5 Θεωρήματα κυκλωμάτων 5.3 Θεωρήματα Thevenin και Norton

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "5 Θεωρήματα κυκλωμάτων 5.3 Θεωρήματα Thevenin και Norton"

Transcript

1 Έχουμε δει ότι η χρήση ισοδύνμων κυκλωμάτων σε πολλές περιπτώσεις πλοποιεί την νάλυση ενός κυκλώμτος: Αντιστάσεις συνδεδεμένες με ειδικό τρόπο (σειρά, πράλληλ, σε στέρ ή τρίγωνο) μπορούν ν ντικτστθούν πό ισοδύνμες συνδεσμολογίες. Πηγή τάσης σε σειρά με ντίστση ή πηγή ρεύμτος πράλληλ με ντίστση μπορεί ν ντικτστθεί πό ισοδύνμη συνδεσμολογί. Σε κάθε περίπτωση ντικτάστσης ενός μέρους του κυκλώμτος πό ισοδύνμο, τ ρεύμτ κι οι τάσεις πρμένουν μετάλητ στο υπόλοιπο κύκλωμ. Τ θεωρήμτ Thevenin κι Norton πρέχουν μι μεθοδολογί ντικτάστσης οποιουδήποτε γρμμικού κυκλώμτος με έν πλό ισοδύνμο.

2 Σύμφων με το θεώρημ Thevenin, ν έχουμε οποιοδήποτε γρμμικό κύκλωμ που κτλήγει σε δύο κροδέκτες, υτό είνι ισοδύνμο με μί πηγή τάσης σε σειρά με μί ντίστση, κτλλήλων τιμών. Γρμμικό Κύκλωμ Τι σημίνει ισοδύνμο; Σημίνει πως οτιδήποτε (γρμμικό ή όχι) συνδεθεί στους κροδέκτες κι δεν θ κτλάει τη διφορά. Δηλδή ότι τάσεις, ρεύμτ ή ισχύς υπάρχουν είνι τ ίδι, είτε έχουμε το κύκλωμ είτε το ισοδύνμο. V TH R TH

3 Έτσι, ν έχουμε έν κύκλωμ κι μς ενδιφέρει μι τάση ή έν ρεύμ σε έν μέρος του κυκλώμτος, το χωρίζουμε σε δύο υποκυκλώμτ με τέτοιο τρόπο που ν συνδέοντι με δύο γωγούς. Στη συνέχει ντικθιστούμε το μέρος του κυκλώμτος που δεν μς ενδιφέρει με το ισοδύνμό του. Προσοχή: Αν υπάρχουν εξρτημένες πηγές, υτές θ πρέπει ν πρμείνουν μζί με το μέγεθος που τις ελέγχει στο ίδιο υποκύκλωμ. V TH Κύκλωμ Α R TH Κύκλωμ Β Κύκλωμ Β

4 Ποι είνι όμως η τιμή της πηγής τάσης κι της ντίστσης; Η τιμή της πηγής τάσης ισούτι με την τάση νοικτού κυκλώμτος μετξύ των κροδεκτών κι. Η τιμή της ντίστσης ισούτι με την ντίστση που φίνετι πό τους κροδέκτες κι ν οι νεξάρτητες πηγές μηδενιστούν. Προσοχή: Τυχόν εξρτημένες πηγές μένουν πάντ ενεργές. Κύκλωμ Α Τροποποιημένο Κύκλωμ Α + V TH - R TH

5 Πηγή τάσης σε σειρά με ντίστση όμως ισοδυνμεί με πηγή ρεύμτος πράλληλ με ντίστση. Μπορούμε έτσι ν φτιάξουμε κι έν δεύτερο ισοδύνμο κύκλωμ. Αυτό είνι το ισοδύνμο Norton. Οι τιμές της πηγής ρεύμτος Norton, της πηγής τάσης Thevenin κι των ντιστάσεων συνδέοντι με μι σχέση που μοιάζει με το νόμο του Ωμ: V TH R TH Κύκλωμ Β I N R N Κύκλωμ Β Προσέξτε ότι η ντίστση Thevenin τυτίζετι με την ντίστση Norton.

6 Πως υπολογίζουμε την τιμή της πηγής ρεύμτος Norton κι της ντίστσης Norton; Η τιμή της πηγής ρεύμτος ισούτι με το ρεύμ που διρρέει έν (υποθετικό) ρχυκύκλωμ μετξύ των κροδεκτών κι. Η τιμή της ντίστσης ισούτι με την ντίστση που φίνετι πό τους κροδέκτες κι ν οι νεξάρτητες πηγές μηδενιστούν, κριώς όπως κι στο ισοδύνμο Thevenin. Κύκλωμ Α Τροποποιημένο Κύκλωμ Α I N R TH

7 Προσοχή στη φορά των ρευμάτων! Αν έχουμε ρει το έν ισοδύνμο κύκλωμ (Thevenin ή Norton) μπορούμε ν ρούμε το άλλο πό τις σχέσεις: Κύκλωμ Α I N Εάν το κύκλωμ περιέχει εξρτημένες πηγές είνι πιο πλός ο υπολογισμός της τάσης Thevenin κι του ρεύμτος Norton σε σχέση με τον υπολογισμό της ντίστσης. Η ντίστση τότε υπολογίζετι πό τη σχέση: I N R N Κύκλωμ Β

8 Κύκλωμ Β Έστω ότι έχουμε έν κύκλωμ στο οποίο μς ενδιφέρει μόνο τι συμίνει σε μί ντίστσή του. Θ μπορούσμε ν θέλουμε ν πντήσουμε στο ερώτημ γι ποι τιμή της ντίστσης υτής μεγιστοποιείτι η ισχύς που κτνλώνει. 10 V Κύκλωμ Α R 1 =10 Ω R 3 =5 Ω R L Η τάση Thevenin είνι η τάση νοικτού κυκλώμτος μετξύ των σημείων κι. Αφού η ντίστση R 3 δεν διρρέετι πό ρεύμ δεν έχει τάση στ άκρ της, άρ η τάση Thevenin ισούτι με την τάση στ άκρ της ντίστσης R 2, ήτοι 5 V. 10 V Κύκλωμ Α R 1 =10 Ω R 3 =5 Ω + V TH -

9 Κύκλωμ Β Γι ν υπολογίσουμε την ντίστση Thevenin ντικθιστούμε στο κύκλωμ Α την πηγή τάσης με ρχυκύκλωμ κι υπολογίζουμε την ντίστση που φίνετι πό τους κροδέκτες κι. Οι ντιστάσεις R 1 κι R 2 τώρ συνδέοντι πράλληλ κι η ισοδύνμή τους έχει τιμή ίση με 5 Ω. Η ντίστση υτή τώρ συνδέετι σε σειρά με την R 3, άρ η συνολική ντίστση που φίνετι πό τους κροδέκτες κι είνι 10 Ω. 10 V R 1 =10 Ω Κύκλωμ Α R 1 =10 Ω R 3 =5 Ω R 3 =5 Ω R TH R L Κύκλωμ Α

10 Πράδειγμ 5-7: Χρησιμοποιήστε το θεώρημ Thevenin γι ν υπολογίσετε το ρεύμ που διρρέει την ντίστση R 1. Αφιρούμε την ντίστση R 1 κι υπολογίζουμε την τάση νοικτού κυκλώμτος: 1 A i x R 1 =15 Ω 10 V 1 A + V TH 10 V -

11 Στη συνέχει μηδενίζουμε τις πηγές κι λέπουμε ότι η ντίστση που φίνετι πό τους κροδέκτες κι είνι 10 Ω: Στη συνέχει σχεδιάζουμε το ισοδύνμο κύκλωμ Thevenin κι τοποθετούμε σε υτό την ντίστση R 1. Το ζητούμενο ρεύμ είνι: R TH R TH =10 Ω V TH =20 V i x R 1 =15 Ω

12 Πράδειγμ 5-8: Χρησιμοποιήστε το θεώρημ Thevenin γι ν υπολογίσετε το ρεύμ που διρρέει την ντίστση R 2. Έχουμε το ίδιο κύκλωμ με υτό του προηγούμενου πρδείγμτος, λλά το ζητούμενο μέγεθος είνι διφορετικό. Το ισοδύνμο Thevenin τώρ είνι διφορετικό. Έν κύκλωμ έχει πολλά ισοδύνμ, κθόσον το ισοδύνμο Thevenin ή Norton δεν φορά το κύκλωμ μόνο, λλά κι τον τρόπο με τον οποίο θ το χωρίσουμε στο "κύκλωμ Α" κι το "κύκλωμ Β". 1 A i x R 1 =15 Ω 10 V

13 Το ρεύμ της πηγής ρεύμτος τώρ διρρέει την ντίστση R 1 κι νπτύσσει στ άκρ της τάση ίση με 15 V. Η τάση Thevenin είνι: 1 A + V TH - R 1 =15 Ω 10 V Η ντίστση Thevenin εύκολ φίνετι ότι είνι ίση με την τιμή της ντίστσης R 1, άρ R TH =15 Ω. R TH R 1 =15 Ω

