1. BRODSKE TOPLINSKE TURBINE

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1. BRODSKE TOPLINSKE TURBINE"

Transcript

1 1. BRODSKE TOPLINSKE TURBINE

2 2. PARNOTURBINSKI POGON Slika 2. Parnoturbinski pogon

3 3. PRINCIP RADA PARNE TURBINE Slika 3. Princip rada parne turbine

4 4. PLINSKOTURBINSKI POGON Slika 4. Plinskoturbinski pogon

5 5. PRINCIP RADA PLINSKE TURBINE Slika 5. Princip rada plinske turbine

6 6. TRADICIONALNI POGON BRODOVA

7 7. INTEGRIRANI POGON BRODOVA

8 8. PRIJENOS SNAGE S PORIVNOG STROJA

9 9. KOMBINIRANI CIKLUSI BRODSKIH POGONA (K-1sat RI) Legenda: CO combinacija pogonskih strojeva D dizelski pogon G plinskoturbinski pogon S parnoturbinski pogon N nuklearni pogon A i O ili X poprečni spoj pogonskog stroja

10 10. CODAD Kombinirano (CO) Dizelski motor (D) i (A) Dizelski motor (D)

11 11. COGAG Kombinirano (CO) Plinska turbina (G) i (A) Plinska turbina (G)

12 12. COGOG Kombinirano (CO) Plinska turbina (G) ili (O) Plinska turbina (G)

13 13. CODOG Kombinirano (CO) Dizelski motor (D) ili (O) Plinska turbina (G)

14 14. CODAG Kombinirano (CO) Dizelski motor (D) i (A) Plinska turbina (G)

15 15. CODLAG Kombinirano (CO) Dizelski motor (D) Električni pogon (L) i (A) Plinska turbina (G)

16 16. CODOGX&CODAGX Kombinirano (CO) Dizelski motor (D) ili (O) Plinska turbina (G) Poprečni spoj (X) Odnosno (&) Kombinirano (CO) Dizelski motor (D) i (A) Plinska turbina (G) Poprečni spoj (X)

17 17. COGAGX Kombinirano (CO) Plinska turbina (G) i (A) Plinska turbina (G) Poprečni spoj (X)

18 18. COGAGX-DX Kombinirano (CO) Plinska turbina (G) i (A) Plinska turbina (G) Poprečni spoj (X) Dizelski motor (D) Poprečni spoj (X)

19 19. STROJARNICA PARNOTURBINSKOG POGONA

20 20. IZGLED TURBINSKOG POGONA 1 ventil za manevriranje - pogon naprijed 2 hidraulički cilindar za ventil 3 prijenos upravljanja ventilom 4 privod pregrijane pare VT turbini 5 VT turbinski rotor 6 VT kućište turbine 7 postolje VT kućišta 8 spojni parovod VT i NT turbine 9 NT turbinski rotor 10 NT kućište turbine 11 privod pare za turbinu za pogon natrag 12 kućište turbine zapogon natrag 13 odvodno kućište pare u kondenzator 14 kondenzator turbina 15 ventil za manevriranje - pogon natrag 16 prednji dio postolja turbina 17 zadnji dio postolja turbina 18 VT fleksibilna spojka 19 VT 1. Pogonski par zupčanika 20 VT 1. Pogonjeni par zupčanika 21 VT 2. Pogonski par zupčanika 22 NT fleksibilna spojka 23 NT 1. Pogonski par zupčanika 24 NT 1. Pogonjeni par zupčanika 25 pogonjeni par zupčanika 26 odrivni ležaj 27 kućište pogonjenog zupčanika 28 prekretni prijenos

21 21. BRODSKA PLINSKA TURBINA

22 22. KONCEPCIJA IZVEDBI PLINSKIH TURBINA (K-2sat RI) godine dostignuta je temperatura ulaznih plinova u turbinu od C (2.600F) godine dostignut je ukupni stupanj djelovanja kombiniranih ciklusa od 60%

23 23. BRODSKE PARNE TURBINE PRINCIP RADA PARNIH TURBINA: toplinska energija pare najprije se pretvori u kinetičku energiju posredstvom sapnice na statorskom dijelu turbine, a potom se posredstvom vođenja pare ili plina kroz zakrivljeni strujni kanal na rotoru turbine (lopatice) izazove sila koja zakreće rotor čije zakretanje rezultira mehaničkom radnjom. Bez obzira na izvor topline, toplinski proces u svim parnim postrojenjima sličan je i naziva se Clausius-Rankineov, a temelji se na Carnotovom kružnom procesu. Toplinski proces u parnim postrojenjima temelji se izvorno na Carnotovom kružnom procesu. Carnotov kružni proces ima najviši termodinamički stupanj djelovanja, no praktično je neostvariv. Ove su nedostatke istovremeno otklonili W. Rankine i R. Clausius predloživši toplinski proces koji se obično naziva Rankineov-Clausiusov proces ili skraćeno RC-proces. Termodinamički stupanj djelovanja RC procesa niži je od Carnotovog, jer se sva toplina ne predaje pri maksimalnoj temperaturi.

