ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ B ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ
|
|
- Ἀλκμήνη Ζάππας
- 5 χρόνια πριν
- Προβολές:
Transcript
1 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ B ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ ΠΡΩΤΟ Α. Να δείξετε ότι, σε ορθοκανονικό σύστημα συντεταγμένων Οxy, η εξίσωση του κύκλου C, με κέντρο Κ(x, y ) και ακτίνα ρ, είναι ( x x ) + (y y ) = ρ. (1,5 μονάδες) Β. Να γράψετε στο τετράδιο σας το γράμμα που αντιστοιχεί στη σωστή απάντηση για καθένα από τα ερωτήματα Β1 και Β. Β1. Το κέντρο Κ και η ακτίνα ρ του κύκλου (x ) + (y + 1) = 4 είναι: (α) Κ(, 1), ρ=4 (β) Κ(, 1), ρ= (γ) Κ(, 1), ρ= (δ) Κ(, 1), ρ=4 (,5 μονάδες) Β. Το κέντρο του κύκλου (x 1) + (y ) = 5 ανήκει στην ευθεία: (α) y = x + (β) y = x 1 (γ) x + y = 5 (δ) 3 x + y = 7 (4 μονάδες) Β3. Δίνεται ο κύκλος με εξίσωση x + y = 49. Να γράψετε στο τετράδιο σας τα σημεία της στήλης Ι και δίπλα τον αριθμό της στήλης ΙΙ που αντιστοιχεί στη σωστή απάντηση. Στήλη Ι Στήλη ΙΙ Α(, 7) 1. εσωτερικό σημείο του κύκλου Β(3, 4). σημείο του κύκλου C Γ(7, ) 3. εξωτερικό σημείο του κύκλου C Δ( 7, ) (6 μονάδες) Α. Θεωρία σχολικού βιβλίου, σελ Β. Β1 β Β δ (επαληθεύοντας το Κ(1, ) στην αντίστοιχη ευθεία. Β3: Α(, 7), αφού ( OA) = 7 = ρ Β(3, 4) 1, αφού ( ΟΒ) = 5 < ρ Γ(7, ) 3, αφού ( ΟΓ) = 53 > ρ Δ( 7. ), αφού ( OΔ) = 7 = ρ
2 ΘΕΜΑ ΔΕΥΤΕΡΟ Ένας γιατρός παίρνει δύο διαδοχικές μετρήσεις της αρτηριακή πίεσης ενός ασθενούς με διαφορά λίγων λεπτών. Κατά την πρώτη μέτρηση η πίεση του ασθενούς βρέθηκε 15,6 ενώ κατά τη δεύτερη μέτρηση η πίεση βρέθηκε 14,4. Α. Υποθέτοντας ότι η πραγματική τιμή της πίεσης βρίσκεται μεταξύ των δύο αυτών τιμών, να βρείτε ποια από τις δύο αυτές τιμές είναι προσέγγιση με έλλειψη και ποια προσέγγιση με υπέρβαση. (5 μονάδες) Β. Αν θεωρήσουμε ως προσεγγιστική τιμή της πίεσης το μέσο όρο των δύο προηγούμενων τιμών, να βρείτε: (α) την ακρίβεια της προσέγγισης (1 μονάδες) (β) τη σχετική ακρίβεια της προσέγγισης (1 μονάδες) Α. Ισχύει 14,4 P 15, 6. Επομένως, η τιμή 14,4 είναι προσέγγιση με έλλειψη, ενώ η τιμή 15,6 είναι προσέγγιση με υπέρβαση. 14,4 + 15,6 Β. Είναι α = = 15. Έχουμε διαδοχικά 14,4 Ρ 15,6 14,4 15 Ρ 15 15,6 15,6 Ρ 15,6 Άρα είναι Ρ 15, 6 δηλαδή Ρ = 15 ±, 6 οπότε σ =, 6 που σημαίνει ότι το α είναι προσεγγιστική τιμή της πίεσης με ακρίβεια,6. (β) Είναι σ,6,6 ε = = = =,4 = 4% α ΘΕΜΑ ΤΡΙΤΟ Ένα προϊόν έχει αρχική τιμή δρχ. (α) Ποια είναι η τελική τιμή του προϊόντος, αν στην αρχική τιμή γίνει αύξηση 1% και στη συνέχεια έκπτωση 8%; (7 μονάδες)
3 (β) Να αποδείξετε ότι, η τελική τιμή πώλησης του προϊόντος δεν αλλάζει αν στο προϊόν γίνει αρχικά έκπτωση 8% και στη συνέχεια έκπτωση 1% ή αν γίνει αρχικά έκπτωση 1% και στη συνέχεια έκπτωση 8%. (9 μονάδες) (γ) Να αποδείξετε ότι η τιμή πώλησης, στην περίπτωση που γίνεται έκπτωση % στην αρχική τιμή, είναι μικρότερη από την τιμή πώλησης που προκύπτει από το ερώτημα (β). (9 μονάδες) (α) Σχηματικά έχουμε: + 1% α α1 α 1 Είναι ε = 1+ = 1, 1 8 ε 1 = 1 =,9 Άρα ε = ε ε1 = 1,1,9 = 1, 34 α Όμως ε = α = α ε = 1,34 = 134 δρχ. α (β) 1η περίπτωση Σχηματικά έχουμε α α 1% 1 α ε = ε ε1 =,9,88 =, α α ε =,896 = Είναι 896 Άρα = 896 δρχ. η περίπτωση Σχηματικά έχουμε 1% α α 1 α Είναι ε = ε ε 1 =,88,9 =, 896 Άρα α = α ε =,896 = 896 δρχ. Συνεπώς η τελική τιμή πώλησης του προϊόντος δεν αλλάζει. (γ) Σχηματικά είναι: % α α1 Είναι ε = 1 =, 8 α1 Άρα ε = α1 = ε α = 8 δρχ. α Επομένως, η τιμή πώλησης στην περίπτωση αυτή είναι μικρότερη από αυτήν που προκύπτει στο ερώτημα (β).
