ΕΘΝΙΚΟ KAI ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ - ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Μηχανική Ι (ακαδ. έτος , χειμερινό εξ.
|
|
- Ολυμπία Αναγνώστου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΕΘΝΙΚΟ KAI ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ - ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ 56. Μηχανική Ι (ακαδ. έτος 6-7, χειμερινό εξ.) Προπτυχιακός Φοιτητής: Νικολαράκης Αντώνιος Αριθμός Μητρώου: 337 Εργασία #3
2
3 Μηχανική Ι Εργασία #3 Χειμερινό εξάμηνο 6-7 Ν. Βλαχάκης. Ο καταπέλτης απονήωσης είναι ένας μηχανισμός ο οποίος δίνει ταχύτητα στα αεροπλάνα πάνω στα αεροπλανοφόρα κι έτσι μπορούν να απονηώνονται χωρίς να χρειάζονται μεγάλο μήκος διαδρόμου. Θέλουμε να μελετήσουμε την ευθύγραμμη οριζόντια κίνηση του αεροπλάνου πριν απονηωθεί. Το αεροπλάνο αρχικά βρίσκεται ακίνητο στην αρχή του άξονα κίνησης. Εκτός του βάρους του g, δέχεται την δύναμη από τον καταπέλτη F ( /β)ˆ, δύναμη από τους κινητήρες F eˆ, δύναμη αντίστασης αέρα C ρs ˆ και δύναμη ανύψωσης C LρS L (με φορά προς τα πάνω). Στα παραπάνω F και F e είναι θετικές σταθερές, β είναι το μήκος του διαδρόμου, C και C L οι συντελεστές αντίστασης και ανύψωσης, ρ η πυκνότητα του αέρα, S η επιφάνεια του αεροπλάνου κάθετα στην κίνηση, S L η επιφάνεια των φτερών και η ταχύτητα (το μέτρο της). (α) Ποια η επιτάχυνση σαν συνάρτηση θέσης και ταχύτητας; Ποια η μέγιστη τιμής της; (β) Γράψτε την διαφορική εξίσωση που δίνει την ταχύτητα συναρτήσει της θέσης και λύστε την. Υπόδειξη: Η διαφορική εξίσωση d d = c c c 3, με c, c, c 3 σταθερές, μπορεί να γραφεί σαν γραμμική, μη ομογενής df d + c f = c c 3, όπου f =. Η τελευταία έχει γενική λύση f = e c c 3 + c 3 + c, όπου σταθερά ολοκλήρωσης. c c c (γ) Πόση πρέπει να είναι τουλάχιστον η επιφάνεια των φτερών S L ώστε το αεροπλάνο να απονηωθεί στο τέλος του διαδρόμου; (δ) Εστω ότι αγνοούμε την δύναμη αντίστασης αέρα. (δ ) Βρείτε μέσω θεωρήματος μεταβολής κινητικής ενέργειας την ταχύτητα συναρτήσει της θέσης. (δ ) Συμφωνεί το αποτέλεσμα με το όριο του αποτελέσματος του ερωτήματος (β) για C ; (δ 3 ) (Προαιρετικά:) Ποια είναι η θέση συναρτήσει του χρόνου; Σε πόσο χρόνο το αεροπλάνο φτάνει στο τέλος του διαδρόμου; Μπορείτε να απαντήσετε ολοκληρώνοντας την ẋ = (), αλλά μάλλον είναι ευκολότερο να λύσετε την διαφορική ẍ = ΣF, η οποία γράφεται ẍ + c 3 = c και έχει γενική λύση (για θετικό c 3 ) = c + sin ( c 3 t) + cos ( c 3 t). c 3 (ε) Εστω = kg, g = 9.8 /s, F = 6 N, F e = 5 N, β =, ρ =. kg/ 3, C =.5, C L =., S =. (ε ) Πόσα g είναι η μέγιστη επιτάχυνση που βρήκατε στο ερώτημα (α); (ε ) Ποια η ταχύτητα στο τέλος του διαδρόμου; Τι σφάλμα θα κάναμε αν αγνοούσαμε τη δύναμη αντίστασης αέρα και τη δύναμη προώθησης από τους κινητήρες του αεροπλάνου; (ε 3 ) Πόσα τετραγωνικά μέτρα είναι η επιφάνεια S L που βρήκατε στο ερώτημα (γ);. Εστω κίνηση μάζας σε κατακόρυφο επίπεδο y μέσα σε ομογενή βαρύτητα g = gŷ, υπό την επίδραση αντίστασης ανάλογης του τετραγώνου της ταχύτητας, δηλ. Fa = λ, όπου = και ( λ σταθερά. Αν ϑ π, π ) είναι η γωνία μεταξύ και ˆ (δηλ. = cos ϑ, y = sin ϑ), δείξτε ότι οι συνιστώσες του νόμου Νεύτωνα δίνουν ϑ = g cos ϑ και = g sin ϑ λ. g Δείξτε επίσης ότι η ποσότητα cos ϑ + λ sin ϑ + sin ϑ + λ ln είναι σταθερή. cos ϑ cos ϑ
4
5 Εργασία #3 (Λύσεις). (α) Μελετούμε την οριζόντια κίνηση του αεροπλάνου πριν αυτό απογειωθεί, συνεπώς δεν υπάρχει κίνηση κατά τον κατακόρυφο άξονα y. Από το Β' νόμο του Νεύτωνα κατά τον οριζόντια άξονα έχω: Fˆ ˆ ˆ ˆ a F Fe CS a a F Fe CS Η ποσότητα F γίνεται μέγιστη για, ενώ επίσης η ποσότητα C S γίνεται μέγιστη για και C S ). (διότι Επομένως η επιτάχυνση του αεροπλάνου είναι μέγιστη για και ίση με: F F aa a F Fe CS (β) Από την έκφραση της επιτάχυνσης συναρτήσει της ταχύτητας και της θέσης έπεται: e d d F Fe CS F Fe CS dt dt d d d F Fe CS F Fe CS d dt d d CS F Fe d Η διαφορική εξίσωση είναι μη-ομογενής γραμμική ης τάξης. Για τη λύση της αντίστοιχης ομογενούς θεωρώ μία λύση της μορφής e και έχω: c
