13 Μέθοδοι υπολογισµού ολοκληρωµάτων Riemann

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "13 Μέθοδοι υπολογισµού ολοκληρωµάτων Riemann"

Transcript

1 3 Μέθοδοι υπολογισµού ολοκληρωµάτων Riemnn 3. Μέθοδος αντικατάστασης ή αλλαγής µεταβλητής Πρόταση 3.. Εστω ότι η u = f (y) είναι συνεχής στο διάστηµα I, η y = g() έχει συνεχή παράγωγο στο διάστηµα Ι και οι τιµές της y = g() περιέχονται στο I (οπότε ορίζεται η σύνθεση z = f (g()) στο I), τότε ισχύει f (g()) g () d = Για το ορισµένο ολοκλήρωµα ισχύει ότι f (y) d y y=g() ( στο I) b f (g()) g () d = g(b) g() f (y) d y (, b στο I) Παράδειγµα d = + d( + ) d = d y d y y= + = ( ln y + c ) y= + = = ln( + ) + c 3. Μέθοδος ολοκλήρωσης κατά µέρη ή κατά παράγοντες Πρόταση 3.3. Αν οι συναρτήσεις y = f () και y = g() είναι συνεχείς συναρτήσεις κι έχουν συνεχή πρώτη παράγωγο στο διάστηµα I, τότε ισχύει f () g () d = f () g() f () g() d y ( στο I) Για το ορισµένο ολοκλήρωµα ισχύει b f () g () d = f (b) g(b) f () g() b f () g() d y (, b στο I) Παράδειγµα 3.4. ln d = ln d () d = ln d (ln ) d = ln d = ln d d = d = ln + c στο διάστηµα (0, + ) 99

2 Παράδειγµα 3.5. π 0 sin d = π 0 d(cos ) d = π cos π + 0 cos 0 + d π 0 d () d cos d = = π + π 0 cos d = π + (sin π sin 0) = π 3.3 Ολοκληρώµατα ϱητών συναρτήσεων Ο υπολογισµός µιας µεγάλης κλάσης ολοκληρωµάτων ανάγεται, µε κατάλληλη αντικατάσταση, στον υπολογισµό του ολοκληρώµατος ϱητών συναρτήσεων της µορφής m m + m m r() d = d. b n n + b n n + + b + b 0 Πρώτο ϐήµα : Αν m n τότε εκτελούµε στην διαίρεση των πολυώνυµων και ϐρίσκουµε πολυώνυµα p() και q() τέτοια ώστε να ισχύει r() = m m + m m b n n + b n n + + b + b 0 = p() + όπου ο ϐαθµός του q() να είναι < n για κάθε. q() b n n + b n n + + b + b 0 Ο υπολογισµός του p() d είναι εύκολος αφού πρόκειται για ολοκλήρωµα πολυωνυµικής συνάρτησης, οπότε ο υπολογισµός του ολοκληρώµατος ανάγεται ουσιαστικά στην περίπτωση που m < n, που περιγράφεται στα ακόλουθα ϐήµατα. εύτερο ϐήµα : Αναλύουµε τον παρονοµαστή σε γινόµενο πρωτοβάθµιων ή δευτεροβάθµιων παραγόντων. Αυτό ισοδυναµεί µε το να ϐρούµε τις ϱίζες του παρονοµαστή το οποίο είναι αρκετά δύσκολο αλλά σε ορισµένες περιπτώσεις είναι εφικτό. Γενικά ισχύει το εξής : Κάθε πολυώνυµο B() = b n n + b n n + + b + b 0 µπορεί να αναλυθεί σε γινόµενο παραγόντων στην µορφή B() = b n n + + b 0 = b n ( ) k ( γ) λ ( ( µ) + ν ) ρ ( ( ϸ) + δ ) τ όπου οι εκθέτες κ,... λ, ρ,..., τ είναι ϕυσικοί αριθµοί µε κ+ +λ+ ρ+ + τ = n και οι αριθµοί ν,..., δ που εµφανίζονται στους δευτεροβάθµιους παράγοντες είναι όλοι > 0. Στην προηγούµενη ανάλυση, οι παράγοντες ( α),..., ( γ) αντιπροσωπεύουν τις πραγµατικές ϱίζες του B() και οι αντίστοιχοι εκθέτες την πολλαπλότητα των ϱιζών. Οι δευτεροβάθµιοι όροι αντιπροσωπεύουν τις µιγαδικές ϱίζες του πολυνωνύµου και οι αντίστοιχοι εκθέτες την πολλαπλότητά τους. Παρατηρείστε ότι οι µιγαδικές ϱίζες εµφανίζονται µε τις συζυγείς τους ( µ) + ν = ( µ i ν)( µ + i ν) 00

3 Επίσης, οι πραγµατικές ϱίζες α,..., γ καθορίζουν τα διαστήµατα στα οποία ορίζεται το αόριστο ολοκλήρωµα που ϑέλουµε να υπολογίσουµε. Είναι τα ανοικτά διαστήµατα µε άκρα τα, α,..., γ, +. Τρίτο ϐήµα : Αναλύουµε την ϱητή συνάρτηση r() σε απλούς λόγους της µορφής ( ) ( ) A r() = + A ( ) + A k Γ + ( ) k γ + Γ ( γ) + Γ k ( γ) ( λ M ( µ) + N M ) ρ( µ) + N ρ + ( µ) + ν (( µ) + ν ) ( ρ E ( ϸ) E ) τ( ϸ) + τ. ( ϸ) + δ (( ϸ) + δ ) τ Οι αριθµοί A, A,..., E τ, τ είναι άγνωστοι που υπολογίζονται ως εξής : Πολλαπλασιάζουµε και τα δυο µέλη της παραπάνω εξίσωσης µε το πολυώνυµο B(). Στα δυο µέλη της εξίσωσης σχηµατίζονται δυο πολυώνυµα ως προς και εξισώνουµε τους συντελεστές των πολυωνύµων µε τον ίδιο ϐαθµό στο. Προκύπτει ένα γραµµικό σύστηµα για τα A, A,..., E τ, τ το οποίο και επιλύουµε. Τέταρτο ϐήµα : Παρατηρώντας τους παραπάνω απλούς λόγους συµπεραίνουµε ότι ο υπολογισµός του ολοκληρώµατος της ϱητής συνάρτησης ανάγεται στον υπολογισµό ολοκληρωµάτων τριών τύπων (I) ( α) d, (II) k µ ( ( µ) + ν ) d, (III) k ( ( µ) + ν ) k d ) Το ολοκλήρωµα τύπου (I) µε την αντικατάσταση y = α, είτε στο ( α, 0) είτε στο (α, + ), ανάγεται στο υπολογισµό ολοκληρώµατος που δίνεται στον πίνακα στην σελίδα 98, και τελικά είναι ( α) d = k k ( ) + c, k k ln + c, k = ) Με παρόµοιο τρόπο αντικαθιστώντας y = ( µ) + ν το ολοκλήρωµα τύπου (II) είναι µ ( ( µ) + ν ) d = k (( µ) + ν ) + c, k k k ln(( µ) + ν ) k + c, k = 3) Το πιο δύσκολο ολοκλήρωµα για να υπολογισθεί είναι το ολοκλήρωµα τύπου (III). Με την αντικατάσταση y = µ ν ανάγεται στο ολοκλήρωµα I k = (y + ) d y. k 0