4 ΘΕΜΑ ΤΕΤΑΡΤΟ Τα σχέδια κατασκευής του υπόγειου σιδηρόδρομου (ΜΕΤΡΟ) μιας πόλης, σε ένα ορθοκανονικό σύστημα συντεταγμένων Οxy, περιλαμβάνουν:!!!! Τη γραμμή Γ 1 με διανυσματική εξίσωση ε 1 : r = i + j + λ(i + 3 j), λ R και τη γραμμή Γ που διέρχεται από το σταθμό Σ( 3, ) και είναι παράλληλη στο! διάνυσμα u = (, 1). (α) Να βρεθεί η εξίσωση της γραμμής Γ 1 στη μορφή Αx+By+Γ=. (5 μονάδες) (β) Να βρεθεί η εξίσωση της γραμμής Γ στην ίδια μορφή με το ερώτημα (α). (7 μονάδες) (γ) Στο σημείο Ο(, ) πρέπει να κατασκευαστεί ένας νέος σταθμός που θα εξυπηρετεί μια συγκεκριμένη περιοχή. Δεδομένου ότι το κόστος κατασκευής ανά μονάδα μήκους γραμμής είναι το ίδιο για όλες τις περιοχές, με ποια από τις γραμμές Γ 1 και Γ πρέπει να συνδεθεί ο νέος σταθμός έτσι, ώστε η γραμμή σύνδεσης του να έχει το μικρότερο κόστος; (13 μονάδες)!!!!! (α) Είναι ε 1 : r = i + j + λ( i + 3 j), λ R. Οι παραμετρικές εξισώσεις της γραμμης Γ 1 είναι: x = λ x = + λ y 1 y 1 x = y = 1+ 3λ = λ 3 3 3x 6 = y 1 3x y 5 =! (β) Εϊναι Σ( 3, ) και u(, 1). x x1 y y1 Αντικαθιστώντας στον τύπο = προκύπτει: α β x + 3 y = x 3 = y 4 x + y 1 = 1 (γ) Το μικρότερο κόστος επιτυγχάνεται όταν η απόσταση του νέου σταθμού στο σημείο Ο από την αντίστοιχη γραμμή είναι η μικρότερη δυνατή. Αx + By + Γ Εφαρμόζοντας τον τύπο d(m, ε) = έχουμε: Α + Β d1 = d(ο,γ 1) = = = = 3 + ( 1) d = d(ο,γ ) = = = =
5 Οπότε είναι: 5 1 d < d1 < 5 5 < < 5 1 < 5 Επομένως, ο νέος σταθμός πρέπει να συνδεθεί με τη γραμμή Γ. Σχηματική παράσταση x Γ 1 y 5 1 x 1 1 Γ y 1 ΑΞΙΟΛΟΓΗΣΗ Τα θέματα καλύπτουν όλο το φάσμα της ύλης και αποτελούν άμεσες εφαρμογές αντιστοίχων τύπων.
