ΤΑΞΙΝΟΜΙΚΟΙ ΚΑΝΟΝΕΣ ΓΙΑ ΕΛΛΕΙΠΤΙΚΟΥΣ ΠΛΗΘΥΣΜΟΥΣ ΜΕ ΜΟΝΟΤΟΝΑ ΕΛΛΙΠΗ Ε ΟΜΕΝΑ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΤΑΞΙΝΟΜΙΚΟΙ ΚΑΝΟΝΕΣ ΓΙΑ ΕΛΛΕΙΠΤΙΚΟΥΣ ΠΛΗΘΥΣΜΟΥΣ ΜΕ ΜΟΝΟΤΟΝΑ ΕΛΛΙΠΗ Ε ΟΜΕΝΑ"

Transcript

1 Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 7 ου Πανελληνίου Συνεδρίου Στατιστικής (004) σελ ΤΑΞΙΝΟΜΙΚΟΙ ΚΑΝΟΝΕΣ ΓΙΑ ΕΛΛΕΙΠΤΙΚΟΥΣ ΠΛΗΘΥΣΜΟΥΣ ΜΕ ΜΟΝΟΤΟΝΑ ΕΛΛΙΠΗ Ε ΟΜΕΝΑ Απόστολος Μπατσίδης Κων/νος Ζωγράφος Πανεπιστήµιο Ιωαννίνων Τµήµα Μαθηµατικών 45 0 Ιωάννινα ΠΕΡΙΛΗΨΗ Στην εργασία αυτή το ενδιαφέρον επικεντρώνεται στην κατασκευή κανόνων για την ταξινόµηση µιας νέας παρατήρησης σε έναν από δύο ελλειπτικούς πληθυσµούς υπό την πρόσθετη υπόθεση ότι τα διαθέσιµα πιλοτικά δείγµατα από τους προαναφερθέντες πληθυσµούς είναι µονότονα ελλιπή. Σε αυτό το πλαίσιο δύο ταξινοµικοί κανόνες προτείνονται µελετώνται συγκρίνονται. Συγκεκριµένα η lug in µέθοδος ο γραµµικός συνδυασµός ταξινοµικών κανόνων.. ΕΙΣΑΓΩΓΗ Η κλασική διαχωριστική ανάλυση πραγµατεύεται το πρόβληµα της ταξινόµησης µιας νέας -διάστατης παρατήρησης σε έναν από δύο ή περισσότερους κανονικούς πληθυσµούς. Αν οι παράµετροι των πληθυσµών αυτών είναι άγνωστοι για να καθορίσουµε τον ταξινοµικό κανόνα πρέπει να τις εκτιµήσουµε χρησιµοποιώντας πιλοτικά (πλήρη) δείγµατα από αυτούς. Στη βιβλιογραφία έχουν εµφανιστεί δύο τύποι επεκτάσεων του συγκεκριµένου προβλήµατος. Ο πρώτος παρουσιάζει µελετά προβλήµατα ταξινόµησης µιας νέας παρατήρησης σε έναν ή περισσότερους µη κανονικούς ειδικότερα ελλειπτικούς πληθυσµούς. Ο δεύτερος επεκτείνει τα αποτελέσµατα της κλασικής διαχωριστικής ανάλυσης σε περιπτώσεις που τα διαθέσιµα πιλοτικά δείγµατα είναι ελλιπή. Οι ταξινοµικές διαδικασίες που προτάθηκαν σε αυτή την περίπτωση βασίζονται κυρίως σε διαφορετικές µεθόδους χειρισµού των ελλιπών τιµών όπως για παράδειγµα η συµπλήρωσή τους (imuaion). Σκοπός της εργασίας είναι η µελέτη του προβλήµατος της ταξινόµησης µίας νέας παρατήρησης σε έναν από δύο ελλειπτικούς πληθυσµούς όταν τα διαθέσιµα πιλοτικά δείγµατα είναι µονότονα ελλιπή. Τα µονότονα ελλιπή είναι ένας ελκυστικός 37

2 τύπος ελλιπών δεδοµένων αφενός µεν γιατί συναντώνται συχνά στην πράξη (Hao and Krishnamoorhy (00)) αφετέρου γιατί διάφορες µορφές τύποι ελλιπών δεδοµένων µπορούν να µετατραπούν σε µονότονα ελλιπή ή περίπου τέτοια (Schafer (997)). Στο πλαίσιο αυτό στο επόµενο εδάφιο παρουσιάζονται εισαγωγικές έννοιες που συνδέονται τόσο µε την ελλειπτική οικογένεια κατανοµών όσο µε τα µονότονα ελλιπή δεδοµένα. Στο Εδάφιο 3 δίνεται η αναλυτική έκφραση των Εκτιµητών Μέγιστης Πιθανοφάνειας (ε.µ.π.) των παραµέτρων θέσης κλίµακας βασιζόµενοι στα διαθέσιµα µονότονα ελλιπή δείγµατα. Αν στο συνήθη διαχωριστικό κανόνα αντικαταστήσουµε τις άγνωστες παραµέτρους µε τους εκτιµητές αυτούς τότε προκύπτει ο πρώτος ταξινοµικός κανόνας που προτείνεται (lug-in µέθοδος). Στο Εδάφιο 4 παρουσιάζεται ο δεύτερος ταξινοµικός κανόνας που είναι γραµµικός συνδυασµός διαχωριστικών κανόνων στηρίζεται σε µία ιδέα που πρόσφατα προτάθηκε από τους Chung and Han (000). Τέλος στο Εδάφιο 5 παρατίθενται τα αποτελέσµατα των συγκρίσεων µε χρήση προσοµοιωµένων δεδοµένων. Τα αποτελέσµατα της εργασίας παρατίθενται για -βηµατικά µονότονα ελλιπή δείγµατα για λόγους ευκολότερης κατανόησης αποφυγής πολύπλοκων συµβολισµών.. ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ-ΣΥΜΒΟΛΙΣΜΟΙ Έστω ένα -διάστατο τυχαίο διάνυσµα X από µία ελλειπτική κατανοµή µε άγνωστες παραµέτρους θέσης κλίµακας µ Σ αντίστοιχα µε Σ θετικά ορισµένο πίνακα τάξης. Επιπλέον ας είναι X ( X X ) όπου X i είναι i - διάστατο διάνυσµα i +. Τότε το διάνυσµα X έχει χαρακτηριστική συνάρτηση πυκνότητα αν υπάρχει iωµ -/ - e φ( ωσω ) Σ f ( - µ ) Σ ( µ ) () αντίστοιχα για κάποια συνάρτηση φ f µία πραγµατική συνάρτηση µω R Σ θετικά ορισµένο πίνακα τάξης. Γράφουµε τότε X ~ EC ( µ Σ φ) καλούµε την f ( ) γεννήτορα της συνάρτησης πυκνότητας πιθανότητας (σ.π.π.). ( ) Έστω τώρα δύο ελλειπτικοί πληθυσµοί Π : ( v v EC µ Σ f ) v. Τότε χρησιµοποιώντας το γενικό διαχωριστικό κανόνα την επιπλέον υπόθεση ότι η f είναι µη αύξουσα συνάρτηση κατατάσσουµε την παρατήρηση στον Π αν () () () () () () ( µ µ ) Σ ( µ µ ) Σ ( µ + µ ) () στον Π διαφορετικά. Ακολουθώντας τους Kanda and Fujikoshi (998) έστω η ακόλουθη διαµέριση των µ Σ ανάλογη µε αυτή του X ( X X ) : Σ µ ( µ µ ) Σ Σ (3) Σ Σ 38