6 C S ce CSe c CSc c c Επίσης, θεωρώντας μία μερική λύση της μορφής c c, έχω: c CSc cf Fe F CSc c CSc F Fe F F CSc c CS F c C CSc F F e Sc F F e CS F c CS F c F Fe C S C S Από τα παραπάνω συμπεραίνω ότι η γενική λύση της έχει την ακόλουθη μορφή: CS F F e F Fe CS CS CS όπου σταθερά. Καθώς Δηλαδή τελικά: F έπεται ότι F Fe C S C S CS F F F F Fe e F Fe CS CS CS. CS F F F Fe e CS CS
7 (γ) Στο τέλος του διαδρόμου πρέπει η δύναμη ανύψωσης να είναι τουλάχιστον όσο το βάρος του αεροπλάνου, ώστε αυτό να απογειωθεί. Δηλαδή: g Fy CLSL g SL CL g SL CS F F CL F Fe e CS CS S gc S L CS F CLF Fe e F CS (δ) Από το θεώρημα μεταβολής της κινητικής ενέργειας έχω: u E(.) E(.) W F Fdu F Fe du F F udu F F u u du F d F e e du F F Fe F Fe (δ) Από το αποτέλεσμα του (β) ερωτήματος έχω: CS F F F F Fe e F Fe CS CS CS CS F F F Fe e CS CS
8 CS CSF FeF e FC S C S Επομένως: li C S li CS CSF FeF e FC S li C S CS CS CSF FeF e FC S C S kc S k kf Fe F e Fk li k k (κανόνας e l' Hopital) k k F Fe e kf FeF e F li k k (κανόνας e l' Hopital) k k k F Fe e F Fe e kf Fe F e li k k k li F Fe e k F Fe F e k F F F Fe F F Fe F Fe F Δηλαδή li li li F Fe F Fe C C C, το οποίο είναι σύμφωνο με το αποτέλεσμα στο ερώτημα (δ).
9 (δ3) Αγνοώντας τη δύναμη αντίστασης του αέρα, ο Β' νόμος του Νεύτωνα κατά τον οριζόντια άξονα ˆ εκφράζεται ως: F F a F Fe a F Fe Η διαφορική εξίσωση είναι μη-ομογενής γραμμική ης τάξης. Για τη λύση της αντίστοιχης ομογενούς θεωρώ δύο γραμμικά ανεξάρτητες λύσεις της μορφής cosat και sinbt, οπότε έχω: A cosat F cosat A F A F B sinbt F sinbt B F B F Επίσης, παρατηρώ ότι μία μερική λύση της είναι η Από τα παραπάνω συμπεραίνω ότι η γενική λύση της F F e. F έχει την ακόλουθη μορφή (το πρόσημο των A και B απορροφάται στις σταθερές και αντίστοιχα): Καθώς t, t Δηλαδή τελικά: F F t cos tsin t F F F e έπεται ότι: F Fe F Fe F F F F F F F F F F F e e e t cos t t cos t F F F Για την εύρεση του χρόνου απογείωσης, στο τέλος του διαδρόμου είναι t, δηλαδή:
10 F F F F F cos cos F F Fe e F Fe F F e F e cos cos cos F Fe F Fe F F Fe (ε) (ε) 6 5 F Fe F Fe aa g g5.6g 4 g 9.8 CS F F F Fe e CS CS CS F F Fe e F CS CS e e s 3 3 Αγνοώντας τη δύναμη αντίστασης αέρα και τη δύναμη προώθησης από τους κινητήρες του αεροπλάνου, τότε από το ερώτημα (δ) για Fe λαμβάνω: F 6 F F s Το σφάλμα επομένως είναι %
11 (ε3) S gc S L CS F CLF Fe e F CS insl e.5. ins L. Από τις συνιστώσες του Β' νόμου του Νεύτωνα κατά τους δύο άξονες και y, έχω: d F a a a dt Fy ay gy ay gy ay dy g y dt 3 Όμως d dcos cos cos sin dt dt y sin dy d sin sin cos dt dt Επομένως το σύστημα 3 γίνεται: cos sin cos 4 sin cos g sin 5 Πολλαπλασιάζοντας τη σχέση 4 με cos και τη σχέση 5 με sin λαμβάνω: cos cossin cos 6 sin cossin gsin sin 7 Στη συνέχεια προσθέτω κατά μέλη τις σχέσεις 6, 7 για να λάβω: gsin
12 Αντικαθιστώντας τώρα την παραπάνω έκφραση του στη σχέση 5, προκύπτει: gsin sin cos g sin gsin sin cos g sin, cos gcos cos ggsin cos gcos d dt Σημειώνεται ότι για το σύστημα 3 γίνεται, το οποίο σημαίνει dy g dt πως η κίνηση θα συνεχιστεί στον άξονα y, το οποίο είναι άτοπο καθώς,. Άρα πράγματι. g sin sin Τέλος, θέτω A ln. Για να δείξω ότι η ποσότητα A cos cos cos da είναι σταθερή, αρκεί να δείξω ότι dt. Είναι λοιπόν: da d g sin sin ln dt dt cos cos cos 3 cos cossin cos sin cos g cos cos cos cos sin sin sin cos cos sin cos sin g cos cos sin cos sin sin cos cos sin sin sin g cos cos sin cos
13 da cos sin sin g 3 3 dt cos cos cos cos sin g 3 3 cos cos cos gcos gsin, cos sin g cos cos g gcos gcos gsin cos sin cos cos gsincos cos gcossin g g 3 3 cos cos g da g ο.ε.δ. cos cos dt
dv 2 dx v2 m z Β Ο Γ
Μηχανική Ι Εργασία #2 Χειμερινό εξάμηνο 218-219 Ν Βλαχάκης 1 Στην άσκηση 4 της εργασίας #1 αρχικά για t = είναι φ = και η ταχύτητα του σώματος είναι v με φορά κάθετη στο νήμα ώστε αυτό να τυλίγεται στον
Διαβάστε περισσότεραdx cos x = ln 1 + sin x 1 sin x.