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ( ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (4-6-000) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο : Α.1. Να γράψετε την εξίσωση του κύκλου που έχει κέντρο ( x, ) K 0 y 0 και ακτίνα ρ. Μονάδες Α.. Πότε η εξίσωση
Διαβάστε περισσότεραΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ÑÏÌÂÏÓ
ΘΕΜΑ o Α.. Α.. Α.3. Β.. B.. Β.3. ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ - 000 Να γράψετε την εξίσωση του κύκλου που έχει κέντρο Κ(x 0, y 0 ) και ακτίνα ρ. Μονάδες Πότε η εξίσωση x + y + Ax + By
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. 2. Το σφάλµα προσέγγισης είναι πάντοτε θετικό. Μονάδες 1
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 28 ΙΟΥΝΙΟΥ 1999 ΚΑΤΕΥΘΥΝΣΗ: ΤΕΧΝΟΛΟΓΙΚΗ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ 1ο Α. Να χαρακτηρίσετε στο τετράδιό
Διαβάστε περισσότεραΘέµατα Μαθηµατικών Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 2000
Θέµατα Μαθηµατικών Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 000 Ζήτηµα ο Α.. Να γράψετε την εξίσωση του κύκλου που έχει κέντρο Κ(x 0,y 0 ) και ακτίνα ρ. (Μονάδες ) Α.. Πότε η εξίσωση x + y + Ax + By + Γ 0
Διαβάστε περισσότεραΘέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου (Σεπτέµβριος 1999)
Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου (Σεπτέµβριος 1999) Θέµα1ο Α. Έστω Οxy ένα καρτεσιανό σύστηµα συντεταγµένων στο επίπεδο. Να αποδείξετε ότι ο κύκλος µε κέντρο το σηµείο Ο και ακτίνα ρ έχει
Διαβάστε περισσότεραB ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τετάρτη 12 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ 10/4/017 ΕΩΣ /4/017 ΤΑΞΗ: ΜΑΘΗΜΑ: B ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τετάρτη 1 Απριλίου 017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να αποδείξετε ότι η εφαπτομένη του
Διαβάστε περισσότερα. Μονάδες 3 β) Τα διανύσματα και. τότε x1x2 y1y2. είναι κάθετα αν και μόνο αν 0 Μονάδες 3 γ) Το διάνυσμα,
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΠΕΡΙΟΥ ΤΕΤΑΡΤΗ 8 ΜΑΙΟΥ 008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Θέμα Α Τι ονομάζουμε έλλειψη με εστίες τα σημεία Ε και E Μονάδες 0 Β Να χαρακτηρίσετε
Διαβάστε περισσότεραΜαθηµατικά Θετικής & Τεχν/κής Κατεύθυνσης Β Λυκείου 2001
Μαθηµατικά Θετικής & Τεχν/κής Κατεύθυνσης Β Λυκείου 00 Ζήτηµα ο Α.. Έστω α, β, γ ακέραιοι αριθµοί. Να δείξετε ότι ισχύουν οι επόµενες ιδιότητες: α. Αν α β, τότε α λβ για κάθε ακέραιο λ. β. Αν α β και α
Διαβάστε περισσότεραΣημειώσεις Μαθηματικών 1
Σημειώσεις Μαθηματικών 1 Αναλυτική Γεωμετρία Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 4 Αναλυτική Γεωμετρία 4.1 Εξίσωση Καμπύλης Έστω C μια καμπύλη στο R. H C αποτελείται από άπειρα σημεία Μ(x,y). Έξίσωση μιας
Διαβάστε περισσότεραΓενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B
151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 016 Ε_.ΜλΘ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ηµεροµηνία: Κυριακή 17 Απριλίου 016 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Έστω a, v
Διαβάστε περισσότεραΜαθηματικά Β Λυκείου Εξεταζόμενη Ύλη: Διανύσματα Ευθεία Κύκλος Ημερομηνία: 01/03/2015. Θέμα Β. Θέμα Α. Α 1. Σχολικό Βιβλίο σελίδα 73.
Μαθηματικά Β Λυκείου Εξεταζόμενη Ύλη: Διανύσματα Ευθεία Κύκλος Ημερομηνία: /3/5 Θέμα Α Α. Σχολικό Βιβλίο σελίδα 73. Α.. Σχολικό Βιβλίο σελίδα 84. Α 3. i --> Σ, ii --> Σ, iii --> Λ, iv --> Λ, v --> Σ Θέμα
Διαβάστε περισσότεραΕπαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου
Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου Θέμα A. Να αποδείξετε ότι η εξίσωση της εφαπτομένης του κύκλου στο σημείο του Α, ) είναι 8 μονάδες) Β. Να δώσετε τον ορισμό
Διαβάστε περισσότεραΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ
ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ 1. Α. Έστω x, y και x, y δύο διανύσματα του καρτεσιανού επιπέδου Οxy. i. Να εκφράσετε (χωρίς απόδειξη) το εσωτερικό γινόμενο των διανυσμάτων και συναρτήσει των συντεταγμένων τους.
Διαβάστε περισσότεραΜονάδες 5,5 γ) Αν τα διανύσματα a, είναι μη μηδενικά και θ είναι η γωνία των a. λ 0. Για ποια από τις παρακάτω τιμές του λ τα διανύσματα a.
ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑ 1 ο (Πανελλήνιες θετικής κατεύθυνσης Β Λυκείου 1999) Α. Έστω a ( x1,) y1 και ( x,) y δύο διανύσματα του καρτεσιανού επιπέδου Οxy. α) Να εκφράσετε (χωρίς απόδειξη) το
Διαβάστε περισσότεραΒ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 27 Δεκεμβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ 18/1/016 ΕΩΣ 05/01/017 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τρίτη 7 Δεκεμβρίου 016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Αν ( xy, )
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος )
ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΘΕΜΑ o Α. Τι ονοµάζουµε εσωτερικό γινόµενο δύο διανυσµάτων α, β. Μονάδες 4 Β. Να αποδείξετε ότι το εσωτερικό γινόµενο δύο διανυσµάτων
Διαβάστε περισσότεραΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 A ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ
ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Παρασκευή 5 Ιανουαρίου 08 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν α= ( x,y ), β= ( x,y) γ= x,y α β+ γ =
Διαβάστε περισσότεραΦΑΣΜΑ GROUP προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι.