4 Αν k =, τότε I = rctn y + c Αν k >, παραλείποντας τις λεπτοµέρειες, µε διαδοχικές ολοκληρώσεις κατά παράγοντες καταλήγουµε σε µια αναδροµική σχέση και επαγωγικά ϐρίσκουµε ότι I k = y k (y + ) + k 3 y k (k )(k 4) (y + ) + k (k 3)(k 5) 3 y + (k )(k 4) y + + (k 3)(k 5) (k )(k 4) rctn y + c Παράδειγµα 3.6. Ας υποθέσουµε ότι ϑέλουµε να υπολογίσουµε το αόριστο ολοκλήρωµα d Επειδή ο ϐαθµός του πολυωνύµου στον παρονοµαστή δεν είναι γνήσια µεγαλύτερος από τον ϐαθµό του πολυωνύµου στον αριθµητή, εκτελούµε την διαίρεση των πολυωνύµων και έχουµε ότι 4 = ( ) + ( 4 + ). Συνεπώς = Στην συνέχεια αναλύουµε τον παρονοµαστή σε γινόµενο παραγόντων. Αυτό µπορεί να γίνει εύκολα αν παρατηρήσουµε ότι το πολυώνυµο είναι διτετράγωνης µορφής. Θέτοντας y =, γίνεται y + y το οποίο αναλύεται στην µορφή (y )(y + ), αφού οι ϱίζες του είναι οι,. Άρα Αναλύουµε την ϱητή συνάρτηση 4 + = ( )( + ) = ( )( + )( + ) 4 + = ( )( + )( + ) σε απλούς λόγους των παραγόντων στον παρονοµαστή κι έχουµε ( )( + )( + ) = A + B + + C + D + Πολλαπλασιάζουµε την παραπάνω εξίσωση µε ( )( + )( + ) κι έχουµε = A( + )( + ) + B( )( + ) + (C + D)( + )( ) = (A + B + C) 3 + (A B + D) + ( A + B C) + ( A B D) Οπότε ϑα πρέπει να ισχύει στο σύστηµα A + B + C = 0, A B + D =, A + B C = 0, A B D =. Από την πρώτη και την τρίτη εξίσωση έχουµε ότι ϑα πρέπει C = 0, και 0

5 A + B = 0. Οι υπόλοιπες δυο εξισώσεις, µε A = B, γίνονται B + D =, 4 B D =, που λύνονται εύκολα δίνοντας B = 6 και D = 4 3 και επειδή A = B, τότε και A = 6. Άρα ( )( + )( + ) = Συνεπώς ( d = + ) d = d = + 6 d 6 + d 4 3 στα διαστήµατα (, ), (, ) και (, + ). 4 + d + d = + 6 ln 6 ln + 3 rctn ( ) + c, 3.4 Ολοκληρώµατα ϱητών τριγωνοµετρικών συναρτήσεων Πολλά ολοκληρώµατα συναρτήσεων που είναι ϱητές συναρτήσεις των ϐασικών τριγωνοµετρικών cos και sin µετατρέπονται σε ολοκληρώµατα ϱητών συναρτήσεων (που είδαµε πως αντιµετωπίζονται στη προηγούµενη παράγραφο) µε την αντικατάσταση u = tn ( ). Χρησιµοποιώντας τριγωνοµετρικές ταυτότητες εύκολα αποδεικνύεται ότι µε αυτήν την αντικατάσταση ισχύει ότι cos = u + u, sin = u + u και d u d = + u Παράδειγµα 3.7. Ας υποθέσουµε ότι ϑέλουµε να υπολογίσουµε το αόριστο ολοκλήρωµα sin d Σύµφωνα µε τις παραπάνω αντικαταστάσεις το ολοκλήρωµα µετατρέπεται στο + u sin d = u + u d u = u d u = ln u + c = ln tn ( ) + c σε κάθε διάστηµα (k π, π + k π), k Z. Σηµειώνουµε ότι τα παραπάνω ισχύουν µε την προϋπόθεση ότι ο παρονοµαστής της ϱητής τριγωνοµετρικής συνάρτησης της οποίας το ολοκλήρωµα ϑέλουµε να υπολογίσουµε µηδενίζεται όταν = π, όπως στο παράδειγµα. Αν ο παρανοµαστής µηδενίζεται σε κάποιο άλλο σηµείο 0, τότε µε την αλλαγή µεταβλητής z = 0 π, αναγόµαστε στην προηγούµενη περίπτωση. Η περίπτωση όπου ο παρανοµαστής δεν µηδενίζεται σε κανένα σηµείο τότε η παραπάνω µέθοδος, µε κατάλληλες τροποποιήσεις, µπορεί να εφαρµοσθεί αλλά δεν ϑα µας απασχολήσει εδώ. 03

6 3.5 Ολοκληρώµατα µερικών αλγεβρικών συναρτήσεων Θεωρούµε τα ολοκληρώµατα των ακόλουθων τριών τύπων (I) R(, ) d (II) R(, ) d (III) R(, + ) d όπου µε R(s, t) δηλώνουµε µια ϱητή συνάρτηση ως προς και τα δυο ορίσµατά της. (I) Για το ολοκλήρωµα τύπου (I) το οποίο ορίζεται στο διάστηµα [, ], εκτελούµε πρώτα την αλλαγή µεταβλητής u = +. Αντιστρέφοντας τον µετασχηµατισµό ϐρίσκουµε ότι Επιπλέον έχουµε τις ισότητες = u + u. = u + u d u d = ( + u ) ( u ), οπότε το ολοκλήρωµα (I) ανάγεται στον υπολογισµό ολοκληρώµατος ϱητής συνάρτησης ως προς την µεταβλητή u, που εξετάσαµε σε προηγούµενη παράγραφο. (II) Για το ολοκλήρωµα τύπου (II) στο διάστηµα [, + ) ϑεωρούµε την αλλαγή µεταβλητής u = +. Χρησιµοποιώντας την προηγούµενη σχέση ϐρίσκουµε ότι ισχύουν οι ισότητες = u + u, = u u, d u d = u u οπότε και πάλι αναγόµαστε σε υπολογισµό ολοκληρώµατος ϱητής συνάρτησης ως προς u. Στο διάστηµα (, ] ϑεωρούµε την αλλαγή µεταβλητής για την οποία ισχύουν οι ίδιες σχέσεις ( ) u =. (III) Τέλος για το ολοκλήρωµα τύπου (III) που ορίζεται στο διάστηµα (, + ) ϑεωρούµε την αλλαγή µεταβλητής και τις ισότητες που επάγει u = + + = u u, + = u + u, d u d = u u + οπότε και πάλι αναγόµαστε στον υπολογισµό ολοκληρώµατος ϱητής συνάρτησης ως προς την µεταβλητή u. 04 ( )

7 Με ϐάση την προηγούµενη ανάλυση των τριών τύπων ολοκληρωµάτων µπορούµε να υπολογίσουµε το ολοκλήρωµα µιας γενικής ϱητής συνάρτησης του τύπου R(, α + ϐ + γ) d όπου R(s, t) είναι µια ϱητή συνάρτηση των δυο ορισµάτων της s, t. Γράφουµε το τριώνυµο ως εξής και διακρίνουµε τις παρακάτω περιπτώσεις : ( ) ( α ϐ ) 4α γ ϐ + ϐ + γ = α + + α 4α η) Αν α > 0 και 4αγ ϐ > 0. Τότε µε την αλλαγή µεταβλητής u = α ( ϐ ) 4α γ ϐ + α το ολοκλήρωµα µετατρέπεται στο ( 4α γ ϐ R λ 4αγ ϐ α α + u, α ) 4αγ ϐ u + d u α δηλαδή σε ένα ολοκλήρωµα τύπου (III) που αναλύσαµε προηγουµένως. η) Αν α > 0 και 4αγ ϐ < 0. Τότε µε την αλλαγή µεταβλητής u = α ( ϐ ) + ϐ 4 α γ α το ολοκλήρωµα µετατρέπεται στο ( ϐ 4α γ R λ ) α α + ϐ 4αγ ϐ 4αγ u, α u d u α δηλαδή σε ένα ολοκλήρωµα τύπου (II) της προηγούµενης ανάλυσης. 3η) Αν α < 0 και 4αγ ϐ < 0. Τότε µε την αλλαγή µεταβλητής u = α ( ϐ ) + ϐ 4α γ α το ολοκλήρωµα µετατρέπεται στο ( ϐ 4α γ R λ ) α α ϐ 4αγ ϐ 4αγ u, α u d u α δηλαδή σε ένα ολοκλήρωµα τύπου (I) της προηγούµενης ανάλυσης. Η περίπτωση α < 0 και 4αγ ϐ > 0 αποκλείεται γιατί τότε δεν ορίζεται η συνάρτηση α + ϐ + γ σε κανένα σηµείο του R. Αν τουλάχιστον ένα από τα α, και 4αγ ϐ είναι µηδέν τότε το ολοκλήρωµα ανάγεται στον υπολογισµό απλού ολοκληρώµατος. 05