Μηχανική Ι Εργασία #5 Χειμερινό εξάμηνο 17-18 Ν. Βλαχάκης 1. Εστω πεδίο δύναμης F = g () cos y ˆ + λ g() sin y ŷ, όπου λ = σταθερά και g() = 1 e π/ B C (σε κατάλληλες μονάδες). (α) Υπολογίστε πόση ενέργεια
Διαβάστε περισσότεραΣυμπλήρωμα 1 2 ος νόμος του Νεύτωνα σε 3 διαστάσεις
Συμπλήρωμα 1 ος νόμος του Νεύτωνα σε 3 διαστάσεις = iˆ+ j ˆ+ kˆ F = Fiˆ+ F ˆj+ Fkˆ ˆk F ος Νόμος του Νεύτωνα d = F î O ĵ ( ˆ) d iˆ+ j ˆ+ k = Fiˆ ˆ ˆ + F j+ Fk d d d iˆ+ ˆj+ kˆ= Fiˆ ˆ ˆ + F j+ Fk d ˆ d
Διαβάστε περισσότεραγ /ω=0.2 γ /ω=1 γ /ω= (ω /g) v. (ω 2 /g)(x-l 0 ) ωt. 2m.
Μηχανική Ι Εργασία #7 Χειμερινό εξάμηνο 015-016 Ν. Βλαχάκης 1. Σώμα μάζας m και φορτίου q κινείται σε κατακόρυφο άξονα x, δεμένο σε ελατήριο σταθεράς k = mω του οποίου το άλλο άκρο είναι σταθερό. Το σύστημα
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 4// ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ α) Για δεδομένη αρχική ταχύτητα υ, με ποια γωνία
Διαβάστε περισσότεραΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την
Διαβάστε περισσότεραF mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται
6-04-011 1. Όχημα μάζας m ξεκινά από την αρχή του άξονα x χωρίς αρχική ταχύτητα και κινείται στον άξονα x υπό την επίδραση της δυνάμεως t F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται επίσης αντίσταση
Διαβάστε περισσότεραα. y = y x 2 β. x + 5x = e x γ. xy (xy + y) = 2y 2 δ. y (4) + xy + e x = 0 η. x 2 (y ) 4 + xy + y 5 = 0 θ. y + ln y + x 2 y 3 = 0 d 3 y dy + 5y
Ασκήσεις στα Μαθηματικά ΙΙΙ Τμήμα Χημ. Μηχανικών ΑΠΘ Μουτάφη Ευαγγελία Θεσσαλονίκη 2018-2019 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΙΣΑΓΩΓΗ 1. Στις παρακάτω Δ.Ε. να προσδιορίσετε: α) την ανεξάρτητη και την εξαρτημένη
Διαβάστε περισσότερα3 + O. 1 + r r 0. 0r 3 cos 2 θ 1. r r0 M 0 R 4
Μηχανική Ι Εργασία #7 Χειμερινό εξάμηνο 8-9 Ν. Βλαχάκης. (α) Ποια είναι η ένταση και το δυναμικό του βαρυτικού πεδίου που δημιουργεί μια ομογενής σφαίρα πυκνότητας ρ και ακτίνας σε όλο το χώρο; Σχεδιάστε
Διαβάστε περισσότεραΕισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο Τμήμα ΘΕΜΑ 1. x x. x x x ( ) + ( 20) + ( + 4) = ( + ) + ( 10 + ) + ( )
Ονοματεπώνυμο Τμήμα ο Ερώτημα Να υπολογιστούν τα αόριστα ολοκληρώματα α) ( + + ) e d β) + ( + 4)( 5) 5 89 ΘΕΜΑ d Απάντηση α) θέτω u = + +και υ = e, επομένως dυ = e και du = ( + ) d. ( + + ) e d= u dυ =
Διαβάστε περισσότερα2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης
Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Βιβλιογραφία C Kittel, W D Knight, A Rudeman, A C Helmholz και B J oye, Μηχανική (Πανεπιστηµιακές Εκδόσεις ΕΜΠ, 1998) Κεφ, 3 R Spiegel, Θεωρητική
Διαβάστε περισσότεραΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ 2 ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας 2 Kg με αρχική ταχύτητα υ 0 8i κινείται με σταθερή επιτάχυνση
Διαβάστε περισσότεραΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α
ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 0 ΘΕΜΑΤΑ Α Θέµα ο. Να βρεθεί (α) η γενική λύση yy() της διαφορικής εξίσωσης y' y + καθώς και (β) η µερική λύση που διέρχεται από το σηµείο y(/). (γ) Από ποια σηµεία του επιπέδου
Διαβάστε περισσότεραΛύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους
ΜΑΘΗΜΑΤΙΚΑ, 6-7 ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΠΙΚ. ΚΑΘ. ΣΤΑΥΡΟΣ ΤΟΥΜΠΗΣ Λύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους 6-7. Περιοδικές Συναρτήσεις) Έστω συνεχής συνάρτηση f : R R περιοδική
Διαβάστε περισσότεραΑσκήσεις 6 ου Κεφαλαίου
Ασκήσεις 6 ου Κεφαλαίου 1. Μία ράβδος ΟΑ έχει μήκος l και περιστρέφεται γύρω από τον κατακόρυφο άξονα Οz, που είναι κάθετος στο άκρο της Ο με σταθερή γωνιακή ταχύτητα ω. Να βρεθεί r η επαγώμενη ΗΕΔ στη
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 4// ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ α) Για δεδομένη αρχική ταχύτητα υ, με ποια γωνία
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Διδάσκων: Ι. Λυχναρόπουλος
/8/5 Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Διδάσκων: Ι. Λυχναρόπουλος Άσκηση (Μονάδες.5) Υπολογίστε το διπλό ολοκλήρωμα / I y dyd συντεταγμένες. Επίσης σχεδιάστε το χωρίο ολοκλήρωσης. Λύση: Το
Διαβάστε περισσότεραReynolds. du 1 ξ2 sin 2 u. (2n)!! ( (http://www.natgeotv.com/uk/street-genius/ videos/bulletproof-balloons) n=0
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ. Τσίγκανου & Ν. Βλαχάκη, Μαΐου 7 Διάρκεια εξέτασης 3 ώρες, Καλή επιτυχία ( = bonus ερωτήματα) Ονοματεπώνυμο:,
Διαβάστε περισσότερα) z ) r 3. sin cos θ,