Σύγχρονο www.fasma.fro.gr ΦΑΣΜΑ GROUP προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. Μαθητικό Φροντιστήριο Κατά το πέρας της εξέτασης οι λύσεις θα αναρτηθούν στο και στο site του φροντιστηρίου. 5ης Μαρτίου 111 ΠΕΤΡΟΥΠΟΛΗ
Διαβάστε περισσότεραΓ5. Αν για τα α, β έχουµε α β= 0, ισχύει πάντα ότι α = 0 ή β= 0. Μονάδες 10
7 ο Γενικό Λύκειο Περιστερίου ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ: Β ΛΥΚΕΙΟΥ ΤΜΗΜΑ: ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ: ΗΜΕΡΟΜΗΝΙΑ:
Διαβάστε περισσότεραΚΥΚΛΟΣ. Μ(x,y) Ο C ΘΕΩΡΙΑ ΕΠΙΜΕΛΕΙΑ: ΣΩΣΤΟ-ΛΑΘΟΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΧΡΑΣ ΓΙΑΝΝΗΣ ΑΣΚΗΣΕΙΣ. 3ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΕΝΤΡΙΚΟ Ν. ΣΜΥΡΝΗΣ
Φ3 ΚΥΚΛΟΣ y Μ(x,y) A(x,y) ε Ο C x ΕΠΙΜΕΛΕΙΑ: ΧΡΑΣ ΓΙΑΝΝΗΣ ΘΕΩΡΙΑ ΣΩΣΤΟ-ΛΑΘΟΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΑΣΚΗΣΕΙΣ ΚΕΝΤΡΙΚΟ 3ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ Ν. ΣΜΥΡΝΗΣ 0-0 ΘΕΩΡΙΑ. Τι ονομάζεται κύκλος με κέντρο το σημείο K( x0,
Διαβάστε περισσότεραΕρωτήσεις αντιστοίχισης
Ερωτήσεις αντιστοίχισης 1. ** Να αντιστοιχίσετε κάθε ευθεία που η εξίσωσή της βρίσκεται στη του πίνακα (Ι) µε τον συντελεστή της που βρίσκεται στη, συµπληρώνοντας τον πίνακα (ΙΙ) (α, β 0). 1. ε 1 : y =
Διαβάστε περισσότεραv Α. Τι ονοµάζουµε εσωτερικό γινόµενο δύο διανυσµάτων, β
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o α Α Τι ονοµάζουµε εσωτερικό γινόµενο δύο διανυσµάτων, β Μονάδες 4 Β Να αποδείξετε ότι το εσωτερικό γινόµενο
Διαβάστε περισσότεραΘέµατα Εξετάσεων Β Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 1999-2004
Θέµατα Εξετάσεων Β Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 1999-004 Περιεχόµενα 1 Θέµατα 1999.......................................... 3 Θέµατα 000..........................................
Διαβάστε περισσότερα1 η δεκάδα θεµάτων επανάληψης
1 1 η δεκάδα θεµάτων επανάληψης 1. Α. Έστω α = (x 1, y 1 ) και β = (x, y ) δύο διανύσµατα Να γράψετε την αναλυτική έκφραση του εσωτερικού γινοµένου τους i Αν τα διανύσµατα δεν είναι παράλληλα προς τον
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ 0/04/018 ΕΩΣ 14/04/018 ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Πέμπτη 1 Απριλίου 018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να αποδείξετε ότι η εφαπτομένη ε του κύκλου
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή
Διαβάστε περισσότεραΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β') ΔΕΥΤΕΡΑ 5 ΜΑΪΟΥ 5 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ & ΤΕΧΝΟΛΟΓΙΚΉΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) Ε Ν Δ Ε
Διαβάστε περισσότεραβ = (9, x) να είναι ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ...Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΣΗΣ...
