Uvod v numerične metode
|
|
- Δωρόθεος Ταμτάκος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Uvod v numerične metode Bor Plestenjak soba 4.04 bor.plestenjak@fmf.uni-lj.si asistent: Gašper Jaklič
2 Režim 2 sklopa domačih nalog - 20% pisne ocene potrebno rešiti in oddati v predvidenem roku 3 pisni izpiti - 80% pisne ocene za pozitivno pisno oceno je potrebno skupaj iz domačih nalog in pisnega izpita zbrati vsaj 50% ustni izpit pogoj za pristop je pozitivna pisna ocena 2. semester bom na študijskem dopustu - ustni izpiti v poletnem izpitnem roku odpadejo!
3 1.1 Uvod Pri numeričnem reševanju dane naloge iščemo rešitev v numerični obliki. To pomeni, da npr. namesto 3 iščemo Numerična metoda je postopek, ki iz vhodnih numeričnih podatkov s končnim zaporedjem elementarnih operacij izračuna numerični približek za rezultat določenega problema. Elementarne operacije so odvisne od okolja, mi bomo pod to šteli +,, /, in. Za zglede bomo uporabljali program Matlab. Namesto Matlaba lahko doma uporabljate prosto dostopen program Octave.
4 Numerično računanje se razlikuje od eksaktnega računanja Računamo s števili, ki so predstavljena v plavajoči vejici. Vzamemo kalkulator in izračunamo 100 (100/3 33) 100/3. Rezultat je (ne)pričakovan, npr. v Matlabu dobimo Za množenje naj bi veljala asociativnost. Če vzamemo npr. x = y = z = , potem v Matlabu dobimo x y z z y x =
5 Numerična matematika Numerična matematika se ukvarja z razvojem in analizo algoritmov za numerično reševanje matematičnih problemov. Ukvarjali se bomo z naslednjimi problemi: linearni sistem: poišči x R n, ki reši sistem Ax = b za A R n n in b R n. nelinearni sistem: poišči rešitev enačbe f(x) = y, kjer je f : R n R n. linearni problem najmanjših kvadratov: poišči x R n, ki minimizira Ax b 2 za A R m n in b R m, kjer je m > n. lastne vrednosti: izračunaj lastne vrednosti in vektorje matrike A R n n. interpolacija: poišči polinom, ki gre skozi točke (x 0, f(x 0 )),..., (x n, f(x n )). integriranje: izračunaj integral b a f(t)dt. diferencialne enačbe: reši začetni problem y = f(x, y), y(x 0 ) = y 0.
6 Povezani predmeti Prva stopnja: Numerična linearna algebra Druga stopnja: Iterativne numerične metode v linearni algebri Numerična aproksimacija in interpolacija Računalniško podprto (geometrijsko) oblikovanje Numerična integracija in navadne diferencialne enačbe Numerično reševanje parcialnih diferencialnih enačb Numerične metode za linearne sisteme upravljanja
7 Ozadje Številne fizikalne, tehnološke, in druge procese lahko simuliramo na računalniku. Postopek je sestavljen iz naslednjih korakov: 1. razvoj matematičnega modela, 2. razvoj numeričnih metod za numerično reševanje modela, 3. implementacija numeričnih metod, 4. simuliranje procesov z računalnikom, 5. predstavitev dobljenih numeričnih rezultatov v pregledni obliki, 6. analiza rezultatov, po potrebi se vrnemo na enega izmed prejšnjih korakov. Mi se bomo ukvarjali v glavnem s točkama 2. in 3.
8 Kdaj uporabljamo numerične metode Ko drugih možnosti ne poznamo, npr.: iskanje ničel polinoma pete stopnje: x 5 + 3x 1 = 0, reševanje transcendentne enačbe: x + ln x = 0, računanje določenega integrala: 1 0 ex2 dx, večina nelinearnih enačb, diferencialnih enačb,.... Kadar so udobnejše oz. manj zahtevne od analitičnih rešitev, npr.: računanje inverzne matrike velikosti , Cardanove formule za ničle kubičnega polinoma.