Μηχανική Ι Εργασία #5 Χειμερινό εξάμηνο 4-5 Ν. Βλαχάκης. Σώμα μάζας m κινείται στο πεδίο δύναμης της πρώτης άσκησης της τέταρτης εργασίας με λ, αλλά επιπλέον είναι υποχρεωμένο να κινείται μόνο στην ευθεία
Διαβάστε περισσότεραΠεριεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14
Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες
Διαβάστε περισσότεραΠροτεινόμενο διαγώνισμα Φυσικής Α Λυκείου
Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Θέμα 1 ο Σε κάθε μια από τις παρακάτω προτάσεις 1-5 να επιλέξετε τη μια σωστή απάντηση: 1. Όταν ένα σώμα ισορροπεί τότε: i. Ο ρυθμός μεταβολής της ταχύτητάς του
Διαβάστε περισσότεραΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ
7 η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Α ΦΑΣΗ) ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 7 η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 16 Δεκεμβρίου, 01 Προτεινόμενες Λύσεις Πρόβλημα-1 (15 μονάδες) Μια
Διαβάστε περισσότεραΟΡΙΖΟΝΤΙΑ ΒΟΛΗ. Φυσική Θετικού Προσανατολισμου Β' Λυκείου
ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ Εισαγωγή Πότε έχω οριζόντια βολή; Όταν από κάποιο μικρό ύψος (Η) εκτοξεύουμε με οριζόντια ταχύτητα (υ 0 ) ένα σώμα. Πρόκειται για μια μη ευθύγραμμη κίνηση, και ο πρώτος που είχε κάποια ιδέα
Διαβάστε περισσότεραΚεφάλαιο 11 ΣΥΝΤΗΡΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Επανεξέταση του αρμονικού ταλαντωτή
Κεφάλαιο 11 ΣΥΝΤΗΡΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Μία ειδική κατηγορία διδιάστατων δυναμικών συστημάτων είναι τα λεγόμενα συντηρητικά συστήματα. Ο όρος προέρχεται από την μηχανική, όπου για υλικό σημείο που δέχεται δύναμη
Διαβάστε περισσότεραΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)
ΜΑΣ00: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Να κατατάξετε τις διαφορικές εξισώσεις, δηλ να δώσετε την τάξη της, να πείτε αν είναι γραμμική ή όχι, να δώσετε την ανεξάρτητη μεταβλητή
Διαβάστε περισσότεραx y και να γίνει επαλήθευση. Βρείτε τη µερική λύση που για x=1 έχει κλίση 45 ο. Α τρόπος Η Ε γράφεται (1)
Βουγιατζής Γ Παπαδόπουλος. Ε, Ιανουάριος 3 ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΞΕΤ. ΠΕΡΙΟ ΟΣ ΙΑΝΟΥΑΡΙΟΥ 3 Θέµα. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης ' = + και να γίνει επαλήθευση. Βρείτε τη µερική λύση που
Διαβάστε περισσότεραΤμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα ΦΥΣ102 1 Δύναμη είναι: Η αιτία που προκαλεί μεταβολή
Διαβάστε περισσότεραΦυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Στους αγώνες drag, ο οδηγός θέλει να επιτύχει όσο γίνεται μεγαλύτερη επιτάχυνση. Σε απόσταση περίπου μισού χιλιομέτρου, το όχημα αναπτύσσει ταχύτητες κοντά στα 515
Διαβάστε περισσότερα1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1.
1. Κινηµατική Βιβλιογραφία C. Kittel W. D. Knight M. A. Rueman A. C. Helmholz και B. J. Moe Μηχανική. Πανεπιστηµιακές Εκδόσεις Ε.Μ.Π. 1998. Κεφ.. {Μαθηµατικό Συµπλήρωµα Μ1 Παράγωγος} {Μαθηµατικό Συµπλήρωµα
Διαβάστε περισσότεραΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2013
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 0 ΘΕΜΑ α) Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα x Ox για την απωστική δύναµη F x, > 0 και για ενέργεια Ε. β) Υλικό σηµείο µάζας m µπορεί να κινείται
Διαβάστε περισσότεραL 2 z. 2mR 2 sin 2 mgr cos θ. 0 π/3 π/2 π L z =0.1 L z = L z =3/ 8 L z = 3-1. V eff (θ) =L z. 2 θ)-cosθ. 2 /(2sin.
Μηχανική Ι Εργασία #5 Χειμερινό εξάμηνο 15-16 Ν. Βλαχάκης 1. Σημειακό σώμα μάζας m είναι δεμένο σε αβαρές και μη εκτατό νήμα ακτίνας R και κινείται κάτω από την επίδραση του βάρους του mgẑ και της τάσης
Διαβάστε περισσότεραΕπιμέλεια : Γαβριήλ Κωνσταντίνος Καθηγητής Φυσικής
ΖΗΤΗΜΑ Ο Ερωτήσεις ΣΩΣΤΟΥ ΛΑΘΟΥΣ Σωστές διατυπώσεις Η ταχύτητα εκφράζει το ρυθμό μεταβολής της θέσης του κινητού Ο ρυθμός μεταβολής της θέσης ( ταχύτητα ) του κινητού στην Ε.Ο.. είναι σταθερός Η επιτάχυνση
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΘΕΩΡΙΑ
ΚΕΦΑΛΑΙΟ o ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΘΕΩΡΙΑ.) Τ ι γνωρίζετε για την αρχή της ανεξαρτησίας των κινήσεων; Σε πολλές περιπτώσεις ένα σώμα εκτελεί σύνθετη κίνηση, δηλαδή συμμετέχει σε περισσότερες από μία κινήσεις. Για
Διαβάστε περισσότεραΚεφάλαιο 6β. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα
Κεφάλαιο 6β Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Ροπή Ροπή ( ) είναι η τάση που έχει μια δύναμη να περιστρέψει ένα σώμα γύρω από κάποιον άξονα. d είναι η κάθετη απόσταση του άξονα περιστροφής
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0.