24 24. DOVEDENA I ODVEDENA TOPLINA PARI U PARNOTURBINSKOM POGONU PREGRIJAČ h -h 1 1 Dovedena toplina pari u kotlu q d = h z + h i + h p = h 1 -h 4 = q k ISPARIVAČ h -h BUBANJ 2 R (T) (C) u tome je: toplina zagrijavanja napojne vode h z = h 1 -h 4 toplina isparavanja vode h i = h 1 -h 1 ZAGRIJAČ h -h 1 4 (K) 1 q =q d K 4 (P) 3 MORSKA VODA toplina pregrijavanja pare h p = h 1 -h 1 Odvedena toplina pari morskom vodom u kondenzatoru: q K = h 2 -h 3

25 25. TEORETSKI I STVARNI RAD U PARNOJ TURBINI Stvarno dobiveni je rad na osovini turbine: l Tn = h 1 -h A Teoretski raspoloži rad na osovini turbine: l T = h 1 -h 2 l Tn < l T termodinamički stupanj djelovanja turbine: η T = l Tn / l T η T = od 0,85 do 0,90

26 26. JEDINIČNI RADOVI PARNE TURBINE Jedinični rad parne turbine u stvarnom procesu s trenjem i uzimajući u obzir utošeni rad napojne pumpe, iznosi: l Tn =(h 1 -h A )-(h D -h 3 ) l Tn Jedinični rad parne turbine u teoretskom procesu bez trenja i uzimajući u obzir utošeni rad napojne pumpe bez trenja, iznosi: l=(h 1 -h2)-(h 4 -h 3 ) l T

27 27. TERMODINAMIČKI STUPNJEVI DJELOVANJA PARNOTURBINSKOG PROCESA Termodinamički stupanj djelovanja teoretskog (povratljivog) toplinskog procesa iznosi (zanemari li se rad napojne pumpe): η t = l T / q d Termodinamički stupanj djelovanja stvarnog (nepovratljivog) toplinskog procesa iznosi: η tn = l Tn / q d = η t η T = η u Dio topline, koji se u stvarnom procesu preobrazi u mehanički rad na osovini turbine, definira se kao unutarnji termodinamički stupanj djelovanja toplinskog procesa(η u ).

28 28. MEHANIČKI STUPANJ DJELOVANJA PARNOTURBINSKOG POGONA (6 sat RI ) Raspoloživi rad l Tn turbine prije rekuktora je umanjen za gubitke trenja pokretnih dijelova turbine. Stvarno raspoloživi rad prije reduktora iznosi l Tm. Odnos stvarno raspoloživog rada prije reduktora i raspoloživog rada turbine predstavlja mehanički stupanj djelovanja : η m = l Tm /l Tn

29 29. STUPANJ DJELOVANJA REDUKTORA PARNOTURBINSKOG POGONA Dio mehaničkog rada koji turbina na osovini predaje reduktoru i propeleru l Tm troši se za savladavanje gubitaka u reduktoru i kućištima. Stvarni rad na propeleru iznosi l r. Omjer mehaničkog rada na propeleru l r i mehaničkog rada na osovini turbine predanog reduktoru l Tm predstavlja stupanj djelovanja reduktora: η r = l r / l Tm

30 30. EFEKTIVNI STUPANJ DJELOVANJA PARNOTURBINSKOG POGONA Efektivni stupanj djelovanja parnoturbinskog brodskog pogona η e iznosi: ili η e = η t η T η m η r η e = η u η m η r Efektivni stupanj djelovanja parnoturbinskog pogona predstvalja omjer snage u (W) na propeleru P r i ukupne dovedene topline pari u parnom kotlu Q d u J/s η e = P r /Q d = l r / q d

31 31. UKUPNI STUPANJ DJELOVANJA PARNOTURBINSKOG POGONA Ukupni stupanj djelovanja parnoturbinskog pogona: η = η e η K η c gdje je: η K toplinski stupanj djelovanja kotla (od 0,90 do 0,93) η c stupanj djelovanja cjevovoda (od 0,97 do 0,98).

32 32. IZRAČUN POTROŠNJE GORIVA PARNOTURBINSKOG POGONA Potrošnja goriva za parnoturbinski pogon iznosi: Q g = P r / η gdje je: Q g = Q d /(η K η C ) P r = D g H d η gdje je: P r W Raspoloživa snaga na osovini propelera D g kg/s masena potrošnja goriva u kotlu H d J/kg ogrjevna moć goriva η ukupni stupanj djelovanja parnoturbinskog pogona

33 33. IZRAČUN SPECIFIČNE POTROŠNJE GORIVA PARNOTURBINSKOG POGONA (NASTAVAK) Iz bilance toplina: D g H d = P r / η d g = D g / P r = 1 / ( H d η) kg/ws d g = D g / P r = 3, / ( H d η) kg/kwh Za usporedbu specifične potrošnje krutog goriva za parnoturbinska postrojenja na kopnu (elektrane i toplane) koriste se računski ekvivalentna goriva, npr. ekvivalentni ugljen ogrjevne moći 29, J/kg, pa je specifična potrošnja ekvivalentnog ugljena d g = D g / P r = 3, / (29, η) = 0,1228/η kg/kwh Ogrjevna moć ekvivalentog tekućeg goriva iznosi H d = 41, J/kg, pa je specifična potrošnja ekvivalentog tekućeg goriva : d g = D g / P r = 3, / (41, η) = 0,0863/η kg/kwh

34 34. IZRAČUN IZMJENJENE TOPLINE U KONDENZATORU PARNOTURBINSKOG POGONA Toplina koja se dovodi u kondenzator s vodenom parom q 0 = h 2 -h 3 J/kg gdje je: h 2 J/kg entalpija vodene pare na izlazu iz turbine odnosno na ulazu u kondenzator h 3 J/kg entalpija kondenzata na izlazu iz kondenzatora