9 Problem prevedemo na lažji problem Glavni princip pri numeričnem reševanju je, da namesto podanega težkega problema rešujemo lažjega, ki ima ali enako ali pa zelo bližnjo rešitev. Npr.: neskončne procese nadomestimo s končnimi procesi, neskončno razsežne prostore nadomestimo s končno razsežnimi, diferencialne enačbe nadomestimo z algebraičnimi enačbami, nelinearni problem nadomestimo z linearnim, zapletene funkcije nadomestimo z enostavnejšimi, npr. s polinomi, splošne matrike nadomestimo z matrikami z enostavnejšo obliko. Zanimalo nas bo torej: kakšna je tipska oblika problema in kako jo učinkovito in stabilno rešimo, kako splošni problem učinkovito in stabilno prevedemo na tipsko obliko.
10 Dobra numerična metoda Glavne zahteve za dobro numerično metodo so: zanesljivost: na enostavnih problemih vedno deluje pravilno. robustnost: običajno deluje na težjih problemih, kadar pa ne deluje, vrne informacijo o tem. natančnost: izračuna rešitev tako natančno, kot je to možno glede na natančnost podanih začetnih podatkov. ekonomičnost: časovna (število operacij) in prostorska (poraba spomina). uporabnost: lahko jo uporabimo na širokem spektru problemov. prijaznost do uporabnika: je dobro dokumentirana in ima enostaven uporabniški vmesnik. Numerične metode se stalno razvijajo. Dejavniki razvoja so: novi problemi, novi pristopi in novi algoritmi, razvoj računalnikov, razvoj paralelnih računalnikov oz. večjedrnih procesorjev.
11 Absolutna in relativna napaka Pri numeričnem računanju vedno dobimo numerični približek za točno rešitev problema. Razlika med približkom in točno vrednostjo je napaka približka. Ločimo absolutno in relativno napako. absolutna napaka = približek točna vrednost, relativna napaka = absolutna napaka točna vrednost. Naj bo x točna vrednost, x pa približek za x. Če je x = x + d a, potem je d a = x x absolutna napaka. Če je x = x(1 + d r ) oziroma d r = x x x, potem je d r relativna napaka.
12 1.2 Plavajoča vejica V računalniku so števila zapisana v plavajoči vejici kot x = ±m b e, kjer je m = 0.c 1 c 2... c t mantisa in b: baza (2, lahko tudi 10 ali 16), t: dolžina mantise, e: eksponent v mejah L e U, c i : števke v mejah od 0 do b 1. Če je c 1 0, potem je število normalizirano, sicer pa subnormalizirano. Zapis označimo s P (b, t, L, U). Npr = 3.25.
13 Zgled Vsa normalizirana pozitivna predstavljiva števila iz množice P (2, 3, 1, 1) so: = = = = = = = = = = = = Subnormalizirana števila (možna le pri najmanjšem eksponentu) so: = = =
14 Standard IEEE single: P (2, 24, 125, 128), število je shranjeno v 32 bitih, eksponent predznak mantisa c 2 c 3... c 24 (c 1 = 1) double: P (2, 53, 1021, 1023), število je shranjeno v 64 bitih, eksponent predznak mantisa c 2 c 3... c 53 (c 1 = 1) standard IEEE pozna še števila 0,, in NaN.
15 Osnovna zaokrožitvena napaka Števila, ki niso predstavljiva, predstavimo s približki, ki jih dobimo z zaokrožanjem. Naj bo x število in f l(x) najbližje predstavljivo število. Velja fl(x) = x(1 + δ) in δ u, kjer je osnovna zaokrožitvena napaka: u = 1 2 b1 t single: u = 2 24 = , double: u = 2 53 =
16 Izrek 1. Če število x leži znotraj intervala predstavljivih števil, potem velja fl(x) x x u 1 + u.
17 Računanje po standardu IEEE Standard IEEE zagotavlja, da velja: fl(x y) = (x y)(1 + δ), δ u za = +,, /,, fl( x) = x(1 + δ), δ u. Izjema je, če pride do prekoračitve (overflow) ali podkoračitve (underflow) obsega predstavljivih števil. V tem primeru dobimo po IEEE: prekoračitev: ±, podkoračitev: 0.
