1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ
|
|
- Λάχεσις Βονόρτας
- 9 χρόνια πριν
- Προβολές:
Transcript
1 .8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΣΥΝΕΧΗΣ ΣΥΝΑΡΤΗΣΗ - ΟΡΙΣΜΟΣ Όταν θέλουμε να εξετάσουμε ως προς τη συνέχεια μια συνάρτηση πολλαπλού τύπου, εργαζόμαστε ως εξής : Εξηγούμε γιατί είναι συνεχής κάθε κλάδος της συνάρτησης ξεχωριστά, στα ανοιχτά διαστήματα που ορίζεται. Εξετάζουμε (με τον ορισμό τη συνέχεια στα σημεία που αλλάζει ο τύπος. Αν lim ( ( τότε η είναι συνεχείς στο, αλλιώς όχι. Τονίζουμε ότι για την εύρεση του lim ( εργαζόμαστε με πλευρικά όρια. Η δεν είναι συνεχείς στο, αν : Δεν υπάρχει κάποιο από τα πλευρικά όρια ή Τα πλευρικά όρια στο υπάρχουν αλλά είναι διαφορετικά ή Τα πλευρικά όρια στο είναι ίσα, όχι όμως ίσα με το. (. (Άσκηση σελ. 97 Α Ομάδας σχολικό βιβλίο Να μελετήσετε ως προς τη συνέχεια στο τις παρακάτω συναρτήσεις : i., ( 3, αν = ii., ( 3, αν = iii., ( 3, αν =- i. Είναι : lim ( lim ( 8, lim ( lim ( 3 8, Άρα lim ( lim ( ( 8 άρα η ( είναι συνεχής στο. ii. Είναι : lim ( lim(, lim ( lim 3, Άρα lim ( lim ( ( άρα η ( είναι συνεχής στο. ( ( i. Είναι : lim ( lim lim lim ( 3, Άρα lim ( ( 3 άρα η ( είναι συνεχής στο. ( 3 8 ( 3 ( 3 ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα
2 . (Άσκηση σελ. 98 Α Ομάδας σχολικό βιβλίο Να μελετήσετε ως προς τη συνέχεια τις συναρτήσεις : 3, i. (,, ii. (, i. Αν, ( 3 είναι συνεχής ως πολυωνυμηκή Αν, ( είναι συνεχής ως πηλίκο συνεχών Θα εξετάσω τώρα αν η ( είναι συνεχής στο (σημείο αλλαγής τύπου lim ( lim( 3 ( ( lim ( lim lim ( ( ( Άρα η ( δεν είναι συνεχής στο ii. Αν, ( είναι συνεχής ως πηλίκο συνέχων Αν, ( είναι συνεχής Θα εξετάσω τώρα αν η ( είναι συνεχής στο (σημείο αλλαγής τύπου lim ( lim lim ( lim ( Άρα η ( είναι συνεχής στο ( ( lim lim ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα
3 ΜΕΘΟΔΟΛΟΓΙΑ : ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΠΑΡΑΜΕΤΡΩΝ Αν μια συνάρτηση μας δίνεται ότι είναι συνεχής σε ένα σημείο του πεδίου ορισμού της και ζητείται να προσδιορίσω κάποιες παραμέτρους τότε κάνω χρήση του ορισμού : H είναι συνεχείς στο τότε lim ( (. Αν χρειαστεί κάνω χρήση του ορισμού με τα πλευρικά όρια :H είναι συνεχείς στο τότε : lim ( lim ( ( 3. (Άσκηση σελ. 99 B Ομάδας σχολικό βιβλίο ( (, Αν (, να προσδιορίσετε το κ, ώστε η, ( να είναι συνεχής στο. Η ( είναι συνεχής στο lim ( lim ( ( lim ( lim ( ( lim ( lim ( ( ( ( Άρα lim (. (Άσκηση σελ. 99 B Ομάδας σχολικό βιβλίο, Αν (,, να βρείτε τις τιμές των,, για τις οποίες η, ( να είναι συνεχής στο. Η ( είναι συνεχής στο lim ( lim ( ( lim ( lim( (, ή, 3 Για, ( : Για 3, ( : 3 8 lim ( lim( (,( Άρα,( ( : ( ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα 3
4 ΜΕΘΟΔΟΛΟΓΙΑ 3 ( : ΕΥΡΕΣΗ ΤΙΜΗΣ Ή ΤΟΥ ΤΥΠΟΥ ΤΗΣ Όταν μια συνάρτηση είναι συνεχής στο D, τότε lim ( (. Άρα αν μας ζητείται η τιμή αν μας ζητείται το (, τότε αρκεί να βρούμε το lim ( αν η είναι συνεχής στο και μας δίνεται μια ανισοτική σχέση, τότε το ( το Βρίσκουμε χρησιμοποιώντας πλευρικά όρια και καταλήγοντας στις σχέσεις (, (, οπότε (. lim (, τότε αρκεί να βρούμε το (. Έστω συνεχής συνάρτηση : για την οποία ισχύει : ( ( 6 για κάθε. Να βρείτε την τιμή (. Στη συνέχεια να βρείτε τον τύπο της (. Είναι ( ( 6 για κάθε 6 Αν τότε ( ( 6 (. Για να βρούμε το ( θα χρησιμοποιήσουμε την συνέχεια της (. Δηλ. Η ( είναι συνεχής για κάθε, άρα η ( συνεχής και στο άρα ισχύει : 6 ( ( 3 ( lim ( lim lim lim( 3. 6, Άρα για τον τύπο της ( ισχύει : (., 6. Έστω η συνεχής συνάρτηση : για την οποία ισχύει : ( ( ( για κάθε. Να βρείτε το (. Επειδή η ( είναι συνεχής για κάθε, άρα η ( συνεχής και στο άρα ισχύει : lim ( ( lim ( lim ( ( ( Για έχω : ( ( ( ( ( Άρα ( ( ( ( lim ( lim ( lim lim * u ( u ( ( 3 ( (* lim lim ό :, u u ό: u Για έχω : ( ( ( ( ( ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα έ
5 Άρα * ( ( ( lim ( lim ( lim lim ( ( 3 (3. Άρα από ( και (3 έχω ότι ( Αν η συνάρτηση ( είναι συνεχής στο να βρεθεί η τιμή ( όταν ( ( ( lim. ( ( ( Έστω : τότε lim και ( ( ( ( ( ( ( ( (, άρα είναι Επειδή όμως η ( είναι συνεχής στο, ισχύει : ( lim ( ( 3 έ u ( u (* lim lim ό :, u u ό: u ( ( ( lim ( lim ( ( ( * * ( ( lim ( lim lim lim ( lim ( lim ( lim ( ( lim ( lim ( ( lim ( lim ( 3 ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα
6 Β. ΘΕΩΡΗΜΑ BOLZANO ΜΕΘΟΔΟΛΟΓΙΑ : ΘΕΩΡΗΜΑ BOLZANO ΚΑΙ ΥΠΑΡΞΗ ΡΙΖΑΣ ΠΕΡΙΠΤΩΣΗ Α. Για να αποδείξουμε ότι μια εξίσωση έχει μια τουλάχιστον ρίζα σε ένα διάστημα (α,β ακολουθούμε τα εξής βήματα : φέρνουμε όλους τους όρους στο α μέλος θεωρούμε το α μέλος ως μια συνάρτηση εξασφαλίζουμε για την τις προϋποθέσεις του θεωρήματος Bolzano στο [α,β]. Υποπερίπτωση : Αν θέλω να δείξω ότι η εξίσωση ( ή ( έχει μια τουλάχιστον ρίζα στο (α,β θεωρώ νέα συνάρτηση h( ( ή h ( ( αντίστοιχα και εφαρμόζω Θ.Bolzano στην h. 8. Να δείξετε ότι η εξίσωση 3 έχει τουλάχιστον μια ρίζα στο διάστημα (,π. Έχω 3, έστω ( 3, D, θα δείξω ότι η εξίσωση ( έχει τουλάχιστον μια ρίζα στο (,π. Εφαρμόζω Θ. Bolzano για την ( στο [,π] ( συνεχής στο [,π] ως πράξεις συνέχων (π.σ. (, ( 3 3 Άρα ( ( και άρα από Θ.Β. η εξίσωση ( έχει τουλάχιστον μια ρίζα στο (,π ΠΕΡΙΠΤΩΣΗ Β. Αν θέλουμε να αποδείξουμε ότι η εξίσωση έχει περισσότερες ρίζες, τότε εφαρμόζουμε την παραπάνω διαδικασία σε περισσότερα διαστήματα, είτε χωρίζοντας το αρχικό διάστημα, είτε εντοπίζοντας νέα διαστήματα. Τα διαστήματα δεν πρέπει να έχουν κοινά εσωτερικά στοιχεία. 9. Να δείξετε ότι η εξίσωση έχει τουλάχιστον δυο ρίζες στο διάστημα (-,. Έχω, έστω (, D, θα δείξω ότι η εξίσωση ( έχει τουλάχιστον δυο ρίζες στο (-,. Εφαρμόζω Θ.Bolzano για την ( στα [-,] & [,] Θ.Bolzano για την ( στα [-,] ( συνεχής στο [-,] ως πολυωνυμηκή (, ( Άρα ( ( και άρα από Θ.Β. η εξίσωση ( έχει τουλάχιστον μια ρίζα στο (-, ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα 6
7 Θ.Bolzano για την ( στα [,] ( συνεχής στο [,] ως πολυωνυμηκή (, ( Άρα ( ( και άρα από Θ.Β. η εξίσωση ( έχει τουλάχιστον μια ρίζα στο (, Άρα τελικά η εξίσωση ( έχει τουλάχιστον δυο ρίζες στο (-, ΠΕΡΙΠΤΩΣΗ Γ. Αν η εξίσωση περιέχει παρανομαστές και η συνάρτηση δεν ορίζεται σε κάποιο άκρο, τότε πρώτα απαλείφουμε τους παρανομαστές και μετά θέτουμε συνάρτηση (.. (Άσκηση β σελ. Ομάδας σχολικού βιβλίου e ln Να αποδείξετε ότι η εξίσωση έχει τουλάχιστον μια ρίζα στο (, Αν θέσουμε ως συνάρτηση ( το ο μέλος της εξίσωσης δεν θα ορίζονται τα (, ( με αποτέλεσμα να μην μπορώ να εφαρμόσω Θ.Β. Γι αυτό κάνω πρώτα e ln απαλοιφή παρανομαστών : e ( ln (, έστω ( e ( ln (, D (,, θα δείξω ότι η εξίσωση ( έχει τουλάχιστον μια ρίζα στο (,. Εφαρμόζω Θ. Bolzano για την ( στο [,] ( συνεχής στο [,] ως π.σ. ( e, ( ln Άρα ( ( και άρα από Θ.Β. η εξίσωση ( έχει τουλάχιστον μια ρίζα στο (, ΠΕΡΙΠΤΩΣΗ Δ. Αν ζητείται να δείξουμε ότι η εξίσωση ( έχει μια τουλάχιστον ρίζα στο [α,β] (Δηλ. ότι υπάρχει [, ] τέτοιο ώστε ( τότε αρκεί να δείξουμε ότι ( ( και διακρίνω τις περιπτώσεις αν ( (, τότε θεωρούμε ή αν ( ( τότε ισχύει το Bolzano. Μια συνάρτηση είναι ορισμένη και συνεχής σε ένα διάστημα [-3,3] και για κάθε [3,3] ισχύει ( 3. Να αποδειχτεί ότι η εξίσωση ( έχει τουλάχιστον μια ρίζα στο [-3,3]. Έχω (, έστω (, D [3,3], θα δείξω ότι η εξίσωση g ( έχει τουλάχιστον μια ρίζα στο [-3,3]. Εφαρμόζω Θ.Bolzano για την g ( στο [- 3,3] g ( συνεχής στο [-3,3] ως π.σ. ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα 7 g
8 Από εκφώνηση : ( 3 3 ( 3 ( για κάθε [3,3] Άρα g ( 3 ( 3 3 ( Από ( : 3 ( 3 3 ( Και g ( 3 (3 3 ( Από ( : 3 (3 3 6 (3 3 Άρα g ( 3 3 Αν το -3 είναι ρίζα της εξίσωσης g ( ή 3 το 3 είναι ρίζα της εξίσωσης g ( Αν g ( 3 3 από Θ.Β. η εξίσωση g ( έχει τουλάχιστον μια ρίζα στο (-3,3 Άρα σε κάθε περίπτωση η εξίσωση g ( έχει τουλάχιστον μια ρίζα στο [-3,3] ΜΕΘΟΔΟΛΟΓΙΑ : ΥΠΑΡΞΗ (, ΠΟΥ ΙΚΑΝΟΠΟΙΕΙ ΜΙΑ ΙΣΟΤΗΤΑ Για να αποδείξουμε ότι υπάρχει (, (ή (, που να ικανοποιεί μια ισότητα, εργαζόμαστε ως εξής : Στην ισότητα που δίνεται, (αν χρειάζεται κάνουμε απαλοιφή παρανομαστών μεταφέρουμε όλους τους όρους στο πρώτο μέλος και θέτουμε όπου το. Θεωρούμε συνάρτηση g ( το πρώτο μέλος. Εφαρμόζουμε Θ. Bolzano για την g ( στο [α,β] και δείχνουμε ότι υπάρχει (, τέτοιο ώστε g (. Από την ισότητα g ( οδηγούμαστε στη ζητούμενη ισότητα.. Δίνεται συνεχής συνάρτηση : [, ], της οποίας η γραφική παράσταση διέρχεται από το σημείο (,. Να αποδειχτεί ότι υπάρχει ένα τουλάχιστον (,, ώστε : (. ( Θα δείξω ότι η εξίσωση ( ( (α,β. Έστω ( ( ( έχει τουλάχιστον μια ρίζα στο g, D [, ], άρα θα δείξω ότι η εξίσωση g ( έχει τουλάχιστον μια ρίζα στο (α,β. Θ.Β. για τη g ( στο [α,β] g ( συνεχής στο [, ] ως π.σ. Η γραφική παράσταση της διέρχεται από το (, άρα (, g ( ( ( ( ( άρα και g ( ( ( ( ( ( Άρα έχω g ( και άρα από Θ.Β. η εξίσωση g ( έχει τουλάχιστον μια ρίζα στο (α,β. 3. Αν η συνάρτηση είναι συνεχής στο [, ] και για κάθε ισχύει ( ( (. Να αποδειχτεί ότι υπάρχει [, ] ώστε να είναι (. ( g ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα 8