8 3.6 Ασκήσεις στην ενότητα 3 Ασκηση. Να υπολογισθεί το καθένα από τα ακόλουθα αόριστα ολοκληρώµατα µε κατάλληλη αλλαγή µεταβλητής : ) e) cos d, b) (sin ) 3 e d, f ) sin (cos ) d, c) d, g) 4 e d, d) e+ 4 + d, h) d ln d, e + e d. Απ. ) 3(sin ) /3 +c, b) cos +c c) rctn(e )+c, d) ln ln +c, e) e +c, f ) rcsin( )+c, g) rctn( ) + c, h) rctn(e ) + c. Ασκηση. Να υπολογισθεί το καθένα από τα ακόλουθα αόριστα ολοκληρώµατα µε ολοκλη- ϱώσεις κατά µέλη και αλλαγές µεταβλητής : ) e (sin ) d, b) e d, c) 3 e d, d) e d, e) sin d, f ) ln d, g) rcsin d, h) rccos d, i) (sin ) 4 d, j) (cos ) d, k) (tn ) d, l) ( + ) d, Απ. ) e (cos +sin )+c, b) 4 e ( +)+c, c) e ( +)+c, d) e ( )+c, e) ( ) cos + sin + c, f ) + ln 4 + c, g) + rcsin + c, h) 9 ( + ) + rccos 3 + c, i) 3 sin( ) + sin(4 ) + c, j) ln cos + tn + c, k) + tn + c, l) (+ ) + rctn + c. Ασκηση 3. (α) Θεωρούµε το ακόλουθο αόριστο ολοκλήρωµα I = e sin(b ) d Χρησιµοποιώντας δυο ολοκληρώσεις κατά παράγοντες να αποδειχθεί ότι I = e sin(b ) b e cos(b ) b b I ( + ) I = e ( sin(b ) b cos(b )) + c (ϐ) Με παρόµοιο τρόπο να αποδειχθεί ότι e sin(b ) d = + b e cos(b ) + b + b e sin(b ) + c 06

9 Ασκηση 4. Να υπολογισθούν τα ακόλουθα ολοκληρώµατα ϱητών συναρτήσεων : ) d) d, b) d, e) d, c) Απ. ) 4 + ln + + c, b) ln + ln ( + + ) d, f ) d) rctn + c, e) + rctn( + ) + c, f + ( ) 3 d, + + ( ) 4 d, ln + + c, c) ( ) + ln + c, ) + ( ) 3 + c. Ασκηση 5. Να υπολογισθούν τα ακόλουθα ολοκληρώµατα ϱητών τριγωνοµετρικών συναρτήσεων : ( (cos ) + sin + ) cos + sin ) d, b) d. sin + cos Απ. ) + cos ln tn( ) + c, b) ln cos( ) tn( ) + c. Ασκηση 6. Να υπολογισθούν τα ακόλουθα ολοκληρώµατα : ) d, b) d, c) + d, d) + d, e) + + d, f ) ( )( ) d. ( Απ. ) + rcsin ) ( + c, b) ln + ) + c, ( + + ln + + ) + c, d) ln + + ) + c, c) e) + + ln ( + ) + c, f ) ln c. 07

όπου είναι γνήσια. ρητή συνάρτηση (δηλαδή ο βαθµός του πολυωνύµου υ ( x)

όπου είναι γνήσια. ρητή συνάρτηση (δηλαδή ο βαθµός του πολυωνύµου υ ( x) ΟΛΟΚΛΗΡΩΣΗ ΡΗΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Στην παράγραφο αυτή θα εξετάσουµε την ολοκλήρωση ρητών συναρτήσεων, δηλαδή συναρτήσεων της µορφής p f ( ( q(, όπου p( και q ( είναι πολυώνυµα µιας µεταβλητής του µε συντελεστές

Διαβάστε περισσότερα

12 Το αόριστο ολοκλήρωµα

12 Το αόριστο ολοκλήρωµα Το αόριστο ολοκλήρωµα. Αντιπαράγωγοι Εστω ότι η y = f ( ορίζεται στο διάστηµα I, οποιουδήποτε τύπου. Αν µια δεύτερη συνάρτηση y = F(, που ορίζεται στο ίδιο διάστηµα I, έχει την ιδιότητα F ( = f (, για

Διαβάστε περισσότερα

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ-

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- Κεφάλαιο 4 ΟΛΟΚΛΗΡΩΜΑ 4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- µατα Ορισµός 4.1.1. Αρχική ή παράγουσα συνάρτηση ή αντιπαράγωγος µιας συνάρτησης f(x), x [, b], λέγεται κάθε συνάρτηση F (x) που επαληθεύει

Διαβάστε περισσότερα

ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ 1. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ

ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ 1. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Έστω μια συνάρτηση f ορισμένη σε ένα σύνολο Α. Ένα από τα βασικότερα προβλήματα της Μαθηματικής Ανάλυσης είναι ο προσδιορισμός μιας συνάρτησης F/ A με F = f για κάθε

Διαβάστε περισσότερα

Κεφάλαιο 8 Το αόριστο ολοκλήρωµα

Κεφάλαιο 8 Το αόριστο ολοκλήρωµα Κεφάλαιο 8 Το αόριστο ολοκλήρωµα 8 Θεµελίωση έννοιας αορίστου ολοκληρώµατος Στο 7 0 Κεφάλαιο ορίσαµε την έννοια της αντιπαραγώγου µιας συνάρτησης f σ ένα κλειστό και φραγµένο διάστηµα Γενικότερα Ορισµός

Διαβάστε περισσότερα

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί

Διαβάστε περισσότερα

6 Εφαρµογές των παραγώγων στον υπολογισµό ορίων α- προσδιόριστων µορφών - Κανόνες L Hôpital

6 Εφαρµογές των παραγώγων στον υπολογισµό ορίων α- προσδιόριστων µορφών - Κανόνες L Hôpital 6 Εφαρµογές των παραγώγων στον υπολογισµό ορίων α- προσδιόριστων µορφών - Κανόνες L Hôpital Στην ενότητα αυτή ϑα µελετήσουµε εφαρµογές των παραγώγων συναρτήσεων στον υπολογισµό απροσδιόριστων µορφών ορίων

Διαβάστε περισσότερα

Αόριστο Ολοκλήρωµα ρ. Κωνσταντίνα Παναγιωτίδου

Αόριστο Ολοκλήρωµα ρ. Κωνσταντίνα Παναγιωτίδου Αόριστο Ολοκλήρωµα ρ. Κωνσταντίνα Παναγιωτίδου Ακ. Ετος 2018-2019 Θεωρούµε µια συνάρτηση f : I R, όπου το I είναι διάστηµα του R. Ορισµός Μια συνάρτηση F : I R λέγεται αντιπαράγωγος ή αρχική συνάρτηση

Διαβάστε περισσότερα

2x 2 + x + 1 (x + 3)(x 1) 2 dx, 2x (x + 1) dx. b x 1 + x dx x x 2 1, 6u 5 u 3 + u 2 du = 6u 3 u + 1 du. = u du.