35 35. IZRAČUN POTREBNE KOLIČINE MORSKE VODE ZA HLAĐENJE U KONDENZATORU PARNOTURBINSKOG POGONA Potrebna količina rashladne morske vode za kondenzaciju vodene pare u kondenzatoru D q 0 = D w c w T w D w = D q 0 / (c w T w ) gdje je: D w - maseni protok morske vode kroz kondenzator kg/s C w - specifična toplina morske vode(3.980 kj/kg K) J/kgK T w - prirast temperature morske vode u kondenzatoru K

36 36. IZRAČUN POTREBNE SPECIFIČNE POTROŠNJE VODENE PARE PARNOTURBINSKOG POGONA Kao usporedbena veličina potrošnja pare u parnoturbinskom pogonu koristi se specifična potrošnja pare (d) u kg/ws, koja je omjer potrošnje mase vodene pare i dobivene snage na propeleru: d=d/p r kg/ws gdje je: P r W snaga na propeleru D kg/s maseni protok vodene pare kroz turbinu d=3,6 (D/P) kg/kwh ako se uvrsti D (kg/h) i P (kw) d= 3,5 do 4,5 kg/kwh za parnoturbinski pogon broda d= 3,1 do 3,5 kg/kwh za parnoturbinski pogon termoelektrana

37 37. IZRAČUN POTREBNE KOLIČINE VODENE PARE PARNOTURBINSKOG POGONA Potrebna količina vodene pare parnoturbinskog pogona: D = Q K / q K = (D g H d η K )/ q K q K = q d = h 1 -h 4 J/kg toplina koja se dovodi pari u kotlu h 1 J/kg entalpija pare na izlazu iz kotla h 4 J/kg entalpija vode na ulazu u kotao D g kg/s maseni potrošak goriva H d J/kg ogrjevna moć goriva η K toplinski stupanj djelovanja generatora pare

38 38. RAČUNSKI PRIMJER 1. Brodski parnoturbinski pogon radi s srednjom specifičnom potrošnjom goriva 235 g/kwh čija je ogrjevna moć 41 MJ/kg (teško Bunker gorivo). Specifična potrošnja vodene pare iznosi 3,9 kg/kwh za snagu na propeleru od kw. Odrediti: ukupni stupanj djelovanja parnoturbinskog pogona količinu pare koju proizvodi generator pare Rješenje: ukupni stupanj djelovanja parnoturbinskog pogona d g = D g / P r = 3,6/ ( H d η) η= 3,6/ (H d d g )= 3,6/ (41 0,235)=0,3736 η =37,36 % količinu pare koju proizvodi generator pare D=P r d= ,9= kg/h

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) (Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom

Διαβάστε περισσότερα

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 7 (Regenerativni zagrijači napojne vode) List: 1

Prof. dr. sc. Z. Prelec ENERGETSKA POSTROJENJA Poglavlje: 7 (Regenerativni zagrijači napojne vode) List: 1 (Regenerativni zagrijači napojne vode) List: 1 REGENERATIVNI ZAGRIJAČI NAPOJNE VODE Regenerativni zagrijači napojne vode imaju zadatak da pomoću pare iz oduzimanja turbine vrše predgrijavanje napojne vode

Διαβάστε περισσότερα

ENERGETSKI SUSTAVI ZA PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE

ENERGETSKI SUSTAVI ZA PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE Prof. dr. sc. Zmagoslav Prelec List: ENERGETSKI SUSTAVI ZA PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE ENERGETSKI SUSTAVI S PARNIM PROCESOM - Gorivo: - fosilno (ugljen, loživo ulje, prirodni plin) - nuklearno(u

Διαβάστε περισσότερα

Iz poznate entropije pare izračunat ćemo sadržaj pare u točki 2, a zatim i specifičnu entalpiju stanja 2. ( ) = + 2 x2

Iz poznate entropije pare izračunat ćemo sadržaj pare u točki 2, a zatim i specifičnu entalpiju stanja 2. ( ) = + 2 x2 1. zadata Vodena para vrši promjene stanja po desnoretnom Ranineovom cilusu. Kotao proizvodi vodenu paru tlaa 150 bar i temperature 560 o C. U ondenzatoru je tla 0,06 bar, a snaga turbine je 0 MW. otrebno

Διαβάστε περισσότερα

EKONOMIČNA PROIZVODNJA I RACIONALNO KORIŠTENJE ENERGIJE

EKONOMIČNA PROIZVODNJA I RACIONALNO KORIŠTENJE ENERGIJE List:1 EKONOMIČNA PROIZVODNJA I RACIONALNO KORIŠTENJE ENERGIJE NEKI PRIMJERI ZA RACIONALNO KORIŠTENJE ENERGIJE UTJECAJNI FATORI EKONOMIČNOSTI POGONA: Konstrukcijska izvedba energetskih ureñaja, što utječe

Διαβάστε περισσότερα

KUĆIŠTE PARNE TURBINE SA SAPNICAMA

KUĆIŠTE PARNE TURBINE SA SAPNICAMA KUĆIŠTE PARNE TURBINE SA SAPNICAMA Porivne brodske turbine redovito se sastoje od dva odvojena kućišta (visokotlačno i niskotlačno). Kućište turbine je izuzetno zahtjevni dio turbine. Ulazna para zbog