14 Στη συνέχει σχεδιάζουμε το ισοδύνμο κύκλωμ Thevenin, τοποθετούμε στους κροδέκτες του κι την ντίστση R 2 κι υπολογίζουμε το ζητούμενο ρεύμ: V TH =5 V R TH =15 Ω i x

15 Δεν είμστε υποχρεωμένοι στο κύκλωμ Β ν συμπεριλάουμε μόνο έν στοιχείο. Αντί ν συμπεριλάουμε στο "κύκλωμ Β" μόνο την ντίστση R 2, μπορούμε ν συμπεριλάουμε το κύκλωμ που ποτελείτι πό την ντίστση R 2 μζί με την πηγή τάσης. Τώρ έχουμε άλλες τιμές γι την τάση κι την ντίστση Thevenin: Κύκλωμ Α Κύκλωμ B 1 A R 1 =15 Ω 10 V i x + 1 A R 1 =15 Ω V TH -

16 Στο ισοδύνμο κύκλωμ θ άλουμε το «κύκλωμ Β» που είχμε φιρέσει. Το ζητούμενο ρεύμ που διρρέει την ντίστση R 2 είνι: V TH =15 V R TH =15 Ω i x 10 V Θ πρέπει ν μελετάμε προσεκτικά έν κύκλωμ που μς δίνετι κι θέλουμε ν υπολογίσουμε κάποι πόκρισή του, διότι μπορούμε ν φτιάξουμε πολλά ισοδύνμ γι έν κύκλωμ κι συνήθως υπάρχει κάποιο ισοδύνμο που πλουστεύει πολύ τους υπολογισμούς μς.

17 Πράδειγμ 5-9: Χρησιμοποιήστε το θεώρημ Thevenin γι ν υπολογίσετε τ ρεύμτ Ι 1, Ι 2 κι Ι 3. Αφιρούμε την ντίστση R 1. Το ρεύμ της πηγής ρεύμτος 1 Α διέρχετι πό την πηγή τάσης, άρ Ι 2 =1 Α, κι στον κόμο Β θροίζετι με το ρεύμ της πηγής ρεύμτος 2 Α, με ποτέλεσμ η ντίστση R 2 ν διρρέετι πό ρεύμ ίσο με 3 Α. Άρ στ άκρ της νπτύσσετι τάση ίση με 30 V. Η τάση Thevenin είνι: 1 A 1 A I 1 I 5 V V 1 2 V A B R 1 =10 Ω Γ I 5 V V 1 2 V A B + V TH - I 3 I 3 2 A 2 A Γ

18 Η ντίστση Thevenin είνι ίση με την ντίστση R 2, άρ R TH =10 Ω. Το ρεύμ Ι 1 που ζητείτι προκύπτει πό το ισοδύνμο κύκλωμ Thevenin: V TH =35 V R TH =10 Ω I 1 R 1 =10 Ω Επνερχόμενοι στο ρχικό κύκλωμ κι χρησιμοποιώντς την τιμή που ρήκμε γι το Ι 1 θ προκύψει ότι το ρεύμ Ι 2 ισούτι με -0,75 Α κι ότι το ρεύμ Ι 3 ισούτι με 1,25 Α. 1 A I 1 R 1 =10 Ω I 5 V V 1 2 V A B I 3 2 A Γ

19 Μπορούμε όμως ν φτιάξουμε κι άλλ ισοδύνμ κυκλώμτ Thevenin. Αφιρούμε την ντίστση R 2. Η τάση Thevenin είνι: 1 A I 1 I 5 V V 1 2 V A B R 1 =10 Ω + V TH 2 A - Η ντίστση Thevenin είνι ίση με την ντίστση R 1, άρ R TH =10 Ω. Το ρεύμ Ι 3 προκύπτει πό το ισοδύνμο κύκλωμ Thevenin: V TH =25 V Γ R TH =10 Ω I 3

20 Αφιρώντς την πηγή τάσης πό το κύκλωμ μπορούμε ν φτιάξουμε έν κόμ ισοδύνμο Thevenin που εξυπηρετεί στον υπολογισμό του ρεύμτος I 2. Η τάση Thevenin τώρ είνι: 1 A I 1 V 1 V 2 A + V TH - B R 1 =10 Ω Γ I 3 2 A Η ντίστση Thevenin είνι το άθροισμ των δύο ντιστάσεων: I 1 V 1 V 2 R TH A B I 3 R 1 =10 Ω Γ

21 Στη συνέχει σχεδιάζουμε το ισοδύνμο κύκλωμ κι τοποθετούμε στους κροδέκτες του την πηγή τάσης που είχμε φιρέσει. Το ρεύμ που θέλουμε ν υπολογίσουμε είνι υτό που διρρέει την πηγή τάσης. Γράφουμε την εξίσωση που προκύπτει πό την εφρμογή του νόμου τάσεων του Kirchhoff στο μονδικό ρόχο: V TH =-10 V R TH =20 Ω I 2 5 V

22 Πράδειγμ 5-10: Χρησιμοποιήστε το θεώρημ Norton γι ν υπολογίσετε το ρεύμ που διρρέει την ντίστση R 3. Αφιρούμε την ντίστση R 3 κι στη θέση της άζουμε ρχυκύκλωμ. Από το νόμο τάσεων του Kirchhoff στο ρόχο που περιλμάνει την πηγή τάσης 20 V, την ντίστση R 1 κι το ρχυκύκλωμ προκύπτει ότι το ρεύμ που διρρέει την ντίστση R 1 είνι: 20 V I 1 R 1 =10 Ω I 2 A I 3 B R 3 =20 Ω 10 V

23 Με το ίδιο σκεπτικό υπολογίζουμε κι το ρεύμ Ι 2 : I 1 R 1 =10 Ω I 2 A I 3 Από το νόμο ρευμάτων τώρ του Kirchhoff στον κόμο ρίσκουμε το ρεύμ Norton: 20 V B R 3 =20 Ω 10 V I 1 R 1 =10 Ω I 2 A Η ντίστση Norton είνι: R N B

24 Σχεδιάζουμε το ισοδύνμο κύκλωμ Norton κι τοποθετούμε σε υτό την ντίστση R 3. Το ρεύμ που τη διρρέει προκύπτει εύκολ πό τη σχέση του διιρέτη ρεύμτος: I N =3 A R N =5 Ω I 3 R 3 =20 Ω

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλιο 5: Θεωρήμτ κυκλωμάτων Οι διφάνειες κολουθούν το ιλίο του Κων/νου Ππδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ: 50657177 5 Θεωρήμτ κυκλωμάτων

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλιο 12: Ανάλυση κυκλωμάτων ημιτονοειδούς διέγερσης Οι διφάνειες κολουθούν το ιλίο του Κων/νου Ππδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ:

Διαβάστε περισσότερα

Κεφάλαιο 2 ο. Γραμμικά Δικτυώματα

Κεφάλαιο 2 ο. Γραμμικά Δικτυώματα Κεφάλιο 2 ο Γρμμικά Δικτυώμτ Έν ηλεκτρικό κύκλωμ ή δικτύωμ ποτελείτι πό ένν ριθμό πλών κυκλωμτικών στοιχείων, όπως υτά που νφέρθηκν στο Κεφ.1, συνδεδεμένων μετξύ τους. Το κύκλωμ θ περιέχει τουλάχιστον

Διαβάστε περισσότερα

Προτεινόµενες Ασκήσεις στα Στοιχεία δύο Ακροδεκτών

Προτεινόµενες Ασκήσεις στα Στοιχεία δύο Ακροδεκτών Προτεινόµενες Ασκήσεις στ Στοιχεί δύο Ακροδεκτών πό το βιβλίο «Ανάλυση Ηλεκτρικών Κυκλωµάτων», Ν. Μάργρη Πρόβληµ. Σ' έν πηνίο µε υτεπγωγή =5H το ρεύµ έχει τη µορφή του Σχ.. Σχεδιάστε την τάση στ άκρ του

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ..7 Μέρος Β του σχολικού ιλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. Ν ρεθεί το εμδόν του χωρίου Ω που περικλείετι πό τη γρφική πράστση

Διαβάστε περισσότερα

ΓΕΦΥΡΕΣ ΜΕΤΡΗΣΗΣ ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ

ΓΕΦΥΡΕΣ ΜΕΤΡΗΣΗΣ ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΚΕΦΑΛΑΙΟ 8 ΓΕΦΥΡΕΣ ΜΕΤΡΗΣΗΣ.1 ΕΙΣΑΓΩΓΗ Στη µέτρηση της ωµικής λλά κι της σύνθετης ντίστσης µε υψηλή κρίβει χρησιµοποιούντι οι γέφυρες µέτρησης. Γι τη µέτρηση της ωµικής ντίστσης η πηγή τροφοδοσίς της γέφυρς

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι Κεφάλαιο 5. Θεωρήματα κυκλωμάτων. ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟΥ Θεώρημα επαλληλίας ή υπέρθεσης Θεωρήματα Thevenin και Norton

ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι Κεφάλαιο 5. Θεωρήματα κυκλωμάτων. ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟΥ Θεώρημα επαλληλίας ή υπέρθεσης Θεωρήματα Thevenin και Norton ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι Κεφάλαιο 5 Θεωρήματα κυκλωμάτων ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟΥ Θεώρημα επαλληλίας ή υπέρθεσης Θεωρήματα Thevenin και Norton Θεώρημα Επαλληλίας ή Υπέρθεσης (Superposition Theorem) Το θεώρημα της

Διαβάστε περισσότερα

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ Το ορισμένο ολοκλήρωμ ή ολοκλήρωμ Riema μις πργμτικής συνάρτησης f με διάστημ ολοκλήρωσης το πεπερσμένο διάστημ [, ], υπάρχει ότν: η f είνι συνεχής στο διάστημ υτό, κθώς

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5) θ) (5 + ) + 5 = (...).(...) ι) + (5 ) 5 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 5 0 (Μονάδες ) β) Ν λύσετε την εξίσωση 7 = (0 + ) (Μονάδες,5) Θέμ ο Ν πργοντοποιήσετε τις πρστάσεις

Διαβάστε περισσότερα

2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ

2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ ΜΕΡΟΣ Α. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ 7. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ ΟΡΙΣΜΟΣ Ονομάζουμε τετργωνική ρίζ ενός θετικού ριθμού τον θετικό ριθμό (ΣΥΜΒΟΛΙΣΜΟΣ: ) που ότν υψωθεί στο τετράγωνο μς δίνει

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ Ι 63

ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ Ι 63 ΑΣΚΗΣΕΙΣ ΕΝΟΤΗΤΑ Ι 6 ΑΣΚΗΣΗ. ύο σφίρες φορτίου q κι µάζς m g, κρέµοντι πό το ίδιο σηµείο µε νήµτ µήκους 40cm. Αν οι σφίρες ισορροπούν ότν τ νήµτ σχηµτίζουν γωνί φ 60 ο, ν ρεθεί το φορτίο q. ίνοντι g 0m/s

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν βρούμε την εξίσωση ενός κύκλου Ν βρεθεί η εξίσωση του κύκλου που έχει κέντρο το σημείο: Κ (3, 3) κι τέμνει πό την ευθεί

Διαβάστε περισσότερα

ΦΥΕ 14 ΕΚΤΗ ΕΡΓΑΣΙΑ ΠΡΟΘΕΣΜΙΑ ΠΑΡΑ ΟΣΗΣ 19 ΙΟΥΛΙΟΥ 2004

ΦΥΕ 14 ΕΚΤΗ ΕΡΓΑΣΙΑ ΠΡΟΘΕΣΜΙΑ ΠΑΡΑ ΟΣΗΣ 19 ΙΟΥΛΙΟΥ 2004 Άσκηση (5 µονάδες) ΦΥΕ 4 ΕΚΤΗ ΕΡΓΑΣΙΑ ΠΡΟΘΕΣΜΙΑ ΠΑΡΑ ΟΣΗΣ 9 ΙΟΥΛΙΟΥ 4 Τρί σηµεικά φορτί τοποθετούντι στις κορυφές ενός τετργώνου πλευράς όπως φίνετι στο σχήµ. Υπολογίστε την διεύθυνση κι το µέτρο του ηλεκτρικού

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : Η ΣΥΝΑΡΤΗΣΗ F( = (d [Kεφ:.5 H Συνάρτηση F( = (d Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. lim e d. Ν υπολογίσετε το όριο: ( Έχουμε ( e d

Διαβάστε περισσότερα

, οπότε α γ. y x. y y άξονες. τα σημεία της υπερβολής C βρίσκονται έξω από την ταινία των ευθειών x α

, οπότε α γ. y x. y y άξονες. τα σημεία της υπερβολής C βρίσκονται έξω από την ταινία των ευθειών x α YΠΡΒΛΗ ρισμός: Υπερολή με εστίες κι λέγετι ο γεωμ. τόπος των σημείων του επιπέδου των οποίων η πόλυτη τιμή της διφοράς των ποστάσεων πό τ κι είνι στθερή κι μικρότερη του Έ. Τη στθερή υτή διφορά τη συμολίζουμε

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 12: Ανάλυση κυκλωμάτων ημιτονοειδούς διέγερσης Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ.

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ Α) Προβλήμτ ευθύγρμμης ομλά επιτχυνόμενης κίνησης. ) Απλής εφρμογής τύπων Ακολουθούμε τ εξής βήμτ: i) Συμβολίζουμε τ δεδομέν κι ζητούμεν με τ ντίστοιχ σύμβολ που θ χρησιμοποιούμε.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΥΝΕΧΕΙΑ ΕΠΙΜΕΛΕΙΑ: ΧΡΑΣ ΓΙΑΝΝΗΣ ΚΕΝΤΡΙΚΟ Ν. ΣΜΥΡΝΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΥΝΕΧΕΙΑ ΕΠΙΜΕΛΕΙΑ: ΧΡΑΣ ΓΙΑΝΝΗΣ ΚΕΝΤΡΙΚΟ Ν. ΣΜΥΡΝΗΣ Φ4 ΣΥΝΕΧΕΙΑ ΕΠΙΜΕΛΕΙΑ: ΧΡΑΣ ΓΙΑΝΝΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΛΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΥ ΚΕΝΤΡΙΚ 3ο ΓΕΝΙΚ ΛΥΚΕΙ Ν. ΣΜΥΡΝΗΣ ΘΕΩΡΙΑ ΣΩΣΤ-ΛΑΘΣ ΠΛΛΑΠΛΗΣ ΕΠΙΛΓΗΣ ΣΥΜΠΛΗΡΩΣΗΣ ΚΕΝΥ ΠΑΡΑΤΗΡΗΣΕΙΣ ΑΣΚΗΣΕΙΣ Α &

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5)

ΑΠΑΝΤΗΣΕΙΣ. (Μονάδες 7) α) Να παραγοντοποιήσετε την παράσταση 5x 3 20x. (Μονάδες 3) β) Να λύσετε την εξίσωση 7x 3 = 2(10x + x 3 ) (Μονάδες 6,5) θ) x (5 + 3)x + 5 3 = (...).(...) ι) x + (5 3)x 5 3 = (...).(...) (Μονάδες 7) Θέμ ο ) Ν πργοντοποιήσετε την πράστση 3 0x (Μονάδες 3) β) Ν λύσετε την εξίσωση 7x 3 = (10x + x 3 ) (Μονάδες 3,5) Θέμ 3ο Ν πργοντοποιήσετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΑΠΟ ΤΟ 1 Ο ΚΕΦΑΛΑΙΟ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΑΠΟ ΤΟ 1 Ο ΚΕΦΑΛΑΙΟ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΑΠΟ ΤΟ Ο ΚΕΦΑΛΑΙΟ Μονώ νυμ - Πολυώ νυμ Λέμε λγερική πράστση κάθε πράστση που περιέχει μετλητές. π.χ., +, 5, ( + ), +. Λέμε ριθμητική τιμή ( ή πλά τιμή )

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 3: Συνδυασμός αντιστάσεων και πηγών Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ. ΕΥΔΟΞΟΣ:

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 5: Θεωρήματα κυκλωμάτων Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISN: 978-960-93-7110-0 κωδ. ΕΥΔΟΞΟΣ: 50657177

Διαβάστε περισσότερα

ΣΥΝΘΗΚΕΣ ΑΝΤΙΣΤΡΟΦΗΣ ΕΝΟΣ ΠΙΝΑΚΑ

ΣΥΝΘΗΚΕΣ ΑΝΤΙΣΤΡΟΦΗΣ ΕΝΟΣ ΠΙΝΑΚΑ ΣΥΝΘΗΚΕΣ ΑΝΤΙΣΤΡΟΦΗΣ ΕΝΟΣ ΠΙΝΑΚΑ Ένς Πίνκς συντελεστών Α µπορεί ν έχει ντίστροφο δηλδή, µπορεί ν είνι «µηιδιάζων» µόνο εάν είνι τετργωνικός Η συνθήκη τετργωνικότητς είνι νγκί λλά όχι κι ικνή γι την ύπρξη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 Ο : ΘΕΩΡΗΜΑΤΑ ΗΛΕΚΤΡΙΚΩΝ ΔΙΚΤΥΩΝ

ΚΕΦΑΛΑΙΟ 7 Ο : ΘΕΩΡΗΜΑΤΑ ΗΛΕΚΤΡΙΚΩΝ ΔΙΚΤΥΩΝ ΚΕΦΑΛΑΙΟ 7 Ο : ΘΕΩΡΗΜΑΤΑ ΗΛΕΚΤΡΙΚΩΝ ΔΙΚΤΥΩΝ Ο βασικός στόχος του θεωρήματος αυτού είναι η μετατροπή της συνδεσμολογίας τύπου αστέρα σε τρίγωνα και το αντίθετο έτσι ώστε τα δίκτυα α και β να είναι ισοδύναμα

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΗ: Παρουσίασα τις αποδείξεις κάπως αναλυτικά ώστε να γίνουν πιο κατανοητές.εσείς μπορείτε να τις παρουσιάσετε πιο λιτά.