9 Θα δείξω ότι η εξίσωση ( ( έχει τουλάχιστον μια ρίζα στο (,. Έστω g ( ( (, D, άρα θα δείξω ότι η εξίσωση g ( έχει τουλάχιστον μια ρίζα στο [, ]. Θ.Β. για τη g ( στο [, ] g ( συνεχής στο [, ] ως π.σ. ( ( ( ( ( ( g ( ( ( ( ( [ ( ( ] Άρα έχω g ( [ ( ( ] Αν το α- είναι ρίζα της εξίσωσης g ( ή το α+ είναι ρίζα της εξίσωσης g ( Αν g ( από Θ.Β. η εξίσωση g ( έχει τουλάχιστον μια ρίζα στο (, Άρα σε κάθε περίπτωση η εξίσωση g ( έχει τουλάχιστον μια ρίζα στο [, ]. ΜΕΘΟΔΟΛΟΓΙΑ 3 : ΜΟΝΑΔΙΚΗ ΡΙΖΑ ΣΤΟ (α,β Για να δείξω ότι η εξίσωση (= έχει ακριβώς μια ρίζα στο (α,β: ο Βήμα : Δείχνω ότι η εξίσωση (= έχει τουλάχιστον μια ρίζα στο (α,β με Θ. Bolzano ο Βήμα : Αποδεικνύουμε ότι η είναι γνησίως μονότονη στο (α,β, οπότε η παραπάνω ρίζα είναι μοναδική.. Να αποδείξετε ότι η εξίσωση : e έχει μοναδική ρίζα στο (, Έχω : e e, έστω ( e, D, θα δείξω ότι η εξίσωση ( έχει ακριβώς μια ρίζα στο (, ο Βήμα : θ.δ.ο. η εξίσωση ( έχει τουλάχιστον μια ρίζα στο (, Θ.Β. για την ( στο [,] ( συνεχής στο [,] ως π.σ. (, ( e άρα ( ( και άρα από Θ.Β. η εξίσωση ( έχει τουλάχιστον μια ρίζα στο (, ο Βήμα : θ.δ.ο. η ( είναι γνησίως μονότονη Έστω, με : e e ( (, προσθέτω κατά μέλη τις ( και ( και έχω : e ( ( e άρα η ( είναι γνησίως αύξουσα οπότε η εξίσωση ( έχει το πολύ μια ρίζα. Άρα τελικά η εξίσωση ( έχει ακριβώς μια ρίζα στο (, ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα 9
10 Γ. ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ BOLZANO ΜΕΘΟΔΟΛΟΓΙΑ : ΕΥΡΕΣΗ ΠΡΟΣΗΜΟΥ ΣΥΝΑΡΤΗΣΗΣ Μια συνεχής συνάρτηση διατηρεί πρόσημο σε κάθε ένα από τα διαστήματα, στα οποία χωρίζουν το πεδίο ορισμού οι διαδοχικές ρίζες της. Η διαδικασία είναι : Λύνουμε την εξίσωση (=, D. Να βρεθεί το πρόσημο της συνάρτησης ( 3 6 ( 3 6, πρέπει 3 3 ( και 6 [,] ( άρα από ( και ( D [3,]. 3 6 ( δεκτή ή 6 6 δεκτή ή απορ Σε πίνακα πρόσημου χωρίζουμε το π.ο. σε διαστήματα, τοποθετώντας τις ρίζες και τα ανοικτά άκρα του π.ο. Βρίσκω το πρόσημο της σε κάθε διάστημα ( Άρα : ( για κάθε [ 3,, ( για κάθε (, και ( όταν, ή, ΜΕΘΟΔΟΛΟΓΙΑ : ΕΥΡΕΣΗ ΤΥΠΟΥ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ ( ΣΥΝΕΧΗΣ ΚΑΙ ( Όταν μια συνάρτηση είναι συνεχής σε ένα διάστημα και δε μηδενίζεται σε αυτό, τότε η διατηρεί σταθερό πρόσημο σε αυτό. Αυτή η διαπίστωση μας βοηθάει να βρούμε τον τύπο μιας συνεχούς συνάρτησης η οποία ικανοποιεί μια δοσμένη σχέση. 6. (Άσκηση 7 σελ. Ομάδας σχολικό βιβλίο Έστω μια συνεχή συνάρτηση στο διάστημα [-,], για την οποία ισχύει : ( για κάθε [, ] i. Να βρείτε τις ρίζες της εξίσωσης ( ii. Να αποδείξετε ότι η συνάρτηση διατηρεί σταθερό πρόσημο στο (-,. iii. Να βρεθεί ο τύπος της συνάρτησης. i. Έχω ( (, ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα
11 ( (, ή, ii. Στο διάστημα (-, η ( είναι συνεχής και δεν μηδενίζει (αφού οι μόνες ρίζες της ( είναι οι, ή, άρα η ( διατηρεί σταθερό πρόσημο στο (-, iii. Η ( διατηρεί σταθερό πρόσημο στο (-, άρα ( για κάθε (, ή ( για κάθε (,. Όμως (, οπότε, Αν (, τότε, Αν (, τότε, ( (, [, ] ( (, [, ] ΜΕΘΟΔΟΛΟΓΙΑ 3 : Θ.Ε.Τ. ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ & ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ Α. Όταν μια συνάρτηση είναι συνεχής σε ένα διάστημα Δ και παίρνει δυο τιμές διαφορετικές μεταξύ τους, τότε η παίρνει και όλες τις ενδιάμεσες (Θ.Ε.Τ.. Άρα αν η δεν είναι σταθερή, τότε το σύνολο τιμών της (Δ είναι επίσης διάστημα. Β. Αν μια συνάρτηση είναι συνεχής στο [α,β], τότε η παίρνει και μέγιστη και ελάχιστη τιμή. Αυτό σημαίνει ότι υπάρχουν, [, ] ώστε : ( ( ( για κάθε [, ] που σημαίνει ότι τα μ, Μ είναι αντίστοιχα η ελάχιστη και η μέγιστη τιμή της στο [, ] Γ. Ένα θεωρητικό συμπέρασμα που προκύπτει από τα παραπάνω θεωρήματα είναι ότι «Αν η είναι συνεχείς και - σε διάστημα Δ, τότε είναι και γνησίως μονότονη στο Δ». 7. Η συνάρτηση είναι συνεχής και γνησίως αύξουσα στο [,]. Αν (= και (= να δείξετε ότι : i. Η ευθεία y=3, τέμνει τη C, σε ένα ακριβώς σημείο με τετμημένη (, ii. Υπάρχει (, τέτοιο ώστε : 3 ( (Πανελλήνιες Ο i. Αρκεί ν.δ.ο η εξίσωση ( 3 έχει ακριβώς μια ρίζα στο (, ος Τρόπος : Εφαρμόζω Θ.Ε.Τ. για την ( ( συνεχής στο [,] ( ( (αφού (, ( Άρα από Θ.Ε.Τ., αφού ( 3 (, η εξίσωση ( 3 έχει τουλάχιστον μια ρίζα στο (, και επειδή η ( είναι γνησίως αύξουσα θα είναι και μοναδική. ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα
12 ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα ος Τρόπος : Έστω 3 ( ( g, θ.δ.ο. η εξίσωση ( g έχει ακριβώς μια ρίζα στο (,. Θ.Β. στη ( g στο [,] και μονοτονία ii. Επειδή η ( είναι συνεχής στο [,], από Θ.Μ.Ε.Τ. θα έχει μέγιστη τιμή Μ και ελάχιστη τιμή μ επομένως θα ισχύει ( για κάθε ] [,. Άρα : ( ( 3 (3 ( Αν προσθέσω κατά μέλη τις (, (, (3, ( έχω : 3 3 Αν τότε η ( είναι σταθερή οπότε για κάθε (,, ισχύει : 3 ( Αν τότε το σύνολο τιμών της ( είναι [μ,μ] και ο αριθμός ], [ 3, οπότε από Θ.Ε.Τ. υπάρχει τουλάχιστον ένα (, τέτοιο ώστε : 3 (.