Διαβάστε περισσότερα

Zadatci za vježbanje Termodinamika

Zadatci za vježbanje Termodinamika Zadatci za vježbanje Termodinamika 1. Električnim bojlerom treba zagrijati 22 litre vode 15 ⁰C do 93 ⁰C. Koliku snagu mora imati grijač da bi se to postiglo za 2 sata zagrijavanja? Specifični toplinski

Διαβάστε περισσότερα

ENERGETSKA POSTROJENJA

ENERGETSKA POSTROJENJA (Parne turbine) List: 1 PARNE TURBINE Parne turbine su toplinski strojevi u kojima se toplinska energija, sadržana u pari, pretvara najprije u kinetičku energiju, a nakon toga u mehanički rad. Podjela

Διαβάστε περισσότερα

ENERGETSKA POSTROJENJA

ENERGETSKA POSTROJENJA (Plinske elektrane) List: 1 PLINSKE ELEKTRANE Plinske elektrane su termoenergetska postrojenja u kojemu se proces pretvorbe toplinske energije u mehaničku (električnu) odvija prema Joule-Braytonovu kružnom

Διαβάστε περισσότερα

UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo VETRNICA. v 2. v 1 A 2 A 1. Energetski stroji

UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo VETRNICA. v 2. v 1 A 2 A 1. Energetski stroji Katedra za energetsko strojništo VETRNICA A A A Katedra za energetsko strojništo Katedra za energetsko strojništo VETRNICA A A A Δ Δp p p Δ Katedra za energetsko strojništo Teoretična moč etrnice Določite

Διαβάστε περισσότερα

TOPLINSKA BILANCA, GUBICI, ISKORISTIVOST I POTROŠNJA GORIVA U GENERATORU PARE

TOPLINSKA BILANCA, GUBICI, ISKORISTIVOST I POTROŠNJA GORIVA U GENERATORU PARE (Generatori are) List: TOPLINSKA BILANCA, GUBICI, ISKORISTIVOST I POTROŠNJA GORIVA U GENERATORU PARE Generator are je energetski uređaj u kojemu se u sklou Clausius-Rankineova kružnog rocesa redaje tolina

Διαβάστε περισσότερα

Upotreba tablica s termodinamičkim podacima

Upotreba tablica s termodinamičkim podacima Upotreba tablica s termodinamičkim podacima Nije moguće znati apsolutnu vrijednost specifične unutarnje energije u procesnog materijala, ali je moguće odrediti promjenu ove veličine, koja odgovara promjenama

Διαβάστε περισσότερα

KORIŠTENJE VODNIH SNAGA

KORIŠTENJE VODNIH SNAGA KORIŠTENJE VODNIH SNAGA TURBINE Povijesni razvoj 1 Osnovni pojmovi hidraulički strojevi u kojima se mehanička energija vode pretvara u mehaničku energiju vrtnje stroja što veći raspon padova što veći kapacitet

Διαβάστε περισσότερα

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD. Tonko Mladineo. Zagreb, 2013.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD. Tonko Mladineo. Zagreb, 2013. SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD Tonko Mladineo Zagreb, 2013. SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD Mentor: Prof. dr. sc. Daniel Rolph

Διαβάστε περισσότερα

odvodi u okoliš? Rješenje 1. zadatka Zadano: q m =0,5 kg/s p 1 =1 bar =10 5 Pa zrak w 1 = 15 m/s z = z 2 -z 1 =100 m p 2 =7 bar = Pa

odvodi u okoliš? Rješenje 1. zadatka Zadano: q m =0,5 kg/s p 1 =1 bar =10 5 Pa zrak w 1 = 15 m/s z = z 2 -z 1 =100 m p 2 =7 bar = Pa .vježba iz Terodiaike rješeja zadataka 1. Zadatak Kopresor usisava 0,5 kg/s zraka tlaka 1 bar i 0 o C, tlači ga i istiskuje u eizolirai tlači cjevovod. Na ulazo presjeku usise cijevi brzia je 15 /s. Izlazi

Διαβάστε περισσότερα

UPOTREBA RANKINEOVOG CIKLUSA SA ORGANSKIM FLUIDOM ZA ISKORIŠTAVANJE GEOTERMALNE ENERGIJE

UPOTREBA RANKINEOVOG CIKLUSA SA ORGANSKIM FLUIDOM ZA ISKORIŠTAVANJE GEOTERMALNE ENERGIJE VELEUČILIŠTE U KARLOVCU STROJARSKI ODJEL STROJARSKE KONSTRUKCIJE LARIS PORIĆ UPOTREBA RANKINEOVOG CIKLUSA SA ORGANSKIM FLUIDOM ZA ISKORIŠTAVANJE GEOTERMALNE ENERGIJE ZAVRŠNI RAD KARLOVAC, 2016. VELEUČILIŠTE

Διαβάστε περισσότερα

1. REALNI PLINOVI I PARE Veličine stanja vodene pare

1. REALNI PLINOVI I PARE Veličine stanja vodene pare 1 REALNI PLINOVI I PARE 1 1 Veličine stanja vodene pare Veličine stanja vrele kapljevine, suhe i pregrijane pare prikazuju se u tablicama za vodenu paru Veličine stanja vrele kapljevine označavaju se s