Αµυραδάκη 0, Νίκαια (104903576) ΝΟΕΜΒΡΙΟΣ 01 ΘΕΜΑ 1 ο i) Αν Α( x 1, y 1 ) και Β(x, y ) δυο σηµεία του καρτεσιανού επιπέδου και (x, y) οι συντεταγµένες του µέσου Μ του ΑΒ, να αποδείξετε ότι : x 1 + x x
Διαβάστε περισσότεραx y Ax By 0 για τις διάφορες τιμές των Α, Β,Γ (μον.8)
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 94 Ον/μο:.. Β Λυκείου Ύλη:Διανύσματα- Ευθεία Θετ-Τεχν Κατ. Κωνικές τομές 6-01-14 ΘΕΜΑ 1 ο : A.1. Να αποδείξετε ότι η εξίσωση της ευθείας που διέρχεται από το σημείο Α(x 0,y 0
Διαβάστε περισσότερα3 η δεκάδα θεµάτων επανάληψης
η δεκάδα θεµάτων επανάληψης. Έστω η υπερβολή x y. Να βρείτε Tις ασύµπτωτες και την εκκεντρότητα της υπερβολής. i Tις εφαπτόµενες της υπερβολής που είναι παράλληλες στην ευθεία (ε) : x + y + 0 ii Tο εµβαδόν
Διαβάστε περισσότεραΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ ΤΑΞΗ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
Αποκλειστικά από το lisari.blogspot.gr ΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ 05 06 ΑΝΑΒΡΥΤΑ 4-5-06 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ ΤΑΞΗ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
Διαβάστε περισσότεραΘέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999
Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 999 Ζήτηµα ο Α. Έστω a, ) και β, ) δύο διανύσµατα του καρτεσιανού επιπέδου Ο. α) Να εκφράσετε χωρίς απόδειξη) το εσωτερικό γινόµενο των διανυσµάτων a και
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΔΙΑΝΥΣΜΑΤΑ Επιμέλεια: Άλκης Τζελέπης ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΝΝΟΙΑ - ΠΡΑΞΕΙΣ. Αν τα διανύσματα,, σχηματίζουν τρίγωνο, να αποδείξετε ότι το ίδιο συμβαίνει
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης 999-000) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό -
Διαβάστε περισσότεραΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R
Κεφάλαιο 4ο: ΚΩΝΙΚΕΣ ΤΟΜΕΣ Α. ΚΥΚΛΟΣ Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. * Η εξίσωση ( x x ) + ( y y ) = k, k R είναι πάντοτε εξίσωση κύκλου. o o. * Η εξίσωση x + y + Ax + By + Γ = 0 παριστάνει κύκλο
Διαβάστε περισσότερα2η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ
ΑΠΟ 3//7 ΕΩΣ 5//8 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Παρασκευή 5 Ιανουαρίου 8 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑΤΑ ΘΕΜΑ Α Α. Αν μία συνάρτηση f είναι
Διαβάστε περισσότεραΣΧΕΔΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ Β Λυκ. Κατ/νση
Page1 ΣΧΕΔΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ Β Λυκ. Κατ/νση ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ:.3 Εμβαδόν τριγώνου - Μέρος 3 ο 1) ΔΙΔΑΚΤΙΚΟΙ ΣΤΟΧΟΙ: Να υπολογίζουν την απόσταση σημείου από ευθεία και το εμβαδόν τριγώνου με
Διαβάστε περισσότεραΘΕΜΑ 1ο Α. α) Να αποδείξετε ότι, αν z 1 =α+βi και. είναι δύο μιγαδικοί αριθμοί, τότε
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 6 ΙΟΥΛΙΟΥ 001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΡΕΙΣ
Διαβάστε περισσότεραΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ ΙΟΥΝΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ
Διαβάστε περισσότεραγ) Αν μια συνάρτηση f είναι γνησίως μονότονη σε ένα διάστημα τότε είναι και 1-1 στο διάστημα αυτό.
ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ - ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 6 ΙΟΥΝΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΣΥΝΟΛΟ
Διαβάστε περισσότερα2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ
ΚΕΦΑΛΑΙΟ Ο : ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ - ΕΝΟΤΗΤΕΣ :.... ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΜΕΘΟΔΟΛΟΓΙΑ : ΠΡΑΓΜΑΤΙΚΟ & ΦΑΝΤΑΣΤΙΚΟ ΜΕΡΟΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Έστω ένας μιγαδικός αριθμός,
Διαβάστε περισσότεραKόλλιας Σταύρος 1
Kόλλιας Σταύρος http://usersschgr/stkollias Θέμα ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΠΕΡΙΟΥ ΔΕΥΤΕΡΑ 4 ΙΟΥΝΙΟΥ 007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Αα ) Τι ονομάζουμε εσωτερικό γινόμενο
Διαβάστε περισσότεραΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ( ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ (-6-) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑ ο : Α. Αν η συνάρτηση είναι παραγωγίσιμη σ ένα σημείο του πεδίου ορισμού της, να γραφεί η εξίσωση της εφαπτομένης της
Διαβάστε περισσότεραΜαθηµατικά Β Λυκείου Θετικής - τεχνολογικής κατεύθυνσης. Διανύσματα ΚΑΤΗΓΟΡΙΑ 8. Εσωτερικό γινόµενο διανυσµάτων. Ασκήσεις προς λύση 1-50
Μαθηµατικά Β Λυκείου Θετικής - τεχνολογικής κατεύθυνσης Διανύσματα Εσωτερικό γινόµενο διανυσµάτων. ΚΑΤΗΓΟΡΙΑ 8 Ασκήσεις προς λύση 1-50 1. Θεωρούμε τα σημεία Α(1,2), Β(4,1). Να βρείτε σημείο Μ του άξονα
Διαβάστε περισσότεραΗΡΑΚΛΕΙΤΟΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β') ΔΕΥΤΕΡΑ 28 ΜΑΪΟΥ 2012
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β') ΔΕΥΤΕΡΑ 28 ΜΑΪΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να
Διαβάστε περισσότεραΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 4 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (19/11/2014)
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου 4 ο ΘΕΜΑ Εκφωνήσεις Λύσεις των θεμάτων Έκδοση η (9//4) Θέματα 4 ης Ομάδας Μαθηματικά Προσανατολισμού Β Λυκείου GI_V_MATHP_4_866 [παράγραφος
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑ o A. Έστω f µια συνεχής συνάρτηση σ' ένα διάστηµα [α, ]. Αν G είναι µια παράγουσα της f στο [α, ], τότε να δείξετε ότι f(t)
Διαβάστε περισσότερα[ ] [ ] ΘΕΜΑ 1o A. Για x x 0 έχουµε: παραγωγίσιµη στο χ 0 ) άρα η f είναι συνεχής στο χ 0.