ΣΗΜΕΙΩΣΗ: Παρουσίασα τις αποδείξεις κάπως αναλυτικά ώστε να γίνουν πιο κατανοητές.εσείς μπορείτε να τις παρουσιάσετε πιο λιτά. ΣΗΜΕΙΩΣΗ: Προυσίσ τις ποδείξεις κάπως νλυτικά ώστε ν γίνουν πιο κτνοητές.εσείς μπορείτε ν τις προυσιάσετε πιο λιτά. Δίνετι τυχόν ορθογώνιο τρίγωνο ΑΒΓ( ˆΑ=1 =1 ορθή) κι Δ η προβολή της κορυφής Α στην υποτείνουσ.ν

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου II

Συστήματα Αυτομάτου Ελέγχου II ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώττο Εκπιδευτικό Ίδρυμ Πειριά Τεχνολογικού Τομέ Συστήμτ Αυτομάτου Ελέγχου II Ενότητ #3: Ευστάθει Συστημάτων - Αλγεβρικό Κριτήριο Routh Δημήτριος Δημογιννόπουλος Τμήμ Μηχνικών Αυτομτισμού

Διαβάστε περισσότερα

Τ Ο Λ Ε Ξ Ι Λ Ο Γ Ι Ο Τ Η Σ Λ Ο Γ Ι Κ Η Σ

Τ Ο Λ Ε Ξ Ι Λ Ο Γ Ι Ο Τ Η Σ Λ Ο Γ Ι Κ Η Σ Τ Ο Λ Ε Ξ Ι Λ Ο Γ Ι Ο Τ Η Σ Λ Ο Γ Ι Κ Η Σ Εισγωγή: Όπως στη κθημερινή μς ζωή, γι ν συνεννοηθούμε χρησιμοποιούμε προτάσεις, έτσι κι στ Μθημτικά χρησιμοποιούμε «Μθημτικές» προτάσεις. Γι πράδειγμ στη κθημερινή

Διαβάστε περισσότερα

3. Μέθοδος Ρεύματος Απλών Κόμβων 4. Κυκλώματα με Ελεγχόμενες Πηγές 5. Αρχή της Υπέρθεσης

3. Μέθοδος Ρεύματος Απλών Κόμβων 4. Κυκλώματα με Ελεγχόμενες Πηγές 5. Αρχή της Υπέρθεσης ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΥΚΛΩΜΑΤΩΝ Πνεπιστήμιο Ιωννίνων ΑΝΑΛΥΣΗ ΔΙΚΤΥΟΥ Ι ο Κεφάλιο Γ. Τσιτούχς Τμήμ Μηχνικών Η/Υ κι Πληροφορικής Διάρθρωση. Ανάλση Δικτύο. Μέθοδος Κομβικών Τάσεων. Μέθοδος Ρεύμτος Απλών Κόμβων 4.

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Κεφάλιο ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ο Ρ Ι Σ Μ Ο Σ Τι ονομάζετι ορισμένο ολοκλήρωμ μις συνεχούς συνάρτησης f: [, ] πό το έως κι το κι πώς συμολίζετι ; Αν F είνι πράγουσ

Διαβάστε περισσότερα

Θέρµανση Ψύξη ΚλιµατισµόςΙΙ

Θέρµανση Ψύξη ΚλιµατισµόςΙΙ Θέρµνση Ψύξη ΚλιµτισµόςΙΙ Ψυχροµετρί Εργστήριο Αιολικής Ενέργεις Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κτσπρκάκης Ξηρόςκιυγρός τµοσφιρικόςέρς Ξηρόςκιυγρόςτµοσφιρικός έρς Ξηρός τµοσφιρικός έρς: ο πλλγµένος πό τους

Διαβάστε περισσότερα

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 0 Υπερολή Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Oρισµός Υπερολή ονοµάζετι ο γεωµετρικός τόπος των σηµείων του επιπέδου, των οποίων η διφορά των ποστάσεων πό δύο στθερά σηµεί Ε κι Ε είνι στθερή κι µικρότερη πο

Διαβάστε περισσότερα

(( ) ( )) ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ Μάθημα: Ηλεκτροτεχνία Ι Διδάσκων: Α. Ντούνης. Α Ομάδα ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΑΜ ΗΜΕΡΟΜΗΝΙΑ 5/2/2014. Διάρκεια εξέτασης: 2,5 ώρες

(( ) ( )) ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ Μάθημα: Ηλεκτροτεχνία Ι Διδάσκων: Α. Ντούνης. Α Ομάδα ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΑΜ ΗΜΕΡΟΜΗΝΙΑ 5/2/2014. Διάρκεια εξέτασης: 2,5 ώρες ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ Μάθημα: Ηλεκτροτεχνία Ι Διδάσκων: Α Ντούνης Α Ομάδα ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΑΜ ΗΜΕΡΟΜΗΝΙΑ 5//014 Θέμα 1 ο (0 μόρια) Διάρκεια εξέτασης:,5 ώρες α) Να υπολογιστεί η ισοδύναμη αντίσταση για το παρακάτω

Διαβάστε περισσότερα

Η έννοια του διανύσματος

Η έννοια του διανύσματος Η έννοι του δινύσμτος Από τη γεωμετρί είμστε εξοικειωμένοι με την έννοι του ευθυγράμμου τμήμτος: δύο διφορετικά σημεί Α κι Β μις ευθείς (ε), ορίζουν το ευθύγρμμο τμήμ ΑΒ Έν ευθύγρμμο τμήμ λέγετι προσντολισμένο,

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΘΕΩΡΗΜΑΤΑ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ

ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΘΕΩΡΗΜΑΤΑ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΘΕΩΡΗΜΑΤΑ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ 1 1. ΘΕΩΡΗΜΑ KENNELLY (ΜΕΤΑΤΡΟΠΗ ΤΡΙΓΩΝΟΥ ΑΣΤΕΡΑ) Ο βασικός στόχος του θεωρήματος αυτού είναι η μετατροπή της συνδεσμολογίας τύπου αστέρα σε τρίγωνα

Διαβάστε περισσότερα

αριθμών Ιδιότητες της διάταξης

αριθμών Ιδιότητες της διάταξης Ανισότητες Διάτξη πργμτικών ριθμών Ιδιότητες της διάτξης Διάτξη (σύγκριση) δύο ριθμών. Πώς μπορούμε ν συγκρίνουμε δύο ριθμούς κι ; Απάντηση Ο ριθμός είνι μεγλύτερος του (συμολικά > ), ότν η διφορά είνι

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 13 Ε_3.ΦλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνί: Κυρική 8 Απριλίου 13 ιάρκει Εξέτσης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Στις ερωτήσεις -4 ν γράψετε στο τετράδιό σς τον ριθµό της ερώτησης κι δίπλ σε κάθε ριθµό το γράµµ που ντιστοιχεί

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ B ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ B ΛΥΚΕΙΟΥ Φυσική Κτεύθυνσης Β Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΛΥΚΕΙΟΥ Θέµ ο κ ΙΑΓΩΝΙΣΜΑ Α. (Βάλτε σε κύκλο το γράµµ µε τη σωστή πάντηση) Αν υξήσουµε την πόστση µετξύ δύο ετερόσηµων σηµεικών ηλεκτρικών φορτίων,. η δυνµική

Διαβάστε περισσότερα

sin x F(x) x 2 3 x παραγουσών προσθέτοντας σταθερές. Το καλούμε αόριστο ολοκλήρωμα της f(x) και το παριστάνουμε με: f(x)dx

sin x F(x) x 2 3 x παραγουσών προσθέτοντας σταθερές. Το καλούμε αόριστο ολοκλήρωμα της f(x) και το παριστάνουμε με: f(x)dx I. ΟΛΟΚΛΗΡΩΜΑ.Ορισμένο ολοκλήρωμ.πράγουσ.θεμελιώδες Θεώρημ.Βσικά ολοκληρώμτ 5.Γρμμικότητ 6.Ολοκλήρωση με λλγή μετλητής ή με ντικτάστση 7.Ολοκλήρωση κτά μέρη 8.Ολοκληρώμτ ρητών 9.Ολοκληρώμτ τριγωνομετρικών.γενικευμένο

Διαβάστε περισσότερα

Άτομα μεταβλητή Χ μεταβλητή Y... Ν XN YN

Άτομα μεταβλητή Χ μεταβλητή Y... Ν XN YN Ν6_(6)_Σττιστική στη Φυσική Αγωγή 08_Πλινδρόμηση κι συσχέτιση Γούργουλης Βσίλειος Κθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Σε ορισμένες περιπτώσεις πιτείτι η νίχνευση της σχέσης μετξύ δύο ποσοτικών μετβλητών

