BIPOLARNI TRANZISTOR Auditorne vježbe
|
|
- ΣoφпїЅα Κορωναίος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 BPOLARN TRANZSTOR Auditorne vježbe Struje normalno polariziranog bipolarnog pnp tranzistora: p n p p - p n B0 struja emitera + n B U B B U B struja kolektora p + B0 struja baze B n + R - B0 gdje je R - p relacija koja povezuje sve tri elektrodne struje + B Parametri kojima je defniran svaki tranzistor su: djelotvornost emitera γ, prijenosni (transportni) faktor β i faktori strujnog pojačanja α i β. djelotvornost emitera (pnp tranzistor) γ γ < 1 + n prijenosni (transportni) faktor (pnp tranzistor) p R β 1 β < 1 Za bipolarni tranzistor u spoju ZB vrijedi: β γ + B0 α + B0 faktor strujnog pojačanja tranzistora u spoju ZB: α β γ p α < 1 α B0 Za bipolarni tranzistor u spoju Z vrijedi: B + βb + ( β + 1) B0 1 α 1 α faktor strujnog pojačanja tranzistora u spoju Z: α β β +1 α β β >> 1 1 α 1
2 Za normalno polarizirani bipolarni pnp tranzistor odrediti djelotvornost emitera γ, prijenosni faktor β i faktor strujnog pojačanja u spoju ZB α ako je struja šupljina emitera 0 puta veća od struje elektrona emitera i 1,1 put veća od struje šupljina kolektora. 0 n n 0,05 1,1 p Djelotvornost emitera γ za pnp tranzistor može se izračunati prema relaciji: γ + n + 0,05 1 1,05 0,954 Prijenosni (transportni) faktor β je: β p p 1,1 p 0,9091 Faktor strujnog pojačanja u spoju ZB α iznosi: α + n p γ β 0,8639
3 Silicijski pnp tranzistor je normalno polariziran i radi sa strujom emitera 10 ma. Odrediti struju baze B i struju kolektora, te sve komponente tih struja. Zadano je: γ 0,981; β 0,9994; B0 0; T 300K. α γ β 0,981 0,9994 0,9804 γ γ 0, ,81 ma α + B0 0, ,804 ma + n n , ,19 ma p β p β 0,9994 9, ,804 ma p + B0 9,804 ma R p 9, , µa B R + n B , ,196 ma 3
4 Sukladno prikazanim shemama odrediti faktor strujnog pojačanja bipolarnog tranzistora u spoju zajedničkog emitera β. Za spoj ZB (lijeva shema) vrijedi relacija: α + (1) B0 Sa slike je vidljivo da uz struju emitera jednaku 0 teče struja kolektora iznosa na: uz 0 na Uvrštavanjem navedenih iznosa za i u relaciju (1), dobije se iznos struje B0 : B0 α 0 na Za spoj Z (desna shema) vrijedi relacija: β + ( β + 1) () B B0 Sa slike je vidljivo da uz struju baze jednaku 0 teče struja kolektora od 0,1µA: uz B 0 0,1µA Uvrštavanjem navedenih iznosa za B i u relaciju (), dobije se faktor strujnog pojačanja u spoju Z β: β + ( β + 1) B B0 β 0 + ( β + 1) B0 β + B0 B0 6 0, β β B0 B0 β 49 4
5 UNPOLARN TRANZSTOR Auditorne vježbe zlazne karakteristike silicijskog n-kanalnog FT-a zadane su na slici. Odrediti područje rada FT-a u radnoj točki A i u radnoj točki B ako napon praga korištenog FT-a U GS0 iznosi -5,4 V. Na granici između triodnog područja rada FT-a i područja zasićenja napon U DS iznosi: Radna točka A: U DS U GS U GS0 Sa slike je vidljivo da FT u radnoj točki A radi pri naponu U GS od 0V. Pri tom naponu U GS, prema slici, napon U DS iznosi 5V. Najprije za zadani napon U GS treba odrediti granicu između triodnog područja i područja zasićenja, a nako toga provjeriti da li je napon U DS u radnoj točki veći ili manji od napona U DS na granici radnih područja. U DS 0 ( 5,4) 5,4 V U DS A 5 V 5 V < 5,4 V Budući da je napon U DS u radnoj točki A iznosi 5V, tj. manji je od napona na granici radnih područja, očito je da FT u radnoj točki A radi u triodnom području. Radna točka B: U ovoj radnoj točki FT radi pri naponu U GS od -V pa je na granici radnih područja napon U DS : U DS U GS U GS0 ( 5,4) 3,4 V Sa slike je vidljivo da je napon U DS u radnoj točki B puno veći od 3,4 v pa se može zaključiti da se radna točka B nalazi u području zasićenja. 5
