Dreapta in plan. = y y 0
|
|
- Ἀδάμ Πολύκαρπος Δαγκλής
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Dreapta in plan 1 Dreapta in plan i) Presupunem ca planul este inzestrat cu un reper ortonormat de dreapta (O, i, j). Fiecarui punct M al planului ii corespunde vectorul OM numit vector de pozitie al punctului M (relativ la O). Daca OM = x i + y j cu x, y R, numerele x si y se numesc coordonate (x abscisa; y ordonata) punctului M in reperul (O, i, j). Prin M(x, y) se noteaza faptul ca punctul M are coordonatele x si y si notatia M(x, y) este echivalenta cu egalitatea OM = x i + y j. ii) In dependenta de date se cunosc mai multe tipuri de ecuatii ale dreptei in plan: a) Ecuatia dreptei care trece prin punctul M 0 (x 0, y 0 ) si are vectorul director a = {a 1, a } = {0, 0}: x x 0 = y y 0. (1) a 1 a (Aici si in continuare x si y sunt coordonatele punctului curent(variabil) al dreptei). b) Ecuatia dreptei care trece prin punctele distincte M 1 (x 1, y 1 ) si M (x, y ): x x 1 x x 1 = y y 1 y y 1. () c) Ecuatia dreptei care trece prin punctul M 0 (x 0, y 0 ) si are vectorul normal n = {a, b} = {0, 0}: a(x x 0 ) + b(y y 0 ) = 0. (3) d) Ecuatia dreptei care are panta (coeficientul unghiular) m si trece prin punctul M 0 (x 0, y 0 ): (y y 0 ) = m(x x 0 ), m = tg α. (4) e) Ecuatia dreptei care intersecteaza axele sistemului de coordonate in punctele A(a, 0) si B(0, b) (a 0, b 0), numita si ecuatia dreptei in segmente (sau taieturi ): x a + y = 1. (5) b f) Fiecare din ecuatiile precedente poate fi adusa la forma unei ecuatii de gradul intii in doua necunoscute, x si y, numita ecuatia generala carteziana a dreptei: ax + by + c = 0, (6) a, b, c R, a + b = 0. g) Inmultind ecuatia (6) prin factorul sgnc, obtinem ecuatia normala a dreptei: a + b sgnc (ax + by + c) = 0. (7) a + b Distanta d de la punctul M 0 (x 0, y 0 ) la dreapta l de ecuatie ax + by + c = 0 se calculeaza dupa formula: M 0 M 1 = d(m 0, l) = ax 0 + by 0 + c a + b. (8)
2 Dreapta in plan Probleme rezolvate 1. Sa se scrie ecuatia dreptei daca se cunosc punctul A( 1, ) al dreptei si: a) vectorul director a = {, 1}; b) punctul B(, 0) al dreptei; c) vectorul normal n = {1, 6}; d) panta m = 5. Sa se scrie ecuatia generala si ecuatia normala a dreptei in fiecare din cazurile a), b), c), d). Utilizind nemijlocit formulele (1)-(4) obtinem: a) x + 1 b) x + 1 = y 1 ; = y ; 3 c) 1 (x + 1) + 6 (y ) = 0; d) y = 5(x + 1). Ecuatiile generale: a) x 1 = y 4 x + y 3 = 0; b) x = 3y 6 x + 3y 4 = 0; c) x + 6y 11 = 0; d) 5x y + 7 = 0. Ecuatiile normale: a) b) c) 1 x + y 3 = 0; x + 3 y 4 = 0; x + 6 y 11 = 0; d) 5 6 x y 7 6 = 0.. Se da ecuatia a dreptei 1x + 5y + 13 = 0. Sa se scrie ecuatia acestei drepte: a) cu panta; b) in taieturi ; c) normala. a) Rezolvam ecuatia dreptei in raport cu y si obtinem consecutiv: 5y = 1x 13 y = 1 5 x b) Trecem termenul liber al ecuatiei in partea dreapta si impartim ambele parti ale ecuatiei la 13: 1x + 5y = x 5 13 y = 1 x y 13 5 = 1. c) Aven a + b = = 13. Ecuatia normala: 1 13 x 5 13 y 1 = Sa se calculeze aria triunghiului format de dreapta 4x 3y 1 = 0 si axele sistemului
