Ενεργειακών και Περιβαλλοντικών Πολιτικών
|
|
- Σπυριδων Αλεξάκης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης Μοντέλα και Τεχνικές Ανάλυσης και Αξιολόγησης Ενεργειακών και Περιβαλλοντικών Πολιτικών Χάρης Δούκας, Ιωάννης Ψαρράς Μάθημα: Διαχείριση Ενέργειας και Περιβαλλοντική Πολιτική ΕΜΠ,
2 Περιεχόμενα Το Πρόβλημα Παράμετροι Ανάλυσης και Αξιολόγησης Εισερχόμενες Ασάφειες - Διαχείριση Μοντέλα Αναπαράστασης και Επεξεργασίας Προσέγγιση Προέκτασης Συμβολική Προσέγγιση Προσέγγιση Διπλής Αναπαράστασης Αξιολόγηση
3 Το Πρόβλημα [1/4] Ενεργειακή και Περιβαλλοντική Πολιτική Δεν αρκεί μια τεχνοοικονομική προσέγγιση του προβλήματος Υπάρχουν και κοινωνικό - πολιτικές επιδράσεις που πρέπει να ληφθούν υπόψη Υπό-εκτίμηση δυναμικού χαρακτήρα του σύγχρονου περιβάλλοντος του ενεργειακού τομέα
4 Το Πρόβλημα [2/4] «Σύγχρονο Περιβάλλον» Συστηματική προσέγγιση Σύνθεση της οικονομικής, περιβαλλοντικής και κοινωνικής διάστασης του ενεργειακού τομέα Εκμετάλλευση των εργαλείων που έχει στη διάθεσή της η Πολιτεία Συνυπολογισμός των χαρακτηριστικών των εμπλεκομένων του ενεργειακού τομέα
5 Το Πρόβλημα [3/4] Υποστήριξη Αποφάσεων Προώθησης ΑΠΕ Διαμόρφωση Ενεργειακών Επιδιώξεων - Οικονομικοί - Κοινωνικοί - Περιβαλλοντικοί Επιλογή Τύπου Προγραμμάτων - Ρυθμιστικά - Βασισμένα στην Αγορά - Βασισμένα σε Εθελοντικές Συμφωνίες - Διάχυσης Τεχνολογικές Επιλογές - Υδροηλεκτρικά - Ανεμογεννήτριες -Φωτοβολταϊκά - Ηλιακοί Συλλέκτες Προώθηση ΑΠΕ
6 Το Πρόβλημα [4/4] Ερωτήματα προς Διερεύνηση Πώς συμβάλουν τα διαθέσιμα εργαλεία στην επίτευξη των ενεργειακών επιδιώξεων Ποια είναι η αλληλεπίδραση των προτάσεων προώθησης των ΑΠΕ με τα χαρακτηριστικά των εμπλεκομένων της ενεργειακής αγοράς Μοντέλα και Τεχνικές Υποστήριξης Ενεργειακής και Περιβαλλοντικής Πολιτικής
7 Παράμετροι Ανάλυσης και Αξιολόγησης [1/3] Πολλοί Παράγοντες (Πολλοί Εμπλεκόμενοι) Ένα σετ από εναλλακτικές επιλογές Ένα σετ από δείκτες αξιολόγησης Ένα σετ από αποδόσεις A = B = C a a { 1,..., n { b1,..., bl a b C ij όπου ij : ( i, j) } }
8 Παράμετροι Ανάλυσης και Αξιολόγησης [2/3] Εναλλακτικές Α1 Α2.. Αn Κριτήρια B1 C11 C12.. C1n B2 C21 C22.. C2n Bl Cl1 Cl2.. Cln Μοντέλα Αναπαράστασης και Επεξεργασίας
9 Παράμετροι Ανάλυσης και Αξιολόγησης [3/3] Αριθμητικός Μέσος Ui = 1/ n l j= 1 C i, j Σταθμισμένος Μέσος Ui l ( w ) jci, j j= 1 = l j= 1 w j
10 Παράδειγμα ΜΚΑ [1/6]
11 Παράδειγμα ΜΚΑ [2/6] Συνάρτηση Χρησιμότητας Κριτηρίου, u i : Ui = Δείκτης/100, Γραμμική Συνάρτηση με εύρος [0, 1]. U(P)ε [0, 1], όπου: To έργο CDM συνεισφέρει στην αειφόρο ανάπτυξη όσο μεγαλύτερο είναι το U(P), Μέγιστη συνεισφορά όταν U(P)=1.
12 Παράδειγμα ΜΚΑ [3/6] Αειφόρος Ανάπτυξη Οικονομική Περιβαλλοντική Κοινωνική Τεχνολογική Για κάθε μία από τις διαστάσεις της αειφόρου ανάπτυξης ένα σύνολο από 11 διεθνώς αποδεκτά κριτήρια επιλέγεται
13 Παράδειγμα ΜΚΑ [4/6] Κριτήρια Αειφόρου Ανάπτυξης
14 Παράδειγμα ΜΚΑ [5/6] Εκπομπές αερίων του θερμοκηπίου Εκπομπές από τα 6 αέρια του θερμοκηπίου: CO2, CH4, N20, HFCs, PFCs, SF6. Δείκτης(%): (A2 A1)/A2 * 100%, όπου A1: Εκπομπές αέριων θερμοκηπίου ανά μονάδα παραγωγής από τις δραστηριότητες του έργου CDM, A2: Εκπομπές αέριων θερμοκηπίου ανά μονάδα παραγωγής από τo σενάριο αναφοράς, Εύρος τιμών δείκτη: 0%, 100%.