6 Prijenosna karakteristika n-kanalnog FT-a u zasićenju prikazana je na slici. Odrediti struju D i napon U GS ako je FT uključen u strujni krug za kojeg je ovisnost napona U GS o struji D dana izrazom: D U GS. Dobiveni rezulat potvrditi grafičkim postupkom. Sa prijenosne karakteristike prikazane na gornjoj slici mogu se očitati karakteristične veličine, a to su struja DSS i napon U GS0. Struja DSS je struja koja teče kroz kanal FT-a kada je napon U GS jednak nuli i tada je kanal FT-a najširi. Napon U GS0 je napon dodira ili napon praga FT-a, a to je napon U GS pri kojem širina kanala FT-a postane jednaka nuli pa struja D prestaje teći. kada je U GS 0 D DSS 1 ma kada je D 0 U GS U GS0-1 V Prijenosna karakteristika FT-a u područu zasićenja može se opisati paraboličnom funkcijom: D DSS U 1 U GS GS0 D UGS 1 1 (1) Relacija (1) je jednadžba s dvije nepoznanice (struja D i napon U GS ). Da bi odredili vrijednosti struje D i napona U GS potrebno je iskoristiti još jednu relaciju koja povezuje te dvije veličine. U tekstu zadatka dana je i ovisnost struje D o naponu U GS za konkretan strujni krug i ta relacija predstavlja drugu jednadžbu s dvije nepoznanice. Rješavanjem sistema jednadžbi mogu se odrediti tražene veličine. D UGS 1 1 (1) D U GS () UGS +,5UGS
7 Rješenje kvadratne jednadžbe daje dvije vrijednosti za napon U GS : U GS1-0,5 V U GS -V Traženo rješenje je napon U GS1 od -0,5 V. Napon U GS od - V nema fizikalnog značenja budući da je iz zadanih podataka o FT-u vidljivo da je njegov napon praga U GS0-1 V. To znači da struja kroz kanal FT-a prestaje teći čim napon U GS dosegne -1 V i svako daljnje povećanje napona U GS nema utjecaja na protok struje D jer je kanal FT-a zatvoren i struja D ne teče već pri naponu U GS od -1 V. U GS U GS1-0,5 V D (-0,5), ,5 ma Dobivena rješenja za struju D i napon U GS mogu se potvrditi i grafičkim postupkom. Potrebno je nacrtati paraboličnu funkciju kojom je definirana prijenosna karakteristika korištenog FT-a i u isti koordinatni sustav ucrtati i zadanu ovisnost struje D o naponu U GS (ta ovisnost grafički predstavlja u D -U GS koordinatnom sustavu jednadžbu pravca). Traženo rješenje zadatka nalazi se u presjecištu parabole i pravca. Pravac sječe parabolu u dvije točke, a traženo rješenje zadatka je točka na slici označena s Q jer poznavajući rad FT-a samo to presjecište ima fizikalnog smisla. Q (U GS ; D ) Q (-0,5 V; 0,5 ma) 7
FAKULTET PROMETNIH ZNANOSTI
SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost
Unipolarni tranzistori - MOSFET
nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova
Grupa A 29..206. agreb Prvi kolokvij Analognih sklopova i lektroničkih sklopova Kolokvij se vrednuje s ukupno 42 boda. rijednost pojedinog zadatka navedena je na kraju svakog zadatka.. a pojačalo na slici
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović
Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče
VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.
JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA
Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -
1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
Elektronički Elementi i Sklopovi
Sadržaj predavanja: 1. Strujna zrcala pomoću BJT tranzistora 2. Strujni izvori sa BJT tranzistorima 3. Tranzistor kao sklopka 4. Stabilizacija radne točke 5. Praktični sklopovi s tranzistorima Strujno
nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.
IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)
Održavanje Brodskih Elektroničkih Sustava
Održavanje Brodskih Elektroničkih Sustava Sadržaj predavanja: 1. Upoznavanje s osnovnim sklopovima tranzistorskih pojačala 2. Upoznavanje s osnovnim sklopovima operacijskih pojačala 3. Analogni sklopovi
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
Elektronički Elementi i Sklopovi. Sadržaj predavanja: 1. MOSFET tranzistor obogaćenog tipa 2. CMOS 3. MESFET tranzistor 4. DC analiza FET tranzistora
Sadržaj predavanja: 1. MOSFET tranzistor obogaćenog tipa 2. CMOS 3. MESFET tranzistor 4. DC analiza FET tranzistora MOSFET tranzistor obogaćenog tipa Konstrukcija MOSFET tranzistora obogaćenog tipa je
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj
Zadaak (Ines, hoelijerska škola) Ako je g, izračunaj + 5 + Rješenje Korisimo osnovnu rigonomerijsku relaciju: + Znači svaki broj n možemo zapisai n n n ( + ) + + + + 5 + 5 5 + + + + + 7 + Zadano je g Tangens
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
Zadatak 1. U kojim od spojeva ispod je iznos pada napona na otporniku R=100 Ω približno 0V?