18 Nesreča rakete Arianne 4. junija 1996 je pri prvem poletu rakete Ariane 5, ki naj bi nadomestila manjšo raketo Ariane 4, prišlo do nesreče. Raketa je po 40 sekundah zavila s prave poti in eksplodirala. Izkazalo se je, da je do nesreče prislo zaradi prekoračitve obsega. Ker program ni imel testiranja prekoračitve, se je sesul, s tem pa tudi celoten polet. Podrobna analiza je pokazala, da je del programa, ki je povzročil napako, prišel iz programa za Ariane 4, kjer je vedno deloval brez napak. Tokrat pa je močnejša raketa povzročila, do so bile izmerjene količine prevelike in prišlo je do prekoračitve obsega. Več lahko najdete na:
19 1.3 Vrste napak pri numeričnem računanju Radi bi izračunali vrednost y funkcije f : X Y pri danem x. Z numerično metodo dobimo približek ŷ za y, razlika D = y ŷ pa je celotna napaka približka. Izvori napake so: nenatančnost začetnih podatkov, napaka metode, zaokrožitvene napake med računanjem.
20 Izračun sin(π/10) z osnovnimi operacijami v P (10, 4, 5, 5) točna vrednost je sin(π/10) = Začetni podatek ni predstavljivo število. Namesto z x = π/10 računamo z x = fl(π/10) = Kako z osnovnimi operacijami izračunamo vrednost funkcije sin? Namesto y = sin(x) izračunamo ỹ = g(x) za g(x) = x x 3 /6. 3. Končni rezultat je odvisen od zaporedja operacij za izračun g(x). a 1 = fl(x x) = fl( ) = a 2 = fl(a 1 x) = fl( ) = a 3 = fl(a 2 /6) = fl( ) = ŷ = fl(x a 3 ) = fl( ) = Absolutna napaka končnega približka je D = y ŷ = Relativna napaka končnega približka je D/y = Osnovna zaokrožitvena napaka je
21 Celotno napako lahko razdelimo na tri dele Neodstranljiva napaka: Namesto z x računamo s približkom x in namesto y = f(x) izračunamo y = f(x). Neodstranljiva napaka je D n = y y. D n je posledica napak začetnih podatkov. Zgled: Računanje sin(π/10) z osnovnimi operacijami v P (10, 4, 5, 5) Namesto z x = π/10 računamo z x = D n = y y = sin(π/10) sin(0.3142) = Napaka metode: Namesto f računamo vrednost funkcije g, ki jo lahko izračunamo s končnim številom operacij. Namesto y = f(x) tako izračunamo ỹ = g(x). Napaka metode je D m = y ỹ. Pri sami numerični metodi pogosto neskončen proces nadomestimo s končnim (seštejemo le končno členov neskončne vrste, po končnem številu korakov prekinemo iterativno metodo). Zgled: Namesto sin(x) izračunamo g(x) za g(x) = x x 3 /6. D m = y ỹ =
22 Celotna napaka Zaokrožitvena napaka: Pri računanju ỹ = g(x) se pri vsaki računski operaciji pojavi zaokrožitvena napaka, tako da namesto ỹ izračunamo ŷ. Sama vrednost ŷ je odvisna od vrstnega reda operacij in načina izračuna g(x). Zaokrožitvena napaka je D z = ỹ ŷ. Zgled: D z je odvisna je od vrstnega reda in načina računanja g(x). Primer: a 1 = fl(x x) = fl( ) = a 2 = fl(a 1 x) = fl( ) = a 3 = fl(a 2 /6) = fl( ) = ŷ = fl(x a 3 ) = fl( ) = D z = ỹ g(x) = Celotna napaka: Končna napaka je D = D n + D m + D z. Velja D D n + D m + D z. Zgled: Celotna napaka je D = D n + D m + D z =
23 1.4 Občutljivost problema Če se rezultat pri majhni spremembi argumentov (motnji oz. perturbaciji) ne spremeni veliko, je problem neobčutljiv, sicer pa je občutljiv. a) x + y = 2 x y = 0 = x = y = 1. Zmotimo desno stran: x + y = x y = = x = , y = Ta sistem je neobčutljiv. b) x y = x y = 1.97 Zmotimo desno stran: x y = x y = = x = y = 1. = x = 2.97, y = Ta sistem je zelo občutljiv.