15 Παράδειγμα ΜΚΑ [6/6] Επιπροσθετικότητα Η διακριτή και διατεταγμένη κλίμακα για την αξιολόγηση της επιπροσθετικότητας Καμία Παρακώλυση Πολύ Μικρή Παρακώλυση Πολύ Μικρή έως Μικρή Παρακώλυση Μικρή Παρακώλυση Μικρή έως Μέτρια Παρακώλυση Μέτρια Παρακώλυση Μέτρια έως Μεγάλη Παρακώλυση Μεγάλη Παρακώλυση Μεγάλη έως Πολύ Μεγάλη Παρακώλυση Πολύ Μεγάλη Παρακώλυση Απόλυτη Παρακώλυση Ε1 Ε2 Ε3 Ε4 Ε5 Ε6 Ε7 Ε8 Επιπροσθετικότητα Εμπόδια τεχνολογικά Εμπόδια θεσμικά Εμπόδια σχετικά με την ικανότητα Εμπόδια νομικά-πολιτικά Εμπόδια χρηματοοικονομικά Εμπόδια αγοράς-εμπορίου Εμπόδια περιβαλλοντικά Εμπόδια κοινωνικά και ενημέρωσης
16 Εισερχόμενες Ασάφειες [1/3] Ασάφεια έννοια που σχετίζεται με την ποσοτικοποίηση της πληροφορίας και οφείλεται κυρίως σε μη-ακριβή (imprecise) δεδομένα Το πρόβλημα δεν οφείλεται τόσο στις έννοιες που χρησιμοποιούνται όσο στην αντίληψη που έχει ο καθένας για λεκτικούς προσδιορισμούς ποσοτικών μεγεθών Κάνει πολύ Ζέστη πότε είναι αληθής αυτή η πρόταση;
17 Εισερχόμενες Ασάφειες [2/3] Παράμετροι Πολυκριτηριακού Προβλήματος (επιδόσεις, βάρη, κατώφλια) Ποιοτική πληροφορία Ελλιπής γνώση σχετικά με τις παραμέτρους του προβλήματος Αδυναμία απόκτησης ακριβούς τιμής για κάποιες παραμέτρους
18 Εισερχόμενες Ασάφειες [3/3] Προτιμήσεις Εμπειρογνωμόνων Φύση Δεικτών Ποσοτική» Ποιο είναι το κόστος της Εναλλακτικής Α; Ποιοτική» Κριτήρια Οπτικής όχλησης» Ποια είναι η συνεισφορά της στην τοπική ανάπτυξη;» Συνεισφορά στην Ανταγωνιστικότητα της οικονομίας
19 Διαχείριση Ασάφειας [1/6] Κλασσική θεωρία της λογικής δύο τιμών Η χαρακτηριστική συνάρτηση συσχέτισης μ Α ορίζει μια ξεκάθαρη διάκριση μεταξύ των μελών και των μη-μελών του Α. Έτσι η μ Α δίνει σε κάθε x μια από δυο τιμές: μ Α(x) =1 εάν και μόνο εάν x<x τ, μ Α(x) =0 εάν και μόνο εάν x>x τ. Άρα, απαιτείται ένα αυστηρό όριο x T για τον προσδιορισμό μιας ξεκάθαρης διάκρισης μεταξύ των αποδεκτών τιμών (x< x T ) και των μηαποδεκτών τιμών (x> x T ). Συχνά, ένα αυστηρό όριο είναι πρακτικά μηρεαλιστικό.
20 Διαχείριση Ασάφειας [2/6] μ Α (χ) = μ Α Λογική Πολλαπλών Τιμών 0 χ τ Μια συνάρτηση συσχέτισης ορίζει τη μερική συμμετοχή σε ένα σύνολο. Άρα η μετάβαση από τη μια κατάσταση στην άλλη είναι βαθμιαία και όχι απότομη. Η συνάρτηση συσχέτισης δίνει σε κάθε x μια τιμή από 0 έως 1, υποδηλώνοντας τον βαθμό συσχέτισης. χ Άρα, σε αυτή την περίπτωση απαιτείται ένα εύκαμπτο όριο για τον προσδιορισμό μιας ενδιάμεσης αποτίμησης μεταξύ των αποδεκτών και των μη-αποδεκτών τιμών
21 Διαχείριση Ασάφειας [3/6] Σύνολα (Κλασσικά) Ένα στοιχείο είναι μέλος ή όχι Αληθές ή ψευδές είναι οι μόνες δυνατότητες Ασαφή Σύνολα Ένα αντικείμενο μπορεί να ανήκει μερικώς σε ένα σύνολο Ο βαθμός συμμετοχής στο σύνολο ονομάζεται συνάρτηση συσχέτισης ή συμμετοχής (membership function f(x)) f(x)=0 το αντικείμενο δεν ανήκει στο σύνολο f(x)=1 είναι σίγουρα μέλος του συνόλου Οι υπόλοιπες τιμές για την f(x) δείχνουν το βαθμό συμμετοχής
22 Διαχείριση Ασάφειας [4/6] Η ασαφής λογική είναι μια επέκταση της αριστοτέλειας λογικής Μια πρόταση έχει κάποιο βαθμό αληθείας Δεν είναι απλά αληθής ή ψευδής. Επανάσταση στη θεωρία της λογικής, γιατί ξέφυγε από το μοντέλο του «0-1», «αληθές-ψευδές».
23 Διαχείριση Ασάφειας [5/6] Παράδειγμα Λογικής Πολλαπλών Τιμών Τρεις γλωσσικές τιμές γλωσσικούς όρους: ~ A 1= «Αποδεκτό», A ~ ~ i ( 1 ~ A 2 = «Αποδεκτό υπό όρους», ~ A 3 = «Μη-αποδεκτό». ~ ~ A, A 2 και A 3 ) ορίζουν την συνεισφορά του x στην ΑΑ σε
24 Διαχείριση Ασάφειας [6/6] Οι Γλωσσικές Μεταβλητές διαφέρουν από τις Αριθμητικές διότι οι τιμές τους δεν είναι αριθμοί αλλά λέξεις ή φράσεις (Zadeh 1975) Ορίζονται ως ένα σύνολο γλωσσικών όρων S = { s0, s1,..., sk} Συνάρτηση Συσχέτισης
25 Μοντέλα Αναπαράστασης και Επεξεργασίας [1/6]
26 Μοντέλα Αναπαράστασης και Επεξεργασίας [2/6]
27 Μοντέλα Αναπαράστασης και Επεξεργασίας [3/6] Παράδειγμα σημασιολογίας για σύνολο εννέα όρων: Σ = Σίγουρο = (1, 1, 0, 0) ΠΠ = Πολύ Πιθανό = (0.98, 0.99, 0.05, 0.01) ΑΠ = Αρκετά πιθανό = (0.78, 0.92, 0.06, 0.05) Π = Πιθανό = (0.63, 0.80, 0.05, 0.06) Μ = Μπορεί = (0.41, 0.58, 0.09, 0.07) ΛΠ = Λίγο Πιθανό = (0.22, 0.36, 0.05, 0.06) ΠΛΠ = Πολύ λίγο πιθανό = (0.1, 0.18, 0.06, 0.05) ΠΑ = Πολύ Απίθανο = (0.01, 0.02, 0.01, 0.05) Α = Αδύνατο = (0, 0, 0, 0)
28 Μοντέλα Αναπαράστασης και Επεξεργασίας [4/6] Σύνολο Γλωσσικών Όρων Μορφή: S = {s 0, s 1, s 2,,s n+1 }, n+1 1 Παράδειγμα: S = {s 0 = Καθόλου, s 1 = Πολύ Χαμηλό, s 2 = Χαμηλό, s 3 = Ενδιάμεσο, s 4 = Υψηλό, s 5 = Πολύ Υψηλό, s 6 = Τέλειο} Ιδιότητα: xa xb αν και μόνον αν a b Delgado M et al. (1998)
29 Μοντέλα Αναπαράστασης και Επεξεργασίας [5/6] Σύνολο Γλωσσικών Όρων Πρόσθετα Χαρακτηριστικά: Να υπάρχει ένας αρνητικός τελεστής π.χ. neg(s i ) = s j. j = T i (T + 1 είναι ο αριθμός των στοιχείων). Τελεστής μεγιστοποίησης: max(s i, s j ) = s i αν s i s j. Τελεστής ελαχιστοποίησης: min(s i, s j ) = s i αν s i s j. Δεν ορίζονται οι συνηθισμένες αλγεβρικές πράξεις της πρόσθεσης, αφαίρεσης, πολλαπλασιασμού και διαίρεσης μεταξύ των όρων της. Ορίζονται μόνο πράξεις που αφορούν τη διάταξη όπως π.χ. η max και η min.