13 ΜΕΘΟΔΟΛΟΓΙΑ : ΣΥΝΟΛΟ ΤΙΜΩΝ Για να βρούμε το σύνολο τιμών (Δ μιας συνάρτησης σε ένα διάστημα Δ=(α,β κάνω τα εξής : Διαπιστώνω ότι η είναι συνεχής και γνησίως μονότονη στο διάστημα Δ=(α,β Βρίσκω τα όρια : lim ( και lim ( οπότε : (Δ=(Α,Β, αν η είναι γνησίως αύξουσα ή (Δ=(Β,Α, αν η είναι γνησίως φθίνουσα Αν κάποιο από τα άκρα του Δ είναι κλειστό, τότε και το αντίστοιχο του (Δ θα είναι κλειστό. ΜΟΡΦΗ ΔΙΑΣΤΗΜΑΤΟΣ ΜΟΝΟΤΟΝΙΑ ΤΗΣ ΣΥΝΟΛΟ ΤΙΜΩΝ ΤΗΣ (, ( [α,β] Γνησίως Αύξουσα [α,β] Γνησίως Φθίνουσα (, ( (α,β] Γνησίως Αύξουσα lim (, ( (α,β] Γνησίως Φθίνουσα (, lim ( [α,β [α,β (α,β (α,β Γνησίως Αύξουσα Γνησίως Φθίνουσα Γνησίως Αύξουσα Γνησίως Φθίνουσα (, lim ( lim lim (, ( (, lim lim (, lim ( ( 8. Δίνεται η συνάρτηση ( e ln. Να βρείτε το σύνολο τιμών της. Πρέπει και άρα D (, ] D (,], έστω D (, ] με :, ( e e e e ( ln ln ln ln (3, προσθέτω κατά μέλη τις (, ( και (3 και έχω: e ln e ln ( ( άρα η ( είναι γνησίως φθίνουσα. Η ( είναι γνησίως φθίνουσα και συνεχής στο D (, ] άρα ( [ (, lim ( ( e lim (, lim ( e( e ln άρα ( [ e,. ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα 3
14 ΜΕΘΟΔΟΛΟΓΙΑ : ΓΙΑ Ν.Δ.Ο. Η ΕΞΙΣΩΣΗ (= ΕΧΕΙ ΜΙΑ ΤΟΥΛΑΧΙΣΤΟΝ ΡΙΖΑ ος Τρόπος Με προφανή ρίζα. ος Τρόπος Αν ζητείται να δείξω ότι η (= έχει μια τουλάχιστον ρίζα στο (α,β τότε εφαρμόζω το Θ.Bolzano για την. Υποπερίπτωση : Αν θέλω να δείξω ότι η εξίσωση ( ή ( έχει μια τουλάχιστον ρίζα στο (α,β θεωρώ νέα συνάρτηση h( ( ή h ( ( αντίστοιχα και εφαρμόζω Θ.Bolzano στην h. 3 ος Τρόπος Με τη βοήθεια του συνόλου τιμών. Αν το ( τότε η εξίσωση (= έχει μια τουλάχιστον ρίζα. Γενικότερα αν το ( τότε η εξίσωση (=κ, έχει μια τουλάχιστον ρίζα. Υποπερίπτωση : Αν θέλω να δείξω ότι η εξίσωση ( έχει μια τουλάχιστον ρίζα θεωρώ νέα συνάρτηση h( ( και βρίσκω το h (. ΜΕΘΟΔΟΛΟΓΙΑ 6 : ΓΙΑ Ν.Δ.Ο. Η ΕΞΙΣΩΣΗ (= ΕΧΕΙ ΑΚΡΙΒΩΣ ΜΙΑ ΡΙΖΑ ο Βήμα δείχνω ότι η (= έχει τουλάχιστον μια ρίζα με έναν από τους παραπάνω τρόπους ο Βήμα δείχνω ότι η (= έχει το πολύ μια ρίζα (συνήθως με μονοτονία οπότε συμπεραίνω ότι έχει ακριβώς μια ρίζα. 9. Να αποδείξετε ότι η εξίσωση ln( e έχει μια μόνο ρίζα. Στη συνέχεια να βρεθεί η ρίζα αυτή. ln( e ln( e, έστω ( ln( e με D (,, θα δείξω ότι η εξίσωση ( έχει ακριβώς μια ρίζα στο D (,. έστω, D (, με : ln( ln( ( e e e e ( προσθέτω κατά μέλη τις ( και ( και έχω: ln( e ln( e ( ( άρα η ( είναι γνησίως αύξουσα. Η ( είναι γνησίως αύξουσα και συνεχής στο D (, άρα ( (lim (, lim ( lim ( lim(ln( e, lim ( ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα lim (ln( e άρα ( (,. Το ( άρα η εξίσωση ( έχει τουλάχιστον μια ρίζα στο D (, και επειδή η ( είναι γνησίως αύξουσα είναι και μοναδική. Για να βρούμε τη ρίζα θα ψάξουμε να βρούμε την προφανή ρίζα. Παρατηρώ ότι για, έχω ( ln( e ln, άρα η ρίζα της ( και επειδή η ( είναι γνησίως αύξουσα είναι και μοναδική.
A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ
8Α ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ A ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Πότε μια συνάρτηση λέγεται συνεχής σε ένα σημείο του πεδίου ορισμού o της ; Απάντηση : ( ΟΜΟΓ, 6 ΟΜΟΓ, 9 Β, ΟΜΟΓ, 5 Έστω μια συνάρτηση και ένα σημείο του πεδίου
Διαβάστε περισσότεραA. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ
8Α ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ A ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Πότε μια συνάρτηση λέγεται συνεχής σε ένα σημείο του πεδίου ορισμού o της ; Απάντηση : ( ΟΜΟΓ, 6 ΟΜΟΓ, 9 Β, ΟΜΟΓ, 5 Έστω μια συνάρτηση και ένα σημείο του πεδίου
Διαβάστε περισσότερα2.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ
6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ Αν θέλουμε να δείξουμε ότι μια συνάρτηση είναι σταθερή σε ένα διάστημα Δ αποδεικνύουμε ότι η είναι συνεχής στο Δ και ότι για κάθε
Διαβάστε περισσότεραΚεφάλαιο 4: Διαφορικός Λογισμός
ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...
Διαβάστε περισσότεραx είναι f 1 f 0 f κ λ
3 Ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ [Κεφάλαια, Μέρος Β' του σχολικού βιβλίου] ΘΕΜΑ Α.Βλέπε σχολικό βιβλίο, σελίδα 4.. Βλέπε σχολικό βιβλίο, σελίδα 88, 89. 3. α) ΣΩΣΤΟ, διότι αν η f παραγωγίσιμη στο χ
Διαβάστε περισσότεραΘεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:
Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ
ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Παράδειγμα. Να εξετάσετε από τις παρακάτω συναρτήσεις ποιές ικανοποιούν
Διαβάστε περισσότερα2.8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ
Ο ΚΕΦΑΛΑΙΟ : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ 49 ΟΡΙΣΜΟΣ 6 4 Πότε μια συνάρτηση λέγεται κυρτή και πότε κοίλη σε ένα διάστημα Δ ; Απάντηση : Έστω μία συνάρτηση σ υ ν ε χ ή ς σ ένα
Διαβάστε περισσότερα2.8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ
8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ 49 ΟΡΙΣΜΟΣ 6 4 Πότε μια συνάρτηση λέγεται κυρτή και πότε κοίλη σε ένα διάστημα Δ ; Απάντηση : Έστω μία συνάρτηση σ υ ν ε χ ή ς σ ένα διάστημα Δ και π α ρ α γ ω γ ί
Διαβάστε περισσότερα0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2 Ο «ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ»
ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ Ο «ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ ο : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Α ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Πεδίο
Διαβάστε περισσότεραΣυνέχεια συνάρτησης σε διάστημα. Η θεωρία και τι προσέχουμε. x, ισχύει: lim f (x) f ( ).