Διαβάστε περισσότερα

Prof.dr.sc. Sejid Tešnjak. Prof.dr.sc. Igor Kuzle

Prof.dr.sc. Sejid Tešnjak. Prof.dr.sc. Igor Kuzle Općenito o elektranama Prof.dr.sc. Sejid Tešnjak Prof.dr.sc. Davor Grgić Prof.dr.sc. Igor Kuzle Uvod Što su to elektrane... Elektrane su postrojenja u kojima se oblici unutrašnje energije (nuklearna, kemijska,

Διαβάστε περισσότερα

POVEĆANJE STEPENA KORISNOSTI KOTLA I TEHNO- EKONOMSKA ANALIZA UGRADNJE UTILIZATORA NA VRELOVODNOM KOTLU SNAGE 116 MW NA TOPLANI KONJARNIK

POVEĆANJE STEPENA KORISNOSTI KOTLA I TEHNO- EKONOMSKA ANALIZA UGRADNJE UTILIZATORA NA VRELOVODNOM KOTLU SNAGE 116 MW NA TOPLANI KONJARNIK POVEĆANJE STEPENA KORISNOSTI KOTLA I TEHNO- EKONOMSKA ANALIZA UGRADNJE UTILIZATORA NA VRELOVODNOM KOTLU SNAGE 116 MW NA TOPLANI KONJARNIK JKP BEOGRADSKE ELEKTRANE Vladimir Tanasić 1, Marko Mladenović 1

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Fakultet strojarstva i brodogradnje DIPLOMSKI RAD

Fakultet strojarstva i brodogradnje DIPLOMSKI RAD Sveučilište u Zagrebu Fakultet strojarstva i brodogradnje DIPLOMSKI RAD Vedran Polović Zagreb,. Sveučilište u Zagrebu Fakultet strojarstva i brodogradnje DIPLOMSKI RAD Voditelj rada: prof. dr. sc. Zvonimir

Διαβάστε περισσότερα

SVEUĈILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD. Nikola Krmelić. Zagreb, 2015.

SVEUĈILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD. Nikola Krmelić. Zagreb, 2015. SVEUĈILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD Nikola Krmelić Zagreb, 2015. SVEUĈILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD Voditelj rada: Prof. dr. sc. Ţeljko

Διαβάστε περισσότερα

Opća bilanca tvari - = akumulacija u dif. vremenu u dif. volumenu promatranog sustava. masa unijeta u dif. vremenu u dif. volumen promatranog sustava

Opća bilanca tvari - = akumulacija u dif. vremenu u dif. volumenu promatranog sustava. masa unijeta u dif. vremenu u dif. volumen promatranog sustava Opća bilana tvari masa unijeta u dif. vremenu u dif. volumen promatranog sustava masa iznijeta u dif. vremenu iz dif. volumena promatranog sustava - akumulaija u dif. vremenu u dif. volumenu promatranog

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

5 PRORAČU PUTA PARE U TURBI I S VIŠE STUP JEVA

5 PRORAČU PUTA PARE U TURBI I S VIŠE STUP JEVA 69 5 PRORAČU PUTA PARE U TURBI I S VIŠE STUP JEVA 5. Prinipi odabira puta pare u turbini s više stupnjeva Konstrukija parne turbine, posebno njenoga puta pare, posebno je određena sljedećim faktorima:.

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

RAD, SNAGA I ENERGIJA

RAD, SNAGA I ENERGIJA RAD, SNAGA I ENERGIJA SADRŢAJ 1. MEHANIĈKI RAD SILE 2. SNAGA 3. MEHANIĈKA ENERGIJA a) Kinetiĉka energija b) Potencijalna energija c) Ukupna energija d) Rad kao mera za promenu energije 4. ZAKON ODRŢANJA

Διαβάστε περισσότερα

Reverzibilni procesi

Reverzibilni procesi Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože

Διαβάστε περισσότερα

SADRŽAJ PREDGOVOR... 1 I PREGLED RAZVOJA BRODOVA I BRODARSTVA... 3 II TEORIJA BRODA Istorijski razvoj brodova i brodarstva...

SADRŽAJ PREDGOVOR... 1 I PREGLED RAZVOJA BRODOVA I BRODARSTVA... 3 II TEORIJA BRODA Istorijski razvoj brodova i brodarstva... SADRŽAJ PREDGOVOR... 1 I PREGLED RAZVOJA BRODOVA I BRODARSTVA... 3 1. Istorijski razvoj brodova i brodarstva... 3 1.1. Prvi pokušaji brodarenja... 3 1.2. Razvitak brodogradnje i brodarenja... 7 1.2.1.

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

Potrošnja goriva. Ključni faktori: ENERGIJA potrebna za kretanje vozila na određenoj deonici puta. ENERGETSKA EFIKASNOST pogonskog motora

Potrošnja goriva. Ključni faktori: ENERGIJA potrebna za kretanje vozila na određenoj deonici puta. ENERGETSKA EFIKASNOST pogonskog motora Ključni faktori: ENERGIJA potrebna za kretanje vozila na određenoj deonici puta Zavisi od parametara vozila i njegove interakcije sa okolinom (c W, A, G, f) Zavisi od parametara voznog ciklusa (profil

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

SVEUČILIŠTE U ZGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD. Mihael Slunjski. Zagreb, 2015.