3 Dreapta in plan 3 de coordonate. x Scriem ecuatia dreptei date in taieturi : 3 + y = 1. Punctele de intersectie ale dreptei 4 cu axele sistemului de coordonate sunt A(3, 0) si B(0, 4). Triunghiul OAB este dreptunghic si are catetele OA = 3 si OB = 4. De aici A = = 6(u. a.). 4. Sa se determine punctul de intersectie al dreptelor x y = 0 si x + y 6 = 0. Cum punctul de intersectie P apertine ambelor drepte, coordonatele lui sunt solutii ale sistemului x y= De aici, P (4, ). x + y=6. 5. Sa se afle coordonatele punctului C 1 simetric punctului C(, 4) fata de dreapta x y = 0. Problema se rezolva in trei etape. Etapa 1. Scriem ecuatia dreptei ce trece prin punctul C perpendicular pe dreapta data. Ea are forma x + y + k = 0. Din conditia ca C apartine acestei drepte obtinem k = 0 k = 6. Obtinem x + y 6 = 0. Etapa. Gasim coordonatele punctului P de intersectie a dreptei date cu dreapta gasita, rezolvind sistemul x y= x + y=6. Deci, P (4, ). Etapa 3. Cum P este mijlocul segmentului CC 1, utilizind formulele pentru coordonatele mijlocului segmentului, gasim C 1 (6, 0). 6. Punctele A(, 4) si B(1, 0) se afla de aceeasi parte a dreptei x y = 0. Sa se determine punctul M pe dreapta data astfel incit suma AM + MB sa fie minima. Gasim punctul A 1 (6, 0) simetric punctului A fata de dreapta data(vezi problema 5). Scriem ecuatia dreptei A 1 B : y = 0 (deoarece punctele A 1 si B au aceeasi ordonata egala cu 0). Gasim punctul M de intersectie al dreptei date cu dreapta A 1 B : M(, 0). Acesta este punctul cautat, deoarece AM + MB = A 1 M + MB = A 1 B < AN + NB = A 1 N + NB pentru orice punct N M de pe dreapta x y = 0.
4 Dreapta in plan 4 7. Sa se gasesca un punct P pe dreapta 3x y 1 = 0 modulul diferentei distantelor caruia pina la punctele A(4, 1) si B(0, 4) sa fie maximala. Punctele date se afla de parti diferite ale dreptei date. Gasim simetricul A 1 al punctului A fata de dreapta data conform schemei din problema 5. Astfel A 1 (, 3). x + Scriem ecuatia dreptei A 1 B: = y 3 x + = y 6 x y + 8 = 0. 1 In final gasim punctul P de intersectie al dreptei date 3x y 1 = 0 cu dreapta x y + 8 = 0. 3x y=1 x y= 8 x= y=5. Deci, P (, 5) este punctul cautat deoarece pentru orice alt punct N de pe dreapta data avem BP AP = BP A 1 P = BA 1 > BN NA 1 = BN NA. 8. Sa se scrie ecuatia dreptei care trece prin punctul A(, 5) si este egal departata de punctele B( 1, ) si C(5, 4). Exista doua drepte cu proprietatile din enuntul problemei. Una din ele este dreapta care trece prin A si este paralela cu dreapta BC. Vectorul BC = {6, } este un vector director al acestei drepte si conform formulei (1) avem ecuatia x = y 5 (x ) = 6(y 5) x 3y + 13 = 0. 6 A doua dreapta trece prin punctul A si mijlocul D(, 3) al segmentului BC. Ecuatia ei este x = Sa se scrie ecuatia dreptei ce trece prin punctul de coordonate (1, 3) si punctul de intersectie a dreptelor x + 3y 5 = 0 si 5x 4y 5 = 0. Metoda 1. Gasim punctul de intersectie a dreptelor date si apoi scriem ecuatia dreptei ce trece prin doua puncte. Avem Ecuatia ceruta: x 1 = x + 3y=5 5x 4y=5 x= 35 3 y= y x + y 15 = 0. Metoda. Orice dreapta care trece prin punctul de intersectie a dreptelor date are ecuatia α(x + 3y 5) + β(5x 4y 5) = 0, unde α, β R, α + β 0. Conditia ca dreapta sa
5 Dreapta in plan 5 treaca prin punctul dat impune lui α si β legatura 6α 1β = 0. De aici, pentru α = obtinem β = 1. Cu acestea, ecuatia dreptei din enunt este (x + 3y 5) + 5x 4y 5 = 0 9x + y 15 = Sa se scrie ecuatiile suporturilor laturilor triunghiului ABC, daca A( 1, 4) si y 1 = 0, x y + 1 = 0 sunt ecuatiile suporturilor a doua bisectoare ale triunghiului. Observam ca virful A nu apartine uneia din bisectoarele date. Dreapta BC este simetrica dreptei AC fata de bisectoarea CC 1 si simetrica dreptei BA fata de