3 όπου µ j είναι j -διάστατο διάνυσµα Σ jl είναι l j πίνακες µε Σ jj θετικά ορισµένους για j l. Τότε είναι γνωστό (Fang and Zhang (990)) ότι κάθε Xi ακολουθεί ελλειπτική κατανοµή EC i ( µ i Σii φ) i... k. Έστω ο µετασχηµατισµός των αρχικών παραµέτρων µ Σ στο διάνυσµα η στον πίνακα ( ) που ορίζονται αντίστοιχα από τις σχέσεις: ij η µ η µ - µ Σ Σ Σ Σ - Σ Σ Σ. (4) - - Με βάση αυτόν το συµβολισµό προκύπτει ότι η δεσµευµένη κατανοµή του X X * * είναι ελλειπτική EC ( η Σ φ ( ) ) q µε µέσο διάνυσµα η η + X - - Σ Σ - Σ Σ Σ q ( X ) ( X - µ ) Σ ( X - µ ) ενώ - - Cov( X X ) { h[( X - η) ( X- η)]} Σ { h[( X - µ ) Σ( X - µ )]} (5) για κάποια συνάρτηση h (βλέπε Fang e al. ( )). Η συναρτησιακή µορφή της h για συγκεκριµένα ελλειπτικά µοντέλα όπως η Pearson τύπου VII κ.ά. είναι διαθέσιµη. Θεωρούµε το -διάστατο τυχαίο διάνυσµα X από µία ελλειπτική κατανοµή ( v) µε άγνωστες παραµέτρους θέσης κλίµακας µ Σ αντίστοιχα µε Σ θετικά ορισµένο πίνακα τάξης. Επιπλέον ας είναι X ( X X ) όπου X i είναι i - διάστατο διάνυσµα i +. Θεωρούµε τώρα ένα δείγµα µεγέθους N v από την ελλειπτική κατανοµή που αναφέρθηκε της ακόλουθης µορφής: v... v Nv k v N v vnv (6) v... vnv... k vnv δηλαδή Nv Nv παρατηρήσεις είναι διαθέσιµες στις + συνιστώσες αντίστοιχα µε N v > N v. Ένα τέτοιο δείγµα καλείται -βηµατικό µονότονα ελλιπές δείγµα (παραπέµπουµε στους Kanda and Fujikoshi (998)). Στη συνέχεια ορίζουµε τα ακόλουθα δειγµατικά µέσα διανύσµατα Nv v v j N v j N v i. vi N v j Επιπλέον µε παρόµοιο τρόπο ορίζουµε τους ακόλουθους δειγµατικούς πίνακες διακυµάνσεων-συνδιακυµάνσεων vij µε N v v ( vl v)( vl v) j S S ( v) S vij 39

4 N v S ( )( ) i j vij vil vi vjl vj l S v v S N ( v) S () v S N όπου S Sv Sv Sv S v v v v v v N N v Nv N. v 3. PLUG-IN ΜΕΘΟ ΟΣ Στη παράγραφο αυτή θα δοθεί η αναλυτική έκφραση των ε.µ.π. των παραµέτρων θέσης κλίµακας της ελλειπτικής οικογένειας κατανοµών βασιζόµενοι στους εκτιµητές αυτούς θα δοθεί ο ταξινοµικός κανόνας οι πιθανότητες εσφαλµένης ταξινόµησης. Χρησιµοποιώντας την προσέγγιση που αρχικά παρουσιάστηκε από τον Anderson (957) αποκτούµε τους ε.µ.π. των παραµέτρων θέσης κλίµακας της ελλειπτικής οικογένειας κατανοµών θεωρώντας χρησιµοποιώντας δύο - βηµατικά µονότονα ελλιπή δείγµατα. Σύµφωνα µε την προσέγγιση αυτή εκφράζουµε την από κοινού πυκνότητα ως το γινόµενο της περιθώριας της δεσµευµένης σ.π.π. (condiional likelihood aroach) λαµβάνοντας υπόψη την αναπαραµέτρηση (4). Ειδικότερα οι ε.µ.π. δίνονται από το Θεώρηµα που ακολουθεί. Θεώρηµα Στη βάση δύο -βηµατικών µονότονα ελλιπών δειγµάτων οι ε.µ.π. των ( v µ ) Σ είναι αντίστοιχα ( v) µ v v µ µ v v + ( v v) Σ Σ Σ Σ Σ όπου S v v v S v Σ λ ( ) ma g S v v ( ) Σ λma g S v S v S v v v v Σ Σ + Σ Σ Σ 30

5 N v Σ ma S h h ( vj µ ) Σ ( vj µ ) v j όπου h η συνάρτηση που συνδέεται µε τον Cov( X / X ). Επιπρόσθετα g g είναι οι µη αύξουσες από υπόθεση γεννήτορες συναρτήσεις της περιθώριας δεσµευµένης πυκνότητας των X X X αντίστοιχα ενώ µε λ ( ) ma g -N συµβολίζεται το σηµείο που λαµβάνει µέγιστο η συνάρτηση λ g / λ ) µε µε ( ξ ( g )/ h ) ( -N g ( / ξ. ξ ma ( g ) το σηµείο που λαµβάνει µέγιστο η συνάρτηση ξ ) Στηριζόµενοι τώρα στην lug-in µέθοδο στο Θεώρηµα στη σχέση () προκύπτει ο ακόλουθος ταξινοµικός κανόνας : Κατατάσσουµε την νέα παρατήρηση στον πληθυσµό Π αν ( () () ) ( () () ) d( ) µ µ Σ µ µ Σ ( µ () + µ () ) 0 στον Π διαφορετικά. Οι δεσµευµένες πιθανότητες εσφαλµένης ταξινόµησης µίας παρατήρησης του Π στον Π αντίστροφα χρησιµοποιώντας τον d( ) δίνονται από τις ακόλουθες σχέσεις () () γ Pd ( ( X) < 0 / X Π µ µ Σ σταθεροποιήµενα) () () ( ) () () () () () ( ) ( ) µ µ Σ µ + µ µ µ Σ µ F () () () () ( ) µ µ Σ ΣΣ ( µ µ ) () () γ Pd ( ( X) 0 / X Π µ µ Σ σταθεροποιηµένα) () () () () () () () ( ) ( ) ( ) µ µ Σ µ + µ µ µ Σ µ F () () () () ( ) µ µ Σ ΣΣ ( µ µ ) όπου F είναι η α.σ.κ της Z ~ EC (0) δηλαδή ελλειπτικής. Εποµένως η πιθανότητα µη ορθής ταξινόµηση είναι γ+ γ γ. 4. ΓΡΑΜΜΙΚΟΣ ΣΥΝ ΥΑΣΜΟΣ ΙΑΧΩΡΙΣΤΙΚΩΝ ΚΑΝΟΝΩΝ Ας θεωρήσουµε τα ακόλουθα -βηµατικά µονότονα ελλιπή πιλοτικά δείγµατα v... v Nv k v N v vnv v vnvk vnv 3