Κεφάλαιο 4 Συνέχεια συνάρτησης σε διάστημα 411 Ερώτηση θεωρίας 1 Η θεωρία και τι προσέχουμε Πότε μια συνάρτηση f θα λέμε ότι είναι συνεχής σε ένα ανοικτό διάστημα (, ) αβ; Απάντηση Μια συνάρτηση f θα λέμε
Διαβάστε περισσότεραΕπαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 1 ο -ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απο το Ψηφιακό Σχολείο του ΥΠΠΕΘ Επιμέλεια: Συντακτική Ομάδα mathpgr Συντονιστής:
Διαβάστε περισσότεραΘεώρημα Bolzano. Γεωμετρική Ερμηνεία του θ.bolzano. Θ. Bolzano και ύπαρξη ρίζας
Θεώρημα Bolzano Έστω μια συνάρτηση f η οποία είναι ορισμένη σε ένα κλειστό διάστημα [α, β]. Αν: Η f είναι συνεχής στο [α, β] και Ισχύει f(a)f(β) < 0, τότε υπάρχει τουλάχιστον ένα x 0 (α, β) τέτοιο ώστε
Διαβάστε περισσότερα2.7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ
.7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ I. Αν μια συνάρτηση παρουσιάζει τοπικό ακρότατο σε ένα εσωτερικό σημείο του πεδίου ορισμού της και είναι παραγωγισιμη σε αυτό τότε ( ).(Θεώρημα Fermat) II.
Διαβάστε περισσότεραΘΕΩΡΗΜΑ ROLLE ΘΕΩΡΗΜΑ ROLLE
ΘΕΩΡΗΜΑ ROLLE ΘΕΩΡΗΜΑ ROLLE Αν μια συνάρτηση f είναι : συνεχής στο κλειστό [α,β] παραγωγίσιμη στο ανοιχτό (α,β) f(α)=f(β) f 0 τότε υπάρχει ένα τουλάχιστον, τέτοιο ώστε ΓΕΩΜΕΤΡΙΚΑ : σημαίνει ότι υπάρχει
Διαβάστε περισσότεραΣυνέχεια συνάρτησης σε κλειστό διάστημα
8 Συνέχεια συνάρτησης σε κλειστό διάστημα Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 1 Μια συνάρτηση f θα λέμε ότι είναι: i Συνεχής σε ένα ανοιχτό διάστημα (α,β) όταν είναι συνεχής σε κάθε σημείο του διαστήματος (α,β)
Διαβάστε περισσότερα2. Αν έχουμε μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ.
Κατηγορία η Εύρεση μονοτονίας Τρόπος αντιμετώπισης:. Αν έχουμε μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f( ) σε κάθε εσωτερικό σημείο του Δ, τότε η f είναι γνησίως αύξουσα σε όλο το
Διαβάστε περισσότεραΜέθοδος Α. Β 3. Η γραφική παράσταση της f τέμνει τον άξονα των xx σε ένα σημείο με τετμημένη ξ [α,β],
Θωμάς Ραϊκόφτσαλης ΣΥΝΕΧΕΙΑ ΣΕ ΚΛΕΙΣΤΟ ΔΙΑΣΤΗΜΑ Μέθοδος Α Αν μας ζητείτε να αποδείξουμε ότι ισχύει ένα από τα εξής: Α. Η εξίσωση f() έχει μια τουλάχιστον ρίζα ξ (α,β), Α. Υπάρχει ξ (α,β) έτσι ώστε f(ξ),
Διαβάστε περισσότερανα είναι παραγωγίσιμη Να ισχύει ότι f Αν μια από τις τρεις παραπάνω συνθήκες δεν ισχύουν τότε δεν ισχύει και το θεώρημα Rolle.
Κατηγορία η Συνθήκες θεωρήματος Rolle Τρόπος αντιμετώπισης:. Για να ισχύει το θεώρημα Rolle για μια συνάρτηση σε ένα διάστημα [, ] (δηλαδή για να υπάρχει ένα τουλάχιστον (, ) τέτοιο ώστε ( ) ) πρέπει:
Διαβάστε περισσότερα1.6 ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ x
6 ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ 5 Να γράψετε τις ιδιότητες του άπειρου ορίου στο o Απάντηση : Όπως στην περίπτωση των πεπερασμένων ορίων έτσι και για τα άπειρα όρια συναρτήσεων, που ορίζονται σε ένα σύνολο της
Διαβάστε περισσότερα13 Μονοτονία Ακρότατα συνάρτησης
3 Μονοτονία Ακρότατα συνάρτησης Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρημα Αν μια συνάρτηση f είναι συνεχής σ ένα διάστημα Δ, τότε: Αν f ( ) > 0για κάθε εσωτερικό του Δ, η f είναι γνησίως αύξουσα στο Δ. Αν
Διαβάστε περισσότερα********* Β ομάδα Κυρτότητα Σημεία καμπής*********
********* Β ομάδα Κυρτότητα Σημεία καμπής********* 5 Για την δύο φορές παραγωγίσιμη στο R συνάρτηση ισχύει: e για κάθε R. Να αποδείξετε ότι η γραφική παράσταση της δεν παρουσιάζει σημείο καμπής. Υποθέτουμε
Διαβάστε περισσότεραΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x =
ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 0: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ
Διαβάστε περισσότερα1.6 ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ x
6 ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ 5 Να γράψετε τις ιδιότητες του άπειρου ορίου στο o Απάντηση : Όπως στην περίπτωση των πεπερασμένων ορίων έτσι και για τα άπειρα όρια συναρτήσεων, που ορίζονται σε ένα σύνολο της
Διαβάστε περισσότεραΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))
ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ
Διαβάστε περισσότεραΣυνθήκες Θ.Μ.Τ. Τρόπος αντιμετώπισης: 1. Για να ισχύει το Θ.Μ.Τ. για μια συνάρτηση f σε ένα διάστημα [, ] (δηλαδή για να υπάρχει ένα τουλάχιστον (, )
Κατηγορία η Συνθήκες ΘΜΤ Τρόπος αντιμετώπισης: Για να ισχύει το ΘΜΤ για μια συνάρτηση σε ένα διάστημα [, ] (δηλαδή για να υπάρχει ένα τουλάχιστον (, ) τέτοιο ώστε ( ) ( a) '( ) ) πρέπει: a Η συνάρτηση
Διαβάστε περισσότεραΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ ΑΠΑΝΤΗΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΚΑΙ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 8 ΜΑΪΟΥ 6 ΘΕΜΑ Α Α. Θεωρία, βλ. σχολικό βιβλίο
Διαβάστε περισσότεραf(x) = και στην συνέχεια
ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση. Στις συναρτήσεις μπορούμε να μετασχηματίσουμε πρώτα τον τύπο τους και μετά να βρίσκουμε το πεδίο ορισμού τους; Όχι. Το πεδίο ορισμού της συνάρτησης το βρίσκουμε πριν μετασχηματίσουμε
Διαβάστε περισσότεραA. ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ Μάθημα: Μαθηματικά κατεύθυνσης, Τάξη: Γ Λυκείου Ενότητα: Θεώρημα Bolzano ( 3 διδακτικές ώρες)
A ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ Μάθημα: Μαθηματικά κατεύθυνσης, Τάξη: Γ Λυκείου Ενότητα: Θεώρημα Bolzano ( διδακτικές ώρες) 1 Σκοποί Στόχοι α Σκοποί: Οι μαθητές να συνειδητοποιήσουν ότι τα Μαθηματικά μπορεί να είναι
Διαβάστε περισσότεραΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ
ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ27 Μέρος Β του σχολικού βιβλίου] ΣΗΜΕΙΩΣΕΙΣ Εύρεση
Διαβάστε περισσότερα, να αποδείξετε ότι και η συνάρτηση f+g είναι παραγωγίσιμη στο x. και ισχύει. Μονάδες 9 Α2. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και [, ]
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 6-7 ΜΑΘΗΜΑ / ΤΑΞΗ : ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Μαθηματικά Προσανατολισμού Γ' Λυκείου Θέμα Α Α. Αν οι συναρτήσεις, g είναι παραγωγίσιμες στο, να αποδείξετε ότι και
Διαβάστε περισσότεραOΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ
Ο ΚΕΦΑΛΑΙΟ : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΥΝΑΡΤΗΣΕΙΣ Έστω Α ένα υποσύνολο του Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α ; Απάντηση : ΕΣΠ Β Έστω
Διαβάστε περισσότεραIV. Συνέχεια Συνάρτησης. math-gr
IV Συνέχεια Συνάρτησης mth-gr mth-gr Παντελής Μπουμπούλης, MSc, PhD σελ mth-grblogspotcom, bouboulismyschgr ΜΕΡΟΣ Συνέχεια Συνάρτησης Α Ορισμός Συνέχεια σε σημείο: Θα λέμε ότι μια συνάρτηση είναι συνεχής
Διαβάστε περισσότεραΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ
ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ Άσκηση.