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α Άσκηση Θεωρούμε τον παρακάτω ισχυρισμό: «Αν η συνάρτηση την» ορίζεται στο τότε δεν μπορεί να έχει κατακόρυφη ασύμπτωτη ) Να χαρακτηρίσετε τον παραπάνω ισχυρισμό γράφοντας
Διαβάστε περισσότεραΦΥΣΙΚΗ. Α Λυκείου 14/ 04 / 2019 ΘΕΜΑ Α.
Α Λυκείου 4/ 4 / 9 ΦΥΣΙΚΗ ΘΕΜΑ Α. Α. γ, Α. β, Α3. γ, Α4. α Α5. α) Σ, β) Σ, γ) Λ, δ) Λ, ε) Λ ΘΕΜΑ Β Β. Σωστή απάντηση είναι η (β). Εφαρμόζοντας το ο νόμο του Νεύτωνα υπολογίζουμε την επιτάχυνση του συστήματος
Διαβάστε περισσότερα(http://www.redbullstratos.com). Barbero 2013, European Journal of Physics, 34, df (z) dz
Ονοματεπώνυμο: Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ. Τσίγκανου & Ν. Βλαχάκη, 7 Φεβρουαρίου 5 Διάρκεια εξέτασης ώρες, Καλή επιτυχία, ΑΜ: Να ληφθεί
Διαβάστε περισσότεραΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος 2012
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος ΘΕΜΑ α) Υλικό σημείο μάζας κινείται στον άξονα Ο υπό την επίδραση του δυναμικού V=V() Αν για t=t βρίσκεται στη θέση = με ενέργεια Ε δείξτε ότι η κίνησή του δίνεται από
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2019
ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 9 ΘΕΜΑ Α Α α Σχολικό σελ 5 β i Σχολικό σελ 35 ii Σχολικό σελ 36 Α Σχολικό σελ
Διαβάστε περισσότεραΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 08 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ε Ν Δ Ε Ι Κ Τ Ι Κ Ε Σ Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν ΘΕΜΑ Α Α. Θεώρημα σχολικό βιβλίο
Διαβάστε περισσότεραΜηχανική του στερεού σώματος
Κεφάλαιο 1 Μηχανική του στερεού σώματος 1.1 Εισαγωγή 1. Το θεώρημα του Chales Η γενική κίνηση του στερεού σώματος μπορεί να μελετηθεί με τη βοήθεια του παρακάτω θεωρήματος το οποίο δίνουμε χωρίς απόδειξη
Διαβάστε περισσότεραΦΥΣΙΚΗ (ΠΟΜ 114) ΛΥΣΕΙΣ ΓΙΑ ΤΗΝ ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ 2015
ΦΥΣΙΚΗ (ΠΟΜ 114) ΛΥΣΕΙΣ ΓΙΑ ΤΗΝ ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ 15 Ct 1. Η επιτάχυνση ενός σώματος που κινείται σε ευθεία γραμμή είναι a At Be, όπου Α, B, C είναι θετικές ποσότητες. Η αρχική ταχύτητα του σώματος είναι
Διαβάστε περισσότεραΓραμμική Διαφορική Εξίσωση 2 ου βαθμού
//04 Γραμμική Διαφορική Εξίσωση ου βαθμού, με τη βοήθεια του αορίστου ολοκληρώματος, της χρήσιμης γραμμικής διαφορικής εξίσωσης πρώτου βαθμού af ( ) f ( ) cf ( ) g( ), ac,, σταθεροί πραγματικοί αριθμοί
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής. εύτερη Σειρά Ασκήσεων - Λύσεις.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής εύτερη Σειρά Ασκήσεων - Λύσεις Ασκηση 1. Από το ύψος και τη γωνία που µας δίνεται, έχουµε
Διαβάστε περισσότεραΔιαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση;
Κεφάλαιο 1 Διαφορικός Λογισμός 1.1 Συναρτήσεις Κατανόηση εννοιών - Θεωρία 1. Τι ονομάζουμε συνάρτηση; 2. Πως ορίζονται οι πράξεις της πρόσθεσης, της διαφοράς, του γινομένου και του πηλίκου μεταξύ δύο συναρτήσεων;
Διαβάστε περισσότεραΈντυπο Yποβολής Αξιολόγησης ΓΕ
Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος
Διαβάστε περισσότεραΦυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να ιδωθεί
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΟΣ 2002 ΣΤΗ ΜΝΗΜΗ ΒΑΣΙΛΗ ΞΑΝΘΟΠΟΥΛΟΥ
ΔΙΑΓΩΝΙΣΜΟΣ 2002 ΣΤΗ ΜΝΗΜΗ ΒΑΣΙΛΗ ΞΑΝΘΟΠΟΥΛΟΥ ΦΥΣΙΚΗ 2002 A ΛΥΚΕΙΟΥ Ένα αεροπλάνο πετάει οριζόντια σε ύψος h = 2000 m πάνω από την επιφάνεια της Γης με σταθερή ταχύτητα 720 km / h και αφήνει μια βόμβα
Διαβάστε περισσότεραΤμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 04 Εφαρμογές Νόμων του Νεύτωνα ΦΥΣ102 1 Ισορροπία υλικού σημείου και Δεύτερος νομός
Διαβάστε περισσότεραminimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014
minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/014 minimath.eu Περιεχόμενα Κινηση 3 Ευθύγραμμη ομαλή κίνηση 4 Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση 5 Δυναμικη 7 Οι νόμοι του Νεύτωνα 7 Τριβή 8 Ομαλη κυκλικη
Διαβάστε περισσότεραιαγώνισµα Α Τάξης Ενιαίου Λυκείου Τετάρτη 8 Απρίλη 2015 υναµική - Ενέργεια Ενδεικτικές Λύσεις Θέµα Α
ιαγώνισµα Α Τάξης Ενιαίου Λυκείου Τετάρτη 8 Απρίλη 2015 υναµική - Ενέργεια Ενδεικτικές Λύσεις Θέµα Α Α.1. Ενα σώµα επιταχύνεται οµαλά όταν η συνισταµένη δύναµη που ασκείται πάνω του : (ϐ) είναι σταθερή
Διαβάστε περισσότεραΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ
7 η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Α ΦΑΣΗ) ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 7 η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 16 Δεκεμβρίου, 01 Απενεργοποιήστε τα κινητά σας τηλέφωνα!!! Παρακαλώ
Διαβάστε περισσότερα1. Μετάπτωση Larmor (γενικά)
. Μετάπτωση Larmor (γενικά) Τι είναι η μετάπτωση; Μετάπτωση είναι η αλλαγή της διεύθυνσης του άξονα περιστροφής ενός περιστρεφόμενου αντικειμένου. Αν ο άξονας περιστροφής ενός αντικειμένου περιστρέφεται