6 Στη βιβλιογραφία των ελλιπών δεδοµένων (βλέπε Schafer (997)) υπάρχουν οι ακόλουθοι τρόποι χειρισµού τους α) να στηριχθούµε σε εκείνες τις παρατηρήσεις που είναι διαθέσιµες σε όλες τις συνιστώσες (γνωστή ως case-wise deleion mehod ή comlee cases analysis ή liswise deleion) b) να στηριχθούµε στις µεταβλητές στις οποίες δεν έχουµε ελλιπείς τιµές (γνωστή ως variable-wise deleion mehod) Ακολουθώντας τις επιλογές a) b) θεωρούµε τα ακόλουθα σύνολα δεδοµένων v... v Nv... k vnv (7) v... vnv... k vnv v... v Nv k v N v vn (8) v αντίστοιχα. Εποµένως στηριζόµενοι στα παραπάνω σύνολα µπορούµε να κατασκευάσουµε δύο γραµµικούς διαχωριστικούς κανόνες για την ταξινόµηση της ( ) όπου i είναι i -διάστατο τυχαίο διάνυσµα +. Βασιζόµενοι στο σύνολο παρατηρήσεων (7) τον κλασικό lug-in ταξινοµικό κανόνα έχουµε την ακόλουθη διαχωριστική συνάρτηση ( a) () () () () W ( µ µ ) Σ ( µ + µ ) (9) ( v) ( v) όπου µ ( v v) Σ λma ( f ) S. v Ο δεύτερος δειγµατικός διαχωριστικός κανόνας που στηρίζεται στο σύνολο δεδοµένων (8) είναι ( b) () () () () W ( µ µ ) Σ ( µ + µ ) (0) ( v) όπου µ v Σ λma ( g) S. v v Ακολουθώντας τους Chung and Han (000) συνδυάζουµε τις (9) (0) κατασκευάζουµε έναν ταξινοµικό κανόνα που είναι γραµµικός συνδυασµός των δύο µεθόδων χειρισµού των ελλιπών τιµών. Η παρατήρηση ταξινοµείται στον Π αν ( a) ( b) W cw + ( c) W 0 0 c διαφορετικά στον Π. Παρατηρούµε ότι αυτός ο ταξινοµικός κανόνας εξαρτάται από την επιλογή της σταθεράς c. Υπάρχουν διάφοροι τρόποι προσδιορισµού της. Οι Chung and Han (000) πρότειναν (εµπειρικά) τη χρήση του + Da N N c + Da + + Db N N N N 3

7 όπου D a D b οι δειγµατικές Mahalanobis αποστάσεις των δύο πληθυσµών βασιζόµενες στα σύνολα δεδοµένων (7) (8) αντίστοιχα. Ένας άλλος τρόπος για παράδειγµα είναι να προσδιοριστεί η σταθερά c έτσι ώστε να ελαχιστοποιείται ο boosra εκτιµητής του σφάλµατος ταξινόµησης. Με σκοπό την εύρεση των πιθανοτήτων εσφαλµένης ταξινόµησης γράφουµε A το διαχωριστικό κανόνα στην ακόλουθη µορφή W H + F µε H όπου A B B διάνυσµα αντίστοιχα F ένας αριθµός που δίνονται από τις ακόλουθες σχέσεις A ca + ( c) d B ca F cb+ ( c) e () () a ( a a) ( ) Σ () () () () b ( ) Σ ( ) µε d Σ ( ) e ( ) Σ ( ). Εποµένως η δεσµευµένη πιθανότητα εσφαλµένης ταξινόµησης µιας παρατήρησης του Π στον Π αντίστροφα είναι β PW ( < 0/ X Π) () Hµ + Ε F HΣΗ β PW ( 0/ X Π) () Hµ + Ε F HΣΗ αντίστοιχα µε F να είναι η α.σ.κ. της Z ~ EC (0). Εποµένως η πιθανότητα εσφαλµένης ταξινόµησης είναι β β + β. 5. ΣΥΓΚΡΙΣΗ ΤΩΝ ΣΦΑΛΜΑΤΩΝ ΤΑΞΙΝΟΜΗΣΗΣ ΓΙΑ ΤΗΝ ΠΟΛΥ ΙΑΣΤΑΤΗ -ΚΑΤΑΝΟΜΗ Η συµπεριφορά ενός ταξινοµικού κανόνα αξιολογείται από τη δεσµευµένη πιθανότητα εσφαλµένης ταξινόµησης. Με σκοπό να συγκρίνουµε τις δύο ταξινοµικές διαδικασίες που πρωτύτερα προτάθηκαν κάνουµε µια Mone Carlo µελέτη 33

8 προσοµοιώνοντας τα σφάλµατα ταξινόµησης στην περίπτωση που έχουµε -βηµατικά πιλοτικά δείγµατα µε δειγµατικά µεγέθη N N N N. Υποθέτουµε επιπλέον ότι τα πιλοτικά δείγµατα προέρχονται από δύο πληθυσµούς που περιγράφονται από την πολυδιάστατη -κατανοµή µε m γνωστούς βαθµούς ελευθερίας. Από τη µελέτη αυτή προκύπτει ότι ο γραµµικός διαχωριστικός ταξινοµικός κανόνας γίνεται καλύτερος σε σύγκριση µε την lug-in µέθοδο καθώς το ποσοστό των ελλιπών δεδοµένων µεγαλώνει. ABSTRACT In his aer we deal wih he roblem of classifying a -dimensional random vecor ino one of wo elliically conoured oulaions wih unknown and disinc mean vecors and a common bu unknown scale mari. Ιn order o deermine he classificaion rule we have o esimae he unknown arameers using -se monoone raining samles one from each oulaion wih he same monoone aern. The main idea of his aer is o eend he classificaion rocedure roosed recenly by Chung and Han (000). This rocedure is a linear combinaion of wo discriminan funcions one based on he comlee samles and he oher on he incomlee samles. The erformance of he roosed classificaion rule is comared wih he lug-in mehod ha is wih he classificaion rule which arises if he unknown arameers are subsiued ino he usual classificaion rule by heir esimaors. ΑΝΑΦΟΡΕΣ Anderson T. W. (957): Maimum likelihood esimaes for mulivariae normal disribuion when some observaions are missing. JASA Chung H. & Han C. (000): Discriminan analysis when a block of observaions is missing. Ann. Ins. Sais. Mah Fang K. T. & Zhang Y. T. (990): Generalized Mulivariae Analysis. Science Press Beijing and Sringer- Verlang Berlin Fang K. T. Koz S. & Ng K. W. (990): Symmeric Mulivariae and Relaed Disribuions. Chaman and Hall London New York. Hao J. & Krishnamoorhy K. (00): Inference on a normal covariance mari and generalized variance wih monoone missing daa. J. Muliv. Analysis Kanda T. & Fujikoshi Y. (998): Some basic roeries of he MLE S for a mulivariae normal disribuion wih monoone missing daa. American Journal of Mahemaical and Managemen Sciences Schafer J. L. (997)). Analysis of Incomlee Mulivariae Daa. Chaman and Hall. 34

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία Στατιστική Συμπερασματολογία Διαφάνειες 1 ου κεφαλαίου Βιβλίο: Κολυβά Μαχαίρα, Φ. & Χατζόπουλος Στ. Α. (2016). Μαθηματική Στατιστική, Έλεγχοι Υποθέσεων. [ηλεκτρ. βιβλ.] Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκών

Διαβάστε περισσότερα

Στατιστική. Εκτιμητική

Στατιστική. Εκτιμητική Στατιστική Εκτιμητική Χατζόπουλος Σταύρος 28/2/2018 και 01 /03/2018 Εισαγωγή Το αντικείμενο της Στατιστικής είναι η εξαγωγή συμπερασμάτων που αφορούν τον πληθυσμό ή το φαινόμενο που μελετάμε, με τη βοήθεια

Διαβάστε περισσότερα

Συστήµατα Μη-Γραµµικών Εξισώσεων Μέθοδος Newton-Raphson

Συστήµατα Μη-Γραµµικών Εξισώσεων Μέθοδος Newton-Raphson Ιαν. 009 Συστήµατα Μη-Γραµµικών Εξισώσεων Μέθοδος Newton-Raphson Έστω y, y,, yn παρατηρήσεις µιας m -διάστατης τυχαίας µεταβλητής µε συνάρτηση πυκνότητας πιθανότητας p( y; θ) η οποία περιγράφεται από ένα