24 Polinom Wilkinsonov zgled p(x) = (x 1)(x 2) (x 20) = x x ! ima ničle 1, 2,..., 20, polinom pa ima ničle g(x) = p(x) 2 23 x 19 x 9 = x 10,11 = ± i x 16,17 = ± i x 18,19 = ± i x 20 = Čeprav so vse ničle enostavne in lepo separirane, majhna motnja povzroči velike spremembe. Wilkinson je s tem primerom pokazal, da računanje lastnih vrednosti preko karakterističnega polinoma ni stabilno.
25 Stopnja občutljivosti Stopnjo občutljivosti merimo z razmerjem med velikostjo spremembe rezultata in velikostjo spremembe podatkov. Zgled: Naj bo f : R R zvezna in odvedljiva funkcija. Zanima nas razlika med f(x) in f(x + δx), kjer je δx majhna motnja. Velja f(x + δx) f(x) f (x) δx, torej je f (x) absolutna občutljivost f v točki x. Za oceno relativne napake dobimo f(x + δx) f(x) f(x) f (x) x f(x) δx x, torej je f (x) x f(x) relativna občutljivost f v točki x.
26 1.5 Stabilnost metode Pri računskem procesu pravimo, da je stabilen oz. nestabilen, ločimo pa direktno in obratno stabilnost. S tem se ukvarja analiza zaokrožitvenih napak. direktna stabilnost: Iz x namesto y = f(x) izračunamo ŷ. Če je za vsak x razlika med y in ŷ majhna (absolutno oz. relativno), je proces direktno stabilen (absolutno oz. relativno), sicer pa nestabilen. obratna stabilnost: Iz x namesto y = f(x) izračunamo ŷ. Sedaj se vprašamo, za koliko moramo spremeniti argument x v x, da bo f( x) = ŷ. Če je za vsak x razlika med x in x majhna (absolutno oz. relativno), je proces obratno stabilen (absolutno oz. relativno), sicer pa nestabilen.
27 Občutljivost, stabilnost in natančnost Algoritem je stabilen, če so rezultati, ki jih vrne, relativno neobčutljivi na motnje, ki se pojavijo zaradi zaokrožitvenih napak med samim računanjem. Obratno stabilen algoritem tako vrne točno rešitev bližnjega problema. Če je problem občutljiv, se točna rešitev bližnjega problema lahko zelo razlikuje od točne rešitve začetnega problema in izračunani rezultat je nenatančen. Če rešimo neobčutljiv problem z obratno stabilno metodo, potem se izračunani rezultat ne razlikuje dosti od točnega. Nenatančnost je tako lahko posledica: uporabe stabilnega algoritma na občutljivem problemu, uporabe nestabilnega algoritma na neobčutljivem problemu. Natančnost je zagotovljena, kadar neobčutljiv problem rešimo s stabilno numerično metodo.
Uvod v numerične metode
Uvod v numerične metode B. Plestenjak, J.Kozak: Uvod v numerične metode 2011-2012 1 / 56 Jernej Kozak Jadranska 21, IV. nadstropje, št. 407. Iz dvigala, v desno, do konca hodnika in korak v smeri Krima.
Διαβάστε περισσότεραNumerična analiza. Bor Plestenjak. Fakulteta za matematiko in fiziko. Jadranska 21, 4. nadstropje, soba 4.04
Numerična analiza Bor Plestenjak Fakulteta za matematiko in fiziko Jadranska 21, 4. nadstropje, soba 4.04 govorilne ure: četrtek 11-12 oz. po dogovoru bor.plestenjak@fmf.uni-lj.si http://www-lp.fmf.uni-lj.si/plestenjak/vaje/vaje.htm
Διαβάστε περισσότεραBor Plestenjak. Numerične metode. delovna verzija. verzija: 4. marec 2010
Bor Plestenjak Numerične metode delovna verzija verzija: 4. marec 200 Kazalo Uvod 7. Numerična matematika................................. 7.2 Plavajoča vejica...................................... 0.3
Διαβάστε περισσότεραUvod v numerične metode (matematika)
Bor Plestenjak Uvod v numerične metode (matematika) delovna verzija verzija: 5. oktober 202 Kazalo Uvod 5. Numerična matematika................................. 5.2 Plavajoča vejica......................................