30 Μοντέλα Αναπαράστασης και Επεξεργασίας [6/6] Σχετιζόμενες Γλωσσικές Προσεγγίσεις Προσέγγιση Προέκτασης: Σχετικές συναρτήσεις συσχέτισης των γλωσσικών όρων. Πολύπλοκες Πράξεις. Χαμηλή «διακριτότητα» εναλλακτικών S n F app1 F( R) (.) S Συμβολική Προσέγγιση: Άμεσος υπολογισμός στις ετικέτες των γλωσσικών όρων, χωρίς να είναι απαραίτητη η χρήση των συναρτήσεων συσχέτισης. Χαμηλή «διακριτότητα» στα αποτελέσματα. S n C app2 (.) [0, g] {0,..., g} S Προσέγγιση Διπλής Αναπαράστασης: Ικανή προσέγγιση αναπαράστασης και επεξεργασίας της ασαφούς πληροφορίας (, α) s i Herrera F, Martinez L. (2000)
31 Φιλοσοφία Προσέγγιση Προέκτασης [1/5] Herrera F, Martinez L. (1999) Μετατροπή αριθμητικών τιμών σε ασαφή σύνολα Αλγεβρικές πράξεις Απώλεια πληροφορίας Herrera F et al (2009)
32 Προσέγγιση Προέκτασης [2/5] Παράδειγμα (1/4) Η συνάρτηση συσχέτισης για την αναπαράσταση των γλωσσικών μεταβλητών είναι τριγωνικής μορφής, δηλαδή S i = ( ai, bi, ci ), όπου το a είναι το αριστερό όριο, το i c είναι το i δεξιό όριο και το b i η τιμή που η συνάρτηση παίρνει την μέγιστη τιμή δηλαδή το 1.
33 Προσέγγιση Προέκτασης [3/5] Παράδειγμα (2/4) S= {N, VL, L, M, H, VH, P}, όπου: P = Perfect = (.83, 1, 1) VH = Very_High = (.67,.83, 1) H = High = (.5,.67,.83) M = Medium = (.33,.5,.67) L = Low = (.17,.33,.5) VL = Very_Low = (0,.17,.33) N = None = (0, 0,.17)
34 Προσέγγιση Προέκτασης [4/5] Παράδειγμα (3/4) x 1 x 2 x 3 x 4 P 1 VL M M L P 2 M L VL H P 3 H VL M M P 4 H H L L C = (1/ m a,1/ m b,1/ m c ) d j m i= 1 ij m i= 1 ij m ( si, C j ) = Q1 ( a1 a j ) + Q2 ( b1 b j ) + Q3 ( c1 c j ) i= 1 ij
35 Προσέγγιση Προέκτασης [5/5] Παράδειγμα (4/4) Εγγύτερος όρος με βάση το app 1 C 2 Το app 1 (.) επιλέγει το s * i (app 1 (C j)= s * i ), έτσι ώστε, d(s * i, C j) d(s i, C j ) s i S
36 Φιλοσοφία Συμβολική Προσέγγιση [1/4] C είναι ο τελεστής συμβολικής γλωσσολογικής προσέγγισης, app 2 ( ) είναι η συνάρτηση γλωσσικής προσέγγισης που χρησιμοποιείται για να προκύψει ένας δείκτης {0,,g} σχετιζόμενος με έναν όρο στο S = {s 0,,s g } από μία τιμή στο [0,g]. Herrera F, Martinez L. (1999)
37 Συμβολική Προσέγγιση [2/4] Διαδικασία LOWA Herrera F, Herrera-Viedma E. (2000)
38 Συμβολική Προσέγγιση [3/4] Διαδικασία - LOWA Αν m = 2, τότε ορίζεται ως εξής: β 2 { w i, b i, i = 1,2} = w 1 s j + (1- w 1 ) s i = s k, s j, s i E S(j i), έτσι ώστε k = min{t, i + round(w i (j i))}, όπου: round είναι η συνηθισμένη λειτουργία στρογγυλοποίησης. b 1 = s j, b 2 = s i. Αν w j =1 και w i =0 με j i για κάθε i τότε ο κυρτός συνδυασμός ορίζεται ως: β m { w i, b i, i = 1,,m} = b j Herrera F, Herrera-Viedma E. (2000)
39 Συμβολική Προσέγγιση [4/4] Ποσοτικοποιητής LOWA Most (0.3, 0.8), At least half (0, 0.5), As many as possible (0.5, 1) x x x Most At least half As many as possible Ποσοτικοποιητής LOWA Yager RR. (1988)
40 Προσέγγιση Διπλής Αναπαράστασης [1/4] «2-tuple» Έστω S = {s 0,, s g } ένα γλωσσικό σύνολο όρων Έστω β το αποτέλεσμα μιας συμβολικής άθροισης, ενός συνόλου γλωσσικών όρων που έχουν εκφραστεί σε μια γλωσσική κλίμακα S όπου β [0, g] Έστω i=round(β) και a=β i δύο τιμές τέτοιες ώστε i [0, g] και a [ 0.5, 0.5) Το μοντέλο γλωσσικής αναπαράστασης αναπαριστά τη γλωσσική πληροφορία με ζεύγη διπλών αναπαραστάσεων (s i, a i ) s S και a [ 0.5, 0.5) i i Το s i αντιπροσωπεύει την γλωσσική προέλευση της πληροφορίας Το α i αποτελεί μια αριθμητική τιμή, η οποία εκφράζει την απόδοση της μετάφρασης από το αρχικό αποτέλεσμα β στο πλησιέστερο όρο i στο σύνολο γλωσσικών στοιχείων (s i ). Herrera F, Martinez L. (2000)
41 Προσέγγιση Διπλής Αναπαράστασης [2/4] Μετασχηματισμός Συναρτήσεις μετασχηματισμού ανάμεσα στους γλωσσικούς όρους και τη διπλή αναπαράσταση και ανάμεσα στις αριθμητικές τιμές και τη διπλή αναπαράσταση: Δ:[0,g] S [-0.5,0.5) si, i = round( β) Δ(β)=(s i,a) με a = β i, a [ 0.5,0.5) όπου i=round(β) και a i [ 0.5, 0.5) Υπάρχει πάντα μια συνάρτηση Δ -1, τέτοια ώστε από τη διπλή αναπαράσταση επιστρέφει την ισοδύναμη αριθμητική τιμή β [0, g] R Έτσι, ορίζεται η παρακάτω συνάρτηση: -1 Δ : S [ 0.5, 0.5) [0, g] -1 Δ (s i,a)=i+a=β Herrera F, Martinez L. (2000)
42 Προσέγγιση Διπλής Αναπαράστασης [2/4] Παραδείγματα β=3.25
43 Προσέγγιση Διπλής Αναπαράστασης [2/4] Αριθμητικός Μέσος Σταθμισμένος Μέσος