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ

Αναγνώριση Προτύπων. Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ Αναγνώριση Προτύπων Baysian Θεωρία Αποφάσεων ΕΠΙΣΚΟΠΗΣΗ-ΑΣΚΗΣΕΙΣ Χριστόδουλος Χαμζάς Τα περιεχόμενο της παρουσίασης βασίζεται στο βιβλίο: Introduction to Pattern Recognition A Matlab Approach, S. Theodoridis,

Διαβάστε περισσότερα

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη

Διαβάστε περισσότερα

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 Πρόλογος... xv Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 1.1.Ιστορική Αναδρομή... 1 1.2.Βασικές Έννοιες... 5 1.3.Πλαίσιο ειγματοληψίας (Sampling Frame)... 9 1.4.Κατηγορίες Ιατρικών Μελετών.... 11 1.4.1.Πειραµατικές

Διαβάστε περισσότερα

ΤΑΞΙΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΓΙΑ ΕΞΑ ΙΑΣΤΑΤΗ ΙΩΝΥΜΙΚΗ ΕΦΑΡΜΟΓΗ ΣΤΗΝ ΑΚΤΙΝΟ ΙΑΓΝΩΣΤΙΚΗ ΤΗΣ ΠΝΕΥΜΟΝΟΚΟΝΙΑΣΗΣ

ΤΑΞΙΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΓΙΑ ΕΞΑ ΙΑΣΤΑΤΗ ΙΩΝΥΜΙΚΗ ΕΦΑΡΜΟΓΗ ΣΤΗΝ ΑΚΤΙΝΟ ΙΑΓΝΩΣΤΙΚΗ ΤΗΣ ΠΝΕΥΜΟΝΟΚΟΝΙΑΣΗΣ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 7 ου Πανελληνίου Συνεδρίου Στατιστικής (004), σελ. 03-08 ΤΑΞΙΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΓΙΑ ΕΞΑ ΙΑΣΤΑΤΗ ΙΩΝΥΜΙΚΗ ΕΦΑΡΜΟΓΗ ΣΤΗΝ ΑΚΤΙΝΟ ΙΑΓΝΩΣΤΙΚΗ ΤΗΣ ΠΝΕΥΜΟΝΟΚΟΝΙΑΣΗΣ Θεόφιλος

Διαβάστε περισσότερα

Χρονοσειρές Μάθημα 3

Χρονοσειρές Μάθημα 3 Χρονοσειρές Μάθημα 3 Ασυσχέτιστες (λευκός θόρυβος) και ανεξάρτητες (iid) παρατηρήσεις Chafield C., The Analysis of Time Series, An Inroducion, 6 h ediion,. 38 (Chaer 3): Some auhors refer o make he weaker

Διαβάστε περισσότερα

1.4 Λύσεις αντιστρόφων προβλημάτων.

1.4 Λύσεις αντιστρόφων προβλημάτων. .4 Λύσεις αντιστρόφων προβλημάτων. Ο τρόπος παρουσίασης της λύσης ενός αντίστροφου προβλήµατος µπορεί να διαφέρει ανάλογα µε τη «φιλοσοφία» επίλυσης που ακολουθείται και τη δυνατότητα παροχής πρόσθετης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.outras@e.aegea.gr Τηλ: 7035468 Μέθοδος Υπολογισμού

Διαβάστε περισσότερα

MEΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΗΣ ΜΟΡΦΗΣ Y= g( X1, X2,..., Xn)

MEΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΗΣ ΜΟΡΦΗΣ Y= g( X1, X2,..., Xn) MEΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΗΣ ΜΟΡΦΗΣ g( Έστω τυχαίες µεταβλητές οι οποίες έχουν κάποια από κοινού κατανοµή Ας υποθέσουµε ότι επιθυµούµε να προσδιορίσουµε την κατανοµή της τυχαίας µεταβλητής g( Η θεωρία των ένα-προς-ένα

Διαβάστε περισσότερα

Μέρος IV. Πολυδιάστατες τυχαίες μεταβλητές. Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ15 ( 1 )

Μέρος IV. Πολυδιάστατες τυχαίες μεταβλητές. Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ15 ( 1 ) Μέρος IV Πολυδιάστατες τυχαίες μεταβλητές Πιθανότητες & Στατιστική 07 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Παν. Ιωαννίνων Δ5 ( ) Πολυδιάστατες μεταβλητές Πολλά ποσοτικά χαρακτηριστικά που σχετίζονται με

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδηµαϊκό έτος 2010-11 Χειµερινό Εξάµηνο Τελική εξέταση Τρίτη, 21 εκεµβρίου 2010,

Διαβάστε περισσότερα

ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΓΙΑ ΕΠΙΛΕΓΜΕΝΟ ΕΚΘΕΤΙΚΟ ΠΛΗΘΥΣΜΟ ΑΠΟ k ΠΛΗΘΥΣΜΟΥΣ

ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΓΙΑ ΕΠΙΛΕΓΜΕΝΟ ΕΚΘΕΤΙΚΟ ΠΛΗΘΥΣΜΟ ΑΠΟ k ΠΛΗΘΥΣΜΟΥΣ ΚΩΝΣΤΑΝΤΙΝΟΣ Γ. ΑΓΓΕΛΟΥ ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΓΙΑ ΕΠΙΛΕΓΜΕΝΟ ΕΚΘΕΤΙΚΟ ΠΛΗΘΥΣΜΟ ΑΠΟ k ΠΛΗΘΥΣΜΟΥΣ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΜΑΘΗΜΑΤΙΚΑ

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Τυχαίες μεταβλητές: Βασικές έννοιες Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (σε αντίθεση με τις

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα

Διαβάστε περισσότερα

Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ. M. Kούτρας

Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ. M. Kούτρας Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ M. Kούτρας Πειραιάς, 2014 1 Από κοινού συνάρτηση πιθανότητας μιας δισδιάστατης διακριτής τυχαίας μεταβλητής Με λόγια, η f ( x, y) δίνει την πιθανότητα να εμφανισθεί

Διαβάστε περισσότερα

Ι ΙΑΣΤΑΤΕΣ ΜΕΤΑΒΛΗΤΕΣ ΠΟΛΥΩΜΙΚΟΥ ΤΥΠΟΥ ΕΜΦΥΤΕΥΣΙΜΕΣ ΣΕ ΜΑΡΚΟΒΙΑΝΗ ΑΛΥΣΙ Α

Ι ΙΑΣΤΑΤΕΣ ΜΕΤΑΒΛΗΤΕΣ ΠΟΛΥΩΜΙΚΟΥ ΤΥΠΟΥ ΕΜΦΥΤΕΥΣΙΜΕΣ ΣΕ ΜΑΡΚΟΒΙΑΝΗ ΑΛΥΣΙ Α Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 7 ου Πανελληνίου Συνεδρίου Στατιστικής 4) σελ 35-33 Ι ΙΑΣΤΑΤΕΣ ΜΕΤΑΒΛΗΤΕΣ ΠΟΛΥΩΜΙΚΟΥ ΤΥΠΟΥ ΕΜΦΥΤΕΥΣΙΜΕΣ ΣΕ ΜΑΡΚΟΒΙΑΝΗ ΑΛΥΣΙ Α Σ Μπερσίµης Λ Αντζουλάκος και Μ Β Κούτρας