Διαβάστε περισσότεραθ. Bolzano θ. Ενδιάμεσων τιμών θ. Μεγίστου Ελαχίστου και Εφαρμογές
Περιοδικό ΕΥΚΛΕΙΔΗΣ Β ΕΜΕ (Τεύχος 35) θ Bolzano θ Ενδιάμεσων τιμών θ Μεγίστου Ελαχίστου και Εφαρμογές Στο άρθρο αυτό επιχειρείται μια προσέγγιση των βασικών αυτών θεωρημάτων με εφαρμογές έ- τσι ώστε να
Διαβάστε περισσότεραΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ
Διατύπωση: Αν μια συνάρτηση είναι: συνεχής στο κλειστό διάστημα [ α β] και παραγωγίσιμη στο ανοικτό διάστημα ( α β) τότε υπάρχει ένα τουλάχιστον ξ ( α β) τέτοιο ώστε: ( ( β) ( α) β α Γεωμετρικά αυτό σημαίνει
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ.2.6 Μέρος Β του σχολικού βιβλίου].
ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ..6 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα 1. ΘΕΜΑ Β Να μελετηθούν ως προς την μονοτονία
Διαβάστε περισσότεραΘΕΩΡΗΜΑ ROLLE. τέτοιο ώστε. στο οποίο η εφαπτομένη είναι παράλληλη στον άξονα χχ. της γραφικής παράστασης της f x με. Κατηγορίες Ασκήσεων
Διατύπωση: Εάν για μια συνάρτηση ΘΕΩΡΗΜΑ ROLLE x ισχύουν Η x συνεχής στο [α,β] Η x παραγωγίσιμη στο (α, β) a τότε υπάρχει ένα τουλάχιστον, τέτοιο ώστε ' 0 Γεωμετρική Ερμηνεία : Γεωμετρικά το θεώρημα ROLLE
Διαβάστε περισσότεραf(x) x 3x 2, όπου R, y 2x 2
Δίνεται η συνάρτηση με τύπο,. Μαθηματικά κατεύθυνσης f(), όπου R, α) Να αποδειχθεί ότι η f παρουσιάζει ένα τοπικό μέγιστο, ένα τοπικό ελάχιστο και ένα σημείο καμπής. β) Να αποδειχθεί ότι η εξίσωση f()
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ/ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΑΠΑΝΤΗΣΕΙΣ
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 0 03 ΜΑΘΗΜΑ / ΤΑΞΗ : ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ/ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 5 05 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. ΘΕΩΡΙΑ ΣΕΛ. 7 ΒΙΒΛΙΟ ΜΠΑΡΛΑ. Α. ΘΕΩΡΙΑ ΣΕΛ. 66 ΒΙΒΛΙΟ ΜΠΑΡΛΑ. Α3. α Σ, β Λ, γ Λ, δ
Διαβάστε περισσότεραΘεώρημα Bolzano. ΑΠΑΝΤΗΣΗ. Έστω μια συνάρτηση f, ορισμένη σε ένα κλειστό διάστημα [, ]. Αν: η f είναι συνεχής στο [, ] και, επιπλέον, ισχύει
Θεώρημα Bolzno. ΑΠΑΝΤΗΣΗ Έστω μια συνάρτηση f, ορισμένη σε ένα κλειστό διάστημα [, ]. Αν: η f είναι συνεχής στο [, ] και, επιπλέον, ισχύει f f 0, τότε υπάρχει ένα, τουλάχιστον, 0 (, ) τέτοιο, ώστε f( 0
Διαβάστε περισσότερα3.7 EΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ
Ο ΚΕΦΑΛΑΙΟ : ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ 7 EΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ 68 Να γράψετε τον τύπο που δίνει το εμβαδόν του χωρίου Ω που ορίζεται από τη γραφική παράσταση της, τις ευθείες, και τον άξονα, όταν για κάθε
Διαβάστε περισσότερα( ) f( x ) ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Επώνυμο: Όνομα: Τμήμα: Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. (ενδεικτικές λύσεις)
Επώνυμο: Όνομα: Τμήμα: ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ ΤΗΛ : 777 594 ΑΡΤΑΚΗΣ Κ. ΤΟΥΜΠΑ ΤΗΛ : 99 9494 www.sygrono.gr Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ (ενδεικτικές
Διαβάστε περισσότερααβ (, ) τέτοιος ώστε f(x
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΜΑ Α Άσκηση α) Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [ αβ., ] Αν η f είναι συνεχής στο [ αβ, ]
Διαβάστε περισσότερα4.4 ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΩΝΥΜΙΚΕΣ
4.4 ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΩΝΥΜΙΚΕΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Για να λύσω μια κλασματική εξίσωση, δηλ. μια εξίσωση που έχει άγνωστο στον παρανομαστή, Βήμα : παραγοντοποιώ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
5 Σεπτεμβρίου 7 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απαντήσεις Θεμάτων Επαναληπτικών Πανελλαδικών Εξετάσεων Ημερησίων και Εσπερινών Γενικών Λυκείων ΘΕΜΑ
Διαβάστε περισσότερα2η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ
ΑΠΟ 3//7 ΕΩΣ 5//8 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Παρασκευή 5 Ιανουαρίου 8 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑΤΑ ΘΕΜΑ Α Α. Αν μία συνάρτηση f είναι
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ - ΠΛΗΡΟΦΟΡΙΚΗ
ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ - ΠΛΗΡΟΦΟΡΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Α. Θεωρία (Θεώρημα σελίδα 5 σχολικού βιβλίου) Α. Α) ΨΕΥΔΗΣ Β) Θα δώσουμε ένα αντιπαράδειγμα Έστω η συνάρτηση
Διαβάστε περισσότεραΚατηγορία 1 η. Σταθερή συνάρτηση Δίνεται παραγωγίσιμη συνάρτηση f : 0, f '( x) 0 για κάθε εσωτερικό σημείο x του Δ
Κατηγορία η Σταθερή συνάρτηση Τρόπος αντιμετώπισης: Για να αποδείξουμε ότι μια συνάρτηση είναι σταθερή σε ένα διάστημα Δ πρέπει: η συνάρτηση να είναι συνεχής στο Δ '( ) 0 για κάθε εσωτερικό σημείο του
Διαβάστε περισσότεραΟΡΙΑ ΣΥΝΕΧΕΙΑ: Τύποι - Βασικές έννοιες
Τύποι - Βασικές έννοιες Όρια - Συνέχεια 37. ΟΡΙΑ ΣΥΝΕΧΕΙΑ: Τύποι - Βασικές έννοιες Με τη βοήθεια του παρακάτω θεωρήματος διευκολύνεται ο υπολογισμός ορίων (άλγεβρα ορίων): Αν τα όρια lim f () και lim g()
Διαβάστε περισσότερα- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΕΧΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΔΙΑΣΤΗΜΑΤΑ
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΕΧΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΔΙΑΣΤΗΜΑΤΑ [Ενότητες Ορισμός της Συνέχειας Πράξεις με Συνεχείς
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΟΜΑΔΕΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ : ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΛΟΓΟΣ Σε κάθε ενότητα αυτού του βιβλίου θα βρείτε : Βασική θεωρία με τη μορφή ερωτήσεων Μεθοδολογίες και σχόλια
Διαβάστε περισσότεραΜΑΘΗΜΑΤ ΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤ ΗΣΕΙΣ ΣΤ Α ΘΕΜΑΤ Α ΕΞΕΤ ΑΣΕΩΝ 2016.