44 Προσέγγιση Διπλής Αναπαράστασης [3/4] 2-tuple LOWA Έστω A = {( r1, a1),...,( rm, am) } ένα σύνολο από διπλές αναπαραστάσεις που πρέπει να συναθροιστούν Το διάνυσμα άθροισης για τη διπλή αναπαράσταση ορίζεται ως: EC m {w i, (r σ(j), a σ(j) ), j=1, m} = Δ(w 1 Δ -1 (r σ(1), a σ(1) ) + (1-w 1 ) Δ -1 (EC m-1 {η h, (r σ(h), a σ(h) ), h =2,,m}), όπου: {r σ(j), a σ(j) } {r σ(i), a σ(i) }, i j m η = w w h h k 2 και W=[w 1,...,w m ] το διάνυσμα βαρών. Με βάση τα παραπάνω, οι υπολογισμοί γίνονται ως ακολούθως m m 1 i σ( j) σ( j) = = i σ() i σ() i = iβσ() i 1 1 m EC { w,( r, a ), j 1,..., m} ( w (( r, a ))) ( w ) Herrera F, Martinez L. (2000)
45 Προσέγγιση Διπλής Αναπαράστασης [4/4] 2-tuple LOWA Με αυτόν τον τρόπο οι υπολογισμοί ελαχιστοποιούνται. Έτσι, ο τελεστής LOWA διπλής αναπαράστασης ορίζεται ως εξής: Εάν A = {(r 1, a 1 ),, (r m, a m )} ένα σετ διπλών αναπαραστάσεων που πρέπει να συναθροιστούν, τότε ο αντίστοιχος τελεστής του LOWA, Φe, ορίζεται ως ακολούθως: Φ e [(r 1, a 1 ),, (r m, a m )] = W B T = EC m {w i, (r σ(i), a σ(i) ), i=1, m} 2-tuple LOWA Application Doukas et al., European Journal of Operational Research (2007)
46 Αξιολόγηση [1/2] Προσέγγιση Προέκτασης Συμβολική Προσέγγιση Μοντέλο Διπλής Αναπαράστασης x 1 M M (M, 0.00) x 2 M M (M, -0.50) x 3 L L (L, 0.25) x 4 M M (M, -0.25)
47 Αξιολόγηση [2/2] Προέκταση Συμβολική Διπλή Αναπαράσταση Συμβατότητα ΥΨΗΛΗ ΥΨΗΛΗ ΥΨΗΛΗ Συνέπεια ΥΨΗΛΗ ΥΨΗΛΗ ΥΨΗΛΗ Ακρίβεια ΧΑΜΗΛΗ ΧΑΜΗΛΗ ΥΨΗΛΗ
ΠΟΛΥΚΡΙΤΗΡΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΠΟΦΑΣΕΩΝ
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης ΠΟΛΥΚΡΙΤΗΡΙΑ
ΠΟΛΥΚΡΙΤΗΡΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΠΟΦΑΣΕΩΝ. Χάρης ούκας, Πάνος Ξυδώνας, Ιωάννης Ψαρράς
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και ιοίκησης ΠΟΛΥΚΡΙΤΗΡΙΑ
ΠΟΛΥΚΡΙΤΗΡΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΠΟΦΑΣΕΩΝ. Χάρης Δούκας, Πάνος Ξυδώνας, Ιωάννης Ψαρράς
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης ΠΟΛΥΚΡΙΤΗΡΙΑ
ΧΡΗΣΗ ΓΛΩΣΣΙΚΩΝ ΜΕΤΑΒΛΗΤΩΝ ΣΕ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΕΝΕΡΓΕΙΑΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Μάθημα: ιαχείριση Ενέργειας και Περιβαλλοντική Πολιτική
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και ιοίκησης ΧΡΗΣΗ ΓΛΩΣΣΙΚΩΝ
ΔΙΑΧΕΙΡΙΣΗ ΓΛΩΣΣΙΚΩΝ ΜΕΤΑΒΛΗΤΩΝ. Πολυκριτήρια Ανάλυση Αποφάσεων
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης ΔΙΑΧΕΙΡΙΣΗ
ΠΟΛΥΚΡΙΤΗΡΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΠΟΦΑΣΕΩΝ. Χάρης Δούκας, Πάνος Ξυδώνας, Ιωάννης Ψαρράς
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης ΠΟΛΥΚΡΙΤΗΡΙΑ
Μοντέλα και Τεχνικές Αξιολόγησης. Ενεργειακών και Περιβαλλοντικών Πολιτικών
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης Μοντέλα
Χάραξης Ενεργειακών και Περιβαλλοντικών Πολιτικών
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης Υποστήριξη
ΔΙΑΧΕΙΡΙΣΗ ΕΤΕΡΟΓΕΝΩΝ ΜΕΤΑΒΛΗΤΩΝ. Πολυκριτήρια Ανάλυση Αποφάσεων
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης ΔΙΑΧΕΙΡΙΣΗ
Πολυκριτήρια ανάλυση με γλωσσικές μεταβλητές για την υποστήριξη αποφάσεων ενεργειακής πολιτικής: Επισκόπηση μεθοδολογιών και ανάλυση εφαρμογών
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Πολυκριτήρια ανάλυση με γλωσσικές μεταβλητές
Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλ. Βιομηχανικών Διατάξεων & Συστημάτων Αποφάσεων Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων E02 Πολυκριτήρια
ΔΙΑΧΕΙΡΙΣΗΣ ΕΤΕΡΟΓΕΝΩΝ ΜΕΤΑΒΛΗΤΩΝ ΣΤΗΝ ΠΟΛΥΚΡΙΤΗΡΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΠΟΦΑΣΕΩΝ
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης ΔΙΑΧΕΙΡΙΣΗΣ
Ασαφής Λογική (Fuzzy Logic)
Ασαφής Λογική (Fuzzy Logic) Ασάφεια: έννοια που σχετίζεται με την ποσοτικοποίηση της πληροφορίας και οφείλεται κυρίως σε μη-ακριβή (imprecise) δεδομένα. Π.χ. "Ο Νίκος είναι ψηλός": δεν προσδιορίζεται με
Πολυκριτήρια Ανάλυση Αποφάσεων
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης TOPSIS
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Ασάφεια (Fuzziness) Ποσοτικοποίηση της ποιοτικής πληροφορίας Οφείλεται κυρίως
Βασικές Έννοιες Ασαφών Συνόλων
Ασάφεια (Fuzziness) Έννοια που σχετίζεται με την ποσοτικοποίηση της πληροφορίας και οφείλεται κυρίως σε μη-ακριβή (imprecise) δεδομένα. "Ο Νίκος είναι ψηλός Το πρόβλημα οφείλεται στην αντίληψη που έχει
ΑΣΑΦΗΣ ΛΟΓΙΚΗ. Οικονόμου Παναγιώτης Δρ. Ε. Παπαγεωργίου 1
ΑΣΑΦΗΣ ΛΟΓΙΚΗ Ασαφή Σύνολα Συναρτήσεις Συμμετοχής Λεκτικοί Κανόνες Πράξεις Ασαφών Συνόλων Ασαφής Συνεπαγωγές Αποασαφοποίηση Παραδείγματα Ασαφών Συστημάτων Οικονόμου Παναγιώτης 1 Ασάφεια Έννοια που σχετίζεται
ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #3: Αρχή της Επέκτασης - Ασαφείς Σχέσεις. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #3: Αρχή της Επέκτασης - Ασαφείς Σχέσεις Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης
ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH
ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα
ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #11: Ασαφής Αριθμητική. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #11: Ασαφής Αριθμητική Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό
Κεφάλαιο 14. Ασάφεια. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου
Κεφάλαιο 4 Ασάφεια Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Ασάφεια (Fuzziness) Έννοια που σχετίζεται µε την ποσοτικοποίηση της πληροφορίας και
ΜΕΘΟΔΟΣ NAIADE ΑΞΙΟΛΟΓΗΣΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΤΟΥ ΧΩΡΟΥ ΠΟΛΥΚΡΙΤΗΡΙΑΚΗ ΑΞΙΟΛΟΓΗΣΗ. Υπεύθυνη Μαθήματος Αναστασία Στρατηγέα Αναπλ. Καθηγ. Ε.Μ.Π.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΑΞΙΟΛΟΓΗΣΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΤΟΥ ΧΩΡΟΥ ΠΟΛΥΚΡΙΤΗΡΙΑΚΗ ΑΞΙΟΛΟΓΗΣΗ ΜΕΘΟΔΟΣ NAIADE Υπεύθυνη Μαθήματος
ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #5: Ασαφής Συλλογισμός. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #5: Ασαφής Συλλογισμός Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH
ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα
ΑΝΑΝΕΩΣΙΜΕΣΠΗΓΕΣΕΝΕΡΓΕΙΑΣ ΚΡΟΥΣΤΑΛΛΑΚΗ ΜΑΡΙΑ
ΑΝΑΝΕΩΣΙΜΕΣΠΗΓΕΣΕΝΕΡΓΕΙΑΣ ΚΡΟΥΣΤΑΛΛΑΚΗ ΜΑΡΙΑ ΟιΑνανεώσιμεςΠηγέςΕνέργειας (ΑΠΕ) είναι πηγέςτααποθέματατωνοποίωνανανεώνονται φυσικά, καιοιοποίεςσυνεπώςθεωρούνται πρακτικάανεξάντλητες. Στηνκατηγορίααυτή,
«Εθνικός Οδικός Χάρτης Προσόντων»
Κατάρτιση και πιστοποίηση επαγγελματικών προσόντων των εργατοτεχνιτών του κατασκευαστικού κλάδου σε θέματα Ενεργειακής Αποδοτικότητας «Εθνικός Οδικός Χάρτης Προσόντων» Χάρης Δούκας, Επίκ. Καθηγητής Διήμερο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ιδάσκων:
ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΒΑΡΩΝ SIMOS - ROC. Χάρης Δούκας
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης ΠΡΟΣΔΙΟΡΙΣΜΟΣ
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 3 Ο. Σταθερές-Παράμετροι-Μεταβλητές Αριθμητικοί & Λογικοί Τελεστές Δομή ελέγχου-επιλογής Σύνθετοι έλεγχοι
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 3 Ο Σταθερές-Παράμετροι-Μεταβλητές Αριθμητικοί & Λογικοί Τελεστές Δομή ελέγχου-επιλογής Σύνθετοι έλεγχοι ΣΙΝΑΤΚΑΣ Ι. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ 2010-11 1 Μεταβλητές-Σταθερές-Παράμετροι Τα στοιχεία
ΑΚΑΔΗΜΙΑ ΕΝΕΡΓΕΙΑΣ ΔΙΑΧΕΙΡΙΣΗ ΕΝΕΡΓΕΙΑΣ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ Α ΠΕΡΙΟΔΟΥ Διδάσκων: Ιωάννης Ψαρράς
ΑΚΑΔΗΜΙΑ ΕΝΕΡΓΕΙΑΣ ΔΙΑΧΕΙΡΙΣΗ ΕΝΕΡΓΕΙΑΣ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ Α ΠΕΡΙΟΔΟΥ Διδάσκων: Ιωάννης Ψαρράς 1) Με την ενεργειακή διαχείριση: α) εξασφαλίζονται οι αναγκαίες συνθήκες και υπηρεσίες με μικρή υποβάθμιση της
«Ο κύριος στόχος δεν είναι να ανακαλύψουµε
Η Πολυκριτηριακή αξιολόγηση στη διαδικασία λήψης περιβαλλοντικών αποφάσεων Πολυκριτηριακή ανάλυση «Ο κύριος στόχος δεν είναι να ανακαλύψουµε µια λύση αλλά να δηµιουργήσουµε ή να κατασκευάσουµε κάτι το
ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες
Βασικοί τύποι δεδομένων (Pascal) ΕΠΑ.Λ Αλίμου Γ Πληροφορική Δομημένος Προγραμματισμός (Ε) Σχολ. Ετος Κων/νος Φλώρος
Βασικοί τύποι δεδομένων (Pascal) ΕΠΑ.Λ Αλίμου Γ Πληροφορική Δομημένος Προγραμματισμός (Ε) Σχολ. Ετος 2012-13 Κων/νος Φλώρος Απλοί τύποι δεδομένων Οι τύποι δεδομένων προσδιορίζουν τον τρόπο παράστασης των
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Σημειακή επεξεργασία και μετασχηματισμοί Κατηγορίες μετασχηματισμού εικόνων Σημειακοί μετασχηματισμοί
ΔΠΜΣ: «Τεχνοοικονομικά Συστήματα» Διαχείριση Ενεργειακών Πόρων
ΔΠΜΣ: «Τεχνοοικονομικά Συστήματα» Διαχείριση Ενεργειακών Πόρων 2.9.1 9. Μελέτη Περίπτωσης IΧ: Έργο Εξοικονόμησης Ενέργειας μέσω του ΜΚΑ Καθηγητής Ιωάννης Ψαρράς e-mail: john@epu.ntua.gr Εργαστήριο Συστημάτων
Αξιολόγηση Εναλλακτικών Σεναρίων για την Απανθρακοποίηση του Ενεργειακού Συστήματος
Αξιολόγηση Εναλλακτικών Σεναρίων για την Απανθρακοποίηση του Ενεργειακού Συστήματος Αικατερίνη Παπαποστόλου, Χαρίκλεια Καρακώστα, Χάρης Δούκας, Ιωάννης Ψαρράς Περιεχόμενα Εισαγωγή Μεθοδολογικό Πλαίσιο
Λογικός Σχεδιασµός και Σχεδιασµός Η/Υ. ΗΜΥ-210: Εαρινό Εξάµηνο Σκοπός του µαθήµατος. Ψηφιακά Συστήµατα. Περίληψη. Εύρος Τάσης (Voltage(
ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 2005 Σκοπός του µαθήµατος Λογικός Σχεδιασµός και Σχεδιασµός Η/Υ Κεφάλαιο 1: Υπολογιστές και Πληροφορία (1.1-1.2) Βασικές έννοιες & εργαλεία που χρησιµοποιούνται
ΔΠΜΣ: «Τεχνοοικονομικά Συστήματα» Διαχείριση Ενεργειακών Πόρων 1. Εισαγωγή