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Π E Ρ IEXOMENA Πρόλογος... xiii ΜΕΡΟΣ ΠΡΩΤΟ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΣΤΑΤΙΣΤΙΚΩΝ Ε ΟΜΕΝΩΝ 1.1 Εισαγωγή... 3 1.2 Ορισµός και αντικείµενο της στατιστικής... 3

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

Κεφάλαιο 1. Εισαγωγή: Βασικά Στοιχεία Θεωρίας Πιθανοτήτων και Εκτιμητικής

Κεφάλαιο 1. Εισαγωγή: Βασικά Στοιχεία Θεωρίας Πιθανοτήτων και Εκτιμητικής Κεφάλαιο 1. Εισαγωγή: Βασικά και Εκτιμητικής Ορισμός 1.1. Όλα τα δυνατά αποτελέσματα ενός πειράματος αποτελούν το δειγματοχώρο (sample space) που συμβολίζεται με. Κάθε δυνατό αποτέλεσμα του πειράματος,

Διαβάστε περισσότερα

Επισκόπηση ύλης Πιθανοτήτων Μέρος ΙΙ. M. Kούτρας

Επισκόπηση ύλης Πιθανοτήτων Μέρος ΙΙ. M. Kούτρας Επισκόπηση ύλης Πιθανοτήτων Μέρος ΙΙ M. Kούτρας Πειραιάς, 2015 Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ M. Kούτρας Πειραιάς, 2015 1 Από κοινού συνάρτηση πιθανότητας μιας δισδιάστατης διακριτής τυχαίας μεταβλητής

Διαβάστε περισσότερα

CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ

CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Θεώρηµα Cramer-Rao Θεώρηµα Cramer-Rao Εστω X = (X 1, X,...,X n ) ένα δείγµα µε από κοινού πυκνότητα πιθανότητας f X

Διαβάστε περισσότερα

Είδη Μεταβλητών. κλίµακα µέτρησης

Είδη Μεταβλητών. κλίµακα µέτρησης ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρµοσµένες Επιστήµες Στατιστικός Πληθυσµός και Δείγµα Το στατιστικό

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα

Διαβάστε περισσότερα

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες Πινάκες συνάφειας εξερεύνηση σχέσεων μεταξύ τυχαίων μεταβλητών. Είναι λογικό λοιπόν, στην ανάλυση των κατηγορικών δεδομένων να μας ενδιαφέρει η σχέση μεταξύ δύο ή περισσότερων κατηγορικών μεταβλητών. Έστω

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος

Διαβάστε περισσότερα

Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, T ( ) μεταξύ τους ανεξάρτητα. Τότε

Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, T ( ) μεταξύ τους ανεξάρτητα. Τότε Η πολυδιάστατη κανονική κατανομή Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, διανύσματος X X X ), όπου X ~ N (,) και όλα τα X μεταξύ τους ανεξάρτητα Τότε ( ) (,, ) (, )

Διαβάστε περισσότερα

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος Έλεγχοι Υποθέσεων 1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος µ = 100 Κάθε υπόθεση συνοδεύεται από µια εναλλακτική: Ο

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΜΗ-ΚΑΝΟΝΙΚΩΝ ΧΡΟΝΟΣΕΙΡΩΝ ΜΕΣΩ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΣΕ ΚΑΝΟΝΙΚΕΣ ΧΡΟΝΟΣΕΙΡΕΣ

ΓΡΑΜΜΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΜΗ-ΚΑΝΟΝΙΚΩΝ ΧΡΟΝΟΣΕΙΡΩΝ ΜΕΣΩ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΣΕ ΚΑΝΟΝΙΚΕΣ ΧΡΟΝΟΣΕΙΡΕΣ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 7 ου Πανελληνίου Συνεδρίου Στατιστικής (24), σελ. 243-25 ΓΡΑΜΜΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΜΗ-ΚΑΝΟΝΙΚΩΝ ΧΡΟΝΟΣΕΙΡΩΝ ΜΕΣΩ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΣΕ ΚΑΝΟΝΙΚΕΣ ΧΡΟΝΟΣΕΙΡΕΣ Κουγιουµτζής

Διαβάστε περισσότερα

4.3. Γραµµικοί ταξινοµητές

4.3. Γραµµικοί ταξινοµητές Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων

Διαβάστε περισσότερα

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Τομέας Μαθηματικών, Τηλέφωνο: (210) 772-1702, Φαξ: (210) 772-1775.

Διαβάστε περισσότερα

Ζωγράφος Κωνσταντίνος, Καθηγητής του Τμήματος Μαθηματικών του Πανεπιστημίου Ιωαννίνων. Λουκάς Σωτήριος, Καθηγητής του Τμήματος Μαθηματικών του

Ζωγράφος Κωνσταντίνος, Καθηγητής του Τμήματος Μαθηματικών του Πανεπιστημίου Ιωαννίνων. Λουκάς Σωτήριος, Καθηγητής του Τμήματος Μαθηματικών του Η παρούσα Μεταπτυχιακή Διατριβή εκπονήθηκε στο πλαίσιο των σπουδών για την απόκτηση του Μεταπτυχιακού Διπλώματος Ειδίκευσης στη Στατιστική και Επιχειρησιακή Έρευνα, που απονέμει το Τμήμα Μαθηματικών του

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στα πλαίσια της ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑΣ προσπαθούµε να προσεγγίσουµε τα χαρακτηριστικά ενός συνόλου (πληθυσµός) δια της µελέτης των χαρακτηριστικών αυτών επί ενός µικρού

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29 ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 Μεταβλητές...5 Πληθυσμός, δείγμα...7 Το ευρύτερο γραμμικό μοντέλο...8 Αναφορές στη βιβλιογραφία... 11 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 Περίληψη... 13 Εισαγωγή... 13 Με μια ματιά...

Διαβάστε περισσότερα

x y max(x))

x y max(x)) ΚΕΦΑΛΑΙΟ 0 Απλή Γραµµική Παλινδρόµηση Μωυσιάδης Χρόνης 6 o Εξάµηνο Μαθηµατικών Ένα Πρόβληµα εδοµένα.6 3. 3.8 4. 4.4 5.8 6.0 6.7 7. 7.8 y 5.6 7.9 8.0 8. 8. 9. 9.5 9.4 9.6 9.9 Έχει σχέση το yµε το ; Ειδικότερα

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29 ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 Μεταβλητές...5 Πληθυσμός, δείγμα...7 Το ευρύτερο γραμμικό μοντέλο...8 Αναφορές στη βιβλιογραφία... 11 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 Περίληψη... 13 Εισαγωγή... 13 Με μια ματιά...