Διαβάστε περισσότερα

Πρόχειρες σημειώσεις. Βασισμένες στο βιβλίο του Σ.Γ. ΦΡΑΓΚΟΠΟΥΛΟΥ: ΒΑΣΙΚΗ ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ. Μέρος Α: Κυκλώματα συνεχούς ρεύματος

Πρόχειρες σημειώσεις. Βασισμένες στο βιβλίο του Σ.Γ. ΦΡΑΓΚΟΠΟΥΛΟΥ: ΒΑΣΙΚΗ ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ. Μέρος Α: Κυκλώματα συνεχούς ρεύματος Πρόχειρες σημειώσεις Βσισμένες στο ιλίο του Σ.Γ. ΦΡΑΓΚΟΠΟΥΛΟΥ: ΒΑΣΙΚΗ ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Μέρος Α: Κυκλώμτ συνεχούς ρεύμτος Κ. Μουτζούρης Τμήμ Ηλεκτρονικής, ΤΕΙ Αθήνς Θερινό εξάμηνο 009

Διαβάστε περισσότερα

ν ν = α 0 α β = ( ) β α = α ( α β)( α β)

ν ν = α 0 α β = ( ) β α = α ( α β)( α β) Γ ΓΥΜΝΑΣΙΟΥ ν 0 ν = 1 = β β ν 1= ν µ = ν + µ ν ν µ 1 µ = ν = ν ( ν ) µ ν ν = ν µ β = β ( β) ν = ν βν ν > 0 τότε 2 = β = β β = β Ιδιότητες υνάµεων ν > β τότε + γ > β+ γ. ν > β κι γ > δ τότε + γ > β+ δ.

Διαβάστε περισσότερα

Ονοματεπώνυμο. Τμήμα

Ονοματεπώνυμο. Τμήμα Ηλεκτρομγνητισμός (6-7-9) Ονομτεπώνυμο Τμήμ ΘΕΜΑ 1 A. Έν σωμάτιο με φορτίο -6. n τοποθετείτι στο κέντρο ενός μη γώγιμου σφιρικού φλοιού εσωτερικής κτίνς c κι εξωτερικής 5 c. Ο σφιρικός φλοιός περιέχει

Διαβάστε περισσότερα

ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ

ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ ΜΕΡΟΣ Ι ΥΠΟΔΕΙΓΜΑΤΑ ΕΞΩΓΕΝΟΥΣ ΟΙΚΟΝΟΜΙΚΗΣ ΜΕΓΕΘΥΝΣΗΣ Κεφάλιο 2 ΤΟ ΝΕΟΚΛΑΣΙΚΟ ΥΠΟΔΕΙΓΜΑ SOOW-SWAN Εισγωγή Η νάλυση της θεωρίς της οικονομικής μεγέθυνσης θ ξεκινήσει νλύοντς το πιο πλό δυνμικό υπόδειγμ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ -8 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑ Αν η συνάρτηση f είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της, ν γρφεί η εξίσωση της εφπτομένης της γρφικής πράστσης της f στο σημείο Α(,f( ))

Διαβάστε περισσότερα

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto.

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto. 1 Τ πρκάτω είνι τ κυριότερ θεωρήμτ κι ορισμοί πό το σχολικό βιβλίο κολουθούμεν πό δικά μς σχόλι. 1 ο ΠΡΩΤΟ 2 Συνρτήσεις Γνησίως μονότονη συνάρτηση Μι γνησίως ύξουσ ή γνησίως φθίνουσ συνάρτηση λέμε ότι

Διαβάστε περισσότερα

Αλγόριθµοι Άµεσης Απόκρισης

Αλγόριθµοι Άµεσης Απόκρισης Αλγόριθµοι Άµεσης Απόκρισης Εγχειρίδιο Φροντιστηρικών Ασκήσεων Ιωάννης Κργιάννης Ιούνιος 008 Το πρόν εγχειρίδιο περιέχει σκήσεις κι νοιχτά προβλήµτ σχετικά µε το ντικείµενο του µθήµτος Αλγόριθµοι Άµεσης

Διαβάστε περισσότερα

(iii) Ο συντελεστής διεύθυνσης λ κάθε ευθείας κάθετης προς την ΓΔ έχει με. τον συντελεστή διεύθυνσης της ΓΔ γινόμενο ίσο με -1. Αρα θα είναι.

(iii) Ο συντελεστής διεύθυνσης λ κάθε ευθείας κάθετης προς την ΓΔ έχει με. τον συντελεστή διεύθυνσης της ΓΔ γινόμενο ίσο με -1. Αρα θα είναι. ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ Α ΟΜΑΔΑΣ (i Ο συντεεστής διεύθυνσης της ευθείς ΑΒ είνι: 6 ( (ii Ο συντεεστής διεύθυνσης της ευθείς ΓΔ είνι: ( (iii Ο συντεεστής διεύθυνσης κάθε ευθείς κάθετης προς την ΓΔ έχει

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ Ι. Σε κθεμιά πό τις πρκάτω περιπτώσεις ν κυκλώσετε το γράμμ Α, ν ο ισχυρισμός είνι ληθής κι το γράμμ Ψ, ν ο ισχυρισμός είνι ψευδής δικιολογώντς συγχρόνως την

Διαβάστε περισσότερα

Παρουσίαση 1 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ

Παρουσίαση 1 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ Προυσίση ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΡΙΓΩΝΑ Προυσίση. Μετρικές σχέσεις στ τρίγων Α Μετρικές σχέσεις σε ορθογώνιο τρίγωνο Α Προβολή σηµείου σε ευθεί Ορθή προβολή Α ονοµάζετι το ίχνος της κάθετης που φέρνουµε

Διαβάστε περισσότερα

Μαθηµατικά Κατεύθυνσης Γ Λυκείου Θέµατα Θεωρίας

Μαθηµατικά Κατεύθυνσης Γ Λυκείου Θέµατα Θεωρίας Μθηµτικά Κτεύθυνσης Γ Λυκείου Θέµτ Θεωρίς ΑΠΟΔΕΙΞΕΙΣ. N ποδείξετε ότι οι γρφικές πρστάσεις C κι C των συνρτήσεων κι - είνι συµµετρικές ως προς την ευθεί y που διχοτοµεί τις γωνίες Oy κι Oy Aς πάρουµε µι

Διαβάστε περισσότερα

( ) 2.3. ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός συνάρτησης:

( ) 2.3. ΣΥΝΑΡΤΗΣΕΙΣ Ορισμός συνάρτησης: Πγκόσμιο χωριό γνώσης.3. ΣΥΝΑΡΤΗΣΕΙΣ.3.1. Ορισμός συνάρτησης: 6 Ο ΜΑΘΗΜΑ Συνάρτηση f / A B, ονομάζετι η διδικσί (νόμος ) που ντιστοιχίζει κάθε στοιχείο του συνόλου Α ( πεδίο ορισμού ) σε έν μόνο στοιχείο

Διαβάστε περισσότερα

Τάξη Β Θετική και Τεχνολογική Κατεύθυνση Ερωτήσεις Θεωρίας και απαντήσεις από το σχολικό βιβλίο Καθηγητής: Ν.Σ. Μαυρογιάννης

Τάξη Β Θετική και Τεχνολογική Κατεύθυνση Ερωτήσεις Θεωρίας και απαντήσεις από το σχολικό βιβλίο Καθηγητής: Ν.Σ. Μαυρογιάννης Τάξη Β Θετική κι Τεχνολογική Κτεύθυνση Ερωτήσεις Θεωρίς κι πντήσεις πό το σχολικό ιλίο Κθηγητής: ΝΣ Μυρογιάννης Πότε δύο µη µηδενικά δινύσµτ AB κι Γ λέγοντι πράλληλ ή συγγρµµικά; Απάντηση: Ότν έχουν τον

Διαβάστε περισσότερα

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i.

2.1 Πολυώνυμα. 1 η Μορφή Ασκήσεων: Ασκήσεις στις βασικές έννοιες του πολυωνύμου. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα του x i. . Πολυώνυμ η Μορφή Ασκήσεων: Ασκήσεις στις βσικές έννοιες του πολυωνύμου. Ποιες πό τις πρκάτω πρστάσεις είνι πολυώνυμ του i. ii. iii. iv. v. vi. 5 Σύμφων με τον ορισμό πολυώνυμ του είνι οι πρστάσεις i,

Διαβάστε περισσότερα

ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ ( ) = +. ( ) ( ) ( ) ( ) ( ) x x ( ) ( ) ΙΑΜΑΝΤΟΠΟΥΛΟΣ ΘΥΜΙΟΣ 1

ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ ( ) = +. ( ) ( ) ( ) ( ) ( ) x x ( ) ( ) ΙΑΜΑΝΤΟΠΟΥΛΟΣ ΘΥΜΙΟΣ 1 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ Υπενθυµίζουµε ότι ν στ σηµεί Α, Β ενός άξον ντιστοιχίζοντι οι πργµτικοί ριθµοί, ντίστοιχ τότε: ( ΑΒ) = Β Α Α Β Σχετικά µε την πόστση δύο σηµείων στο κρτεσινό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ. Σύνολο τιμών της f λέμε το σύνολο που έχει για στοιχεία του τις τιμές της f σε όλα τα.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ. Σύνολο τιμών της f λέμε το σύνολο που έχει για στοιχεία του τις τιμές της f σε όλα τα. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ Β Γενικό μέρος των συνρτήσεων Τι λέμε σύνολο τιμών μις συνάρτησης με πεδίο ορισμού το σύνολο A ; Σύνολο τιμών της λέμε το σύνολο που έχει γι στοιχεί του τις τιμές

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 23

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 23 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΘΕΜΑ Αν η συνάρτηση f είνι συνεχής στο, πργωγίσιμη στο κι γι κάθε ισχύει f f ( ) d = e e e Α) Ν ποδείξετε ότι: f = e i) η f είνι πργωγίσιμη στο κι ισχύει ii) f() = e Β)

Διαβάστε περισσότερα

Επομένως μια ακολουθία α είναι γεωμετρική πρόοδος αν και μόνο αν ισχύει α, δηλαδή το πηλίκο δύο διαδοχικών όρων είναι σταθερό.