Διαβάστε περισσότερα13. Jacobijeva metoda za računanje singularnega razcepa
13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva
Διαβάστε περισσότεραDiferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
Διαβάστε περισσότεραTretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
Διαβάστε περισσότεραFunkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
Διαβάστε περισσότεραOdvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
Διαβάστε περισσότεραOdvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
Διαβάστε περισσότεραFunkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
Διαβάστε περισσότεραZaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
Διαβάστε περισσότεραFunkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
Διαβάστε περισσότερα8. Navadne diferencialne enačbe
8. Navadne diferencialne enačbe 8.1. Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogoju y(x 0 ) = y 0, kjer je f dana dovolj gladka funkcija
Διαβάστε περισσότεραmatrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):
4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n
Διαβάστε περισσότερα*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center
Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:
Διαβάστε περισσότεραEnačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.
1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y
Διαβάστε περισσότεραFunkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,
Διαβάστε περισσότεραSplošno o interpolaciji
Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo
Διαβάστε περισσότεραNavadne diferencialne enačbe
Navadne diferencialne enačbe Navadne diferencialne enačbe prvega reda V celotnem poglavju bo y = dy dx. Diferencialne enačbe z ločljivima spremeljivkama Diferencialna enačba z ločljivima spremeljivkama
Διαβάστε περισσότερα8. Posplošeni problem lastnih vrednosti
8. Posplošeni problem lastnih vrednosti Bor Plestenjak NLA 13. april 2010 Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april 2010 1 / 15 Matrični šop Dani sta kvadratni n n matriki
Διαβάστε περισσότεραIZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
Διαβάστε περισσότεραDragi polinom, kje so tvoje ničle?
1 Dragi polinom, kje so tvoje ničle? Vito Vitrih FAMNIT - Izlet v matematično vesolje 17. december 2010 Polinomi: 2 Polinom stopnje n je funkcija p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, a i R.
Διαβάστε περισσότερα11.5 Metoda karakteristik za hiperbolične PDE
11.5 Metoda karakteristik za hiperbolične PDE Hiperbolična kvazi linearna PDE ima obliko au xx + bu xy + cu yy = f, (1) kjer so a, b, c, f funkcije x, y, u, u x in u y, ter velja b 2 4ac > 0. Če predpostavimo,
Διαβάστε περισσότεραNavadne diferencialne enačbe
Poglavje 6 Navadne diferencialne enačbe 6.1 Uvod Splošna rešitev navadne diferencialne enačbe n-tega reda F(x, y, y, y,..., y (n) ) = 0 je n-parametrična družina funkcij. Kadar želimo iz splošne rešitve
Διαβάστε περισσότερα3.1 Reševanje nelinearnih sistemov
3.1 Reševanje nelinearnih sistemov Rešujemo sistem nelinearnih enačb f 1 (x 1, x 2,..., x n ) = 0 f 2 (x 1, x 2,..., x n ) = 0. f n (x 1, x 2,..., x n ) = 0. Pišemo F (x) = 0, kjer je x R n in F : R n
Διαβάστε περισσότεραReševanje sistema linearnih
Poglavje III Reševanje sistema linearnih enačb V tem kratkem poglavju bomo obravnavali zelo uporabno in zato pomembno temo linearne algebre eševanje sistemov linearnih enačb. Spoznali bomo Gaussovo (natančneje
Διαβάστε περισσότεραvezani ekstremi funkcij
11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad
Διαβάστε περισσότεραZaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )
Διαβάστε περισσότεραFunkcije več spremenljivk
DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije
Διαβάστε περισσότεραKotne in krožne funkcije
Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete
Διαβάστε περισσότεραNumerično reševanje. diferencialnih enačb II
Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke
Διαβάστε περισσότεραKODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
Διαβάστε περισσότεραSKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK
SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi
Διαβάστε περισσότεραBooleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
Διαβάστε περισσότερα1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja
ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost
Διαβάστε περισσότεραInterpolacija in aproksimacija funkcij
Poglavje 4 Interpolacija in aproksimacija funkcij Na interpolacijo naletimo, kadar moramo vrednost funkcije, ki ima vrednosti znane le v posameznih točkah (pravimo jim interpolacijske točke), izračunati
Διαβάστε περισσότερα5.1 Predpogojevanje. K 1 Ax = K 1 b,
5.1 Predpogojevanje Konvergenca metod podprostorov za reševanje linearnega sistema Ax = b je v veliki meri odvisna od razporeditve lastnih vrednosti (in lastnih vektorjev) matrike A. Kadar je konvergenca
Διαβάστε περισσότεραMatematika 2. Diferencialne enačbe drugega reda
Matematika 2 Diferencialne enačbe drugega reda (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) y 6y + 8y = 0, (b) y 2y + y = 0, (c) y + y = 0, (d) y + 2y + 2y = 0. Rešitev:
Διαβάστε περισσότεραPodobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik
Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva
Διαβάστε περισσότεραIterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013
Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:
Διαβάστε περισσότεραKontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.
Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.
Διαβάστε περισσότεραFAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22. junij Navodila
FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22 junij 212 Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Veljale bodo samo rešitve na papirju, kjer
Διαβάστε περισσότεραTema 1 Osnove navadnih diferencialnih enačb (NDE)
Matematične metode v fiziki II 2013/14 Tema 1 Osnove navadnih diferencialnih enačb (NDE Diferencialne enačbe v fiziki Večina osnovnih enačb v fiziki je zapisana v obliki diferencialne enačbe. Za primer
Διαβάστε περισσότεραα i y n i + h β i f n i = 0, Splošni nastavek je k
10.4 Večkoračne metode Splošni nastavek je k α i y n i + h i=0 k β i f n i = 0, kjer je f i = f(x i, y i ), privzamemo pa še α 0 = 1. Če je β 0 = 0, je metoda eksplicitna, sicer pa implicitna. i=0 Adamsove
Διαβάστε περισσότεραAnaliza 2 Rešitve 14. sklopa nalog
Analiza Rešitve 1 sklopa nalog Navadne diferencialne enačbe višjih redov in sistemi diferencialnih enačb (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) 6 + 8 0, (b)
Διαβάστε περισσότεραProblem lastnih vrednosti
Problem lastnih vrednosti Naj bo A R n n. Iščemo lastni par, da zanj velja Ax = λx, kjer je x C n, x 0 (desni) lastni vektor, λ C pa lastna vrednost. Vektor y 0, pri katerem je y H A = λy H, je levi lastni
Διαβάστε περισσότεραIzpeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega
Izeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega 1. Najosnovnejše o konveksnih funkcijah Definicija. Naj bo X vektorski rostor in D X konveksna množica. Funkcija ϕ: D R je konveksna,
Διαβάστε περισσότεραdiferencialne enačbe - nadaljevanje
12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne
Διαβάστε περισσότεραNa pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12
Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola
Διαβάστε περισσότεραUNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO MATEMATIKA II
UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA II Maribor, 2016 Kazalo Uvod v linearno algebro 1 1.1 Matrike................................ 1 1.2 Računanje
Διαβάστε περισσότεραMatematika. Funkcije in enačbe
Matematika Funkcije in enačbe (1) Nariši grafe naslednjih funkcij: (a) f() = 1, (b) f() = 3, (c) f() = 3. Rešitev: (a) Linearna funkcija f() = 1 ima začetno vrednost f(0) = 1 in ničlo = 1/. Definirana
Διαβάστε περισσότεραEnočlenske metode veljajo trenutno za najprimernejše metode v numeričnem reševanju začetnih problemov. Skoraj vse sodijo v
Enočlenske metode J.Kozak Uvod v numerične metode - / 4 Enočlenske metode veljajo trenutno za najprimernejše metode v numeričnem reševanju začetnih problemov. Skoraj vse sodijo v skupino Runge-Kutta metod.