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 29 ΜΑΪΟΥ 23 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1o A. Για x x έχουµε: f (
Διαβάστε περισσότεραΕΠΙΜΕΛΕΙΑ : ΒΑΣΙΛΗΣ ΚΡΑΝΙΑΣ - ΒΑΣΙΛΟΠΟΥΛΟΣ ΔΗΜΗΤΡΗΣ. Έστω σημεία Α,Β,Γ του επιπέδου και Ο σημείο αναφοράς.αν ισχύει 2, 2
Άσκηση 1 η Έστω σημεία Α,Β,Γ του επιπέδου και Ο σημείο αναφοράς.αν ισχύει,, 1 και 4 5 0. i. Να δείξετε ότι τα σημεία Α,Β,Γ είναι συνευθειακά. ii. iii. Να υπολογίσετε την τιμή της παράστασης Να βρεθεί το
Διαβάστε περισσότερα4. Δίνεται το πολυώνυμο P(x) = x 3 2x 2 + x 12 α) Να αιτιολογήσετε γιατί το διώνυμο x 3 είναι παράγοντας του P(x) β) Να λύσετε την εξίσωση P(x) = 0
1. α) Να βρείτε το υπόλοιπο και το πηλίκο της διαίρεσης (x 3 6x 2 +11x 2) : (x 3) β) Αν P(x) = x 3 6x 2 +11x + λ να βρείτε το λ R ώστε η διαίρεση P(x) : (x 3) να έχει υπόλοιπο 0. 2. Δίνονται τα πολυώνυμα:
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 8 ΜΑΪΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ 4 ΘΕΜΑ 1ο Α. ς υποθέσουµε
Διαβάστε περισσότερα( ) ( ) ( ) ( ) ( ) ( )
ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 9-5- ΘΕΜΑ Α Α. Σχολικό βιβλίο σελ. Α. Σχολικό βιβλίο σελ. 79 Α. Σχολικό βιβλίο σελ. 7 Α. α) ΣΩΣΤΟ β) ΣΩΣΤΟ γ) ΛΑΘΟΣ δ) ΛΑΘΟΣ ε) ΣΩΣΤΟ
Διαβάστε περισσότεραΑΡΧΗ 1 ης ΣΕΛΙΔΑΣ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΠΕΙΡΑΜΑΤΙΚΑ ΛΥΚΕΙΑ. Τρίτη 25 η Ιουνίου 2013 ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΡΕΙΣ (3)
ΑΡΧΗ 1 ης ΣΕΛΙΔΑΣ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΠΕΙΡΑΜΑΤΙΚΑ ΛΥΚΕΙΑ Τρίτη 5 η Ιουνίου 013 ΜΑΘΗΜΑΤΙΚΑ Α Θέμα ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΡΕΙΣ (3) 1. Να υπολογίσετε το εξαγόμενο 1 9 1 9.. Αν = 1 x και y =
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 5 MAΪΟΥ 5 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α A Έστω μια συνάρτηση f, η οποία
Διαβάστε περισσότεραΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ ΟΜΑΔΑ Β ΔΕΥΤΕΡΑ 5 ΜΑΪΟΥ 5 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:
Διαβάστε περισσότεραΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 4 ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α Έστω μία συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f σε κάθε εσωτερικό σημείο
Διαβάστε περισσότεραx y Ax By Εξίσωση Κύκλου Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και C ο κύκλος με κέντρο το σημείο Εφαπτομένη Κύκλου Η εφαπτομένη του κύκλου
ΚΥΚΛΟΣ Εξίσωση Κύκλου Έστω Oy ένα σύστημα συντεταγμένων στο επίπεδο και C ο κύκλος με κέντρο το σημείο O(, ) και ακτίνα ρ έχει εξίσωση y y ε Εφαπτομένη Κύκλου Η εφαπτομένη του κύκλου y ρ στο σημείο του
Διαβάστε περισσότεραΒ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 2 Μαΐου 2019 Διάρκεια Εξέτασης: 3 ώρες
ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Πέμπτη Μαΐου 019 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑΤΑ ΘΕΜΑ Α Α1. Να αποδείξετε ότι η εφαπτομένη του κύκλου c: x + y = ρ στο σημείο του
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης 999-000) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό -
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Θετικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Θετικής κατεύθυνσης 999-000) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό - Λάθος».