Επομένως μια ακολουθία α είναι γεωμετρική πρόοδος αν και μόνο αν ισχύει α, δηλαδή το πηλίκο δύο διαδοχικών όρων είναι σταθερό. Ε. 5. Γεωμετρική Πρόοδος Απρίτητες γώσεις Θεωρίς Γεωμετρική πρόοδος Γεωμετρική Πρόοδο (Γ.Π.) οομάζουμε μι κολουθί κάθε όρος της προκύπτει πό το προηγούμεό του με πολλπλσισμό επί το ίδιο πάτοτε μη μηδεικό

Διαβάστε περισσότερα

ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ

ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ Πρδείγµτ ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ συνολική επιφάνει κτιρίου ~ επιφάνει που κλύπτετι πό πράθυρ πλιότητ κτιρίου ~ πώλει θερµικής ενέργεις κτνάλωση ηλεκτρικής ενέργεις κτοικίς ~ κτνάλωση νερού ~ µέγεθος

Διαβάστε περισσότερα

3 η δεκάδα θεµάτων επανάληψης

3 η δεκάδα θεµάτων επανάληψης 1 η δεκάδ θεµάτων επνάληψης 1. Ν ποδείξετε ότι το εµβδόν κάθε τριγώνου δίνετι πό τον τύπο Ε τρ, όπου τ η ηµιπερίµετρος του τριγώνου κι ρ η κτίν του εγγεγρµµένου κύκλου Ν χρκτηρίσετε τις πρκάτω προτάσεις

Διαβάστε περισσότερα

Η έννοια της συνάρτησης

Η έννοια της συνάρτησης Η έννοι της συνάρτησης Τι ονομάζουμε πργμτική συνάρτηση; Έστω Α έν υποσύνολο του R Ονομάζουμε πργμτική συνάρτηση με πεδίο ορισμού το Α μι διδικσί (κνόν), με την οποί κάθε στοιχείο A ντιστοιχίζετι σε έν

Διαβάστε περισσότερα

Σχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων

Σχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων Ο3 Γενικά περί φκών. Γενικά Φκός ονοµάζετι κάθε οµογενές, ισότροπο κι διφνές οπτικό µέσο που διµορφώνετι πό δυο σφιρικές επιφάνειες (ή πό µι σφιρική κι µι επίπεδη). Βσική () () Σχήµ. ιτάξεις πρισµάτων

Διαβάστε περισσότερα

ΜΕΡΙΚΑ ΣΧΟΛΙΑ, ΠΑΡΑΤΗΡΗΣΕΙΣ και ΑΣΚΗΣΕΙΣ στα ΚΕΦΑΛΑΙΑ 1, 2

ΜΕΡΙΚΑ ΣΧΟΛΙΑ, ΠΑΡΑΤΗΡΗΣΕΙΣ και ΑΣΚΗΣΕΙΣ στα ΚΕΦΑΛΑΙΑ 1, 2 ΣΧΟΛΗ. Ν. ΟΚΙΜΩΝ ΜΑΘΗΜΑ: ΗΛΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ κι ΦΑΡΜΟΓΣ ΜΡΙΚΑ ΣΧΟΛΙΑ, ΠΑΡΑΤΗΡΗΣΙΣ κι ΑΣΚΗΣΙΣ στ ΚΦΑΛΑΙΑ 1, ρ. Α. Μγουλάς Φερουάριος 015 1 Μερικά σχόλι ρτηρήσεις γι το εδίο ροής συνεχούς ηλεκτρικού ρεύµτος

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 3: Συνδυασμός αντιστάσεων και πηγών Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: 3. 3.4 Μέρος Β του σχολικού ιλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Πράδειγμ. Ν υολογισθούν τ ορισμέν ολοκληρώμτ: ΘΕΜΑ Β i. ii. (

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ)

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ) ΙΑΝΥΣΜΑΤΑ - ΘΕΩΡΙΑ & ΜΕΘΟ ΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΙΑΝΥΣΜΑΤΑ ( ΘΕΩΡΙΑ ΣΤΟΙΧΕΙΑ ΜΕΘΟ ΟΛΟΓΙΑΣ) ε (ρχή) φορές (πέρς) 1. Τι ορίζετι ως διάνυσµ ; Το διάνυσµ ορίζετι ως έν προσντολισµένο

Διαβάστε περισσότερα

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΘΕΩΡΙΑ

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΘΕΩΡΙΑ ΚΩΝΙΚΕΣ ΤΜΕΣ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Ποι είνι η εξίσωση του κύκλου με κέντρο το (0,0); ρ (0,0) M(,) C Έστω έν σύστημ συντετγμένων στο επίπεδο κι C ο κύκλος με κέντρο το σημείο (0,0) κι κτίν ρ. Γνωρίζουμε πό

Διαβάστε περισσότερα

ΔΥΟ ΟΜΟΓΕΝΕΙΣ ΔΙΣΚΟΙ ΚΑΙ ΚΥΛΙΣΗ

ΔΥΟ ΟΜΟΓΕΝΕΙΣ ΔΙΣΚΟΙ ΚΑΙ ΚΥΛΙΣΗ ΔΥΟ ΟΜΟΓΕΝΕΙΣ ΔΙΣΚΟΙ ΚΑΙ ΚΥΛΙΣΗ Δύο ομογενείς δίσκοι, ένς μεγάλος μάζς Μ=3kg κι κτίνς =40 κι ένς μικρός μάζς m=kg κι κτίνς =10, ενώνοντι έτσι ώστε ν συμπίπτουν τ κέντρ τους. Ο δίσκος κτίνς διθέτει υλάκι

Διαβάστε περισσότερα

ΣΧΕΤΙΚΑ ΜΕ ΤΙΣ ΚΑΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΑΙ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΠΟΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΕΙΣΟ ΗΜΑΤΟΣ

ΣΧΕΤΙΚΑ ΜΕ ΤΙΣ ΚΑΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΑΙ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΥΠΟΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΕΙΣΟ ΗΜΑΤΟΣ ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΤΜΗΜ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΘΗΗΤΗΣ ΚΩΣΤΣ ΕΛΕΝΤΖΣ ΣΧΕΤΙΚ ΜΕ ΤΙΣ ΚΜΠΥΛΕΣ ΖΗΤΗΣΗΣ ΚΙ Τ ΠΟΤΕΛΕΣΜΤ ΥΠΟΚΤΣΤΣΗΣ ΚΙ ΕΙΣΟ ΗΜΤΟΣ ΠΕΡΙΠΤΩΣΗ η: Συνρτήσεις ζήτησης κτά arshall Υπόθεση: Το χρηµτικό

Διαβάστε περισσότερα

Προτάσεις που χρησιμοποιούνται στη λύση ασκήσεων και χρειάζονται απόδειξη. Πρόταση 1

Προτάσεις που χρησιμοποιούνται στη λύση ασκήσεων και χρειάζονται απόδειξη. Πρόταση 1 Προτάσεις που χρησιμοποιούντι στη λύση σκήσεων κι χρειάζοντι πόδειξη Πρότση 1 Έστω η συνάρτηση f: A R η οποί είνι γνησίως ύξουσ Ν δείξετε ότι ) η f ντιστρέφετι ) η f -1 είνι γνησίως ύξουσ στο f(α) γ) Οι

Διαβάστε περισσότερα

3.4 Η ΥΠΕΡΒΟΛΗ. Ορισμός Υπερβολής

3.4 Η ΥΠΕΡΒΟΛΗ. Ορισμός Υπερβολής 6 3. Η ΥΠΕΡΒΟΛΗ Ορισμός Υπερολής Έστω E κι Ε δύο σημεί ενός επιπέδου. Ονομάζετι υπερολή με εστίες τ σημεί E κι Ε ο εωμετρικός τόπος C των σημείων του επιπέδου των οποίων η πόλυτη τιμή της διφοράς των ποστάσεων

Διαβάστε περισσότερα

Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής. Μαθηματικός Λογισμός. Ενότητα: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΑΡΑΔΕΙΓΜΑΤΑ.

Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής. Μαθηματικός Λογισμός. Ενότητα: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΑΡΑΔΕΙΓΜΑΤΑ. Ιόνιο Πνεπιστήμιο - Τμήμ Πληροορικής Μθημτικός Λογισμός Ενότητ: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΑΡΑΔΕΙΓΜΑΤΑ Πνγιώτης Βλάμος Αδειες Χρήσης Το πρόν εκπιδευτικό υλικό υπόκειτι σε άδειες χρήσης Cativ Commo

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 4: Συστηματικές μέθοδοι επίλυσης κυκλωμάτων Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ.

Διαβάστε περισσότερα

ΣΕΙΡΕΣ 1. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ. n 1 2 n. Για τη σύγκλιση της σειράς διακρίνουμε τις παρακάτω περιπτώσεις: (i) Αν υπάρχει το lim σ n

ΣΕΙΡΕΣ 1. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ. n 1 2 n. Για τη σύγκλιση της σειράς διακρίνουμε τις παρακάτω περιπτώσεις: (i) Αν υπάρχει το lim σ n ΣΕΙΡΕΣ Έστω. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ μι κολουθί πργμτικών ριθμών. Η κολουθί ( σ ) με γενικό όρο: σ + + + i ονομάζετι κολουθί μερικών θροισμάτων της κολουθίς ( ), ή σειρά των ριθμών,,,, κι σημειώνετι με i + + +

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΓΩΝΙΣΜ ΕΚΠ. ΕΤΟΥΣ 03-04 ΜΘΗΜ / ΤΞΗ : ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡ: (ΠΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙ: 04/0/04 ΘΕΜ Οδηγί: Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτσεις -4 κι δίπλ το γράμμ

Διαβάστε περισσότερα

Κεφάλαιο 11 Διαγράμματα Φάσεων

Κεφάλαιο 11 Διαγράμματα Φάσεων Κεφάλιο 11 Διγράμμτ Φάσεων Συχνά, σε πολλές διεργσίες, νμιγνύουμε δύο ή κι περισσότερ διφορετικά υλικά, κι πρέπει ν πντήσουμε στο ερώτημ: ποιά θ είνι η φύση του υλικού που θ προκύψει πό υτή την νάμιξη:

Διαβάστε περισσότερα

Θεωρήματα, Προτάσεις, Εφαρμογές

Θεωρήματα, Προτάσεις, Εφαρμογές Θεωρήμτ, Προτάσεις, Εφρμογές Μιγδικοί Ιδιότητες συζυγών: Αν z i κι z γ δi είνι δυο μιγδικοί ριθμοί, τότε: Μέτρο: z z z z z z z z 3 z z z z 4 z z z z Αν z, z είνι μιγδικοί ριθμοί, τότε z z z z z z z z 3

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1.

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. Δύο μηχνικά κύμτ ίδις συχνότητς διδίδοντι σε ελστική χορδή. Αν λ 1 κι λ 2 τ μήκη κύμτος υτών των κυμάτων ισχύει: ) λ 1 λ 2 γ) λ 1 =λ 2 Δικιολογήστε την πάντησή

Διαβάστε περισσότερα

ENA ΣΧΗΜΑ ΜΕ ΕΝΔΙΑΦΕΡΟΥΣΕΣ ΠΡΟΕΚΤΑΣΕΙΣ. Κόσυβας Γιώργος. 1ο Πειραματικό Γυμνάσιο Αθηνών

ENA ΣΧΗΜΑ ΜΕ ΕΝΔΙΑΦΕΡΟΥΣΕΣ ΠΡΟΕΚΤΑΣΕΙΣ. Κόσυβας Γιώργος. 1ο Πειραματικό Γυμνάσιο Αθηνών Σ ENA ΣΧΗΜ ΜΕ ΕΝΙΦΕΡΟΥΣΕΣ ΠΡΟΕΚΤΣΕΙΣ Κόσυβς ιώργος ο Πειρμτικό υμνάσιο θηνών ε υτή την εργσί προυσιάζοντι ορισμένες ξιοσημείωτες πρτηρήσεις πάνω σε έν πλούσιο σχήμ, το οποίο επιτρέπει ποικίλες προσεγγίσεις

Διαβάστε περισσότερα

( ) = ( ) για κάθε. Θέμα Δ. x 2. Δίνονται οι συναρτήσεις f x

( ) = ( ) για κάθε. Θέμα Δ. x 2. Δίνονται οι συναρτήσεις f x ΔΙΑΓΩΝΙΣΜΑΤΑ Διγώνισμ Θέμ Α Α Ν ποδειχθεί ότι η συνάρτηση f = ln,, είνι πργωγίσιμη στο κι ισχύει f = Μονάδες 7 Α Πότε μί συνάρτηση f λέμε ότι είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της; Α Πότε

Διαβάστε περισσότερα

ΕπιφÜνεια εδüφουò. Σχήµα Π5.1: Αγωγός τοποθετηµένος κάτω από την επιφάνεια του εδάφους και επιστροφή ρεύµατος από τη γη.

ΕπιφÜνεια εδüφουò. Σχήµα Π5.1: Αγωγός τοποθετηµένος κάτω από την επιφάνεια του εδάφους και επιστροφή ρεύµατος από τη γη. Πράρτηµ 5 ΠΡΟΣΕΓΓΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΓΕΙΩΣΗΣ ΜΕ ΑΓΩΓΟ ΕΠΙΣΤΡΟΦΗΣ ΡΕΥΜΑΤΟΣ Π5. Υπολοισµός επωής πλέµτος Στο σχήµ Π5. προυσιάζετι ένς ευθύρµµος ωός µήκους, ι τον οποίο υπολοίζετι η υτεπωή L συνεκτιµώντς κι την

Διαβάστε περισσότερα

Θέματα Εξετάσεων Φεβρουαρίου 2011:

Θέματα Εξετάσεων Φεβρουαρίου 2011: ο ΕΞΑΜΗΝΟ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: ΦΕΒΡΟΥΑΡΙΟΣ Θέμτ Εξετάσεων Φεβρουρίου : ΘΕΜΑ μονάδες Πρέπει με κυβικές b-splnes ν πρεμβάλετε, κτά σειρά, τ εξής σημεί:,,,,,,,8, 7, κι,. Ας είνι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ - ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ [Κεφ: 3. 3.4 Μέρος Β του σχολικού ιλίου]. ΣΗΜΕΙΩΣΕΙΣ ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ Εμδό προλικού χωρίου Έστω ότι θέλουμε ρούμε

Διαβάστε περισσότερα

Yποθέτουμε ότι αρχικά είναι φορτισμένος ο πυκνωτής με φορτίο Q ο. Mετά το κλείσιμο του κυκλώματος και σε τυχούσα χρονική στιγμή ισχύει:

Yποθέτουμε ότι αρχικά είναι φορτισμένος ο πυκνωτής με φορτίο Q ο. Mετά το κλείσιμο του κυκλώματος και σε τυχούσα χρονική στιγμή ισχύει: 0 Kεφ. TAΛANTΩΣEIΣ (prt, pges 0-4 Πράδειγμ 5. Tο κύκλωμ LC Yποθέτουμε ότι ρχικά είνι φορτισμένος ο πυκνωτής με φορτίο Q ο. Mετά το κλείσιμο του κυκλώμτος κι σε τυχούσ χρονική στιγμή ισχύει: O ς κνόνς Kirchhff

Διαβάστε περισσότερα

7. Κωνικές τομές Τύποι - Βσικές έννοιες ΚΩΝΙΚΕΣ ΤΟΜΕΣ: Τύποι - Βσικές έννοιες Α. ΚΥΚΛΟΣ Εξίσωση κύκλου με κέντρο Ο( 0, 0 ) κι κτίν ρ : + =ρ Εξίσωση εφ

7. Κωνικές τομές Τύποι - Βσικές έννοιες ΚΩΝΙΚΕΣ ΤΟΜΕΣ: Τύποι - Βσικές έννοιες Α. ΚΥΚΛΟΣ Εξίσωση κύκλου με κέντρο Ο( 0, 0 ) κι κτίν ρ : + =ρ Εξίσωση εφ Ο μθητής που έχει μελετήσει τo κεφάλιο των κονικών τομών θ πρέπει ν είνι σε θέση: Ν προσδιορίζει την εξίσωση του κύκλου με κέντρο την ρχή των ξόνων. Με τη μέθοδο της συμπλήρωσης τετργώνου υπολογίζοντι

Διαβάστε περισσότερα

Α2. Πότε μία συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα του πεδίου ορισμού της; Μονάδες 3

Α2. Πότε μία συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα του πεδίου ορισμού της; Μονάδες 3 Βθμός: /25 Τεστ Μθημτικών Εξετζόμενος-η: Προσντολισμού, Γ Λυκείου Θεωρί 1 Κθηγητής: Ιορδάνης Χτζηνικολάου Συνρτήσεις Θέμ Α Α1. Ν ποδείξετε ότι οι γρφικές πρστάσεις C κι C των συνρτήσεων f κι f 1 είνι συμμετρικές