Διαβάστε περισσότεραΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 5/5/6 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α Τι ορίζουμε ως εφαπτομένη (όχι κατακόρυφη) της γραφικής παράστασης C f
Διαβάστε περισσότεραW = 6.34 kn (2) F = u 2 f = u2 i + 2a(x f x i ) a = u2 f u2 i 2x f. F = d U(x) (5)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-2: Φυσική Ι Χειµερινό Εξάµηνο 208 ιδάσκων : Γ. Καφεντζής Λύσεις 3ου Φροντιστηρίων Ασκηση. Επιλέγουµε ως σύστηµα τη σφάιρα. Το σύστηµα είναι µη αποµονωµένο.
Διαβάστε περισσότεραmax 0 Eκφράστε την διαφορά των δύο θετικών λύσεων ώς πολλαπλάσιο του ω 0, B . Αναλύοντας το Β σε σειρά άπειρων όρων ώς προς γ/ω 0 ( σειρά
. Να αποδείξετε ότι σε ένα ταλαντούμενο σύστημα ενός βαθμού ελευθερίας, μάζας και σταθεράς ελατηρίου s με πολύ ασθενή απόσβεση (γω, όπου γ r/, r η σταθερά αντίστασης και s/ ) το πλήρες εύρος στο μισό του
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2008
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 8 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 8 ΕΠΙΚΑΙΡΟΠΟΙΗΜΕΝΗ ΣΤΟ ΠΛΑΙΣΙΟ ΤΗΣ ΝΕΑΣ ΥΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ
Διαβάστε περισσότεραΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση.
ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση. Η δύναμη είναι ένα διανυσματικό μέγεθος. Όταν κατά την κίνηση ενός σώματος η δύναμη είναι μηδενική
Διαβάστε περισσότεραGMR L = m. dx a + bx + cx. arcsin 2cx b b2 4ac. r 3. cos φ = eg. 2 = 1 c
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ. Τσίγκανου & Ν. Βλαχάκη, 9 Μαΐου 01 Διάρκεια εξέτασης 3 ώρες, Καλή επιτυχία bonus ερωτήματα Ονοματεπώνυμο:,
Διαβάστε περισσότεραΚεφάλαιο 8. Ορμή, ώθηση, κρούσεις
Κεφάλαιο 8 Ορμή, ώθηση, κρούσεις Στόχοι 8 ου Κεφαλαίου Ορμή και ώθηση. Διατήρηση της ορμής. Μη ελαστικές κρούσεις. Ελαστικές κρούσεις. Κέντρο μάζας. Η μεταβολή της ορμής ενός σωματίου κατά τη διάρκεια
Διαβάστε περισσότεραΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 6//0 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ Σωματίδιο μάζας m = Kg κινείται ευθύγραμμα και ομαλά στον
Διαβάστε περισσότεραΑσκήσεις Κλασικής Μηχανικής, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 19 Απριλίου 2013 Κεφάλαιο Ι 1. Να γραφεί το διάνυσμα της ταχύτητας και της επιτάχυνσης υλικού σημείου σε
Διαβάστε περισσότεραΕλληνική Μαθηματική Εταιρεία Παράρτημα Νομού Εύβοιας ΕΞΕΤΑΣΕΙΣ 2008 ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ
Ελληνική Μαθηματική Εταιρεία Παράρτημα Νομού Εύβοιας ΕΞΕΤΑΣΕΙΣ 8 ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ: ΘΕΜΑ ο : Α. Θεωρία, σχολικό βιβλίο σελίδα 5 Α. Θεωρία, σχολικό βιβλίο σελίδα 9 Β. α) Σ, β) Σ,
Διαβάστε περισσότεραΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αμπελόκηποι Αθήνα Τηλ.: , ,
ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Αμπελόκηποι Αθήνα Τηλ.: 0 69 97 985, 77 98 044, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ.: 0 69 97 985, e-mail: edlag@otenet.gr, www.edlag.gr ΣΜΑΡΑΓΔΑ ΣΑΡΑΝΤΟΠΟΥΛΟΥ, MSC,
Διαβάστε περισσότεραΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 19//013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 υ (m/s) Σώμα μάζας m = 1Kg κινείται σε ευθύγραμμη τροχιά
Διαβάστε περισσότεραΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/10/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/1/1 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σε σώμα μάζας m = 1Kg ασκείται η δύναμη F
Διαβάστε περισσότεραΟΙ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. Θέμα Α ΘΕΜΑ Β
ΟΙ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Α. Θεώρημα Ενδιάμεσων τιμών σελίδα 94 Α. Ορισμός σελίδα 88 Α3. Ορισμός σελίδα 59 Θέμα Α Α4. α) Λάθος β) Σωστό γ) Λάθος δ) Σωστό ε) Σωστό B. Έστω z + yi. Τότε ΘΕΜΑ
Διαβάστε περισσότερα1 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέτασης
1 Η ΠΡΟΟΔΟΣ Ενδεικτικές λύσεις κάποιων προβλημάτων Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέτασης Ο Ένα υλικό σημείο κινείται επάνω σε μια ευθεία έτσι ώστε η απομάκρυνση του να δίνεται
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Ιούνιος 2004
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Ιούνιος 2004 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε στα 4 θέματα με σαφήνεια συντομία. Η πλήρης απάντηση θέματος εκτιμάται ιδιαίτερα. Καλή
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 019 Κινηματική ΑΣΚΗΣΗ Κ.1 Η επιτάχυνση ενός σώματος που κινείται ευθύγραμμα δίνεται από τη σχέση a = (4 t ) m s. Υπολογίστε την ταχύτητα και το διάστημα που διανύει το σώμα
Διαβάστε περισσότεραGI_V_FYSP_4_ m/s, ξεκινώντας από το σημείο Κ. Στο σημείο Λ (αντιδιαμετρικό του Κ) βρίσκεται ακίνητο σώμα Σ 2 μάζας m2 1 kg.