ΔΠΜΣ: «Τεχνοοικονομικά Συστήματα» Διαχείριση Ενεργειακών Πόρων 1. Εισαγωγή Καθηγητής Ιωάννης Ψαρράς e-mail: john@epu.ntua.gr Εργαστήριο Συστημάτων Αποφάσεων & Διοίκησης - Σχολή Ηλεκτρολόγων Μηχανικών &
Η δράση BUILD UP Skills UPSWING Σύνδεση με τον "Εθνικό Οδικό Χάρτη Προσόντων
Κατάρτιση και πιστοποίηση επαγγελματικών προσόντων των εργατοτεχνιτών του κατασκευαστικού κλάδου σε θέματα Ενεργειακής Αποδοτικότητας Η δράση BUILD UP Skills UPSWING Σύνδεση με τον "Εθνικό Οδικό Χάρτη
ΚΕΦΑΛΑΙΟ 1. Ασαφή Συστήματα. 1.1 Ασαφή Σύνολα. x A. 1, x
ΚΕΦΑΛΑΙΟ 1 Ασαφή Συστήματα Η τεχνολογική πρόοδος των τελευταίων ετών επέβαλλε τη δημιουργία συστημάτων ικανών να εκτελέσουν προσεγγιστικούς συλλογισμούς, παρόμοιους με αυτούς του ανθρώπινου εγκέφαλου.
1/12/2016. Πλεονεκτήματα. Μειονεκτήματα. (Roy, 1994)
Πολυκριτηριακή Ανάλυση και Λήψη Αποφάσεων Δ. Καλιαμπάκος -Δ. Δαμίγος μγ Πολυκριτηριακή ανάλυση «Ο κύριος στόχος δεν είναι να ανακαλύψουμε μια λύση αλλά να δημιουργήσουμε ή να κατασκευάσουμε κάτι το οποίο
Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1
Συστήματα αρίθμησης Δεκαδικό σύστημα αρίθμησης 1402 = 1000 + 400 +2 =1*10 3 + 4*10 2 + 0*10 1 + 2*10 0 Γενικά σε ένα σύστημα αρίθμησης με βάση το b N, ένας ακέραιος αριθμός με n ψηφία παριστάνεται ως:
1. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ
. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ. Μέγιστα και Ελάχιστα Συναρτήσεων Χωρίς Περιορισμούς Συναρτήσεις μιας Μεταβλητής Εστω f ( x) είναι συνάρτηση μιας μόνο μεταβλητής. Εστω επίσης ότι x είναι ένα σημείο στο πεδίο ορισμού
Διαχείριση Περιβάλλοντος - Νομοθεσία
Διαχείριση Περιβάλλοντος - Νομοθεσία Ενότητα 3: Πολυκριτηριακή Ανάλυση και Λήψη Αποφάσεων Δ. Καλιαμπάκος - Δ. Δαμίγος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΛΥΣΕΙΣ AΣΚΗΣΕΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο
ΛΥΣΕΙΣ ΣΚΗΣΕΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Άσκηση (α) Οι συνορθωμένες συντεταγμένες του σημείου P είναι: ˆ 358.47 m, ˆ 4.46 m (β) Η a-psteriri εκτίμηση της μεταβλητότητας
Η ασάφεια και τα Ασαφή Σύνολα ρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Εισαγωγή Η έννοια του ασαφούς συνόλου εισήχθη από τον Zadeh το 1965 και δηµιούργησε πραγµατική
Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή
Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΧΑΛΚΙ ΑΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΧΑΛΚΙ ΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ ΕΡΕΥΝΩΝ ΕΝΕΡΓΕΙΑΚΕΣ ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΦΑΝΗ Γ. ΛΑΥΡΕΝΤΗ Ο ΗΓΙΑ ΕΝΕΡΓΕΙΑΚΗΣ ΑΠΟ ΟΣΗΣ ΚΤΗΡΙΩΝ Στόχοι
Διαχείριση της Ενέργειας
Διαχείριση της Ενέργειας Ιωάννης Ψαρράς, Καθηγητής ΕΜΠ Χρυσόστομος Δούκας, Λέκτορα ΕΜΠ ΑΚΑΔΗΜΙΑΣ ΕΝΕΡΓΕΙΑΣ Κυριακή 7 Ιουλίου 2013 06 25 Ξενοδοχείο Stanley Στόχος του μαθήματος Να συνεισφέρει στη γόνιμη
Αριθμητική Ανάλυση & Εφαρμογές
Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου
Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ
Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 Αριθμητικές Πράξεις σε Ακέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση Ο πολλαπλασιασμός
Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Προϋποθέσεις Εφαρμογής
Λήψη αποφάσεων υπό αβεβαιότητα
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΕΧΝΟΟΙΚΟΝΟΜΙΚΑ Λήψη αποφάσεων υπό αβεβαιότητα ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΟΙΚΗΣΗΣ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Διαχείριση
Σκοπός. Προγραμματίζοντας τον Arduino ΙΙ Εντολή Εκχώρησης & Εντολές. Συλλογή & Επεξεργασία Δεδομένων. Πρόγραμμα. Εντολές Επεξεργασίας Δεδομένων
Σκοπός Συλλογή & Επεξεργασία Δεδομένων Προγραμματίζοντας τον Arduino ΙΙ Εντολή Εκχώρησης & Εντολές Ελέγχου. Πρόγραμμα Εντολές Επεξεργασίας Δεδομένων Εντολή Εκχώρησης Εντολές Ελέγχου Λογική συνθήκη Εντολή
Αριθμητικά Συστήματα
Αριθμητικά Συστήματα Σε οποιοδήποτε αριθμητικό σύστημα, με βάση τον αριθμό Β, ένας ακέραιος αριθμός με πλήθος ψηφίων ν, εκφράζεται ως ακολούθως: α ν-1 α ν-2 α 1 α 0 = α ν-1 Β ν-1 + α ν-2 Β ν-2 + + α 1
Χάραξης Ενεργειακών και Περιβαλλοντικών Πολιτικών
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης Υποστήριξη
Προγραμματισμός Ι (ΗΥ120)
Προγραμματισμός Ι (ΗΥ120) Διάλεξη 4: Τελεστές Τελεστές: Τελεστής Ανάθεσης 2 Το σύμβολο της ανάθεσης είναι το = Προσοχή: το σύμβολο ελέγχου ισότητας είναι το ==. Η μορφή των προτάσεων ανάθεσης είναι:
ΚΕΦΑΛΑΙΟ 8 Η ΓΛΩΣΣΑ PASCAL