bisectoarea BB 1. Aceasta observatie ne conduce la urmatoarea rezolvare. Aflam simetricele A 1 si A ale punctului A fata de bisectoarele BB 1 si CC 1, respectiv. Scriem ecuatia A 1 A care coincide cu dreapta BC. Aflam coordonatele punctelor B si C rezolvind sistemele respective de ecuatii, apoi scriem ecuatiile dreptelor AB si AC. Gasim A 1 ( 1, ), A (3, 0) vezi problema 5. De aici, ecuatia dreptei BC: Rezolvam sistemul x = y + y=1 x y 3 = 0. x y 3=0 si obtinem B(5, 1). Analog x y= 1 x y=3 C( 5, 4). In final scriem ecuatiile dreptelor AB si AC. AB: x + y 7 = 0. AC: x y + 6 = 0. Probleme propuse 1. Fiind data dreapta x + 3y 6 = 0 sa se gaseasca: a) punctele M si N ale dreptei cu abscisele, respectiv, 6 si -1; b) punctele P si Q ale dreptei cu ordonatele, respectiv, si -6; 3 c) punctele in care dreapta intersecteaza axele sistemului de coordonate.. Sa se scrie ecuatiile dreptelor care trec prin cite doua din punctele A(3, 4), B(, 1), C(1, 5), D( 6, 3). 3. Sa se scrie ecuatia dreptei paralele cu O y care se afla la distanta de ea.
6 Dreapta in plan 6 4. Sa se scrie ecuatia dreptei paralele cu O x care se afla la distanta 5 de ea. 5. Sa se afle punctul de intersectie a dreptelor 3x 4y 9 = 0, x + 5y + 19 = Sa se scrie ecuatiile dreptelor care trec prin punctul A(3, 5) si au panta k = ; k = 4; k = Sa se scrie ecuatiile dreptelor care trec prin punctul A(3, 1) si formeaza cu axa O x unghiurile α = 45 0 ; α = 10 0 ; α = ( 8. Sa se verifice coliniaritatea punctelor A(1, ), B, 1 ), C(3, 3). 9. Sa se determine λ R astfel incit punctele A(λ, ), B(λ + 1, 1), C(3λ +, 3) sa fie coliniare. 10. Sa se scrie ecuatiile diagonalelor paralelogramului ale carui laturi au ecuatiile x + y 1 = 0, x + y + 1 = 0, x y 1 = 0, x y + 1 = Sa se scrie ecuatia dreptei care trece prin punctul A(3, 5) si are vectorul director a = {4, 5}. 1. Sa se determine cite un vector director al dreptelor x + 5y 3 = 0, y = 4x. 13. Sa se scrie ecuatia dreptei care trece prin punctul A(1, 3) si este paralela cu dreapta 3x 4y 5 = Se cunosc virfurile A( 1, 1), B(3, ), C(1, 5) ale triunghiului ABC. Sa se scrie: a) ecuatiile laturilor triunghiului; b) ecuatia medianei duse din A; c) ecuatia inaltimii duse din A; d) ecuatia mediatoarei laturii BC; e) ecuatia bisectoarei triunghiului construite din A. 15. Sa se determine coordonatele proiectiilor punctului A(, 3) pe dreptele 3x+y 1 = 0, x y + = Sa se determine coordonatele simetricului punctului A(3, 4) in raport cu dreapta x 3y + 1 = Sa se scrie ecuatia simetricei dreptei 3x+y 1 = 0 in raport cu dreapta 4x y+5 = Sa se scrie ecuatia dreptei care trece prin punctul (3,1) si este egal departata de punctele ( 7, ) si ( 9, 6). 19. Sa se calculeze distanta dintre dreptele paralele 3x + 4y 5 = 0 si 3x + 4y + 0 = Sa se deduca formula de calcul a distantei dintre dreptele paralele ax + by + c 1 = 0 si
7 Dreapta in plan 7 ax + by + c = Sa se gaseasca pe axa absciselor un punct P astfel incit suma distantelor lui pina la punctele M(1, ) si N(3, 4) sa fie minimala.. Sa se gaseasca pe axa ordonatelor un punct P astfel incit modulul diferentei distantelor lui pina la punctele M( 3, ) si N(, 5) sa fie maximal. 3. Sa se scrie ecuatia dreptei care trece prin punctul (,1) si prin punctul de intersectie a dreptelor x y 3 = 0 si 3x + y + 1 = Sa se determine valorile parametrului real p pentru care dreptele (p + 1)x 3y + p + 1 = 0 si (p 1)x + 5y 3p + = 0 sunt: a) paralele; b) perpendiculare. 