2x 2 + x + 1 (x + 3)(x 1) 2 dx, 2x (x + 1) dx. b x 1 + x dx x x 2 1, 6u 5 u 3 + u 2 du = 6u 3 u + 1 du. = u du. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 8: Τεχνικές ολοκλήρωσης Α Οµάδα. Υπολογίστε τα ακόλουθα ολοκληρώµατα : + + d, + + ( + 3)( ) d, 3 + 3 + 3 + + + d. Υπόδειξη. (α) Γράφουµε + + d

Διαβάστε περισσότερα

ΠΟΛΥΩΝΥΜΙΚΕΣ - ΡΗΤΕΣ ΑΝΙΣΩΣΕΙΣ P x = x+ 2 4 x x 3x x x x 3x

ΠΟΛΥΩΝΥΜΙΚΕΣ - ΡΗΤΕΣ ΑΝΙΣΩΣΕΙΣ P x = x+ 2 4 x x 3x x x x 3x o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ ΠΟΛΥΩΝΥΜΙΚΕΣ - Α ΠΡΟΣΗΜΟ ΠΟΛΥΩΝΥΜΟΥ Μέχρι τώρα ξέρουµε να βρίσκουµε το πρόσηµο ενός πολυωνύµου βαθµού ή δεύτερου βαθµού Για να βρούµε το πρόσηµο ενός πολυωνύµου f πρώτου f βαθµού µεγαλύτερου

Διαβάστε περισσότερα

1.1 ΣΥΝΑΡΤΗΣΕΙΣ. 1. Ορισµός. 2. Συµβολισµός. 3. Επεξήγηση συµβόλων. 4. Γραφική παράσταση της συνάρτησης f : A R

1.1 ΣΥΝΑΡΤΗΣΕΙΣ. 1. Ορισµός. 2. Συµβολισµός. 3. Επεξήγηση συµβόλων. 4. Γραφική παράσταση της συνάρτησης f : A R . ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΩΡΙΑ. Ορισµός Ονοµάζουµε συνάρτηση µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου συνόλου Β. Σηµείωση: Στο εξής θα είναι Α R και

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ 8// Γ ΕΡΓΑΣΙΑ Μαθηµατικά για την Πληροφορική Ι (ΘΕ ΠΛΗ Η ύλη της εργασίας είναι παράγραφοι 6 και 6 από τη Γραµµική Άλγεβρα και Ενότητες,,, από τον Λογισµό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ 12) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 3

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ 12) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 3 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ Άσκηση. ( µον.). Έστω z ο µιγαδικός αριθµός z i, µε, R. (α) ίνεται η εξίσωση: z

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ

ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΘΕΜΑ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ α) Η f ( ) έχει πραγµατικό µέρος φανταστικό µέρος u( x, y) x y = και v( x, y) = ( x + y xy), όπου = x+

Διαβάστε περισσότερα

Ζητείται να µελετηθεί το εν λόγω σύστηµα µε είσοδο βηµατική συνάρτηση δηλαδή () =(). (3)

Ζητείται να µελετηθεί το εν λόγω σύστηµα µε είσοδο βηµατική συνάρτηση δηλαδή () =(). (3) Παράδειγµα 1: Έστω ένα σύστηµα που περιγράφεται από τη διαφορική εξίσωση () +2 () 29 () +42()=() (1) µε µηδενικές αρχικές συνθήκες. (δηλαδή ()(0) = () (0)=()(0)=0) (2) Ζητείται να µελετηθεί το εν λόγω

Διαβάστε περισσότερα

Να γίνουν οι γραφικές παραστάσεις των ακόλουθων συναρτήσεων σε χαρτί µιλιµετρέ αφού πρώτα φτιάξετε τους πίνακες των τιµών τους.

Να γίνουν οι γραφικές παραστάσεις των ακόλουθων συναρτήσεων σε χαρτί µιλιµετρέ αφού πρώτα φτιάξετε τους πίνακες των τιµών τους. Άσκηση. Να γίνουν οι γραφικές παραστάσεις των ακόλουθων συναρτήσεων σε χαρτί µιλιµετρέ αφού πρώτα φτιάξετε τους πίνακες των τιµών τους. α) y, β) y, γ) y, δ) y, ε) y ( ) Να προσδιοριστούν γραφικά και µε

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 8 (λύσεις)

Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 8 (λύσεις) Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 8 (λύσεις) Λουκάς Βλάχος και Μανώλης Πλειώνης Άσκηση : (α) Να υπολογισθεί το γενικευµένο ολοκλήρωµα (x+)(x 2 +) (ϐ) Να υπολογισθεί το ολοκλήρωµα f(x) f(x)+f(x+) για κάθε

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 016-17 1. Τι ονομάζεται αλγεβρική παράσταση; Ονομάζεται κάθε έκφραση που περιέχει πράξεις μεταξύ αριθμών και μεταβλητών.. Τι ονομάζεται αριθμητική τιμή αλγεβρικής

Διαβάστε περισσότερα

14 Εφαρµογές των ολοκληρωµάτων

14 Εφαρµογές των ολοκληρωµάτων 14 Εφαρµογές των ολοκληρωµάτων 14.1 Υπολογισµός εµβαδών µε την µέθοδο των παράλληλων διατοµών Θεωρούµε µια ϕραγµένη επίπεδη επιφάνεια A µε οµαλό σύνορο, δηλαδή που περιγράφεται από µια συνεχή συνάρτηση.

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράγωγος

Κεφάλαιο 6 Παράγωγος Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της

Διαβάστε περισσότερα

Ολοκλήρωμα πραγματικής συνάρτησης

Ολοκλήρωμα πραγματικής συνάρτησης ΚΕΦΑΛΑΙΟ 7 Ολοκλήρωμα πραγματικής συνάρτησης Σύνοψη Το κεφάλαιο αυτό αποτελεί το «πέρασμα» από το Διαφορικό στον Ολοκληρωτικό Λογισμό Η θεμελιώδης έννοια, για το σκοπό αυτό, είναι η αντιπαράγωγος ή αόριστο

Διαβάστε περισσότερα

ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ

ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ Ο κύριος στόχος αυτού του κεφαλαίου είναι να δείξουµε ότι η ολοκλήρωση είναι η αντίστροφη πράξη της παραγώγισης και να δώσουµε τις βασικές µεθόδους υπολογισµού των ολοκληρωµάτων

Διαβάστε περισσότερα

όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x.

όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x. 3 Ορια συναρτήσεων 3. Εισαγωγικές έννοιες. Ας ϑεωρήσουµε την συνάρτηση f () = όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 0: Η γραφική παράσταση της συνάρτησης f () = /. ϕυσικό να αναζητήσουµε την

Διαβάστε περισσότερα

y 1 (x) f(x) W (y 1, y 2 )(x) dx,

y 1 (x) f(x) W (y 1, y 2 )(x) dx, Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 07/1/017 Μέρος 1ο: Μη Ομογενείς Γραμμικές Διαφορικές Εξισώσεις Δεύτερης Τάξης Θεωρούμε τη γραμμική μή-ομογενή διαφορική εξίσωση y + p(x) y + q(x) y = f(x), x

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

Μέθοδοι ολοκλήρωσης. Ολοκληρωτικός Λογισμός μιας μεταβλητής Ι

Μέθοδοι ολοκλήρωσης. Ολοκληρωτικός Λογισμός μιας μεταβλητής Ι Μέθοδοι ολοκλήρωσης Ολοκληρωτικός Λογισμός μιας μεταβλητής Ι (A) Μέθοδος Αντικατάστασης f ( g( )) g '( ) d = f ( u) du Βήμα 1 ο : Αντικαθιστώ u u=g() & du=g ()d ψάχνω το f(u)du Βήμα ο : Ολοκληρώνω ως προς

Διαβάστε περισσότερα

Ολοκλήρωμα πραγματικής συνάρτησης

Ολοκλήρωμα πραγματικής συνάρτησης ΚΕΦΑΛΑΙΟ 7 Ολοκλήρωμα πραγματικής συνάρτησης Ο λογισμός είναι λογικά εσφαλμένος, ωστόσο δίνει σωστά αποτελέσματα, γιατί τα λάθη αλληλοεξουδετερώνονται Αφού κατανοήσουμε το πνεύμα της απειροελάχιστης μεθόδου,

Διαβάστε περισσότερα

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ R - ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ - ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΑΚΟΛΟΥΘΙΑΣ [Κεφ..6: Μη Πεπερασμένο Όριο στο R - Κεφ..7: Όρια Συνάρτησης

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΟΛΟΚΛΗΡΩΣΗΣ. Παρατήρηση: Για να εφαρμόσουμε τον τύπο πρέπει μία από τις δύο συναρτήσεις να είναι ή να την γράψουμε υπό μορφή παραγώγου

ΜΕΘΟΔΟΙ ΟΛΟΚΛΗΡΩΣΗΣ. Παρατήρηση: Για να εφαρμόσουμε τον τύπο πρέπει μία από τις δύο συναρτήσεις να είναι ή να την γράψουμε υπό μορφή παραγώγου ΜΕΘΟΔΟΙ ΟΛΟΚΛΗΡΩΣΗΣ Β. Ολοκλήρωση κατά παράγοντες Γενικά η μέθοδος αυτή εφαρμόζεται όταν έχουμε γινόμενο δύο συναρτήσεων Εκφράζεται με τον τύπο της παραγοντικής ολοκλήρωσης: f()g ()d= f()g() - f ()g()d

Διαβάστε περισσότερα

2.3 Ασκήσεις 19/09/2012

2.3 Ασκήσεις 19/09/2012 . Ασκήσεις 19/09/01 Ασκηση 1. ορισµού της Αν η συνάρτηση f έχει έναν από τους παρακάτω τύπους να ϐρεθεί το πεδίο a) x + x 5 b) x + 1 + x 5 c) tan x d) 1 x 1 tan + sin x x a) Παρατηρούµε ότι η ποσότητα

Διαβάστε περισσότερα

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει 8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y

Διαβάστε περισσότερα

Άσκηση 1. i) α) ============================================================== α > 0. Πρέπει κατ αρχήν να ορίζεται ο λογάριθµος, δηλ.

Άσκηση 1. i) α) ============================================================== α > 0. Πρέπει κατ αρχήν να ορίζεται ο λογάριθµος, δηλ. http://elearn.maths.gr/, maths@maths.gr, Τηλ: 697905 Ενδεικτικές απαντήσεις 4ης Γραπτής Εργασίας ΠΛΗ 007-008: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε

Διαβάστε περισσότερα

Το θεώρηµα πεπλεγµένων συναρτήσεων

Το θεώρηµα πεπλεγµένων συναρτήσεων 57 Το θεώρηµα πεπλεγµένων συναρτήσεων Έστω F : D R R µια ( τουλάχιστον ) C συνάρτηση ορισµένη στο ανοικτό D x, y D F x, y = Ενδιαφερόµαστε για την ύπαρξη µοναδικής και ώστε διαφορίσιµης συνάρτησης f ορισµένης

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ

ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ ΤΥΠΛΓΙ ΜΑΘΗΜΑΤΙΚΩΝ Βασικά σύνολα Σύνολο φυσικών: Í {,,,L} Σύνολο ακεραίων: Æ { L,,,,,, L} Σύνολο ρητών: Q / Æ, ë Æ * ë Άρρητος λέγεται ένας αριθµός που δεν µπορεί να γραφτεί µε τη µορφή κλάσµατος ακεραίων.

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΑΝΟΥΑΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. =. Οι πρώτες µερικές u x y

ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΑΝΟΥΑΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. =. Οι πρώτες µερικές u x y ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΑΝΟΥΑΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Καταρχήν θα µελετήσουµε την συνάρτηση f Η f γράφεται f ( ) = ( x + )( x ) ( x ) ή ακόµα f ( ) = u( x,

Διαβάστε περισσότερα

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville Κεφάλαιο : Προβλήµατα τύπου Stur-Liouvie. Ορισµός προβλήµατος Stur-Liouvie Πολλές τεχνικές επίλυσης µερικών διαφορικών εξισώσεων βασίζονται στην αναγωγή της µερικής διαφορικής εξίσωσης σε συνήθεις διαφορικές

Διαβάστε περισσότερα

( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει

( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει μέρος πρώτο v v 1 v 1 Γενική μορφή πολυωνύμου: ( ) 1 1 Όροι του ( ) v v v P = a v + av 1 + av +... + a + a 1 + a, ν Ν, α ν R Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή. P : a, a, a,...,

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΕΥΤΕΡΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ (ΟΡΙΟ ΚΑΙ ΣΥΝΕΧΕΙΑ)

ΜΑΘΗΜΑ ΕΥΤΕΡΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ (ΟΡΙΟ ΚΑΙ ΣΥΝΕΧΕΙΑ) ΜΑΘΗΜΑ ΕΥΤΕΡΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ (ΟΡΙΟ ΚΑΙ ΣΥΝΕΧΕΙΑ) A. Εύρεση Πεδίου Τιµών Συναρτήσεων ίνεται η συνάρτηση h, h ( ) = 4+, [ 1,4] Να βρεθεί το πεδίο τιµών της συνάρτησης. Η λογική για

Διαβάστε περισσότερα

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα; ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται

Διαβάστε περισσότερα

Σχολικός Σύµβουλος ΠΕ03

Σχολικός Σύµβουλος ΠΕ03 Ασκήσεις Μαθηµατικών Θετικής & Τεχνολογικής Κατεύθυνσης Γ Λυκείου ρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις

Διαβάστε περισσότερα

Κανόνες παραγώγισης ( )

Κανόνες παραγώγισης ( ) 66 Κανόνες παραγώγισης Οι κανόνες παραγώγισης που ισχύουν για συναρτήσεις µιας µεταβλητής, ( παραγώγιση, αθροίσµατος, γινοµένου, πηλίκου και σύνθετων συναρτήσεων ) γενικεύονται και για συναρτήσεις πολλών

Διαβάστε περισσότερα

Λύνοντας ασκήσεις µε αντίστροφες συναρτήσεις ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Εισαγωγή Η αντίστροφη συνάρτηση f µιας αντιστρέψιµης συνάρτησης f είναι

Διαβάστε περισσότερα

.339981043584856.652145154862456.861136311594053.347854845137454.183434642495650.362683783378632.525532409916239.313706645877887

.339981043584856.652145154862456.861136311594053.347854845137454.183434642495650.362683783378632.525532409916239.313706645877887 Ολοκλήρωση κατά Gauss Ενώ στους τύπους Newton-Cotes χρησιµοποιούσαµε τις τιµές της συνάρτησης σε ισαπέχοντα σηµεία, στους τύπους ολοκλήρωσης κατά Gauss τα σηµεία xj και τα βάρη wj επιλέγονται, έτσι ώστε

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Ι Ι ΑΣΚΩΝ : ρ. Χρήστος Βοζίκης