8.1. Εισαγωγή ΚΕΦΑΛΑΙΟ 8 Η ΓΛΩΣΣΑ PACAL Πως προέκυψε η γλώσσα προγραμματισμού Pascal και ποια είναι τα γενικά της χαρακτηριστικά; Σχεδιάστηκε από τον Ελβετό επιστήμονα της Πληροφορικής Nicklaus Wirth to
2. ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
. ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Εισαγωγή Οι κλασσικές μέθοδοι αριστοποίησης βασίζονται κατά κύριο λόγο στο διαφορικό λογισμό. Ο Μαθηματικός Προγραμματισμός ο οποίος περιλαμβάνει τον Γραμμικό Προγραμματισμό
Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα
Θεωρία Δυαδικότητας Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόμενα Παρουσίασης 1. Βασικά Θεωρήματα 2. Παραδείγματα 3. Οικονομική Ερμηνεία
Κ15 Ψηφιακή Λογική Σχεδίαση 2: Δυαδικό Σύστημα / Αναπαραστάσεις
Κ15 Ψηφιακή Λογική Σχεδίαση 2: Δυαδικό Σύστημα / Αναπαραστάσεις Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυαδικό Σύστημα Αρίθμησης Περιεχόμενα 1 Δυαδικό
Περιεχόµενα µαθήµατος
Περιεχόµενα µαθήµατος Λήψη αποφάσεων Ειδικά θέµατα (προγραµµατισµός κι έλεγχος παραγωγής, ανάλυση χρονοσειρών, διαχείριση κι έλεγχος αποθεµάτων, κ.ά.) Ορισµός, στόχοι και µορφές επιχειρήσεων και Χρηµατοοικονοµικά
Εθνικό Σχέδιο Δράσης για τις Ανανεώσιμες Πηγές Ενέργειας
Εθνικό Σχέδιο Δράσης για τις Ανανεώσιμες Πηγές Ενέργειας Το Εθνικό Σχέδιο Δράσης για τις Ανανεώσιμες Πηγές Ενέργειας, εκπονήθηκε στο πλαίσιο εφαρμογής της Ευρωπαϊκής Ενεργειακής Πολιτικής σε σχέση με την
Σχεδιασμός επέκτασης του συστήματος ηλεκτροπαραγωγής με τη χρήση Πολυκριτηριακού Γραμμικού Προγραμματισμού
3ο Πανελλήνιο Επιστημονικό Συνέδριο Χημικής Μηχανικής Αθήνα,, IούνιοςI 200 Σχεδιασμός επέκτασης του συστήματος ηλεκτροπαραγωγής με τη χρήση Πολυκριτηριακού Γραμμικού Προγραμματισμού Γιώργος Μαυρωτάς Δανάη
Θεώρηση πολλαπλών κριτηρίων στη ΔΥΠ (3) Επανάληψη Μέθοδος Promethee II
Θεώρηση πολλαπλών κριτηρίων στη ΔΥΠ (3) Επανάληψη Μέθοδος Promethee II Διαχείριση υδατικών πόρων Ανάγκη σύνθεσης επιστημών Σημερινό μάθημα: έμφαση στη χρήση εννοιών και μεθόδων από την επιχειρησιακή έρευνα
Προγραμματισμός Ι (HY120)
Προγραμματισμός Ι (HY120) #3 τελεστές 1 Σπύρος Λάλης Τελεστής ανάθεσης Το σύμβολο της ανάθεσης είναι το = προσοχή: το σύμβολο ελέγχου ισότητας είναι το == Η μορφή των προτάσεων = 1. Αποτιμάται
Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλ. Βιομηχανικών Διατάξεων & Συστημάτων Αποφάσεων Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων Ε09 Πολυκριτήρια
Αριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές
στους Ηλεκτρονικούς Υπολογιστές http://courseware.mech.ntua.gr/ml23021/ 6 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ E-mail: leo@mail.ntua.gr URL: http://users.ntua.gr/leo 1 Στα προηγούμενα μaθήματα Συστήματα
Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης
Μάθημα 2ο Δρ. Ανέστης Γ. Χατζημιχαηλίδης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2016-2017 Ασαφή Συστήματα 2 Η ασαφής λογική προτάθηκε το 1965 από τον Prof. Lotfi Zadeh
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)
TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών
d dx ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ
ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ α) Η παράγωγος μιας συνάρτησης = f() σε ένα σημείο 0 εκφράζει το ρυθμό μεταβολής της συνάρτησης (ή τον παράγωγο αριθμό) στο σημείο 0. β) Γραφικά, η παράγωγος της συνάρτησης στο σημείο
Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ
Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 Αριθμητικές Πράξεις σε Ακέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση Ο πολλαπλασιασμός
(Γραμμικές) Αναδρομικές Σχέσεις
(Γραμμικές) Αναδρομικές Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης
Στ Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1
Ενδεικτική Οργάνωση Ενοτήτων Στ Τάξη Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1 15 Αρ3.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών Επανάληψη μέχρι το 1 000
Γεννήτριες Συναρτήσεις
Ακολουθίες Γεννήτριες Συναρτήσεις Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ακολουθία: αριθμητική
Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ
Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 ΑριθμητικέςΠράξειςσεΑκέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση Ο πολλαπλασιασμός
Στατιστικοί πίνακες. Δημιουργία κλάσεων
Στατιστικοί πίνακες Δημιουργία κλάσεων Τι είναι οι κλάσεις; Κλάσεις είναι ημιανοικτά διαστήματα της μορφής [α i, b i ), τα οποία είναι ταυτόχρονα και διαδοχικά, έτσι ώστε να μην υπάρχει κάποια τιμή του
Προγραμματισμός I (Θ)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Προγραμματισμός I (Θ) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2017 Δρ. Δημήτρης Βαρσάμης Οκτώβριος
