μια σειρά μετασχηματισμών τους οποίους μπορούμε να χρησιμοποιήσουμε για να τοποθετήσουμε τα αντικείμενα μας στην οθόνη, να

Διαβάστε περισσότερα

Απεικόνιση Υφής. Μέρος B Δημιουργία Συντεταγμένων Υφής

Απεικόνιση Υφής. Μέρος B Δημιουργία Συντεταγμένων Υφής Απεικόνιση Γραφικά ΥφήςΥπολογιστών Απεικόνιση Υφής Μέρος B Δημιουργία Συντεταγμένων Υφής Γ. Γ. Παπαϊωάννου, - 2008 Γενικά Είδαμε ότι μπορούμε να αποθηκεύσουμε συντεταγμένες υφής στις κορυφές των τριγώνων

Διαβάστε περισσότερα

7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ 7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f ( ) 1. Μορφή της συνάρτησης f ( ) Ιδιότητες Έχει πεδίο ορισµού ολο το R Είναι άρτια, άρα συµµετρική ως προς τον άξονα y y Είναι γνησίως φθίνουσα στο διάστηµα (,0] Είναι γνησίως

Διαβάστε περισσότερα

ΣΤΕΡΕΟΣΚΟΠΙΚΕΣ ΕΙΚΟΝΕΣ

ΣΤΕΡΕΟΣΚΟΠΙΚΕΣ ΕΙΚΟΝΕΣ ΣΤΕΡΕΟΣΚΟΠΙΚΕΣ ΕΙΚΟΝΕΣ Η προοπτική εικόνα, είναι, όπως είναι γνωστό, η προβολή ενός χωρικού αντικειμένου, σε ένα επίπεδο, με κέντρο προβολής, το μάτι του παρατηρητή. Η εικόνα αυτή, θεωρούμε ότι αντιστοιχεί

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Γραμμικά Συστήματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Γραμμικό Σύστημα a11x1 + a12x2 + + a1 nxn = b1 a x + a x + +

Διαβάστε περισσότερα

Κεφάλαιο Τοπολογικές απεικονίσεις Αζιμουθιακή ισόχρονη απεικόνιση

Κεφάλαιο Τοπολογικές απεικονίσεις Αζιμουθιακή ισόχρονη απεικόνιση Κεφάλαιο 9 Σύνοψη Στο κεφάλαιο αυτό, περιγράφονται αναλυτικές χαρτογραφικές μέθοδοι μετασχηματισμού του χώρου, μετατρέποντας τη γεωμετρία του χάρτη με τρόπο που να απεικονίζεται το ίδιο το χωρικό φαινόμενο

Διαβάστε περισσότερα