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Ι Ι ΑΣΚΩΝ : ρ. Χρήστος Βοζίκης ΤΜΗΜΑ Β ΕΞΕΤΑΣΤΙΚΗ ΧΕΙΜΕΡΙΝΟΥ ΕΞΑΜΗΝΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΑΚΑ. ΕΤΟΣ - ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τ. Ε. Ι. Σ Ε Ρ Ρ Ω Ν Σέρρες, 7 Φεβρουαρίου ΘΕΜΑ ον ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Ι Ι ΑΣΚΩΝ :

Διαβάστε περισσότερα

Περιεχόμενα μεθόδευση του μαθήματος

Περιεχόμενα μεθόδευση του μαθήματος Περιεχόμενα μεθόδευση του μαθήματος. Πως ορίζεται η έννοια. Το όριο. To f() f() ; f() εφόσον υπάρχει είναι μονοσήμαντα ορισμένο; εξαρτιέται από τα άκρα α, β των ( α, ) και (, β ) ;. Πως ορίζονται τα πλευρικά

Διαβάστε περισσότερα

A N A B P Y T A ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ. 1 (α + β + γ) [(α-β) 2 +(α-γ) 2 +(β-γ) 2 ] και τις υποθέσεις

A N A B P Y T A ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ. 1 (α + β + γ) [(α-β) 2 +(α-γ) 2 +(β-γ) 2 ] και τις υποθέσεις ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ ΑΣΚΗΣΗ η Αν α +β +γ = αβγ και α + β + γ, να δείξετε ότι το πολυώνυμο P()=(α β) +(β γ) + γ α είναι το μηδενικό πολυώνυμο. Από την ταυτότητα του Euler α +β +γ -αβγ = (α + β + γ)[(α-β)

Διαβάστε περισσότερα

Λύνοντας ασκήσεις µε αντίστροφες συναρτήσεις ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Εισαγωγή Η αντίστροφη συνάρτηση µιας αντιστρέψιµης συνάρτησης είναι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο. Πίνακας διερεύνησης της εξίσωσης Εξίσωση: αx 2 +βx+γ=0 (α 0) (Ε) Έχει ΥΟ ρίζες άνισες που δίνονται από τους τύπους x 1,2 =

ΚΕΦΑΛΑΙΟ 4 ο. Πίνακας διερεύνησης της εξίσωσης Εξίσωση: αx 2 +βx+γ=0 (α 0) (Ε) Έχει ΥΟ ρίζες άνισες που δίνονται από τους τύπους x 1,2 = ΕΞΙΩΕΙ-ΑΝΙΩΕΙ ου ΒΑΘΜΟΥ - 38 - ΚΕΦΑΑΙΟ 4 ΚΕΦΑΑΙΟ 4 ο Εξισώσεις - Ανισώσεις β βαθµού 5.1. Μορφή και διερεύνηση της εξίσωσης β βαθµού Άθροισµα και γινόµενο των ριζών της Κάθε εξίσωση β βαθµού πριν τη λύσουµε,

Διαβάστε περισσότερα

Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5

Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5 Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5 Α Σύνολα αριθμών Για τα σύνολα των αριθμών γνωρίζουμε ότι N Z Q R. ) Το N= { 0,,,,... } είναι το σύνολο των φυσικών αριθμών. ) Το Z = { 0, ±, ±, ±,... } είναι το σύνολο

Διαβάστε περισσότερα

Αόριστο Ολοκλήρωμα Μέθοδοι Ολοκλήρωσης

Αόριστο Ολοκλήρωμα Μέθοδοι Ολοκλήρωσης 8 Αόριστο Ολοκλήρωμα Μέθοδοι Ολοκλήρωσης Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισμός Έστω μια συνάρτηση f ορισμένη σε διάστημα Δ. Ονομάζουμε αρχική συνάρτηση ή παράγουσα της f στο Δ, μια συνάρτηση F παραγωγίσιμη

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ηµεροµηνία Αποστολής στον Φοιτητή: 5 Mαίου 8 Ηµεροµηνία Παράδοσης της Εργασίας από

Διαβάστε περισσότερα

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12,

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12, ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ, - Οι παρακάτω λύσεις των ασκήσεων της 6 ης εργασίας που καλύπτει το µεγαλύτερο µέρος της ύλης της θεµατικής ενότητας ΠΛΗ) είναι αρκετά εκτεταµένες καθώς έχει δοθεί αρκετή έµφαση

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008 -6 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 8.doc ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 8 ΘΕΜΑ ο Έστω, α,β, α β και ν α i = βi () β αi α) Να αποδείξετε ότι ο δεν είναι

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07)

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) Επιµέλεια Σηµειώσεων : Βασιλειάδης Γεώργιος Καστοριά, εκέµβριος 2006

Διαβάστε περισσότερα

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 2006

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 2006 ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 006 Θέµα ο. Για την διαφορική εξίσωση + ' =, > 0 α) Να δειχτεί ότι όλες οι λύσεις τέµνουν κάθετα την ευθεία =. β) Να βρεθεί η γενική λύση. γ) Να βρεθεί και να σχεδιαστεί

Διαβάστε περισσότερα

Αριθµητική Ολοκλήρωση

Αριθµητική Ολοκλήρωση Κεφάλαιο 5 Αριθµητική Ολοκλήρωση 5. Εισαγωγή Για τη συντριπτική πλειοψηφία των συναρτήσεων f (x) δεν υπάρχουν ή είναι πολύ δύσχρηστοι οι τύποι της αντιπαραγώγου της f (x), δηλαδή της F(x) η οποία ικανοποιεί

Διαβάστε περισσότερα

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις ενδέκατου φυλλαδίου ασκήσεων.

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις ενδέκατου φυλλαδίου ασκήσεων. Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 8-9. Λύσεις ενδέκατου φυλλαδίου ασκήσεων.. (i) Βρείτε μία παράγουσα της + στο (, + ). Ποιές είναι όλες οι παράγουσες της + στο (, + ); (ii) Βρείτε μία παράγουσα

Διαβάστε περισσότερα

Ανισώσεις Γινόμενο και Ανισώσεις Πηλίκο

Ανισώσεις Γινόμενο και Ανισώσεις Πηλίκο Ανισώσεις Γινόμενο και Ανισώσεις Πηλίκο Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» www.ma8eno.gr Ανισώσεις γινόμενο και ανισώσεις πηλίκο Πρόσημο γινομένου της μορφής P()

Διαβάστε περισσότερα

Το θεώρηµα αντίστροφης απεικόνισης. ) και ακόµη ότι η g f 1 1. g y

Το θεώρηµα αντίστροφης απεικόνισης. ) και ακόµη ότι η g f 1 1. g y 5 Έστω Το θεώρηµα αντίστροφης απεικόνισης Ι R ανοικτό διάστηµα, : Ι R διαφορίσιµη της κλάσης a Ι : '( a) 0 Τότε από την συνέχεια της ' υπάρχει 0 ' 0 για κάθε ( a δ, a+ δ) δ > :( a δ, a δ) C και + Ι και

Διαβάστε περισσότερα

4.3 Παραδείγµατα στην συνέχεια συναρτήσεων

4.3 Παραδείγµατα στην συνέχεια συναρτήσεων 5. Η συνάρτηση είναι συνεχής στο R. 6. Η συνάρτηση sin είναι συνεχής στο R. 7. Η συνάρτηση cos είναι συνεχής στο R. 8. Η συνάρτηση tan είναι συνεχής σε κάθε R µε k π + π/2, k Z. 9. Η συνάρτηση cotan είναι

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: Οκτωβρίου 005) Η Άσκηση στην εργασία αυτή είναι

Διαβάστε περισσότερα

Εξισώσεις Β βαθμού. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Εξισώσεις Β βαθμού. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» 1 Εξισώσεις Β βαθμού Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» 1 2 Λύση της εξίσωσης αχ 2 +βχ+γ=0, α 0 Εξίσωση δευτέρου βαθμού με έναν άγνωστο ονομάζουμε κάθε εξίσωση που