Δύο λόγια από τη συγγραφέα
Δύο λόγια από τη συγγραφέα Τα μαθηματικά ή τα λατρεύεις ή τα μισείς! Για να λατρέψεις κάτι πρέπει να το κατανοήσεις, για τη δεύτερη περίπτωση τα πράγματα μάλλον είναι λίγο πιο απλά. Στόχος αυτού του βιβλίου
Διοίκηση Επιχειρήσεων
10 η Εισήγηση Δημιουργικότητα - Καινοτομία 1 1.Εισαγωγή στη Δημιουργικότητα και την Καινοτομία 2.Δημιουργικό Μάνατζμεντ 3.Καινοτομικό μάνατζμεντ 4.Παραδείγματα δημιουργικότητας και καινοτομίας 2 Δημιουργικότητα
Κεφάλαιο 2. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας. Περιεχόμενα. 2.1 Αριθμητικά Συστήματα. Εισαγωγή
Κεφάλαιο. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας Περιεχόμενα. Αριθμητικά συστήματα. Μετατροπή αριθμών από ένα σύστημα σε άλλο.3 Πράξεις στο δυαδικό σύστημα.4 Πράξεις στο δεκαεξαδικό σύστημα.5
Γραμμικός Προγραμματισμός Μέθοδος Simplex
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση
Ρητή μετατροπή αριθμητικής τιμής σε άλλο τύπο. Τι θα τυπωθεί στον παρακάτω κώδικα;
Ρητή μετατροπή αριθμητικής τιμής σε άλλο τύπο Τι θα τυπωθεί στον παρακάτω κώδικα; Ρητή μετατροπή αριθμητικής τιμής σε άλλο τύπο Τι θα τυπωθεί στον παρακάτω κώδικα; Χωρίς να αλλάξουμε τον τύπο των a,b,
Το πρόγραμμα PROMETHEE. Πολυκριτηριακή διαδικασία λήψης αποφάσεων
Το πρόγραμμα PROMETHEE Πολυκριτηριακή διαδικασία λήψης αποφάσεων Περιεχόμενα ΠΔΛΑ και βελτιστοποίηση Υπεροχή και σύνθεση Πρόβλεψη και περιγραφή Το λογισμικό PROMETHEE Το λογισμικό GAIA Μονοκριτηριακή και
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 6 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ. url:
στους Ηλεκτρονικούς Υπολογιστές 6 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ email: leo@mail.ntua.gr url: http://users.ntua.gr/leo Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Γ ε ν ι κ ό Λ ύ κ ε ι ο Ε λ ε υ θ ε ρ ο ύ π ο λ η ς. Α λ γ ό ρ ι θ μ ο ι
Α λ γ ό ρ ι θ μ ο ι Αριθμητικοί τελεστές Οι αριθμητικοί τελεστές είναι: πρόσθεση, αφαίρεση, πολλαπλασιασμός και διαίρεση +,-,*,/ ύψωση σε δύναμη ^ πηλίκο ακέραιης διαίρεσης δύο ακεραίων αριθμών div υπόλοιπο
Προγραμματισμός Ι (ΗΥ120)
Προγραμματισμός Ι (ΗΥ120) Διάλεξη 4: Τελεστές Τελεστές: Τελεστής Ανάθεσης 2 Το σύμβολο της ανάθεσης είναι το = Προσοχή: το σύμβολο ελέγχου ισότητας είναι το ==. Η μορφή των προτάσεων ανάθεσης είναι:
Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών
Αναπαράσταση Αριθμών Δεκαδικό και Δυαδικό Δεκαδικό σύστημα Δεκαδικό και Δυαδικό Μετατροπή Για τη μετατροπή ενός αριθμού από το δυαδικό σύστημα στο δεκαδικό, πολλαπλασιάζουμε κάθε δυαδικό ψηφίο του αριθμού
Η-Υ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Εργαστήριο 2 Εντολές Εισόδου/Εξόδου Τελεστές. Δρ. Γιώργος Λαμπρινίδης 23/10/2015 Η - Υ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ 1
Η-Υ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Εργαστήριο 2 Εντολές Εισόδου/Εξόδου Τελεστές Δρ. Γιώργος Λαμπρινίδης amprinidis@pharm.uoa.gr 1 Αριθμητικοί Τελεστές + πρόσθεση - αφαίρεση * πολλαπλασιασμός / διαίρεση Προσοχή! Διαίρεση
Μηχανισµοί & Εισαγωγή στο Σχεδιασµό Μηχανών Ακαδηµαϊκό έτος: Ε.Μ.Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 3.
ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ - 3.1 - Cpright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 2012. Με επιφύλαξη παντός δικαιώµατος. All rights reserved. Απαγορεύεται
Εισαγωγή Ιστορική Αναδρομή Μεθοδολογικό Πλαίσιο Προϋποθέσεις εφαρμογής Στόχοι Πρότυπα Αξιολόγησης Κύκλου Ζωής Στάδια
Εισαγωγή Ιστορική Αναδρομή Μεθοδολογικό Πλαίσιο Προϋποθέσεις εφαρμογής Στόχοι Πρότυπα Αξιολόγησης Κύκλου Ζωής Στάδια Εισαγωγή Ιστορική Αναδρομή Σημασία στην ανάλυση ολόκληρου του κύκλου ζωής ενός προϊόντος
3.1 Αριθμητικοί και Λογικοί Τελεστές, Μετατροπές Τύπου (Casting)
Εργαστήριο 3: 3.1 Αριθμητικοί και Λογικοί Τελεστές, Μετατροπές Τύπου (Casting) Η C++, όπως όλες οι γλώσσες προγραμματισμού, χρησιμοποιεί τελεστές για να εκτελέσει τις αριθμητικές και λογικές λειτουργίες.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης και Βέλτιστου Σχεδιασμού Δικτύων - NETMODE
Γεννήτριες Συναρτήσεις
Γεννήτριες Συναρτήσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναπαράσταση Ακολουθιών Ακολουθία:
Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες
Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού
Επιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα 1. Εισαγωγή 2. Γραμμικός Προγραμματισμός 1. Μοντελοποίηση 2. Μέθοδος Simplex 1. Αλγόριθμός Simplex