5. Se cunosc ecuatiile x y + 1 = 0 si 3x + y 18 = 0 ale doua laturi ale unui triunghi si punctul H(4, 5) de intersectie a inaltimilor triunghiului. Sa se scrie ecuatia laturii a treia. 6. Sa se scrie ecuatiile laturilor triunghiului ABC, daca A(3, 1) si x y 1 = 0, x 1 = 0 sunt ecuatiile a doua mediane ale triunghiului. 7. Sa se scrie ecuatiile laturilor triunghiului ABC, daca A(6, ) si 7x y 15 = 0, x + 7y + 5 = 0 sunt ecuatiile inaltimii si, respectiv, bisectoarei ce trec prin acelasi virf. 8. Sa se scrie ecuatiile laturilor triunghiului ABC, daca A( 7, ) si x + 3y + 11 = 0, x + y + 7 = 0 sunt ecuatiile inaltimii si, respectiv, medianei ce trec prin virfuri diferite.
Profesor Blaga Mirela-Gabriela DREAPTA
DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)
Διαβάστε περισσότεραPlanul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
Διαβάστε περισσότεραEcuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
Διαβάστε περισσότεραy y x x 1 y1 Elemente de geometrie analiticã 1. Segmente 1. DistanŃa dintre douã puncte A(x 1,y 1 ), B(x 2,y 2 ): AB = 2. Panta dreptei AB: m AB =
Elemente de geometrie analiticã. Segmente. DistanŃa dintre douã puncte A(, ), B(, ): AB = ) + ( ) (. Panta dreptei AB: m AB = +. Coordonatele (,) ale mijlocului segmentului AB: =, =. Coordonatele punctului
Διαβάστε περισσότεραR R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
Διαβάστε περισσότεραDISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
Διαβάστε περισσότεραDefiniţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
Διαβάστε περισσότεραAlgebra si Geometrie Seminar 9
Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni
Διαβάστε περισσότεραConice - Câteva proprietǎţi elementare
Conice - Câteva proprietǎţi elementare lect.dr. Mihai Chiş Facultatea de Matematicǎ şi Informaticǎ Universitatea de Vest din Timişoara Viitori Olimpici ediţia a 5-a, etapa I, clasa a XII-a 1 Definiţii
Διαβάστε περισσότερα2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2
.1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,
Διαβάστε περισσότερα3. Locuri geometrice Locuri geometrice uzuale
3. Locuri geometrice 3.. Locuri geometrice uzuale oţiunea de loc geometric în plan care se găseşte şi în ELEETELE LUI EUCLID se pare că a fost folosită încă de PLATO (47-347) şi ARISTOTEL(383-3). Locurile
Διαβάστε περισσότεραGEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii
GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile
Διαβάστε περισσότερα5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
Διαβάστε περισσότεραConice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
Διαβάστε περισσότερα7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează
TEMĂ 1 1. În triunghiul ABC, fie D (BC) astfel încât AB + BD = AC + CD. Demonstraţi că dacă punctele B, C şi centrele de greutate ale triunghiurilor ABD şi ACD sunt conciclice, atunci AB = AC. India 2014
Διαβάστε περισσότεραCurs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
Διαβάστε περισσότεραGEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. = înălţimea triunghiului echilateral h =, R =, r = R = bh lh 2 A D ++ D. abc. abc =
GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile
Διαβάστε περισσότεραLectia VII Dreapta si planul
Planul. Ecuatii, pozitii relative Dreapta. Ecuatii, pozitii relative Aplicatii Lectia VII Dreapta si planul Oana Constantinescu Oana Constantinescu Lectia VII Planul. Ecuatii, pozitii relative Dreapta.