Διαβάστε περισσότερα

2. Missing Data mechanisms

2. Missing Data mechanisms Κεφάλαιο 2 ο 2. Missing Data mechanisms 2.1 Εισαγωγή Στην προηγούµενη ενότητα περιγράψαµε κάποια από τα βασικά µοτίβα εµφάνισης των χαµένων τιµών σε σύνολα δεδοµένων. Ένα άλλο ζήτηµα που µας απασχολεί

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ Ι ΜΕΡΟΣ Α (Σ. ΧΑΤΖΗΣΠΥΡΟΣ) . Δείξτε ότι η στατιστική συνάρτηση T = X( n)

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ Ι ΜΕΡΟΣ Α (Σ. ΧΑΤΖΗΣΠΥΡΟΣ) . Δείξτε ότι η στατιστική συνάρτηση T = X( n) ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ Ι ΜΕΡΟΣ Α (Σ. ΧΑΤΖΗΣΠΥΡΟΣ) Θέμα ο (Παρ..3.4, Παρ..4.3, Παρ..4.8.) Εάν = ( ) τυχαίο δείγμα από την ομοιόμορφη ( 0, ) X X,, X. Δείξτε ότι η στατιστική συνάρτηση T = X = το δειγματικό

Διαβάστε περισσότερα

Το θεώρηµα αντίστροφης απεικόνισης. ) και ακόµη ότι η g f 1 1. g y

Το θεώρηµα αντίστροφης απεικόνισης. ) και ακόµη ότι η g f 1 1. g y 5 Έστω Το θεώρηµα αντίστροφης απεικόνισης Ι R ανοικτό διάστηµα, : Ι R διαφορίσιµη της κλάσης a Ι : '( a) 0 Τότε από την συνέχεια της ' υπάρχει 0 ' 0 για κάθε ( a δ, a+ δ) δ > :( a δ, a δ) C και + Ι και

Διαβάστε περισσότερα

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή: Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον

Διαβάστε περισσότερα

Στατιστική περιγραφή τουπεδίουβαρύτητας

Στατιστική περιγραφή τουπεδίουβαρύτητας Στατιστική περιγραφή τουπεδίουβαρύτητας ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΤΟΥ ΠΕ ΙΟΥ ΒΑΡΥΤΗΤΑΣ Οι ανωµαλίες της βαρύτητας σε παγκόσµια κλίµακα θεωρούνται στατιστικά µεγέθη µε µέση τιµή µηδέν Τα στατιστικά χαρακτηριστικά

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συναρτήσεις πολλών μεταβλητών Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συναρτήσεις πολλών μεταβλητών Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πιθανότητες Συναρτήσεις πολλών μεταβλητών Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Εκτιμητές Μεγίστης Πιθανοφάνειας (Maximum Likelihood Estimators MLE)

Εκτιμητές Μεγίστης Πιθανοφάνειας (Maximum Likelihood Estimators MLE) Εκτιμητές Μεγίστης Πιθανοφάνειας (Maximum Likelihood Estimators MLE) Εστω τ.δ. X={x, x,, x } με κατανομή με σ.π.π. f(x;θ). Η από-κοινού σ.π.π. των δειγμάτων είναι η συνάρτηση L f x, x,, x; f x i ; και

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Τυχαίο Δείγμα

Διαβάστε περισσότερα

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Στατιστική Συμπερασματολογία Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων εκτιμήτρια συνάρτηση, ˆ θ σημειακή εκτίμηση εκτίμηση με διάστημα εμπιστοσύνης

Διαβάστε περισσότερα

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 1 Εισαγωγη : Πραξεις επι Συνολων και Σωµατα Αριθµων

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΤΙΜΩΝ ΧΡΟΝΟΣΕΙΡΩΝ: ΒΡΟΧΟΠΤΩΣΕΙΣ ΤΟΥ ΝΟΜΟΥ ΙΩΑΝΝΙΝΩΝ

ΑΝΑΛΥΣΗ ΔΙΤΙΜΩΝ ΧΡΟΝΟΣΕΙΡΩΝ: ΒΡΟΧΟΠΤΩΣΕΙΣ ΤΟΥ ΝΟΜΟΥ ΙΩΑΝΝΙΝΩΝ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 8 ου Πανελληνίου Συνεδρίου Στατιστικής (2005) σελ.29-36 ΑΝΑΛΥΣΗ ΔΙΤΙΜΩΝ ΧΡΟΝΟΣΕΙΡΩΝ: ΒΡΟΧΟΠΤΩΣΕΙΣ ΤΟΥ ΝΟΜΟΥ ΙΩΑΝΝΙΝΩΝ Μανώλης Δρυμώνης και Μαρία Κατέρη Τμήμα Στατιστικής

Διαβάστε περισσότερα

Περιεχόμενα. σελ. Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii

Περιεχόμενα. σελ. Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii Περιεχόμενα Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii 1. Ειδικές συναρτήσεις 1.0 Εισαγωγή... 1 1.1 Εξίσωση του Laplace Συστήματα συντεταγμένων... 2 1.2 Συνάρτηση δ του Dirac...

Διαβάστε περισσότερα

Ο Βέλτιστος Φωρατής. Σεραφείµ Καραµπογιάς

Ο Βέλτιστος Φωρατής. Σεραφείµ Καραµπογιάς Ο Βέλτιστος Φωρατής Ο φωρατής σήµατος, µε τη βοήθεια ενός κανόνα απόφασης, βασιζόµενος στην παρατήρηση του διανύσµατος, λαµβάνει µία απόφαση ως προς το µεταδιδόµενο σύµβολο, έτσι ώστε να µεγιστοποιείται

Διαβάστε περισσότερα

Q- ΔΙΑΓΡΑΜΜΑΤΑ ΓΙΑ ΤΗΝ ΠΑΡΑΜΕΤΡΟ p ΤΗΣ ΔΙΩΝΥΜΙΚΗΣ ΚΑΤΑΝΟΜΗΣ

Q- ΔΙΑΓΡΑΜΜΑΤΑ ΓΙΑ ΤΗΝ ΠΑΡΑΜΕΤΡΟ p ΤΗΣ ΔΙΩΝΥΜΙΚΗΣ ΚΑΤΑΝΟΜΗΣ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 20 ου Πανελληνίου Συνεδρίου Στατιστικής (2007), σελ 249-258 Q- ΔΙΑΓΡΑΜΜΑΤΑ ΓΙΑ ΤΗΝ ΠΑΡΑΜΕΤΡΟ p ΤΗΣ ΔΙΩΝΥΜΙΚΗΣ ΚΑΤΑΝΟΜΗΣ Μανώλης Μανατάκης Τμήμα Μηχανολόγων και Αεροναυπηγών

Διαβάστε περισσότερα

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου 4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου Για την εκτίμηση των παραμέτρων ενός πληθυσμού (όπως η μέση τιμή ή η διασπορά), χρησιμοποιούνται συνήθως δύο μέθοδοι εκτίμησης. Η πρώτη ονομάζεται σημειακή εκτίμηση.

Διαβάστε περισσότερα

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή: Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Σ ΤΑΤ Ι Σ Τ Ι Κ Η i ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Κατανομή Δειγματοληψίας του Δειγματικού Μέσου Ο Δειγματικός Μέσος X είναι μια Τυχαία Μεταβλητή. Καθώς η επιλογή και χρήση διαφορετικών δειγμάτων από έναν

Διαβάστε περισσότερα

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 14 Μαρτίου /34

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 14 Μαρτίου /34 Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 14 Μαρτίου 018 1/34 Διαστήματα Εμπιστοσύνης. Εχουμε δει εκτενώς μέχρι τώρα τρόπους εκτίμησης

Διαβάστε περισσότερα

ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΕΠΙ ΟΣΗΣ ΤΩΝ ΦΟΙΤΗΤΩΝ ΥΟ ΑΚΑ ΗΜΑΪΚΩΝ ΤΜΗΜΑΤΩΝ ΕΝΟΣ ΑΕΙ ΩΣ ΠΡΟΣ ΤΟ ΣΥΣΤΗΜΑ ΕΙΣΑΓΩΓΗΣ ΤΟΥΣ ΣΤΗ ΤΡΙΤΟΒΑΘΜΙΑ ΕΚΠΑΙ ΕΥΣΗ

ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΕΠΙ ΟΣΗΣ ΤΩΝ ΦΟΙΤΗΤΩΝ ΥΟ ΑΚΑ ΗΜΑΪΚΩΝ ΤΜΗΜΑΤΩΝ ΕΝΟΣ ΑΕΙ ΩΣ ΠΡΟΣ ΤΟ ΣΥΣΤΗΜΑ ΕΙΣΑΓΩΓΗΣ ΤΟΥΣ ΣΤΗ ΤΡΙΤΟΒΑΘΜΙΑ ΕΚΠΑΙ ΕΥΣΗ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 17 ου Πανελληνίου Συνεδρίου Στατιστικής (2), σελ. 11-1 ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΕΠΙ ΟΣΗΣ ΤΩΝ ΦΟΙΤΗΤΩΝ ΥΟ ΑΚΑ ΗΜΑΪΚΩΝ ΤΜΗΜΑΤΩΝ ΕΝΟΣ ΑΕΙ ΩΣ ΠΡΟΣ ΤΟ ΣΥΣΤΗΜΑ ΕΙΣΑΓΩΓΗΣ

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΠΡΩΤΟ ΘΕΩΡΙΑΣ-ΕΙΣΑΓΩΓΙΚΟ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ρ. Κουνετάς Η Κωνσταντίνος Ακαδηµαϊκό Έτος 01-013 ΕΠΙΧ Οικονοµετρικά

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2

HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2 HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Θεωρία πιθανοτήτων Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (αντίθετα με τις ντετερμινιστικές μεταβλητές)

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β ηµήτρης Κουγιουµτζής http://users.auth.gr/dkugiu/teach/civilengineer E mail: dkugiu@gen.auth.gr 1/11/2009 2 Περιεχόµενα 1 ΠΕΡΙΓΡΑΦΙΚΗ

Διαβάστε περισσότερα

ΠΟΛΥΜΕΤΑΒΛΗΤΑ ΔΙΑΓΡΑΜΜΑΤΑ ΕΛΕΓΧΟΥ ΜΕ ΜΕΤΑΒΛΗΤΟ ΡΥΘΜΟ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΘΕΩΡΙΑΣ ΡΟΩΝ

ΠΟΛΥΜΕΤΑΒΛΗΤΑ ΔΙΑΓΡΑΜΜΑΤΑ ΕΛΕΓΧΟΥ ΜΕ ΜΕΤΑΒΛΗΤΟ ΡΥΘΜΟ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΘΕΩΡΙΑΣ ΡΟΩΝ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά ου Πανελληνίου Συνεδρίου Στατιστικής (8), σελ 6-7 ΠΟΛΥΜΕΤΑΒΛΗΤΑ ΔΙΑΓΡΑΜΜΑΤΑ ΕΛΕΓΧΟΥ ΜΕ ΜΕΤΑΒΛΗΤΟ ΡΥΘΜΟ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΘΕΩΡΙΑΣ ΡΟΩΝ Αντζουλάκος Δημήτριος,

Διαβάστε περισσότερα

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ 1. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Προχωρημένη Στατιστική 2. ΠΕΡΙΓΡΑΜΜΑ ΕΙΣΗΓΗΣΕΩΝ

Διαβάστε περισσότερα

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ. 4.1 Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα

ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ. 4.1 Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ 4. Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα Εστω R είναι ο γνωστός -διάστατος πραγµατικός διανυσµατικός χώρος. Μία απεικόνιση L :

Διαβάστε περισσότερα

Δειγματικές Κατανομές

Δειγματικές Κατανομές Δειγματικές Κατανομές Στατιστική συνάρτηση ή στατιστική Δειγματική κατανομή - Εκτιμητής Τα άγνωστα στοιχεία του πληθυσμού λέγονται παράμετροι. Τα συμπεράσματα για μια παράμετρο εξάγονται με τη βοήθεια

Διαβάστε περισσότερα

εξαρτάται από το θ και για αυτό γράφουµε την σ.π.π. στην εξής µορφή: ( θ, + ) θ θ n 2n (θ,+ ) 1, 0, x θ.

εξαρτάται από το θ και για αυτό γράφουµε την σ.π.π. στην εξής µορφή: ( θ, + ) θ θ n 2n (θ,+ ) 1, 0, x θ. Άσκηση : Έστω Χ,,Χ τυχαίο δείγµα µεγέους από την κατανοµή µε σππ 3 p (,, >, > 0 α είξτε ότι η στατιστική συνάρτηση Τ( Χ : Χ ( m είναι επαρκής για την παράµετρο και πλήρης κ β Βρείτε ΑΕΕ του α Το στήριγµα

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

2.1 Έννοια του στοχαστικού σήµατος. Θεωρούµε ένα µονοδιάστατο γραµµικό δυναµικό σύστηµα που περιγράφεται από τις σχέσεις:

2.1 Έννοια του στοχαστικού σήµατος. Θεωρούµε ένα µονοδιάστατο γραµµικό δυναµικό σύστηµα που περιγράφεται από τις σχέσεις: Στοχαστικά σήµατα Έννοια του στοχαστικού σήµατος Θερούµε ένα µονοδιάστατο γραµµικό δυναµικό σύστηµα που περιγράφεται από τις σχέσεις: & α Γνρίζουµε µε απόλυτη βεβαιότητα (µε πιθανότητα ένα), ότι η αρχική

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Στατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Παλινδρόμηση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Versio A ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η περίπτωση του ταξινομητή Bayes Εκτίμηση μέγιστης εκ των υστέρων πιθανότητας Maimum Aoseriori

Διαβάστε περισσότερα

Κεφάλαιο 13. Εισαγωγή στην. Η Ανάλυση ιακύµανσης

Κεφάλαιο 13. Εισαγωγή στην. Η Ανάλυση ιακύµανσης Κεφάλαιο 13 Εισαγωγή στην Ανάλυση ιακύµανσης 1 Η Ανάλυση ιακύµανσης Από τα πιο συχνά χρησιµοποιούµενα στατιστικά κριτήρια στην κοινωνική έρευνα Γιατί; 1. Ενώ αναφέρεται σε διαφορές µέσων όρων, όπως και

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία Στατιστική Συμπερασματολογία Διαφάνειες 4 ου κεφαλαίου Ελεγχοσυναρτήσεις Γενικευμένου Λόγου Πιθανοφανειών Σταύρος Χατζόπουλος 27/03/2017, 03/04/2017, 24/04/2017 1 Εισαγωγή Έστω το τ.δ. X,,, από την κατανομή

Διαβάστε περισσότερα

ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ

ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Δ.Φουσκάκης- Πολυδιάστατες Τυχαίες Μεταβλητές 1 ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Συνάρτηση Κατανομής: Έστω Χ=(Χ 1,,Χ ) T τυχαίο διάνυσμα (τ.δ). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) του τ.δ.

Διαβάστε περισσότερα

στατιστική θεωρεία της δειγµατοληψίας

στατιστική θεωρεία της δειγµατοληψίας στατιστική θεωρεία της δειγµατοληψίας ΕΙΓΜΑΤΟΛΗΨΙΑ : Εισαγωγή δειγµατοληψία Τα στοιχεία που απαιτούνται τόσο για την ανάλυση των µεταφορικών συστηµάτων και όσο και για την ανάπτυξη των συγκοινωνιακών µοντέλων

Διαβάστε περισσότερα

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης.