SVEUČILIŠTE U ZGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD. Mihael Slunjski. Zagreb, 2015. SVEUČILIŠTE U ZGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD Mihael Slunjski Zagreb, 2015. SVEUČILIŠTE U ZGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD Voditelj rada: Prof. dr. sc. Željko

Διαβάστε περισσότερα

EKONOMSKA ANALIZA KOGENERACIJSKIH ENERGETSKIH SUSTAVA

EKONOMSKA ANALIZA KOGENERACIJSKIH ENERGETSKIH SUSTAVA NRGSKI SUSAVI Poglavlje: 6 List: KONOMSKA ANALIZA KOGNRAIJSKIH NRGSKIH SUSAVA Za pojedino energetsko postrojenje treba, temeljem troškova poslovanja, utvrditi ekonomsku cijenu proizvedene energije. U kogeneracijskome

Διαβάστε περισσότερα

VJEŽBA 5: ODREĐIVANJE OGRJEVNE MOĆI KRUTIH GORIVA

VJEŽBA 5: ODREĐIVANJE OGRJEVNE MOĆI KRUTIH GORIVA VJEŽBA 5: ODREĐIVANJE OGRJEVNE MOĆI KRUTIH GORIVA 14. VRSTE GORIVA I IZGARANJE 14.1 Definicija i podjela goriva Gorivo je materija koja ima mogućnost oslobađanja energije kao posljedice promjene kemijske

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Kogeneracijska postrojenja

Kogeneracijska postrojenja Kogeneracijska postrojenja (ZA INŽENJERE ELEKTROTEHNIKE) Kemal Hot Elektrotehnički odjel Tehničko veleučilište u Zagrebu Studeni, 2010. TVZ-EO: Kogeneracijska postrojenja U v o d Kogeneracija: simultana

Διαβάστε περισσότερα

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD. Juraj Ladika. Zagreb, 2012.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD. Juraj Ladika. Zagreb, 2012. SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD Juraj Ladika Zagreb, 2012. SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD Mentor: Prof. dr. sc. Dražen Lončar

Διαβάστε περισσότερα

Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom

Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom Kolegij: Obrada industrijskih otpadnih voda Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom Zadatak: Ispitati učinkovitost procesa koagulacije/flokulacije na obezbojavanje

Διαβάστε περισσότερα

ENERGETSKA POSTROJENJA

ENERGETSKA POSTROJENJA ( Hidroelektrane) List: 1 HIDROELEKTRANE Hidroelektrane su energetska postrojenja koja energiju vodotokova pretvaraju u električnu energiju preko vodnih turbogeneratora. Iskoristiva energija vodotokova:

Διαβάστε περισσότερα

KORIŠTENJE VODNIH SNAGA TURBINE

KORIŠTENJE VODNIH SNAGA TURBINE KORIŠTENJE VODNIH SNAGA TURBINE Osnovni pojmovi hidrauliĉki strojevi u kojima se energija vode pretvara u mehaniĉku energiju vrtnje stroja što veći raspon padova što veći kapacitet što veći korisni uĉinak

Διαβάστε περισσότερα

4. PRETVORBE OBLIKA ENERGIJE

4. PRETVORBE OBLIKA ENERGIJE 4. PRETVORBE OBLIKA ENERGIJE 4.1. Uvod 4.2. Pretvorba kemijske energije u unutarnju termičku 4.3. Pretvorba unutarnje toplinske energije u mehaničku 4.4. Pretvorba potencijalne energije u mehaničku i obratno

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila. Potrošnja goriva. Potrošnja goriva

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila. Potrošnja goriva. Potrošnja goriva Ključni faktori: 1. ENERGIJA potrebna za kretanje vozila na određenoj deonici puta Povećanje E K pri ubrzavanju, pri penjanju, kompenzacija energetskih gubitaka usled dejstva F f i F W Zavisi od parametara

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

Fakultet elektrotehnike, strojarstva i brodogradnje Split Zavod za elektroenergetiku Katedra za električne mreže i postrojenja OPĆA ENERGETIKA

Fakultet elektrotehnike, strojarstva i brodogradnje Split Zavod za elektroenergetiku Katedra za električne mreže i postrojenja OPĆA ENERGETIKA Fakultet elektrotehnike, strojarstva i brodogradnje Split Zavod za elektroenergetiku Katedra za električne mreže i postrojenja OPĆA ENERGETIKA Doc. dr. sc. Ranko Goić, dipl. ing. el. šk.god. 2006/2007

Διαβάστε περισσότερα

PRVI I DRUGI ZAKON TERMODINAMIKE

PRVI I DRUGI ZAKON TERMODINAMIKE PRVI I DRUGI ZAKON TERMODINAMIKE TERMODINAMIČKI SUSTAVI - do sada smo proučavali prijenos energije kroz mehanički rad i kroz prijenos topline - uvijek govorimo o prijenosu energije u ili iz specifičnog

Διαβάστε περισσότερα

13.1. Termodinamički procesi O K O L I N A. - termodinamički sustav: količina tvari unutar nekog zatvorenog volumena

13.1. Termodinamički procesi O K O L I N A. - termodinamički sustav: količina tvari unutar nekog zatvorenog volumena 13. TERMODINAMIKA - dio fizike koji proučava vezu izmeñu topline i drugih oblika energije (mehanički rad) - toplinski strojevi: parni stroj, hladnjak, motori s unutrašnjim izgaranjem - makroskopske veličine:

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

POBOLJŠANJE REŽIMA RADA TOPLIFIKACIJSKE PARNE TURBINE

POBOLJŠANJE REŽIMA RADA TOPLIFIKACIJSKE PARNE TURBINE SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE POBOLJŠANJE REŽIMA RADA TOPLIFIKACIJSKE PARNE TURBINE MAGISTARSKI RAD Mentor: Doc.dr.sc. ZVONIMIR GUZOVIĆ PERICA JUKIĆ ZAGREB, 25 Podaci za bibliografsku

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

Program testirati pomoću podataka iz sledeće tabele:

Program testirati pomoću podataka iz sledeće tabele: Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n

Διαβάστε περισσότερα

Energijske tehnologije

Energijske tehnologije Ograničenja pretvorbama i pretvorbe oblika energije u eksergiju (mehanički rad) Vladimir Mikuličić, Davor Grgić, Zdenko Šimić, Marko Delimar FER, 2013. Teme: 1. Organizacija i sadržaj predmeta 2. Uvodna

Διαβάστε περισσότερα

SKRIPTA IZ KOLEGIJA: PROIZVODNJA I PRETVORBA ENERGIJE

SKRIPTA IZ KOLEGIJA: PROIZVODNJA I PRETVORBA ENERGIJE SVEUČILIŠTE U ZAGREBU RUDARSKO-GEOLOŠKO-NAFTNI FAKULTET SKRIPTA IZ KOLEGIJA: PROIZVODNJA I PRETVORBA ENERGIJE Nositelj kolegija: dr. sc. Damir Rajković, redoviti profesor na Rudarsko-geološko-naftnom fakultetu

Διαβάστε περισσότερα

Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A

Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A Osnove elektrotehnike I popravni parcijalni ispit 1..014. VARIJANTA A Prezime i ime: Broj indeksa: Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. A C 1.1. Tri naelektrisanja

Διαβάστε περισσότερα

konst. Električni otpor

konst. Električni otpor Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad, snaga, energija Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad i energija Da bi rad bio izvršen neophodno je postojanje sile. Sila vrši rad: Pri pomjeranju tijela sa jednog mjesta na drugo Pri

Διαβάστε περισσότερα

ENERGETSKA POSTROJENJA

ENERGETSKA POSTROJENJA (Rashladni tornjevi) List: 1 RASHLADNI TORNJEVI Rashladni tornjevi su uređaji (izmjenjivači topline voda/zrak) pomoću kojih se neiskorištena energija (toplina) iz energetskih postrojenja, preko rashladne

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

KORIŠTENJE VODNIH SNAGA

KORIŠTENJE VODNIH SNAGA KORIŠTENJE VODNIH SNAGA ENERGIJA I SNAGA Energija i snaga Energija je sposobnost obavljanja rada. Energija se u prirodi javlja u različitim oblicima. Po zakonu o održanju energije: energija se ne može

Διαβάστε περισσότερα

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE DIPLOMSKI RAD. Igor Blažinić. Zagreb, 2015.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE DIPLOMSKI RAD. Igor Blažinić. Zagreb, 2015. SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE DIPLOMSKI RAD Igor Blažinić Zagreb, 2015. SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE DIPLOMSKI RAD Mentori: Izv.prof. dr. sc. Dražen

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

Snage u kolima naizmjenične struje

Snage u kolima naizmjenične struje Snage u kolima naizmjenične struje U naizmjeničnim kolima struje i naponi su vremenski promjenljive veličine pa će i snaga koja se isporučuje potrošaču biti vremenski promjenljiva Ta snaga naziva se trenutna

Διαβάστε περισσότερα

OSNOVE BRODOSTROJARSTVA

OSNOVE BRODOSTROJARSTVA 1 2 VELEUČILIŠTE U DUBROVNIKU ŽELJKO KURTELA OSNOVE BRODOSTROJARSTVA Dubrovnik, 2000. 3 Nakladnik: VELEUČILIŠTE U DUBROVNIKU Urednik: prof. dr. sci. Mateo Milković Recenzenti: mr. sci. Vedran Jelavić prof.

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Prosti cevovodi

MEHANIKA FLUIDA. Prosti cevovodi MEHANIKA FLUIDA Prosti ceooi zaatak Naći brzin oe kroz naglaak izlaznog prečnika =5 mm, postaljenog na kraj gmenog crea prečnika D=0 mm i žine L=5 m na čijem je prenjem el građen entil koeficijenta otpora

Διαβάστε περισσότερα

VELEUČILIŠTE U RIJECI Prometni odjel. Zdenko Novak 1. UVOD

VELEUČILIŠTE U RIJECI Prometni odjel. Zdenko Novak 1. UVOD 10.2012-13. VELEUČILIŠTE U RIJECI Prometni odjel Zdenko Novak TEHNIČKA SREDSTVA U CESTOVNOM PROMETU 1. UVOD 1 Literatura: [1] Novak, Z.: Predavanja Tehnička sredstva u cestovnom prometu, Web stranice Veleučilišta

Διαβάστε περισσότερα

ELEKTRIČNA POSTROJENJA

ELEKTRIČNA POSTROJENJA ELEKTRIČNA POSTROJENJA Literatura: Požar, H. Visokonaponska rasklopna postrojenja, Tehnička knjiga, Zagreb Tehnički priručnik Končar Elektroenergetski sustav Međusobno povezani skup proizvodnih, prijenosnih