Διαβάστε περισσότεραConcurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ
UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, aprilie 7 Proba scrisă la MATEMATICĂ SUBIECTUL I (3 puncte) ) (5 puncte) Fie matricele A = 3 4 9 8
Διαβάστε περισσότεραCurs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
Διαβάστε περισσότερα5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
Διαβάστε περισσότεραSisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
Διαβάστε περισσότεραavem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx +
Corina şi Cătălin Minescu 1 Determinarea funcţiei de gradul al doilea când se cunosc puncte de pe grafic, coordonatele vârfului, intersecţii cu axele de coordonate, puncte de extrem, etc. Probleme de arii.
Διαβάστε περισσότερα(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
Διαβάστε περισσότεραb = CA, c = AB, atunci concluzia rezultă din regula triunghiului de adunare a vectorilor:
Trei vectori a, b, c formează untriunghi a + b + c = 0 (relaţia lui Chasles). Dacă a, b, c sunt laturi ale unui triunghi ABC, a = BC, b = CA, c = AB, atunci concluzia rezultă din regula triunghiului de
Διαβάστε περισσότεραCapitolul 9. Geometrie analitică. 9.1 Repere
Capitolul 9 Geometrie analitică 9.1 Repere Vom considera spaţiile liniare (X, +,, R)în careelementelespaţiului X sunt vectorii de pe odreaptă, V 1, dintr-un plan, V sau din spaţiu, V 3 (adică X V 1 sau
Διαβάστε περισσότεραCERCUL LUI EULER ŞI DREAPTA LUI SIMSON
CERCUL LUI EULER ŞI DREAPTA LUI SIMSON ABSTRACT. Articolul prezintă două rezultate deosebite legate de patrulaterul inscriptibil şi câteva consecinţe ce decurg din aceste rezultate. Lecţia se adresează
Διαβάστε περισσότεραAnaliza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
Διαβάστε περισσότερα2.3 Geometria analitică liniarăînspaţiu
2.3 Geometria analitică liniarăînspaţiu Pentru început sădefinim câteva noţiuni de bază în geometria analitică. Definitia 2.3.1 Se numeşte reper în spaţiu o mulţime formată dintr-un punct O (numit originea
Διαβάστε περισσότεραToate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.
Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea
Διαβάστε περισσότεραCOLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
Διαβάστε περισσότεραMetode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
Διαβάστε περισσότεραSubiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
Διαβάστε περισσότεραSeminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
Διαβάστε περισσότερα3. REPREZENTAREA PLANULUI
3.1. GENERALITĂŢI 3. REPREZENTAREA PLANULUI Un plan este definit, în general, prin trei puncte necoliniare sau prin o dreaptă şi un punct exterior, două drepte concurente sau două drepte paralele (fig.3.1).
Διαβάστε περισσότεραa n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
Διαβάστε περισσότεραIII. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
Διαβάστε περισσότεραCurs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
Διαβάστε περισσότεραGEOMETRIE VECTORIALĂ, ANALITICĂ ŞI DIFERENŢIALĂ. PROBLEME REZOLVATE. Gabriel POPA, Paul GEORGESCU c August 20, 2009, Iaşi
GEOMETRIE VECTORIALĂ, ANALITICĂ ŞI DIFERENŢIALĂ. PROBLEME REZOLVATE Gabriel POPA, Paul GEORGESCU c August 0, 009, Iaşi Cuprins 1 SPAŢIUL VECTORILOR LIBERI. STRUCTURA AFINĂ 4 SPAŢIUL VECTORILOR LIBERI.
Διαβάστε περισσότεραV.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
Διαβάστε περισσότεραCONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ
UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ CONCURS DE ADMITERE, 7 iulie 207 Proba scrisă la MATEMATICĂ SUBIECTUL I (30 puncte) ) (0 puncte) Să se arate că oricare ar
Διαβάστε περισσότεραSă se arate că n este număr par. Dan Nedeianu
Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)
Διαβάστε περισσότεραOlimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1
Calea 13 Septembrie, r 09, Sector 5, 0507, București Tel: +40 (0)1 317 36 50 Fax: +40 (0)1 317 36 54 Olimpiada Naţioală de Matematică Etapa locală -00016 Clasa a IX-a M 1 Fie 1 abc,,, 6 şi ab c 1 Să se
Διαβάστε περισσότεραAsupra unei inegalităţi date la barajul OBMJ 2006
Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale
Διαβάστε περισσότεραFunctii Breviar teoretic 8 ianuarie ianuarie 2011
Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)
Διαβάστε περισσότεραBACALAUREAT 2007 SESIUNEA IULIE M1-1
BACALAUREAT 2007 SESIUNEA IULIE M1-1 Filiera teoretică, specializarea matematică - informatică. Filiera vocaţională, profil Militar, specializarea matematică - informatică. a) Să se calculeze modulul vectorului
Διαβάστε περισσότεραLUCRARE DE DIPLOMĂ CENTRE REMARCABILE ÎN TRIUNGHI
UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ SPECIALIZAREA MATEMATICI APLICATE LUCRARE DE DIPLOMĂ CENTRE REMARCABILE ÎN TRIUNGHI Conducător Ştiinţific: Lect. Dr. VĂCĂREŢU
Διαβάστε περισσότεραCURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi
Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială
Διαβάστε περισσότεραCercul lui Euler ( al celor nouă puncte și nu numai!)