Διαβάστε περισσότερα

x(t) 2 = e 2 t = e 2t, t > 0

x(t) 2 = e 2 t = e 2t, t > 0 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 216-17 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις σε Σήµατα και Συστήµατα Ασκηση

Διαβάστε περισσότερα

A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ

A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ A. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ d df() = f() = f (), = d d.κλίση ευθείας.μεταβολές 3.(Οριακός) ρυθµός µεταβολής ή παράγωγος 4.Παράγωγοι βασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΠΟΛΥΩΝΥΜΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΚΕΦΑΛΑΙΟ 4ο: ΠΟΛΥΩΝΥΜΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4ο: ΠΟΛΥΩΝΥΜΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ) Copyright 2015 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoocom Αδεια χρήσης 3η Εκδοση, Ιωάννινα, Σεπτέµβριος 2015 Περιεχόµενα 1 ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ

Διαβάστε περισσότερα

ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΗΝ ΕΥΡΕΣΗ ΟΡΙΩΝ

ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΗΝ ΕΥΡΕΣΗ ΟΡΙΩΝ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΗΝ ΕΥΡΕΣΗ ΟΡΙΩΝ o A. Ρητή της μορφής (0/0), με παραγοντοποίηση εμφανίζουμε το (χ-χ ο ) σε αριθμητή και παρονομαστή, απλοποιούμε και στη συνέχεια κάνουμε αντικατάσταση σε ό,τι έμεινε!

Διαβάστε περισσότερα

4 Συνέχεια συνάρτησης

4 Συνέχεια συνάρτησης 4 Συνέχεια συνάρτησης Σε αυτή την ενότητα ϑα µελετήσουµε την έννοια της συνέχειας συνάρτησης. Πιο συγκεκριµένα πότε ϑα λέγεται µια συνάρτηση συνεχής σε ένα σηµείο το οποίο ανήκει στο πεδίο ορισµού της

Διαβάστε περισσότερα

Ε ι σ α γ ω γ ι κ ά Μ α θ η µ α τ ι κ ά. γ ι α Γ Ε Π Α. Λ.

Ε ι σ α γ ω γ ι κ ά Μ α θ η µ α τ ι κ ά. γ ι α Γ Ε Π Α. Λ. Ε ι σ α ω ι κ ά Μ α θ η µ α τ ι κ ά ι α Γ Ε Π Α. Λ. ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ a b a ab b. Τετράωνο αθροίσµατος. Τετράωνο διαφοράς. ιαφορά τετραώνων a b a ab b a b a b a b ΕΞΙΣΩΣΕΙΣ Α' ΒΑΘΜΟΥ Εξίσωση α αθµού

Διαβάστε περισσότερα

Άλγεβρα Γενικής Παιδείας Β Λυκείου 2001

Άλγεβρα Γενικής Παιδείας Β Λυκείου 2001 Άλγεβρα Γενικής Παιδείας Β Λυκείου 00 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα ο Α.. Α.. Έστω η πολυωνυµική εξίσωση α ν x ν + α ν- x ν- +... + α x + α 0 0, µε ακέραιους συντελεστές. Αν ο ακέραιος ρ 0 είναι ρίζα της εξίσωσης,

Διαβάστε περισσότερα

f x = f a + Df a x a + R1 x, a, x U και από τον ορισµό της 1 h f a h f a h a h h a R h a i i j

f x = f a + Df a x a + R1 x, a, x U και από τον ορισµό της 1 h f a h f a h a h h a R h a i i j Το θεώρηµα Tor στις πολλές µεταβλητές Ο σκοπός αυτής της παραγράφου είναι η απόδειξη ενός θεωρήµατος τύπου Tor για συναρτήσεις πολλών µεταβλητών Το θεώρηµα για µια µεταβλητή θα είναι ειδική περίπτωση του

Διαβάστε περισσότερα

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ www.pitetragono.gr Σελίδα. ΔΥΝΑΜΕΙΣ : Ισχύουν οι

Διαβάστε περισσότερα

Α. ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ (ΜΕΡΟΣ Β)

Α. ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ (ΜΕΡΟΣ Β) ΜΑΘΗΜΑ 5 Κεφάλαιο o : Αλγεβρικές Παραστάσεις Υποενότητα.: Κλασµατικές Εξισώσεις Θεµατικές Ενότητες:. Κλασµατικές Εξισώσεις (Μέρος Β). Α. ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ (ΜΕΡΟΣ Β) ΟΡΙΣΜΟΙ Κλασµατική εξίσωση λέγεται

Διαβάστε περισσότερα

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση 8 Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση Υπάρχουν δύο θεµελιώδη αποτελέσµατα που µας βοηθούν να υπολογίζουµε πολλαπλά ολοκληρώµατα Το πρώτο αποτέλεσµα σχετίζεται µε τον υπολογισµό ενός

Διαβάστε περισσότερα

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις ΚΕΦΑΛΑΙΟ 2 Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις 2.1 ΕΙΣΑΓΩΓΗ Όπως έχουµε δει, για να προσδιορίσουµε τις αποκρίσεις ενός κυκλώµατος, πρέπει να λύσουµε ένα σύνολο διαφορικών

Διαβάστε περισσότερα

Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές

Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές 0 Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Για να λύσουμε μια πολυωνυμική εξίσωση P(x) 0 (ή μια πολυωνυμική ανίσωση P(x)

Διαβάστε περισσότερα

f (x) dx = f (x) + c a f (x) f (x) cos 2 (f (x)) f (x) dx = tan(f (x)) + c 1 sin 2 (f (x)) f (x) dx = cot(f (x)) + c e f (x) f (x) dx = e f (x) + c

f (x) dx = f (x) + c a f (x) f (x) cos 2 (f (x)) f (x) dx = tan(f (x)) + c 1 sin 2 (f (x)) f (x) dx = cot(f (x)) + c e f (x) f (x) dx = e f (x) + c Ασκήσεις στα Μαθηματικά Ι Τμήμα Χημ. Μηχανικών ΑΠΘ Μουτάφη Ευαγγελία Θεσσαλονίκη 208-209 Ορισμοί ΤΟ ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ Αντιπαράγωγος συνάρτησης Εστω συνάρτηση f : R, R διάστημα. Αν για τη συνάρτηση F :

Διαβάστε περισσότερα

1 Ορισµός ακολουθίας πραγµατικών αριθµών

1 Ορισµός ακολουθίας πραγµατικών αριθµών ΜΑΣ 02. Απειροστικός Λογισµός Ι Ορισµός ακολουθίας πραγµατικών αριθµών Ορισµός.. Ονοµάζουµε ακολουθία πραγµατικών αριθµών κάθε απεικόνιση του συνόλου N των ϕυσικών αριθµών, στο σύνολο R των πραγµατικών

Διαβάστε περισσότερα

1 Οι πραγµατικοί αριθµοί

1 Οι πραγµατικοί αριθµοί Οι πραγµατικοί αριθµοί. Σύνολα αριθµών Το σύνολο των ϕυσικών αριθµών N = {,, 3,...} Το σύνολο των ακεραίων Z = {... 3,,, 0,,, 3,...}. Οι ακέραιοι διαµερίζονται σε άρτιους και περιττούς ανάλογα αν ένας

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΣΥΝΑΡΤΗΣΕΙΣ Σύνολο τιµών Γραφική παράσταση συνάρτησης Βασικές συναρτήσεις Ισότητα συναρτήσεων Πράξεις µε συναρτήσεις