Διαβάστε περισσότεραΙΑΝΥΣΜΑΤΑ. Σ Λ + α = α
Κεφάλαιο 3ο: ΙΑΝΥΜΑΤΑ Ερωτήσεις του τύπου «ωστό-άθος» 1. * Αν α =, τότε α =. 2. * Αν α, µη µηδενικά διανύσµατα και θ η γωνία τους, τότε 0 θ π 3. * Ισχύει α + 0 = 0 + α = α 4. * Κάθε διάνυσµα µπορεί να
Διαβάστε περισσότεραΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 3 ΙΟΥΝΙΟΥ 3 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:
Διαβάστε περισσότεραΓ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ /4/8 ΕΩΣ 4/4/8 ΤΑΞΗ: ΜΑΘΗΜΑ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τρίτη Απριλίου 8 Διάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α Έστω μία συνάρτηση ορισμένη σε ένα διάστημα Δ Αν o
Διαβάστε περισσότεραΤράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός
Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 3 Θέμα Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Θεωρία ως και την 3. Ασκήσεις: -5 Θεωρία ως και την 3.3 Ασκήσεις: 6-8 Άσκηση Δίνεται η παράσταση: A= 3 5 +
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΟΠ- Γ ΓΕΛ 12:50
ΜΑΘΗΜΑΤΙΚΑ ΟΠ- Γ ΓΕΛ 1:5 Σελίδα από 11 ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ ΕΞΕΤΑΣΗΣ: 11 / 6 / 18 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: Μαθηματικά ΟΠ Γ ΓΕΛ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ
Διαβάστε περισσότεραΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ Β ΛΥΚΕΙΟΥ
ΘΕΜΑ 1 ο ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ Β ΛΥΚΕΙΟΥ 01-06-009 α 1 1 Α. Να αποδείξετε ότι, για δύο διανύσματα = (x,ψ ) και β = ( x, ) ψ μη παράλληλα στον άξονα ψ ψ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ - ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1. Δίνεται παραλληλόγραμμο ΑΒΓΔ με τρεις κορυφές τα σημεία Α (1,1), Γ (4,3) και Δ (,3). α) Να υπολογίσετε τα μήκη
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α A. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα. Αν F είναι μια παράγουσα της στο, τότε να αποδείξετε ότι:
Διαβάστε περισσότεραΘέμα Α Α. Θεωρία (Σχ.Βιβλίο σελ.34) Α2. Θεωρία (Σχ.Βιβλίο σελ.279) Α3. Θεωρία (Σχ.Βιβλίο σελ.273) Μαθηματικά Θετικής & Τεχνολογικής Κατεύθυνσης Γ Λυκείου Τετάρτη 9 Μαΐου 2 Α4. (α)- Σ ( β)- Σ ( γ)- Λ (
Διαβάστε περισσότεραΕπαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου
Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Θέμα 1 Α. Να αποδείξετε ότι αν α,β τότε α //β α λβ, λ. είναι δύο διανύσματα, με β 0, Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας
Διαβάστε περισσότεραΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ : ΜΑΘΗΜΑΤΙΚΑ
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ : ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ o A.Aν η συνάρτηση f είναι παραγωγίσιμη σ' ένα σημείο x 0 του πεδίου ορισμού της,
Διαβάστε περισσότεραΤάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε
Ν β K C Ε -α Ο α Ε Τάξη B Μ -β Λ Μάθημα: Η Θεωρία σε Ερωτήσεις Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Επιμέλεια: Διανύσματα Ερωτήσεις θεωρίας 1. Πως ορίζεται το διάνυσμα;. Τι λέγεται μηδενικό διάνυσμα;
Διαβάστε περισσότερα2 Ο ΓΥΜΝΑΣΙΟ ΚΕΡΚΥΡΑΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 2010 ΤΑΞΗ: Β ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ
Ο ΓΥΜΝΑΣΙΟ ΚΕΡΚΥΡΑΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 00 ΤΑΞΗ: Β ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΩΡΙΑ Α. Να αντιστοιχίσετε κάθε στοιχείο της πρώτης στήλης με το αντίστοιχο στοιχείο
Διαβάστε περισσότεραΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ ΙΟΥΝΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ - ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1. Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε = 5 + 2 α) Να γράψετε το διάνυσμα β) Να δείξετε
Διαβάστε περισσότεραf x x, ν Ν-{0,1} είναι παραγωγίσιμη στο R
ΟΕΦΕ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Θέμα Α Α Να αποδείξετε ότι η συνάρτηση ν ν και ισχύει f ν f, νν-{,} είναι παραγωγίσιμη στο R
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. Να εξετάσετε αν είναι ίσες οι συναρτήσεις f, g όταν: x x 2 x x. x x g x. ln x ln x 1 και
Α ΟΜΑΔΑ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Να εξετάσετε αν είναι ίσες οι συναρτήσεις, όταν: () με R και (). Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ Το πεδίο ορισμού της είναι A R. Επομένως A A R Α Θα εξετάσουμε αν για κάθε R ισχύει.