ΜΑΘΗΜΑΤ ΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤ ΗΣΕΙΣ ΣΤ Α ΘΕΜΑΤ Α ΕΞΕΤ ΑΣΕΩΝ 16 ΘΕΜΑ Α Α1 Σχολικό Βιβλίο σελ 6 Α Σχολικό Βιβλίο σελ 141 Α Σχολικό Βιβλίο
Διαβάστε περισσότεραΟ μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει να είναι σε θέση:
Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει να είναι σε θέση:. Να μπορεί να βρίσκει απο τη γραφική παράσταση μιας συνάρτησης το πεδίο ορισμού της το σύνολο τιμών της την τιμή της σε ένα σημείο..
Διαβάστε περισσότεραΜαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ
ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ Ορισμός Θεωρούμε μια συνάρτηση f συνεχή σ' ένα διάστημα Δ και παραγωγίσιμη στο εσωτερικό του Δ. α) Θα λέμε ότι η f είναι κυρτή ή στρέφει τα κοίλα άνω στο Δ, αν η f
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4 Ο ΣΤΟΙΧΕΙΑ ΟΛΟΚΛΗΡΩΤΙΚΟΥ ΛΟΓΙΣΜΟΥ
ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ Ο ΣΤΟΙΧΕΙΑ ΟΛΟΚΛΗΡΩΤΙΚΟΥ ΛΟΓΙΣΜΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ : ΠΑΡΑΓΟΥΣΕΣ ΟΡΙΣΜΟΣ Έστω συνάρτηση : R, όπου Δ διάστημα
Διαβάστε περισσότερα3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ
ΚΕΦΑΛΑΙΟ : ΕΞΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ : ΑΠΛΗ ΜΟΡΦΗ Κάθε εξίσωση που έχει ή μπορεί να πάρει τη μορφή : α+β=0 ή α=-β () λέγεται εξίσωση ου βαθμού (ή πρωτοβάθμια εξίσωση), με άγνωστο το, ενώ
Διαβάστε περισσότεραΔιαγώνισμα Προσομοίωσης Εξετάσεων 2017
Ένα διαγώνισμα προετοιμασίας για τους μαθητές της Γ Λυκείου στα Μαθηματικά Προσανατολισμού Διαγώνισμα Προσομοίωσης Εξετάσεων 7 Μαθηματικά Προσανατολισμού Γ Λυκείου Κων/νος Παπασταματίου Μαθηματικός Φροντιστήριο
Διαβάστε περισσότεραΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ
ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Κεφάλαιο 1, 2, 3)
3 o ΔΙΑΓΩΝΙΣΜΑ ΦΕΒΡΟΥΑΡΙΟΣ 0: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Κεφάλαιο,, 3) ΘΕΜΑ Α. (i) Βλέπε σχολικό βιβλίο «Μαθηματικά θετικής
Διαβάστε περισσότεραΛύσεις του διαγωνίσματος στις παραγώγους
Λύσεις του διαγωνίσματος στις παραγώγους Θέμα ο Α Έστω ότι f ), για κάθε α, ), β) Επειδή η f είναι συνεχής στο θα είναι γνησίως αύξουσα σε κάθε ένα από τα διαστήματα α, ] και [, β) Επομένως, για ισχύει
Διαβάστε περισσότερακαι γνησίως αύξουσα στο 0,
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α1. Σχολικό βιβλίο σελ 6 (i) A. Σχολικό βιβλίο σελ 141 Α. Σχολικό βιβλίο σελ 46-47 Α4. α. Λ β. Σ γ. Λ δ. Σ ε. Σ ΘΕΜΑ Β Β1. Ισχύει D f επειδή 1 1 1 Για κάθε η f είναι παραγωγίσιμη
Διαβάστε περισσότεραΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ
ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ Ορισμοί Μία συνάρτηση f λέγεται: 1 γνησίως αύξουσα σ' ένα υποσύνολο Β του πεδίου ορισμού της όταν για κάθε 1, Β με 1 < ισχύει ότι f( 1 ) < f( ) γνησίως φθίνουσα σ' ένα υποσύνολο Β
Διαβάστε περισσότεραΑπαντήσεις στα Μαθηματικά Κατεύθυνσης 2016
ΘΕΜΑ Α Απαντήσεις στα Μαθηματικά Κατεύθυνσης 6 Α.. Σχολ. Βιβλίο, Θεωρία, σελ.6-(i) Α.. Σχολ. Βιβλίο, Θεωρία, σελ. 4 Α. Σχολ. Βιβλίο, Θεωρία, σελ. 46,47 Α.4. α. Λ β. Σ γ. Λ δ. Σ ε. Σ ΘΕΜΑ Β B. Η συνάρτηση
Διαβάστε περισσότεραΑσκήσεις στη συνέχεια συναρτήσεων. τέτοια ώστε. lim. και
Ασκήσεις στη συνέχεια συναρτήσεων Άσκηση η Να βρεθούν τα ολικά ακρότατα των συναρτήσεων ) x, 0, ) x x a x x x, x x x x Άσκηση η Αν : a, συνεχής στο, τέτοια ώστε x x και x x Να αποδείξετε ότι η συνάρτηση
Διαβάστε περισσότερα4.1 ΑΝΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ
4.1 ΑΝΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ 1 : ΑΠΛΗ ΜΟΡΦΗ Για να λύσω μια ανίσωση της μορφής : 0 ή 0 1 ος τρόπος : Λειτουργώ όπως και στις εξισώσεις πρώτου βαθμού, δηλαδή χωρίζω γνωστούς από αγνώστους, και
Διαβάστε περισσότερα5o Επαναληπτικό Διαγώνισμα 2016
5o Επαναληπτικό Διαγώνισμα 6 Διάρκεια: 3 ώρες ΘΕΜΑ A Α Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ Να αποδείξετε ότι αν η f είναι συνεχής στο Δ και f για κάθε εσωτερικό σημείο του Δ, να αποδείξετε
Διαβάστε περισσότεραV. Διαφορικός Λογισμός. math-gr
V Διαφορικός Λογισμός Παντελής Μπουμπούλης, MSc, PhD σελ blospotcom, bouboulismyschr ΜΕΡΟΣ Η έννοια της Παραγώγου Α Ορισμός Εφαπτομένη καμπύλης συνάρτησης: Έστω μια συνάρτηση και A, ένα σημείο της C Αν
Διαβάστε περισσότεραΜονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση
4 Μονοτονία - Ακρότατα - Αντίστροφη Συνάρτηση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Μονοτονία συνάρτησης Μια συνάρτηση f λέγεται: Γνησίως αύξουσα σ' ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε,
Διαβάστε περισσότερα2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ
ΚΕΦΑΛΑΙΟ Ο : ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ - ΕΝΟΤΗΤΕΣ :.... ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΜΕΘΟΔΟΛΟΓΙΑ : ΠΡΑΓΜΑΤΙΚΟ & ΦΑΝΤΑΣΤΙΚΟ ΜΕΡΟΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Έστω ένας μιγαδικός αριθμός,
Διαβάστε περισσότερα2.1 ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗ
ΚΕΦΑΛΑΙΟ Ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ. ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ ΣΥΝΑΡΤΗΣΗΣ Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β λέγεται μια διαδικασία (κανόνας), με την οποία κάθε στοιχείο του
Διαβάστε περισσότεραΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x )
() Μονοτονία ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( ) και βρίσκω το πρόσηµό της ii) Αν προκύψει να είναι αύξουσα ή φθίνουσα,
Διαβάστε περισσότεραΗ ΜΕΘΟΔΕΥΣΗ ΤΩΝ ΕΞΙΣΩΣΕΩΝ
Σελίδα 1 από 34 Η ΜΕΘΟΔΕΥΣΗ ΤΩΝ ΕΞΙΣΩΣΕΩΝ Μπάμπης Στεργίου 017 Εισαγωγή Οι εξισώσεις, η λύση τους, η εύρεση του πλήθους ριζών τους ή τα ερωτήματα που αφορούν στην ύπαρξη ριζών, αποτελούν ένα σημαντικό
Διαβάστε περισσότεραΛύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος
Λύσεις των θεμάτων προσομοίωσης -- Σχολικό Έτος 5-6 Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής»
Διαβάστε περισσότεραΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017
ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 7 ΘΕΜΑ Α A Έστω συνάρτηση f, η οποία είναι συνεχής σε ένα διάστημα Δ Αν f σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι γνησίως αύξουσα
Διαβάστε περισσότεραΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 10 Ιουνίου 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις)
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα Ιουνίου 9 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α Αα) Ορισμός σχολικού βιβλίου σελ 5 Έστω Α ένα υποσύνολο
Διαβάστε περισσότεραΛύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος
Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής» Γ Λυκείου, 3/3/6 ΘΕΜΑ ο : Α. Τι ονομάζουμε αρχική
Διαβάστε περισσότερα3o Επαναληπτικό Διαγώνισμα 2016
3o Επαναληπτικό Διαγώνισμα 6 Διάρκεια: 3 ώρες ΘΕΜΑ A A Έστω μια συνάρτηση παραγωγίσιμη σ ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο του,στο οποίο όμως η είναι συνεχής Να αποδείξετε ότι Αν () στο (α,
Διαβάστε περισσότεραg(x) =α x +β x +γ με α= 1> 0 και
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ : ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ [Κεφ..3: Μονότονες Συναρτήσεις - Αντίστροφη Συνάρτηση σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα.