ΜΑΘΗΜΑ ΣΥΝΑΡΤΗΣΕΙΣ Σύνολο τιµών Γραφική παράσταση συνάρτησης Βασικές συναρτήσεις Ισότητα συναρτήσεων Πράξεις µε συναρτήσεις ΜΑΘΗΜΑ. ΣΥΝΑΡΤΗΣΕΙΣ Σύνολο τιµών Γραφική παράσταση συνάρτησης Βασικές συναρτήσεις Ισότητα συναρτήσεων Πράξεις µε συναρτήσεις Θεωρία Σχόλια Ασκήσεις ΘΕΩΡΙΑ. Ορισµός του συνόλου τιµών, κατάλληλος για τις

Διαβάστε περισσότερα

Α. ΡΗΤΕΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ

Α. ΡΗΤΕΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΜΑΘΗΜΑ 9 Κεφάλαιο o : Αλγεβρικές Παραστάσεις Υποενότητα.9: Ρητές Αλγεβρικές Παραστάσεις. Θεµατικές Ενότητες:. Ρητές Αλγεβρικές Παραστάσεις. Α. ΡΗΤΕΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Ρητή αλγεβρική παράσταση

Διαβάστε περισσότερα

(CLR, κεφάλαιο 32) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier

(CLR, κεφάλαιο 32) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier Ταχύς Μετασχηµατισµός Fourier CLR, κεφάλαιο 3 Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier Ταχύς Μετασχηµατισµός Fourier

Διαβάστε περισσότερα

11 Το ολοκλήρωµα Riemann

11 Το ολοκλήρωµα Riemann Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την

Διαβάστε περισσότερα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα Κεφάλαιο 5 Ιδιοτιµές και Ιδιοδιανύσµατα 5 Ιδιοτιµές και Ιδιοδιανύσµατα Αν ο A είναι ένας n n πίνακας και το x είναι ένα διάνυσµα στον R n, τότε το Ax είναι και αυτό ένα διάνυσµα στον R n Συνήθως δεν υπάρχει

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ . ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Τα σύνολα των αριθμών είναι τα εξής : i. Φυσικοί αριθμοί : 0,,,,......,,,,0,,,,...

Διαβάστε περισσότερα

10 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

10 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ SECTION 0 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 0. Ορισµοί Συνήθης διαφορική εξίσωση (Σ Ε) καλείται µια εξίσωση της µορφής f [y (n), y (n ),..., y'', y', y, x] 0 όπου y', y'',..., y (n ), y (n) είναι οι παράγωγοι

Διαβάστε περισσότερα

3 η δεκάδα θεµάτων επανάληψης

3 η δεκάδα θεµάτων επανάληψης η δεκάδα θεµάτων επανάληψης. Για ποιες τιµές του, αν υπάρχουν, ισχύει κάθε µία από τις ισότητες α. log = log( ) β. log = log γ. log 4 log = Να λυθεί η εξίσωση 4 log ( ) + = 0 6 α) Θα πρέπει > 0 και > 0,

Διαβάστε περισσότερα

1 Οι πραγµατικοί αριθµοί

1 Οι πραγµατικοί αριθµοί 1 Οι πραγµατικοί αριθµοί 1.1 Σύνολα αριθµών Το σύνολο των ϕυσικών αριθµών N = {1, 2, 3,...} Το σύνολο των ακεραίων Z = {... 3, 2, 1, 0, 1, 2, 3,...}. Οι ακέραιοι διαµερίζονται σε άρτιους και περιττούς

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2008 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2008 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 8 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o A Να αποδειχθεί ότι η συνάρτηση f ln, * είναι παραγωγίσιµη στο * και ισχύει: ln Μονάδες Α Πότε µια συνάρτηση f λέµε ότι είναι συνεχής σε

Διαβάστε περισσότερα

4.3 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ

4.3 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ 4.3 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ ΘΕΩΡΙΑ. Πολυωνυµική εξίσωση Λέγεται κάθε εξίσωση της µορφής Ρ(x) = 0, όπου Ρ(x) πολυώνυµο.. Ρίζα πολυωνυµικής εξίσωσης Λέγεται κάθε ρίζα του αντίστοιχου πολυωνύµου.

Διαβάστε περισσότερα

Α) Αν το τριώνυμο έχει δύο ρίζες x 1

Α) Αν το τριώνυμο έχει δύο ρίζες x 1 αν είναι θ < 0, τότε έχουμε πάλι ότι x!. Παράδειγμα 1. Για την ανίσωση x 3 4 έχουμε x 3 4 x 3 4 ή x 3 4 x 7 ή x 1 x (, 1] [7,+ ). Παράδειγμα. Για την ανίσωση x +1 3 έχουμε x +1 3 η x +1 3 x η x 1 η x (,

Διαβάστε περισσότερα

Τελική Εξέταση 10 Φεβρουαρίου 2017 ιάρκεια εξέτασης 2 ώρες και 30 λεπτά

Τελική Εξέταση 10 Φεβρουαρίου 2017 ιάρκεια εξέτασης 2 ώρες και 30 λεπτά Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Αλγεβρικές οµές ΙΙ 1. Εστω ότι R Z 3 [x]. Τελική Εξέταση 10 Φεβρουαρίου 2017 ιάρκεια εξέτασης 2 ώρες 30 λεπτά (αʹ) Να αποδείξετε ότι ο R είναι περιοχή

Διαβάστε περισσότερα

= x. = x1. math60.nb

= x. = x1. math60.nb MH ΓΡΑΜΜΙΚΑ ΑΥΤΟΝΟΜΑ ΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΙΑΣΤΑΣΕΩΝ Χώρος Φάσεων : Επίπεδο (, Φασικές Τροχιές : Επίπεδες µονοπαραµετρικές καµπύλες (t (t χωρίς εγκάρσιες τοµές. Οι φασικές τροχιές µπορούν να υπολογιστούν από

Διαβάστε περισσότερα

1 Οι πραγµατικοί αριθµοί

1 Οι πραγµατικοί αριθµοί 1 Οι πραγµατικοί αριθµοί 1.1 Σύνολα αριθµών Το σύνολο των ϕυσικών αριθµών N = {1, 2, 3,...} Το σύνολο των ακεραίων Z = {... 3, 2, 1, 0, 1, 2, 3,...}. Οι ακέραιοι διαµερίζονται σε άρτιους και περιττούς

Διαβάστε περισσότερα

Βιοµαθηµατικά BIO-156

Βιοµαθηµατικά BIO-156 Βιοµαθηµατικά BIO-56 Ολοκλήρωση Ντίνα Λύκα Εαρινό Εξάµηνο, 08 lik@uo.gr Ορισµός αντιπαραγώγου ή παράγουσας ή αρχικής συνάρτησης Μια συνάρτηση F ονοµάζεται αντιπαράγωγος της σε ένα διάστηµα Ι, αν F' για

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΜΕΘΟ ΟΙ ΣΤΑ ΟΡΙΑ

ΑΣΚΗΣΕΙΣ ΜΕΘΟ ΟΙ ΣΤΑ ΟΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟ ΟΙ ΣΤΑ ΟΡΙΑ Γενικοί κανόνες ταξινόµηση των ορίων Αν και µπορούµε να αντιµετωπίσουµε τα όρια µε έναν ενιαίο τρόπο, θα τα χωρίσουµε σε δύο µεγάλες οµάδες: Οµάδα Α. Όταν, Οµάδα B. Όταν ή Ως

Διαβάστε περισσότερα

4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ

4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ 1 4. ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ ΘΕΩΡΙΑ 1. Η γενική µορφή του τριωνύµου µε µεταβλητή x R i) α x + βx + γ, α 0 ii) β α x + α 4α, α 0. Ειδικές µορφές του τριωνύµου Όταν > 0 τότε α x + βx + γ α(x x 1 )(x x ), όπου

Διαβάστε περισσότερα