Διαβάστε περισσότερα

3 V. 0 10v 30 5v v 5000 i0 0 16v 5000 i

3 V. 0 10v 30 5v v 5000 i0 0 16v 5000 i ΗΛΕΚΤΡΙΚ ΚΥΚΛΩΜΤ ΚΙ ΜΕΤΡΗΣΕΙΣ, - ΦΕΡΟΥΡΙΟΣ ΘΕΜ. [%] Στο κύκλωμα στα δεξιά, προσδιορίστε την ενέργεια που αποδίδεται σε ημερήσια βάση (4 ώρες) στον δεξιό κλάδο (εξαρτημένη πηγή και αντίσταση kω). ΠΝΤΗΣΗ

Διαβάστε περισσότερα

1. Να σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους παρακάτω ισχυρισμούς:

1. Να σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους παρακάτω ισχυρισμούς: 1. Ν σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους πρκάτω ισχυρισμούς: 1. Αν γι την συνεχή στο συνάρτηση f ισχύουν: f(0) f(2) 0 κι f(0) f(5) 0 τότε η εξίσωση ( ) 0 f έχει τουλάχιστον δύο ρίζες. 2. Αν ισχύει

Διαβάστε περισσότερα

Λύσεις 1 ης Εργασίας 1. Γράψτε και σχεδιάστε ποιοτικά στο ίδιο διάγραµµα καθένα από τα επόµενα

Λύσεις 1 ης Εργασίας 1. Γράψτε και σχεδιάστε ποιοτικά στο ίδιο διάγραµµα καθένα από τα επόµενα Λύσεις ης Εργσίς. Γράψτε κι σχεδιάστε ποιοτικά στο ίδιο διάγρµµ κθέν πό τ επόµεν v δινύσµτ στη µορφή x y : () Το διάνυσµ που συνδέει την ρχή του συστήµτος συντετγµένων µε το σηµείο Ρ(,-). () Το διάνυσµ

Διαβάστε περισσότερα

για την εισαγωγή στο Λύκειο

για την εισαγωγή στο Λύκειο Τυπολόγιο 1 Μθημτικά γι την εισγωγή στο Λύκειο Νίκος Κρινιωτάκης ΠΡΓΜΤΙΚΟΙ ΡΙΘΜΟΙ Σύνολ ριθμών Φυσικοί ριθμοί Ν {,1,,3,...,} Οι φυσικοί δικρίνοντι σε: Άρτιους είνι της μορφής ν κ, κ Ν (διιρούντι με το

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Οι ερωτήσεις Α Ψ του σχολικού βιβλίου [1]

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Οι ερωτήσεις Α Ψ του σχολικού βιβλίου [1] ΛΓΕΒΡ ΛΥΚΕΙΟΥ Οι ερωτήσεις του σχολικού βιβλίου [] Εισγωγικό Κεφάλιο. 9 3 Γι = - 3, η υπόθεση είνι ληθής, ενώ το συμπέρσμ ψευδές Το σύνολο λήθεις της υπόθεσης είνι το = 3, 3, ενώ του συμπεράσμτος είνι

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΗ 3.2. (Η/Ν Υπερεντάσεως Κατευθύνσεως)

ΕΦΑΡΜΟΓΗ 3.2. (Η/Ν Υπερεντάσεως Κατευθύνσεως) ΕΦΑΡΜΟΓΗ.. (Η/Ν Υπερεντάσεως Κτευθύνσεως) Γι τν Υ/Σ ζεύξεως (Β) της εφρµγής.1 πυ τρφδτείτι πό τν Υ/Σ 15/k (Α) µέσω δύ όµιων ενέριων γρµµών ώστε σε περίπτωση σφάλµτς σε µί πό τις δύ ν µην δικόπτετι η τρφδότηση

Διαβάστε περισσότερα

Ευθύγραμμες Κινήσεις (Συμπυκνωμένα)

Ευθύγραμμες Κινήσεις (Συμπυκνωμένα) Εθύγρμμες Κινήσεις (Σμπκνωμέν) Χρήση Λελεδάκης Κωστής ( koleygr@gmailcom ) Οι σημειώσεις πεθύνοντι σε κάποιον πο θέλει ν μάθει ή ν θμηθεί τ βσικά στοιχεί των εθύγρμμων κινήσεων (χωρίς πργώγος κι ολοκληρώμτ)

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΕΣ ΑΣΚΗΣΕΙΣ. α) του αριθμού των αγοριών προς τον αριθμό των κοριτσιών:... β) του αριθμού των κοριτσιών προς τον αριθμό των αγοριών:...

ΑΝΑΛΟΓΙΕΣ ΑΣΚΗΣΕΙΣ. α) του αριθμού των αγοριών προς τον αριθμό των κοριτσιών:... β) του αριθμού των κοριτσιών προς τον αριθμό των αγοριών:... ΑΝΑΛΟΓΙΕΣ Μι νθοδέσμη έχει 5 λευκά κι 15 κόκκιν γρύφλλ. Τι μπορούμε ν πρτηρήσουμε; ότι τ κόκκιν είνι κτά δέκ περισσότερ πό τ λευκά, λλά κι ότι τ κόκκιν γρύφλλ είνι τρεις φορές περισσότερ πό τ λευκά Η μέτρηση

Διαβάστε περισσότερα

ακτίνα του τέλους του µείον τη διανυσµατική ακτίνα της αρχής του. 19. Ποια ανισοτική σχέση ισχύει για το µέτρο του αθροίσµατος δυο διανυσµάτων;

ακτίνα του τέλους του µείον τη διανυσµατική ακτίνα της αρχής του. 19. Ποια ανισοτική σχέση ισχύει για το µέτρο του αθροίσµατος δυο διανυσµάτων; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ (Α) Ν πντήσετε στις πρκάτω ερωτήσεις 1. Τι ονοµάζετι διάνυσµ κι πώς συµβολίζετι;. Ποιο διάνυσµ ονοµάζετι µηδενικό; 3. Τι ονοµάζετι µέτρο ενός δινύσµτος κι πώς συµβολίζετι; 4. Ποιο διάνυσµ

Διαβάστε περισσότερα

1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ

1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ 5 ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονί συνάρτησης Οι έννοιες γνησίως ύξουσ συνάρτηση, γνησίως φθίνουσ συνάρτηση είνι γνωστές πό προηγούμενη τάξη Συγκεκριμέν,

Διαβάστε περισσότερα

Τάξη Γ. Κεφάλαιο. Εμβαδόν Επιπέδου Χωρίου Θεωρία-Μεθοδολογία-Ασκήσεις. Ολοκληρωτικός Λογισμός

Τάξη Γ. Κεφάλαιο. Εμβαδόν Επιπέδου Χωρίου Θεωρία-Μεθοδολογία-Ασκήσεις. Ολοκληρωτικός Λογισμός Τάξη Γ Κεφάλιο Ολοκληρωτικός Λογισμός Θεωρί-Μεθοδολογί-Ασκήσεις Κεφάλιο 3 Ολοκληρωτικός Λογισμός Σε κάθε μί πό τις πρκάτω περιπτώσεις ορίζετι πό τη γρφική πράστση μις τουλάχιστον συνάρτησης κι πό κάποιες

Διαβάστε περισσότερα

Μέρος Α - Kεφάλαιο 7ο - Θετικοί και Αρνητικοί Αριθμοί Α.7.8. Δυνάμεις ρητών αριθμών με εκθέτη φυσικό

Μέρος Α - Kεφάλαιο 7ο - Θετικοί και Αρνητικοί Αριθμοί Α.7.8. Δυνάμεις ρητών αριθμών με εκθέτη φυσικό Μέρος Α - Kεφάλιο 7ο - Θετικοί κι Αρνητικοί Αριθμοί - 37 - Α.7.8. Δυνάμεις ρητών ριθμών με εκθέτη φυσικό ΔΡΑΣΤΗΡΙΟΤΗΤΑ Ένς υπολογιστής μολύνθηκε πό κάποιο ιό, ο οποίος είχε την ιδιότητ ν κτστρέφει τ ηλεκτρονικά

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΘΗΜ / ΤΞΗ : ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙ: 15/0/015 ΘΕΜ 1 ο Οδηγί: Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις 1-4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.

Διαβάστε περισσότερα

Κεφ. 7: Θεωρήματα κυκλωμάτων. Προβλήματα

Κεφ. 7: Θεωρήματα κυκλωμάτων. Προβλήματα Κεφ. 7: Θεωρήματα κυκλωμάτων Προβλήματα 1 Πρόβλημα 1 Χρησιμοποιώντας το θεώρημα της υπέρθεσης, υπολογίστε το ρεύμα μέσω της στο κύκλωμα της παρακάτω εικόνας 1.0kΩ 2 V 1.0kΩ 3 V 2.2kΩ Λύση Απομακρύνουμε

Διαβάστε περισσότερα