Cercul lui Euler ( al celor nouă puncte și nu numai!) Prof. ION CĂLINESCU,CNDG, Câmpulung Voi prezenta o abordare simplă a determinării cercului lui Euler, pe baza unei probleme de loc geometric. Preliminarii:
Διαβάστε περισσότεραVectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.
liberi 1 liberi 2 3 4 Segment orientat liberi Fie S spaţiul geometric tridimensional cu axiomele lui Euclid. Orice pereche de puncte din S, notată (A, B) se numeşte segment orientat. Dacă A B, atunci direcţia
Διαβάστε περισσότεραLectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane
Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii
Διαβάστε περισσότεραRĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,
REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii
Διαβάστε περισσότεραFunctii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
Διαβάστε περισσότερα7. PROBLEME DE SINTEZĂ (punct, dreaptă, plan, metode)
PL STZĂ 115 7. PL STZĂ (punct, dreaptă, plan, metode) 7.1 Probleme reolvate 1. Se dă forma geometrică din figura 7.1. Să se repreinte epura ei şi să se studiee tipurile de drepte, plane şi poiţiile relative
Διαβάστε περισσότεραAplicaţii ale numerelor complexe în geometrie, utilizând Geogebra
ale numerelor complexe în geometrie, utilizând Geogebra Adevărul matematic, indiferent unde, la Paris sau la Toulouse, este unul şi acelaşi (Blaise Pascal) Diana-Florina Haliţă grupa 331 dianahalita@gmailcom
Διαβάστε περισσότεραGRADUL II 1995 CRAIOVA PROFESORI I
GRADUL II 1995 CRAIOVA PROFESORI I 1. Fie f : R R definită prin f(x) = x(1+e x ). a) Să se arate că f este indefinit derivabilă şi că f (n) (x) = a n e x +b n xe x, ( ) n 3, ( ) x R. Deduceţi că a n+1
Διαβάστε περισσότεραSubiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
Διαβάστε περισσότεραVectori liberi-seminar 1
Vectori liberi-seminar ) Determinati α R astfel incat vectorii ā = m+ n si b = m+α n sa fie coliniari, unde m, n sunt necoliniari. ) Demonstrati ca urmatorii trei vectori liberi sunt coplanari: ā = ī j
Διαβάστε περισσότεραSEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0
Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,
Διαβάστε περισσότερα1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. <
Copyright c 009 NG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 17 iunie
Διαβάστε περισσότεραFunctii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
Διαβάστε περισσότεραExemple de probleme rezolvate pentru cursurile DEEA Tranzistoare bipolare cu joncţiuni
Problema 1. Se dă circuitul de mai jos pentru care se cunosc: VCC10[V], 470[kΩ], RC2,7[kΩ]. Tranzistorul bipolar cu joncţiuni (TBJ) este de tipul BC170 şi are parametrii β100 şi VBE0,6[V]. 1. să se determine
Διαβάστε περισσότεραTRIUNGHIUL. Profesor Alina Penciu, Școala Făgăraș, județul Brașov A. Definitii:
TRIUNGHIUL Profesor lina Penciu, Școala Făgăraș, județul rașov Daca, si sunt trei puncte necoliniare, distincte doua câte doua, atunci ( ) [] [] [] se numeste triunghi si se noteaza cu Δ. Orice Δ determina
Διαβάστε περισσότεραMARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
Διαβάστε περισσότεραT R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.
Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică
Διαβάστε περισσότεραCONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1998 Clasa a V-a
CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 998 Clasa a V-a. La gara Timișoara se eliberează trei bilete de tren: unul pentru Arad, altul pentru Deva și al treilea pentru Reșița. Cel pentru Deva
Διαβάστε περισσότεραCurs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
Διαβάστε περισσότερα3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4
SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei
Διαβάστε περισσότεραMinisterul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare
Miisterul Educaţiei Națioale Cetrul Naţioal de Evaluare şi Eamiare Eameul de bacalaureat aţioal 08 Proba E c) Matematică M_mate-ifo Clasa a XI-a Toate subiectele sut obligatorii Se acordă 0 pucte di oficiu
Διαβάστε περισσότεραIntegrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
Διαβάστε περισσότεραa carei ecuatie matriceala este data in raport cu R.
POZITIA RELATIVA A UNEI DREPTE FATA DE O HIPERCUADRICA AFINA REALA. TANGENTE SI ASIMPTOTE. OANA CONSTANTINESCU Pentru studiul pozitiei relative a unei drepte fata de o hipercuadrica, remarcam ca nu mai
Διαβάστε περισσότεραa) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A.
Bac Variata Proil: mate-izica, iormatica, metrologie Subiectul I (3 p) Se cosidera matricele: X =, Y = ( ) si A= a) (3p) Sa se calculeze XY A b) (4p) Sa se calculeze determiatul si ragul matricei A c)
Διαβάστε περισσότεραCONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2018 Clasa a V-a. 1. Scriem numerele naturale nenule consecutive sub forma:
CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2018 Clasa a V-a 1. Scriem numerele naturale nenule consecutive sub forma: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,... (pe fiecare
Διαβάστε περισσότεραGA XI. 138 Să se calculeze produsul distanţelor unui punct oarecare al hiperbolei : d) ;
c) 9 6 0 d) 6 0 0 Culegere de robleme e) 9 6 0 f) 0 9 6 9 GA XI. Pentru hierbola ( H ): să se calculee aria triunghiului format de asimtotele hierbolei (H) şi dreata ( d ): 9. a) b) 6 c) d) e) f) GA XI.
Διαβάστε περισσότεραMetode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
Διαβάστε περισσότεραAsemănarea triunghiurilor O selecție de probleme de geometrie elementară pentru gimnaziu Constantin Chirila Colegiul Naţional Garabet Ibrãileanu,
Asemănarea triunghiurilor O selecție de probleme de geometrie elementară pentru gimnaziu Constantin Chirila Colegiul Naţional Garabet Ibrãileanu, Iaşi Repere metodice ale predării asemănării în gimnaziu
Διαβάστε περισσότεραCURS MECANICA CONSTRUCŢIILOR
CURS 10+11 MECANICA CONSTRUCŢIILOR Conf. Dr. Ing. Viorel Ungureanu CINEMATICA SOLIDULUI RIGID In cadrul cinematicii punctului material s-a arătat ca a studia mişcarea unui punct înseamnă a determina la
Διαβάστε περισσότεραLectia III Produsul scalar a doi vectori liberi
Produsul scalar: denitie, proprietati Schimbari de repere ortonormate in plan Aplicatii Lectia III Produsul scalar a doi vectori liberi Oana Constantinescu Oana Constantinescu Lectia III Produsul scalar:
Διαβάστε περισσότεραConcursul Interjudeţean de Matematică Academician Radu Miron Vaslui, noiembrie Subiecte clasa a VII-a
Concursul Interjudeţean de Matematică Academician Radu Miron Vaslui, -3 noiembrie 0 Subiecte clasa a VII-a. Fie în exteriorul triunghiului ascuţitunghic ABC, triunghiurile dreptunghice ABP şi ACT cu ipotenuzele
Διαβάστε περισσότεραEcuatii trigonometrice
Ecuatii trigonometrice Ecuatiile ce contin necunoscute sub semnul functiilor trigonometrice se numesc ecuatii trigonometrice. Cele mai simple ecuatii trigonometrice sunt ecuatiile de tipul sin x = a, cos
Διαβάστε περισσότεραELEMENTE DE GEOMETRIE. Dorel Fetcu
ELEMENTE DE GEOMETRIE ANALITICĂ ŞI DIFERENŢIALĂ Dorel Fetcu Acest curs este un fragment din manualul D. Fetcu, Elemente de algebră liniară, geometrie analitică şi geometrie diferenţială, Casa Editorială
Διαβάστε περισσότεραSubiecte Clasa a VIII-a
(40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul numarului intrebarii
Διαβάστε περισσότεραCUPRINS 5. Reducerea sistemelor de forţe (continuare)... 1 Cuprins..1
CURS 5 REDUCEREA SISTEMELOR DE FORŢE (CONTINUARE) CUPRINS 5. Reducerea sistemelor de forţe (continuare)...... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 5.1. Teorema lui Varignon pentru sisteme
Διαβάστε περισσότεραGeometrie analitică şi. asist. Ciprian Deliu Universitatea Tehnică Gh. Asachi Iaşi Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului
Geometrie analitică şi diferenţială asist. Ciprian Deliu Universitatea Tehnică Gh. Asachi Iaşi Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului 014 Cuprins 1 Conice 3 1.1 Dreapta în plan............................