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje Katedra za strojeve i uređaje plovnih objekata

Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje Katedra za strojeve i uređaje plovnih objekata KOMPRESORI ZRAKA prof. dr. sc. Ante Šestan Ivica Ančić, mag. ing. Predložak za vježbe iz kolegija Brodski pomoćni strojevi Kompresori zraka Kompresor zraka je stroj koji nekom plinu povećava tlak. Pri

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

BIPOLARNI TRANZISTOR Auditorne vježbe

BIPOLARNI TRANZISTOR Auditorne vježbe BPOLARN TRANZSTOR Auditorne vježbe Struje normalno polariziranog bipolarnog pnp tranzistora: p n p p - p n B0 struja emitera + n B + - + - U B B U B struja kolektora p + B0 struja baze B n + R - B0 gdje

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Periodičke izmjenične veličine

Periodičke izmjenične veličine EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

zastori sunset curtain Kućište od željeza zaštićeno epoksidnim prahom, opruge od željeza. Lako i brzo se montiraju.

zastori sunset curtain Kućište od željeza zaštićeno epoksidnim prahom, opruge od željeza. Lako i brzo se montiraju. zastori zastori sunset curtain Kućište od željeza zaštićeno epoksidnim prahom, opruge od željeza. Lako i brzo se montiraju. (mm) (mm) za PROZOR im (mm) tv25 40360 360 400 330x330 tv25 50450 450 500 410x410

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

Teorijski dio ispita iz Termodinamike I ( )

Teorijski dio ispita iz Termodinamike I ( ) Teorijski dio ispita iz Termodinamike I (08. 09. 2010.) Iz opće jednadžbe politrope pv n = konst. izvedite njezinu diferencijalnu jednadžbu u p,v koordinatama. Napišite izraz čemu je jednak eksponent politrope

Διαβάστε περισσότερα

Tip ureappleaja: ecovit Jedinice VKK 226 VKK 286 VKK 366 VKK 476 VKK 656

Tip ureappleaja: ecovit Jedinice VKK 226 VKK 286 VKK 366 VKK 476 VKK 656 TehniËki podaci Tip ureappeaja: ecovit Jedinice VKK 226 VKK 286 VKK 366 VKK 476 VKK 66 Nazivna topotna snaga (na /),122,,28, 7,436,,47,6 1,16,7 Nazivna topotna snaga (na 60/) 4,21,,621, 7,23,,246,4 14,663,2

Διαβάστε περισσότερα

4 PRORAČUN DOBITAKA TOPLINE LJETO

4 PRORAČUN DOBITAKA TOPLINE LJETO 4 PRORAČUN DOBITAKA TOPLINE LJETO Izvori topline u ljetnom razdoblju: 1. unutrašnji izvori topline Q I (dobitak topline od ljudi, rasvjete, strojeva, susjednih prostorija, ) 2. vanjski izvori topline Q

Διαβάστε περισσότερα

ENERGETIKA. Studij: Kemijsko inženjerstvo (V semestar) prof. dr. sc. Igor Sutlović

ENERGETIKA. Studij: Kemijsko inženjerstvo (V semestar) prof. dr. sc. Igor Sutlović Fakultet keijskog inženjerstva i tehnologije Zavod za terodinaiku, strojarstvo i energetiku ENERGETIKA Studij: Keijsko inženjerstvo (V seestar) prof. dr. sc. Igor Sutlović Goriva se dijele na: kruta, tekuća

Διαβάστε περισσότερα

KORIŠTENJE VODNIH SNAGA ENERGIJA I SNAGA

KORIŠTENJE VODNIH SNAGA ENERGIJA I SNAGA KORIŠTENJE VODNIH SNAGA ENERGIJA I SNAGA Energija i snaga Energija je sposobnost obavljanja rada. Energija se u prirodi javlja u različitim oblicima. Po zakonu o odrţanju energije: energija se ne moţe

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Priprema za državnu maturu

Priprema za državnu maturu Priprema za državnu maturu Toplina / Molekularno-kinetička teorija / Termodinamika 1. Temperatura apsolutne nule iznosi C. Temperatura od 37 C iznosi K. Ako se temperatura tijela povisi od 37 C na 39 C

Διαβάστε περισσότερα

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE DIPLOMSKI RAD. Ana-Marija Krizmanić. Zagreb, 2012.godina

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE DIPLOMSKI RAD. Ana-Marija Krizmanić. Zagreb, 2012.godina SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE DIPLOMSKI RAD Ana-Marija Krizmanić Zagreb, 2012.godina SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE DIPLOMSKI RAD Mentor: Doc. dr.

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

ELEKTROMOTORNI POGONI - AUDITORNE VJEŽBE

ELEKTROMOTORNI POGONI - AUDITORNE VJEŽBE veučilište u ijeci TEHNIČKI FAKULTET veučilišni preddiplomki tudij elektrotehnike ELEKTOOTONI OGONI - AUDITONE VJEŽBE Ainkroni motor Ainkroni motor inkrona obodna brzina inkrona brzina okretanja Odno n

Διαβάστε περισσότερα

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja: Anene Transformacija EM alasa u elekrični signal i obrnuo Osnovne karakerisike anena su: dijagram zračenja, dobiak (Gain), radna učesanos, ulazna impedansa,, polarizacija, efikasnos, masa i veličina, opornos

Διαβάστε περισσότερα