Διαβάστε περισσότεραDISKRETNA FOURIERJEVA TRANSFORMACIJA
29.03.2004 Definicija DFT Outline DFT je linearna transformacija nekega vektorskega prostora dimenzije n nad obsegom K, ki ga označujemo z V K, pri čemer ima slednji lastnost, da vsebuje nek poseben element,
Διαβάστε περισσότεραZbirka rešenih izpitnih nalog iz numeričnih metod
Zbirka rešenih izpitnih nalog iz numeričnih metod Borut Jurčič - Zlobec Andrej Perne Univerza v Ljubljani Fakulteta za elektrotehniko Ljubljana 6 Kazalo Iterativno reševanje nelinearnih enačb 4 Navadna
Διαβάστε περισσότερα11. Posplošeni problemi lastnih vrednosti
11. Posplošeni problemi lastnih vrednosti Dani sta kvadratni n n matriki A in B. Množico vseh matrik oblike A λb, kjer je λ C, imenujemo matrični šop in označimo z (A, B) ali A λb. Karakteristični polinom
Διαβάστε περισσότεραNumerične metode 2 (finančna matematika)
Bor Plestenjak Numerične metode 2 (finančna matematika) delovna verzija verzija:. februar 203 Kazalo Nesimetrični problem lastnih vrednosti 5. Uvod............................................ 5.2 Schurova
Διαβάστε περισσότεραIntegralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)
Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2
Διαβάστε περισσότεραRačunalniško vodeni procesi I
Šolski center Velenje Višja strokovna šola Velenje Trg mladosti 3, 33 Velenje Računalniško vodeni procesi I Osnove višješolske matematike Interno gradivo - druga, popravljena izdaja Robert Meolic. september
Διαβάστε περισσότεραPoglavje 2. Sistemi linearnih enačb
Poglavje 2 Sistemi linearnih enačb Najpogostejši problem, na katerega naletimo pri numeričnem računanju, je reševanje sistema linearnih enačb Tak sistem lahko dobimo direktno iz matematične formulacije
Διαβάστε περισσότεραNEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE
NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,
Διαβάστε περισσότεραProgrami v Matlabu za predmet numerične metode
Programi v Matlabu za predmet numerične metode 18. 04 2002 1 1 Reševanje nelinearnih enačb Napisali bomo program za reševanje nelinearnih enačb z uporabo posameznih metod. Rešujete nelinearne enačbe oblike
Διαβάστε περισσότεραOznake in osnovne definicije
Oznake in osnovne definicije B Plestenjak, JKozak: Numerične metode 2011-2012 1 / 53 Sistem n linearnih enačb z n neznankami a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b
Διαβάστε περισσότεραMatematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1
Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije
Διαβάστε περισσότεραOdvode odvisnih spremenljivk po neodvisni spremenljivki bomo označevali s piko: Sistem navadnih diferencialnih enačb prvega reda ima obliko:
4 Sisemi diferencialnih enačb V prakičnih primerih večkra naleimo na več diferencialnih enačb, ki opisujejo določen pojav in so medsebojno povezane edaj govorimo o sisemih diferencialnih enačb V eh enačbah
Διαβάστε περισσότεραOsnove matematične analize 2016/17
Osnove matematične analize 216/17 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Kaj je funkcija? Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja
Διαβάστε περισσότεραTransformator. Delovanje transformatorja I. Delovanje transformatorja II
Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.
Διαβάστε περισσότεραMATEMATIČNI IZRAZI V MAFIRA WIKIJU
I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH
Διαβάστε περισσότεραNekaj zgledov. J.Kozak Numerične metode II (IŠRM) / 21
Nekaj zgledov J.Kozak Numerične metode II (IŠRM) 2011-2012 1 / 21 V robnih problemih rešitev diferencialne enačbe zadošča dodatnim pogojem, ki niso vsi predpisani v isti točki. Že osnovna zahteva, kot
Διαβάστε περισσότεραKombinatorika. rekurzivnih enačb in rodovne funkcije. FMF Matematika Finančna matematika. Vladimir Batagelj. Ljubljana, april
FMF Matematika Finančna matematika Kombinatorika Reševanje rekurzivnih enačb in rodovne funkcije Vladimir Batagelj Math fun: Pascal triangle Ljubljana, april 2008 4. Dec 2012 različica: December 4, 2012
Διαβάστε περισσότεραVaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim
Študij AHITEKTURE IN URBANIZMA, šol l 06/7 Vaje iz MATEMATIKE 8 Odvod funkcije f( Definicija: Naj bo f definirana na neki okolici točke 0 Če obstaja lim 0 +h f( 0 h 0 h, pravimo, da je funkcija f odvedljiva
Διαβάστε περισσότεραVEKTORJI. Operacije z vektorji
VEKTORJI Vektorji so matematični objekti, s katerimi opisujemo določene fizikalne količine. V tisku jih označujemo s krepko natisnjenimi črkami (npr. a), pri pisanju pa s puščico ( a). Fizikalne količine,
Διαβάστε περισσότεραV tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant.