Διαβάστε περισσότερα1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ
ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 73 8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ρισμός της συνέχειας Έστω οι συναρτήσεις g h παρακάτω σχήματα των οποίων οι γραφικές παραστάσεις δίνονται στα C h 6 l ( C l g( C g l l (a Παρατηρούμε ότι:
Διαβάστε περισσότεραΜΕΛΕΤΗ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ
ΜΕΛΕΤΗ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ Για να μελετήσουμε και να χαράξουμε τη γραφική παράταση μιας συνάρτησης ακολουθούμε τα παρακάτω βήματα: 1. Βρίσκουμε το πεδίο ορισμού της.. Εξετάζουμε την
Διαβάστε περισσότεραf κυρτή στο [1,5] f x x f η Επαναληπτική f [ 2,10], επιπλέον για την f ισχύουν lim 2 x f 8 1,0 και
13η Επαναληπτική Δίνεται η συνάρτηση, δύο φορές παραγωγίσιμη στο [1,] [,1], επιπλέον για την ισχύουν 8 lim στο [1,] Να αποδείξετε ότι ε1 ε Υπάρχουν, με, ώστε στο οποίο η η, έχει σημείο καμπής ε3 Υπάρχει
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Α ΦΑΣΗ
Ε_.ΜλΘΟ(ε) ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ηµεροµηνία: Σάββατο 7 Ιανουαρίου 7 ιάρκεια Εξέτασης: ώρες ΘΕΜΑ Α A. Έστω η συνάρτηση
Διαβάστε περισσότεραΛύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016
Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 16 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ ΘΕΜΑ Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας τη λέξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε
Διαβάστε περισσότεραΚαθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com.
Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com. A. Οι κανόνες De L Hospital και η αρχική συνάρτηση κάνουν πιο εύκολη τη λύση των προβλημάτων με το Θ. Rolle. B. Η αλγεβρική
Διαβάστε περισσότεραΛύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016
Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 16 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
Διαβάστε περισσότερα5ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A
5ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου 7-8 Θέμα A A Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα στο οποίο όμως η f είναι συνεχής Αν η f διατηρεί πρόσημο στο α,,β ότι το
Διαβάστε περισσότερακαι είναι παραγωγισιμη στο σημειο αυτό, τότε : f ( x 0
ΚΕΦΑΛΑΙΟ Ο 7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ FERMAT ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ (Θεώρημα Frmat) Εστω μια συναρτηση ορισμενη σ ένα διαστημα Δ και ένα εσωτερικο σημειο του Δ Αν η παρουσιάζει τοπικό ακρότατο στο
Διαβάστε περισσότεραΓ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ /4/7 έως τις /4/7 ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Πέμπτη Απριλίου 7 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α Έστω μία συνάρτηση f ορισμένη σε ένα διάστημα
Διαβάστε περισσότεραΜ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ
Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών
Διαβάστε περισσότεραΠολλά ψέματα λίγες αλήθειες. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΕΡΟΣ 1 ο
Πολλά ψέματα λίγες αλήθειες. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΕΡΟΣ ο ΕΚΦΩΝΗΣΕΙΣ Οι απαντήσεις βρίσκονται μετά τις εκφωνήσεις Εξετάστε αν είναι αληθείς ή ψευδείς οι παρακάτω προτάσεις και αιτιολογήστε.
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2016
ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 16 ΘΕΜΑ Α Α1 Σχολικό Βιβλίο σελ 6 Α Σχολικό Βιβλίο σελ 141 Α Σχολικό Βιβλίο σελ
Διαβάστε περισσότερα1o. Θ Ε Μ Α Β Ε. Γ Κ Ο Ρ Α. βρίσκεται ολόκληρη μέσα στο τετράγωνο ΑΒΓΔ.
o. Θ Ε Μ Α Β Ε. Γ Κ Ο Ρ Α Δίνεται τετράγωνο με κορυφές τα σημεία Α,, Β,, Γ, και Δ, και μία συνεχής στο, συνάρτηση της οποίας η γραφική παράσταση βρίσκεται ολόκληρη μέσα στο τετράγωνο ΑΒΓΔ. B. Nα βρείτε
Διαβάστε περισσότεραΓ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ /4/8 ΕΩΣ 4/4/8 ΤΑΞΗ: ΜΑΘΗΜΑ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τρίτη Απριλίου 8 Διάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α Έστω μία συνάρτηση ορισμένη σε ένα διάστημα Δ Αν o
Διαβάστε περισσότεραΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣΗΣ ΝΟ 2 Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕ.Λ. 18 ΜΑΙΟΥ 2018 ΘΕΜΑ Α. η f ικανοποιεί τις υποθέσεις του θεωρήματος μέσης.
ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣΗΣ ΝΟ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕ.Λ. 8 ΜΑΙΟΥ 8 ΘΕΜΑ Α Α. Εστω μια συνάρτηση f και x ένα σημείο του πεδίου ορισμού της. Θα λέμε ότι η f είναι συνεχής στο x, όταν Α. lim f ( x) f
Διαβάστε περισσότεραΘΕΩΡΗΜΑ BOLZANO..Αν μια συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α,β].και f(α).f(β)<0 Τότε υπάρχει ένα τουλάχιστον χ 0
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ-ΘΕΩΡΗΜΑ BOLZANO ΘΕΩΡΗΜΑ BOLZANO..Αν μια συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α,β].και f(α).f(β)
Διαβάστε περισσότεραΣυναρτήσεις Όρια Συνέχεια
Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ
ΚΕΦΑΛΑΙΟ ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β Άσκηση. Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από τη γραφική
Διαβάστε περισσότερα