Διαβάστε περισσότεραa. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
Διαβάστε περισσότεραAplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
Διαβάστε περισσότεραOANA CONSTANTINESCU. ( a carei ecuatie matriceala este data in raport cu un reper cartezian R = {O; ē 1,, ē n }.
ELEMENTE DE SIMETRIE ALE UNEI HIPERCUADRICE IN SPATII AFINE EUCLIDIENE OANA CONSTANTINESCU 1. Centru de simetrie pentru o hipercuadrica afina Pentru inceput cadrul de lucru este un spatiu an real de dimensiune
Διαβάστε περισσότερα1. Teorema lui Menelaus in plan Demonstratia teoremei in plan (clasa a VII-a). DC EC F B DB EA = 1.
TEOREMA LUI MENELAUS IN PLAN SI SPATIU OANA CONSTANTINESCU In acest material generalizam teorema lui Menelaus din planul euclidian la spatiul euclidian trei dimensional, prezentand doua metode de demonstratie,
Διαβάστε περισσότεραCONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1996 Clasa a V-a
CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1996 Clasa a V-a 1. Să se determine două numere naturale a și b astfel încât c.m.m.d.c.pa,bq 12 și c.m.m.m.c.pa, bq 216. Câte soluții are problema?
Διαβάστε περισσότερα1. Completati caseta, astfel incat propozitia obtinuta sa fie adevarata lg 4 =.
Copyright c ONG TCV Scoala Virtuala a Tanarului Matematician Ministerul Educatiei al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 4 iunie Profilul real Timp
Διαβάστε περισσότεραCAPITOLUL 6 GEOMETRIE LINIARĂ ÎN SPAŢIU Sisteme de coordonate în plan şi în spaţiu. I. Coordonate carteziene
Geometrie liniară în spaţiu CAPITOLUL 6 GEOMETRIE LINIARĂ ÎN SPAŢIU 6.. Sisteme de coordonate în plan şi în spaţiu I. Coordonate carteziene În cele ce urmează, notăm cu E 3 spaţiul punctual tridimensional
Διαβάστε περισσότερα2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3
SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest
Διαβάστε περισσότεραAl cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015
Societatea de Ştiinţe Matematice din România Ministerul Educaţiei Naţionale Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Problema 1. Arătaţi că numărul 1 se poate reprezenta ca suma
Διαβάστε περισσότεραBAC 2007 Pro Didactica
BAC 007 Pro Didactica Testare Naţională Rezolvările variantelor 1 5 versiune finală Redactia Pro Didactica Suportul pe net: http://www./ 5--007/versiune finală Cuprins Capitolul 1. Varianta 1 1. Subiectul
Διαβάστε περισσότεραBARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)
BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul
Διαβάστε περισσότεραSeminar 5 Analiza stabilității sistemelor liniare
Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare
Διαβάστε περισσότεραProgresii aritmetice si geometrice. Progresia aritmetica.
Progresii aritmetice si geometrice Progresia aritmetica. Definitia 1. Sirul numeric (a n ) n N se numeste progresie aritmetica, daca exista un numar real d, numit ratia progresia, astfel incat a n+1 a
Διαβάστε περισσότεραDEFINITIVAT 1993 PROFESORI I. sinx. 0, dacă x = 0
DEFINITIVAT 1993 TIMIŞOARA PROFESORI I 1. a) Metodica predării noţiunii de derivată a unei funcţii. b) Să se reprezinte grafic funci a sinx, dacă x (0,2π] f : [0,2π] R, f(x) = x. 0, dacă x = 0 2. Fie G
Διαβάστε περισσότεραConcurs MATE-INFO UBB, 25 martie 2018 Proba scrisă la MATEMATICĂ
UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, 5 martie 18 Proba scrisă la MATEMATICĂ NOTĂ IMPORTANTĂ: 1 Problemele tip grilă (Partea A pot avea unul
Διαβάστε περισσότεραLaborator 11. Mulţimi Julia. Temă
Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.
Διαβάστε περισσότερα