Διαβάστε περισσότεραΚΥΚΛΟΣ. και ακτίνα 1 3. Σ Λ
1 ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΣΤΡΙΤΣΙΟΥ ΚΥΚΛΟΣ ΕΠΙΜΕΛΕΙΑ: Kωνσταντόπουλος Κων/νος Μαθηματικός ΜSc 1. Σε κάθε μια από τις παρακάτω περιπτώσεις να κυκλώσετε το γράμμα Σ, αν ο ισχυρισμός είναι αληθής διαφορετικά να κυκλώσετε
Διαβάστε περισσότεραA1. Να αποδείξετε ότι η συνάρτηση f(x)=συνx είναι παραγωγίσιμη στο και για κάθε x ισχύει. = ημx Μονάδες 10
ΘΕΜΑ Α ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 6 ΙΟΥΝΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1
Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες
Διαβάστε περισσότερα= π 3 και a = 2, β =2 2. a, β
1 of 68 Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8) β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. γ) Να
Διαβάστε περισσότεραΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 8 ΜΑΪΟΥ 005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)
Διαβάστε περισσότεραΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β') ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 4 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ & ΤΕΧΝΟΛΟΓΙΚΉΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) Ε Ν Δ Ε
Διαβάστε περισσότεραΜαθηματικά Προσανατολισμού Β Λυκείου Στάμου Γιάννης
Μαθηματικά Προσανατολισμού Β Λυκείου Στάμου Γιάννης Αναλυτική θεωρία Λυμένα παραδείγματα Ερωτήσεις κατανόησης Ασκήσεις Επαναληπτικά διαγωνίσματα ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο ο : Διανύσματα Ενότητα I: Η έννοια
Διαβάστε περισσότεραOPMH. κοντά στο µαθητή!
ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΤΡΙΤΗ 3 IOYNIOY 014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ι ΗΜΕΡΗΣΙΑ
Διαβάστε περισσότεραΜΕΘΟΔΙΚΗ ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ Β ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΔΙΑΝΥΣΜΑΤΑ ΜΕΘΟΔΙΚΗ ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ Β ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 1) Δίνονται διανύσματα α και β, με α π = 4 και (α, β ) = 3 Αν ισχύει ότι το α (α + 2β ) = 28, να βρείτε: α) το εσωτερικό γινόμενο α β, β) το μέτρο
Διαβάστε περισσότεραΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 11 Ιουνίου 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα Ιουνίου 08 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α Α Απόδειξη θεωρήματος σελ 99 σχολικού βιβλίου
Διαβάστε περισσότεραΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 A ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ
ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Παρασκευή 5 Ιανουαρίου 08 Διάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. Απόδειξη σχολικού βιβλίου σελίδα 43 Α. Ο
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ i ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΠΤΥΧΙΟΥΧΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ (ΕΚΠΑ)
Διαβάστε περισσότεραlim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 8 ΜΑΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ Α Α.
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Α ΦΑΣΗ
Ε_.ΜλΘΟ(ε) ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ηµεροµηνία: Σάββατο 7 Ιανουαρίου 7 ιάρκεια Εξέτασης: ώρες ΘΕΜΑ Α A. Έστω η συνάρτηση
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ
ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό σας. ΚΕΦΑΛΑΙΟ 1 1. Να συμπληρώσετε
Διαβάστε περισσότεραΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΣΑΒΒΑΤΟ 8 IOYNIOY 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΣΑΒΒΑΤΟ 8 IOYNIOY 019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ ΕΠΙΜΕΛΕΙΑ: ΟΜΑ Α ΚΑΘΗΓΗΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΦΡΟΝΤΙΣΤΗΡΙΟΥ «ΕΞΕΛΙΞΗ» ΘΕΜΑ Α Α1. Θεωρία σχολικό
Διαβάστε περισσότεραΘΕΜΑ Α. β) Για κάθε παραγωγίσιμη συνάρτηση f σε ένα διάστημα Δ, η οποία είναι γνησίως αύξουσα, ισχύει f (x) 0 για κάθε x Δ.
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 8 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΡΕΙΣ (3) ΘΕΜΑ Α A. Να αποδείξετε ότι,
Διαβάστε περισσότεραΘέματα εξετάσεων στα Μαθηματικά προσανατολισμού της Β Λυκείου παλαιοτέρων ετών
wwwaskisopolisgr Θέματα εξετάσεων στα Μαθηματικά προσανατολισμού της Β Λυκείου παλαιοτέρων ετών Διανύσματα Δίνεται τρίγωνο ΑΒΓ με AB, ΑΓ και ˆΑ 60 Να βρείτε: α) ΑΒ ΑΓ β) Το μέτρο της διαμέσου ΑΔ γ) Τη
Διαβάστε περισσότερα