Μια ράβδος μήκους R m και αμελητέας μάζας βρίσκεται πάνω σε λείο οριζόντιο επίπεδο και μπορεί να περιστρέφεται γύρω από το σημείο Ο. Στο άλλο άκρο της είναι στερεωμένο σώμα Σ, μάζας m kg το οποίο εκτελεί
Διαβάστε περισσότεραΜαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων.
Άσκηση Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων Μέρος ο i. Δίνεται η γνησίως μονότονη συνάρτηση f : A IR. Να αποδείξετε
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΗΥ- : ΦΥΣΙΚΗ Ι ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 07 ΔΙΔΑΣΚΩΝ : Γ. ΚΑΦΕΤΖΗΣ Δεύτερη Σειρά Ασκήσεων Λύσεις Άσκηση Θεωρούμε ότι το χρηματοκιβώτιο κινείται μόνο στον άξονα χ.
Διαβάστε περισσότεραΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ (Equations of Motion)
ΚΕΦΑΛΑΙΟ 4 ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ (Equations of Motion) Με τις Εξισώσεις Κίνησης αναλύουμε την απόκριση ενός ρευστού υπό την επίδραση εσωτερικών και εξωτερικών δυνάμεων. Οι εξισώσεις αυτές προκύπτουν από τη
Διαβάστε περισσότεραΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 :
ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Συμπαγής κύλινδρος μάζας Μ συνδεδεμένος σε ελατήριο σταθεράς k = 3. N / και αμελητέας μάζας, κυλίεται, χωρίς να
Διαβάστε περισσότεραΣυνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/2017. Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης. dy dx = 2y + x 2 y 2 2x
Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/017 Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης dx y + x y. x Παρατηρούμε ότι η δ.ε. είναι ομογενής. Πράγματι, dx y x + 1 x y x y x + 1 (
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 25/9/2017 Διδάσκων: Ι. Λυχναρόπουλος
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 5/9/07 Διδάσκων: Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) Να δειχθεί ότι το πεδίο F( x, y) = y cos x + y,sin x
Διαβάστε περισσότεραΜαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων
Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων Άσκηση i. Δίνεται η γνησίως μονότονη συνάρτηση f : A IR. Να αποδείξετε ότι
Διαβάστε περισσότεραE = 1 2 k. V (x) = Kx e αx, dv dx = K (1 αx) e αx, dv dx = 0 (1 αx) = 0 x = 1 α,
Μαθηματική Μοντελοποίηση Ι 1. Φυλλάδιο ασκήσεων Ι - Λύσεις ορισμένων ασκήσεων 1.1. Άσκηση. Ενα σωμάτιο μάζας m βρίσκεται σε παραβολικό δυναμικό V (x) = 1/2x 2. Γράψτε την θέση του σαν συνάρτηση του χρόνου,
Διαβάστε περισσότερα4. Σειρές Τέηλορ και Μακλώριν
Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής Σειρές Τέηλορ και Μακλώριν Το θεώρηµα του Τέηλορ Το θεώρηµα του Τέηλορ (Tayl) µάς δίνει τη δυνατότητα να αναπτύσσουµε συναρτήσεις
Διαβάστε περισσότεραΦ Υ Σ Ι Κ Η Ι Σ Ε Μ Φ Ε. Α Σ Κ Η Σ Ε Ι Σ. Α. Κινηµατική
Φ Υ Σ Ι Κ Η Ι Σ Ε Μ Φ Ε Α Σ Κ Η Σ Ε Ι Σ Α Κινηµατική Α Η θέση ενός σηµείου πάνω στον άξονα των δίνεται, ως συνάρτηση του χρόνου t, από τη σχέση: ( = 4 + t sin5t (σε m όταν ο χρόνος είναι σε s) Να βρεθεί
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α Ερώτηση θεωρίας Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c είναι μια πραγματική σταθερά, να δείξετε ότι: ( c f( )) = c f ( ),. Έστω F( )
Διαβάστε περισσότεραmv V (x) = E με V (x) = mb3 ω 2
Ονοματεπώνυμο: Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ Τσίγκανου & Ν Βλαχάκη, 6 Σεπτεμβρίου 6 Διάρκεια εξέτασης ώρες, Καλή επιτυχία ( = bonus ερωτήματα),
Διαβάστε περισσότεραΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ. Τμήμα Φαρμακευτικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λυμένες Ασκήσεις & Λυμένα Θέματα Εξετάσεων
ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Τμήμα Φαρμακευτικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Λυμένες Ασκήσεις & Λυμένα Θέματα Εξετάσεων ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 014 ΘΕΜΑ 1 Δίνεται ο πίνακας: 1) Να
Διαβάστε περισσότεραΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας
ΚΕΦΑΛΑΙΑ,4. Συστήµατα ενός Βαθµού ελευθερίας. Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα ' O για την απωστική δύναµη F, > και για ενέργεια Ε. (α) Είναι V και οι επιτρεπτές περιοχές της κίνησης
Διαβάστε περισσότεραΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 5/5/6 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α. Τι ορίζουμε ως εφαπτομένη (όχι κατακόρυφη) της γραφικής παράστασης C
Διαβάστε περισσότερα2 ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ 8 ΟΡΙΣΜΟΣ, 9 Πότε μια συνάρτηση λέγεται παραγωγίσιμη σε ένα σημείο του πεδίου ορισμού της ; Απάντηση : Μια συνάρτηση λέμε ότι είναι παραγωγίσιμη σ ένα σημείο
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Διανυσματικά Πεδία Επικαμπύλια Ολοκληρώματα Επιμέλεια: Ι. Λυχναρόπουλος
Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Διανυσματικά Πεδία Επικαμπύλια Ολοκληρώματα Επιμέλεια: Ι. Λυχναρόπουλος. Να υπολογιστεί το ολοκλήρωμα I = x ds, όπου c το δεξιό ημικύκλιο x + = 6 α) κινούνοι
Διαβάστε περισσότεραΤο νήμα δεν ολισθαίνει στο αυλάκι της τροχαλίας και είναι συνεχώς τεντωμένο. Η αντίσταση του αέρα θεωρείται αμελητέα.