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης. Παράρτηµα Α Στοιχεία θεωρίας µέτρου και ολοκλήρωσης Α Χώροι µέτρου Πέραν της «διαισθητικής» περιγραφής του µέτρου «σχετικά απλών» συνόλων στο από το µήκος τους (όπως πχ είναι τα διαστήµατα, ενώσεις/τοµές

Διαβάστε περισσότερα

ΤΟ EWMA ΙΑΓΡΑΜΜΑ ΓΙΑ ΤΗΝ ΙΑΚΥΜΑΝΣΗ ΜΕ ΕΚΤΙΜΩΜΕΝΕΣ ΠΑΡΑΜΕΤΡΟΥΣ

ΤΟ EWMA ΙΑΓΡΑΜΜΑ ΓΙΑ ΤΗΝ ΙΑΚΥΜΑΝΣΗ ΜΕ ΕΚΤΙΜΩΜΕΝΕΣ ΠΑΡΑΜΕΤΡΟΥΣ Εηνικό Στατιστικό Ινστιτούτο Πρακτικά 7 ου Πανεηνίου Συνεδρίου Στατιστικής (4 σε. 9-98 ΤΟ EWA ΙΑΓΡΑΜΜΑ ΓΙΑ ΤΗΝ ΙΑΚΥΜΑΝΣΗ ΜΕ ΕΚΤΙΜΩΜΕΝΕΣ ΠΑΡΑΜΕΤΡΟΥΣ Π.Ε. Μαραβεάκης Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα

Διαβάστε περισσότερα

Επαναληπτικές Ερωτήσεις για Οικονοµετρία 2

Επαναληπτικές Ερωτήσεις για Οικονοµετρία 2 Επαναληπτικές Ερωτήσεις για Οικονοµετρία 2 Κεφάλαιο 8 1) Τι είναι ετεροσκεδαστικότητα και τι είδους προβλήµατα παρουσιάζονται; ( 2, 4, σελίδες 370-372). 2) Γράψτε τον τύπο της διακύµανσης της κλίσης όταν

Διαβάστε περισσότερα

Στατιστική και Θεωρία Πιθανοτήτων (ΓΓ04) ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Εαρινό Εξάμηνο

Στατιστική και Θεωρία Πιθανοτήτων (ΓΓ04) ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Εαρινό Εξάμηνο Εαρινό εξάμηνο 2009-2010 Στατιστική και Θεωρία Πιθανοτήτων (ΓΓ04) ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Εαρινό Εξάμηνο 2009-2010 Στατιστική και Θεωρία Πιθανοτήτων users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 08-09 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 15 Οκτωβρίου 2009 ΚΛΑΣΙΚΗ ΠΙΘΑΝΟΤΗΤΑ De Moivre Ο κλασικός ορισµός της πιθανότητας αφορά πεπερασµένους δειγµατικούς χώρους και

Διαβάστε περισσότερα

Εισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί

Εισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί Κατηγορίες προβλημάτων (σε μια διάσταση) Εισαγωγικές έννοιες Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Το πρόβλημα

Διαβάστε περισσότερα

Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Το διάστημα εμπιστοσύνης είναι ένα διάστημα αριθμών

Διαβάστε περισσότερα

Παράρτηµα Β. Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης [ ) ( )

Παράρτηµα Β. Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης [ ) ( ) Παράρτηµα Β Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης Β1 Χώροι Baach Βάσεις Schauder Στο εξής συµβολίζουµε µε Z,, γραµµικούς (διανυσµατικούς) χώρους πάνω απ το ίδιο σώµα K = ή και γράφουµε απλά

Διαβάστε περισσότερα

Μάθηµα 3 ο b. Από Κοινού Κατανοµή Τυχαίων Μεταβλητών

Μάθηµα 3 ο b. Από Κοινού Κατανοµή Τυχαίων Μεταβλητών Μάθηµα 3 ο b Από Κοινού Κατανοµή Τυχαίων Μεταβλητών Έχουµε δύο, ή περισσότερες, τυχαίες µεταβλητές έστω Χ και Υ. Η σκπ των ζευγών ( x, y ) λέγεται από κοινού κατανοµή του ζεύγους ή του διανύσµατος ( X,Y

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii018/laii018html ευτέρα 3 Απριλίου 018 Αν C = x

Διαβάστε περισσότερα

ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ

ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά ου Πανελληνίου Συνεδρίου Στατιστικής 008, σελ 9-98 ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ Γεώργιος

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 6 Σχέσεις μεταξύ μεταβλητών

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 6 Σχέσεις μεταξύ μεταβλητών (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη 6 Σχέσεις μεταξύ μεταβλητών ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

Χ. Εμμανουηλίδης, 1

Χ. Εμμανουηλίδης, 1 Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,

Διαβάστε περισσότερα

Στατιστική ανάλυση αποτελεσμάτων

Στατιστική ανάλυση αποτελεσμάτων HELLENIC OPEN UNIVERSITY School of Social Sciences ΜΒΑ Programme Στατιστική ανάλυση αποτελεσμάτων Βασίλης Αγγελής Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Πανεπιστήμιο Αιγαίου Κατερίνα Δημάκη Αν. Καθηγήτρια

Διαβάστε περισσότερα

ONE WAY ANOVA. .Π.Μ.Σ. Μαθηµατικά των Υπολογιστών & των αποφάσεων. Πάτρα, 11 Ιανουαρίου 2011

ONE WAY ANOVA. .Π.Μ.Σ. Μαθηµατικά των Υπολογιστών & των αποφάσεων. Πάτρα, 11 Ιανουαρίου 2011 Πάτρα, 11 Ιανουαρίου 2011 Πίνακας Περιεχοµένων 1 completely random design with fixed effects 2 3 Πίνακας Περιεχοµένων 1 completely random design with fixed effects 2 3 Γενικά completely random design with

Διαβάστε περισσότερα

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 4.1 Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Γενικεύοντας τη διμεταβλητή (Y, X) συνάρτηση

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 9 ο 9.1 ηµιουργία µοντέλων πρόβλεψης 9.2 Απλή Γραµµική Παλινδρόµηση 9.3 Αναλυτικά για το ιάγραµµα ιασποράς

Διαβάστε περισσότερα

Πολύγωνο αθροιστικών σχετικών συχνοτήτων και διάµεσος µιας τυχαίας µεταβλητής ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Πρόλογος Στην εργασία αυτή αναλύονται

Διαβάστε περισσότερα

5. ΜΕΘΟΔΟΙ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ

5. ΜΕΘΟΔΟΙ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ 5. ΜΕΘΟΔΟΙ ΜΕΓΙΣΤΗΣ ΠΙΘΑΟΦΑΕΙΑΣ 5. Η συνάρτηση μέγιστης πιθανοφάνειας Έστω µία τυχαία µεταβλητή η οποία αντιπροσωπεύει την µέτρηση κάποιας συγκεκριµένης ποσότητας µε πραγµατική αλλά άγνωστη τιµή θ σε ένα

Διαβάστε περισσότερα

TMHMA OIKONOMIKΩN ΕΠΙΣΤΗΜΩΝ Διαγώνισμα Προόδου Στατιστικής III

TMHMA OIKONOMIKΩN ΕΠΙΣΤΗΜΩΝ Διαγώνισμα Προόδου Στατιστικής III 0 TMHMA OIKONOMIKΩN ΕΠΙΣΤΗΜΩΝ Διαγώνισμα Προόδου Στατιστικής III Νοέμβριος Eστω,,, τυχαίο δείγμα από κατανομή f( x; ), όπου συμβολίζει άγνωστη παράμετρο (a) Να ορισθεί η έννοια του επαρκούς στατιστικού

Διαβάστε περισσότερα

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης

Διαβάστε περισσότερα

1 Το ϑεώρηµα του Rademacher

1 Το ϑεώρηµα του Rademacher Το ϑεώρηµα του Rademacher Νικόλαος Μουρδουκούτας Περίληψη Σε αυτήν την εργασία ϑα αποδείξουµε το ϑεώρηµα του Rademacher, σύµφωνα µε το οποίο κάθε Lipschiz συνάρτηση f : R m είναι διαφορίσιµη σχεδόν παντού.

Διαβάστε περισσότερα