Zadatak 1. U kojim od spojeva ispod je iznos pada napona na otporniku R=100 Ω približno 0V? a) b) c) d) e) Odgovor: a), c), d) Objašnjenje: [1] Ohmov zakon: U R =I R; ako je U R 0 (za neki realni, ne ekstremno
Sveučilište u Zagrebu. Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave. Elektronika 1R
Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave Elektronika 1R Ž. Butković, J. Divković Pukšec, A. Barić 5. Unipolarni
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Elektronički Elementi i Sklopovi. Sadržaj predavanja: 1. Mreže sa kombiniranim DC i AC izvorima 2. Sklopovi sa Zenner diodama 3. Zennerov regulator
Sadržaj predavanja: 1. Mreže sa kombiniranim DC i AC izvorima 2. Sklopovi sa Zenner diodama 3. Zennerov regulator Dosadašnja analiza je bila koncentrirana na DC analizu, tj. smatralo se da su elementi
(/(.7521,.$ 7. TRANZISTORI
7. TRANZISTORI Tranzistori su aktivni poluvodički elementi, u pravilu s tri elektrode, a pretežito se upotrebljavaju kao pojačala ili elektroničke sklopke. Njegov naziv dolazi od Transfer Resistor (prijenosni
Elektronički Elementi i Sklopovi. Sadržaj predavanja: 1. FET tranzistori 2. MOSFET tranzistori
Sadržaj predavanja: 1. FET tranzistori 2. MOSFET tranzistori Slično kao i bipolarni tranzistor FET (Field Effect Tranzistor - tranzistor s efektom polja) je poluvodički uređaj s tri terminala (izvoda)
( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
Tranzistori u digitalnoj logici
Tranzistori u digitalnoj logici Za studente koji žele znati malo detaljnije koja je funkcija tranzistora u digitalnim sklopovima, u nastavku je opisan pojednostavljen način rada tranzistora. Pri tome je
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) II deo. Miloš Marjanović
Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) II deo Miloš Marjanović Bipolarni tranzistor kao prekidač BIPOLARNI TRANZISTORI ZADATAK 16. U kolu sa slike bipolarni
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
PRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Tranzistori s efektom polja. Postupak. Spoj zajedničkog uvoda. Shema pokusa
Tranzistori s efektom polja Spoj zajedničkog uvoda U ovoj vježbi ispitujemo pojačanje signala uz pomoć FET-a u spoju zajedničkog uvoda. Shema pokusa Postupak Popis spojeva 1. Spojite pokusni uređaj na
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Sveučilište u Zagrebu. Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave. Elektronika 1
Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave Elektronika 1 Ž. Butković, J. Divković Pukšec, A. Barić 5. Unipolarni
MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2
(kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
MATEMATIKA I 1.kolokvij zadaci za vježbu I dio
MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Elektronički Elementi i Sklopovi
Elektronički Elementi i Sklopovi Sadržaj predavanja: 1. Teoretski zadaci sa diodama 2. Analiza linije tereta 3. Elektronički sklopovi sa diodama 4. I i ILI vrata 5. Poluvalni ispravljač Teoretski zadaci
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
9.6 Potpuni matematički model NMOS tranzistora. i G =0 i B =0. odreza (cutoff) Jednačine (9.19) 0 u GS V TN. linearna Jednačine (9.
9.6 Potpuni matematički model NMOS tranzistora Jednačine od (9.18) do (9.1) prikazane su u tabelarno u tabelama T 9.1 i T 9. i predstavljaju kompletan model i-u ponašanja NMOS tranzistora, gdje vrijedi
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan
KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr
KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,
2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos
. KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
ISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule)
FORMULE Implicitni oblik jednadžbe pravca A, B i C koeficijenti (barem jedan A ili B različiti od nule) Eksplicitni oblik jednadžbe pravca ili Pravci paralelni s koordinatnim osima - Kada je u općoj jednadžbi
Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.
Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a
OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE ODSEK ZA SOFTVERSKO INŽENJERSTVO LABORATORIJSKE VEŽBE VEŽBA BROJ 2 DIODA I TRANZISTOR 1. 2. IME I PREZIME BR. INDEKSA GRUPA
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.
Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +
BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami
BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami Izv. prof. dr.. Tomilav Kišiček dipl. ing. građ. 0.10.014. Betonke kontrukije III 1 NBK1.147 Slika 5.4 Proračunki dijagrami betona razreda od C1/15 do C90/105, lijevo:
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
2. KOLOKVIJ IZ MATEMATIKE 1
2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.
Funkcija (, ) ima ekstrem u tocki, ako je razlika izmedju bilo koje aplikate u okolini tocke, i aplikate, tocke, : Uvede li se zamjena: i dobije se:
4. FUNKCIJE DVIJU ILI VISE PROMJENJIVIH 4. Ekstremi funkcija dviju promjenjivih z = f y ( y) ( y) z ( y) ( ) ( ) (, ) (, ) Funkcija (, ) ima ekstrem u tocki, ako je razlika izmedju bilo koje aplikate u
Analiza linearnih mreža istosmjerne struje
. Analiza linearnih mreža istosmjerne struje.. Električna mreža i njezini elementi Složen strujni krug koji se sastoji od više različitih pasivnih i aktivnih elemenata zove se mreža. Pasivni elementi mreže
Parabola Definicija parabole Parabola u koordinatnom sustavu Parabola i pravac Uvjet dodira pravca i parabole Jednadžba tangente u točki parabole
Parabola Definicija parabole Parabola u koordinatnom sustavu Parabola i pravac Uvjet dodira pravca i parabole Jednadžba tangente u točki parabole 5. 1. Definicija parabole...............................
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1
Ispit održan dana 9 0 009 Naći sve vrijednosti korjena 4 z ako je ( ) 8 y+ z Data je prava a : = = kroz tačku A i okomita je na pravu a z = + i i tačka A (,, 4 ) Naći jednačinu prave b koja prolazi ( +
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
ELEKTROMOTORNI POGONI - AUDITORNE VJEŽBE
veučilište u ijeci TEHNIČKI FAKULTET veučilišni preddiplomki tudij elektrotehnike ELEKTOOTONI OGONI - AUDITONE VJEŽBE Ainkroni motor Ainkroni motor inkrona obodna brzina inkrona brzina okretanja Odno n
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
1 Obične diferencijalne jednadžbe
1 Obične diferencijalne jednadžbe 1.1 Linearne diferencijalne jednadžbe drugog reda s konstantnim koeficijentima Diferencijalne jednadžbe oblika y + ay + by = f(x), (1) gdje su a i b realni brojevi a f
x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x
Zadatak 00 (Sanja, gimnazija) Odredi realnu funkciju f() ako je f ( ) = Rješenje 00 Uvedemo supstituciju (zamjenu varijabli) = t Kvadriramo: t t t = = = = t Uvrstimo novu varijablu u funkciju: f(t) = t
Iz zadatka se uočava da je doslo do tropolnog kratkog spoja na sabirnicama B, pa je zamjenska šema,
. Na slici je jednopolno prikazan trofazni EES sa svim potrebnim parametrima. U režimu rada neposredno prije nastanka KS kroz prekidač protiče struja (168-j140)A u naznačenom smjeru. Fazni stav struje
Slika 1. Simboli i oznake tranzistora.
8. RAZRED ELEKTRONIKA RJEŠAVANJE PRAKTIČNOG ZADATKA ŠKOLSKA RAZINA ŠKOLSKA GODINA 2017. - 2018. NAZIV TEME: TRANZISTOR - MJERENJE FAKTORA STRUJNOG POJAČANJA OPIS Tranzistor je ime s kojim se u elektronici
RAČUNSKE VEŽBE IZ PREDMETA OSNOVI ELEKTRONIKE
ELEKTRONSKI FAKULTET NIŠ KATEDRA ZA ELEKTRONIKU predmet: OSNOVI ELEKTRONIKE studijske grupe: EMT, EKM Godina 2014/2015 RAČUNSKE VEŽBE IZ PREDMETA OSNOVI ELEKTRONIKE 1 1. ZADATAK Na slici je prikazano električno
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
Prikaz sustava u prostoru stanja
Prikaz sustava u prostoru stanja Prikaz sustava u prostoru stanja je jedan od načina prikaza matematičkog modela sustava (uz diferencijalnu jednadžbu, prijenosnu funkciju itd). Promatramo linearne sustave
Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.
σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
6 Primjena trigonometrije u planimetriji
6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije
Memorijski CMOS sklopovi
Memorijski CMOS sklopovi Zadatak 1 U statičkoj RAM ćeliji na slici 1 dimenzije kanala tranzistora T 1 i T 3 su ( W / ) = 3 λ/λ, a tranzistora T, T 4, T 5 i T 6 su ( W / ) = 4 λ/λ pri čemu je λ = 0,1 μm.