Ένα γιο γιο σε ταλάντωση Ομογενής κύλινδρος Σ, (γιο γιο) ισορροπεί έχοντας το νήμα τυλιγμένο γύρω της πολλές φορές. Η μία άκρη του νήματος είναι στερεωμένη στην οροφή Ο και η άλλη στο σώμα Σ, το οποίο
Διαβάστε περισσότεραP H Y S I C S S O L V E R ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Ι ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗΣ Ι. Σχολή Αγρονόμων & Τοπογράφων Μηχανικών ΕΞΕΤΑΣΤΙΚΕΣ ΠΕΡΙΟΔΟΙ
P H Y S I C S S O L V E R ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Ι ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗΣ Ι Σχολή Αγρονόμων & Τοπογράφων Μηχανικών (Σ.Α.Τ.Μ. ΕΜΠ) ΕΞΕΤΑΣΤΙΚΕΣ ΠΕΡΙΟΔΟΙ 00-0-0 ΘΕΜΑ Ο ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗΣ Ι Σχολή Αγρονόμων
Διαβάστε περισσότεραds 2 = 1 y 2 (dx2 + dy 2 ), y 0, < x < + (1) dx/(1 x 2 ) = 1 ln((1 + x)/(1 x)) για 1 < x < 1. l AB = dx/1 = 2 (2) (5) w 1/2 = ±κx + C (7)
ΒΑΡΥΤΗΤΑ ΚΑΙ ΚΟΣΜΟΛΟΓΙΑ Θ. Τομαράς 1. ΤΟ ΥΠΕΡΒΟΛΙΚΟ ΕΠΙΠΕΔΟ. Το υπερβολικό επίπεδο ορίζεται με τη μετρική ds = 1 y dx + dy ), y 0, < x < + 1) α) Να υπολογίσετε το μήκος της γραμμής της παράλληλης στον
Διαβάστε περισσότεραΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,
Διαβάστε περισσότεραΚεφάλαιο 4: Διαφορικός Λογισμός
ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...
Διαβάστε περισσότεραg x είναι συνάρτηση 1 1 στο Ag = R αλλά δεν είναι γνησίως
ΘΕΜΑ Α Α. Απόδειξη θεωρήματος σελ. 99 σχολικού βιβλίου. Α. α. Ψευδής β. Θεωρούμε τη συνάρτηση, 0 g, 0 η οποία έχει γραφική παράσταση (σχήμα σχολικού βιβλίου σελ.5): y O y=g() Η g είναι συνάρτηση στο Ag
Διαβάστε περισσότεραGMm. 1 2GM ) 2 + L2 2 + R L=4.5 L=4 L=3.7 L= 1 2 =3.46 L= V (r) = L 2 /2r 2 - L 2 /r 3-1/r
Ονοματεπώνυμο: Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ Τσίγκανου & Ν Βλαχάκη, Σεπτεμβρίου 05 Διάρκεια εξέτασης 3 ώρες, Καλή επιτυχία = bonus ερωτήματα),
Διαβάστε περισσότεραΦΥΣΙΚΗ. συστήματος των σωμάτων Α και Β, τα οποίο βρίσκονται διαρκώς σε επαφή. m m 2F. 2 3m
Α Λυκείου 4 / 4 / 9 ΦΥΣΙΚΗ ΘΕΜΑ Α. Α. γ, ΜΟΝ5 Α. β ΜΟΝ5, Α3.γ ΜΟΝ5, Α4.α ΜΟΝ5 Α5. α)σ ΜΟΝ,β) Σ ΜΟΝ, γ) Λ ΜΟΝ, δ)λ ΜΟΝ, ε) Λ ΜΟΝ ΘΕΜΑ Β Β. Σωστή απάντηση είναι η (β).μον. Εφαρμόζοντας το ο νόμο του Νεύτωνα
Διαβάστε περισσότεραΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ 2 ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m 0.25 Kg κινείται στο επίπεδο xy, με τις εξισώσεις κίνησης
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΥΝΔΥΑΣΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΠΤΥΧΙΟΥΧΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ (ΕΚΠΑ) ΔΙΑΔΙΚΤΥΑΚΟ
Διαβάστε περισσότεραΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ
ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ Άσκηση.
Διαβάστε περισσότεραΕΡΓΑΣΙΑ 3 η. (αποστολή µέχρι ευτέρα 1/4/ βδοµάδα)
ΕΡΓΑΣΙΑ η (αποστολή µέχρι ευτέρα /4/ + βδοµάδα) Άσκηση (5 µονάδες): Να βρεθεί η συνισταµένη των δυνάµεων που ενεργούν πάνω στο σώµα µάζας Kg, όπως φαίνεται στο σχήµα. Ποιό είναι το µέτρο και η διεύθυνσή
Διαβάστε περισσότερα