Poglavje IV Determinanta matrike V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant 1 Definicija Preden definiramo determinanto,
Διαβάστε περισσότεραDomača naloga 6: dušeno nihanje
Domača naloga 6: dušeno nihanje Vaje iz predmeta Numerične metode v fiziki Igor Grešovnik Kazalo: 1 Naloga 6a Nihanje... 1.1 Enačbe nihanja... 1. Numerično reševanje problema... 3 1..1 Reševanje sistema
Διαβάστε περισσότεραKvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti
Poglavje XI Kvadratne forme V zadnjem poglavju si bomo ogledali še eno vrsto preslikav, ki jih tudi lahko podamo z matrikami. To so tako imenovane kvadratne forme, ki niso več linearne preslikave. Kvadratne
Διαβάστε περισσότεραDelovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
Διαβάστε περισσότεραSEMINARSKA NALOGA Funkciji sin(x) in cos(x)
FAKULTETA ZA MATEMATIKO IN FIZIKO Praktična Matematika-VSŠ(BO) Komuniciranje v matematiki SEMINARSKA NALOGA Funkciji sin(x) in cos(x) Avtorica: Špela Marinčič Ljubljana, maj 2011 KAZALO: 1.Uvod...1 2.
Διαβάστε περισσότεραRačunski del izpita pri predmetu MATEMATIKA I
Kemijska tehnologija Visokošolski strokovni program Računski del izpita pri predmetu MATEMATIKA I 29. 8. 2013 Čas reševanja je 75 minut. Navodila: Pripravi osebni dokument. Ugasni in odstrani mobilni telefon.
Διαβάστε περισσότεραMatematika I (VS) Univerza v Ljubljani, FE. Melita Hajdinjak 2013/14. Pregled elementarnih funkcij. Potenčna funkcija. Korenska funkcija.
1 / 46 Univerza v Ljubljani, FE Potenčna Korenska Melita Hajdinjak Matematika I (VS) Kotne 013/14 / 46 Potenčna Potenčna Funkcijo oblike f() = n, kjer je n Z, imenujemo potenčna. Število n imenujemo eksponent.
Διαβάστε περισσότεραProblem lastnih vrednosti 1 / 20
Problem lastnih vrednosti 1 / 20 2 / 20 1 Uvod 2 Potenčna metoda 3 Inverzna iteracija 4 QR iteracija 5 Metode za simetrične matrike Sturmovo zaporedje Jacobijeva iteracija 3 / 20 Uvod Naj bo A R n n. Paru
Διαβάστε περισσότερα18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Διαβάστε περισσότεραMatematika. BF Lesarstvo. Zapiski ob predavanjih v šolskem letu 2009/2010
Matematika BF Lesarstvo Matjaž Željko Zapiski ob predavanjih v šolskem letu 009/00 Izpis: 9 januar 00 KAZALO Kazalo Števila 5 Naravna števila 5 Cela števila 6 3 Racionalna števila 6 4 Realna števila 7
Διαβάστε περισσότεραIterativne numerične metode v linearni algebri
Bor Plestenja Iterativne numerične metode v linearni algebri sripta verzija: 2. januar 204 Kazalo Klasične iterativne metode za linearne sisteme 4. Uvod............................................ 4.2
Διαβάστε περισσότεραČas reševanja je 75 minut. 1. [15] Poišči vsa kompleksna števila z, za katera velja. z 2 +2 z +2 i 2 = Im. 1 2i
Bolonjski univerzitetni program Smer: KT K WolframA: DA NE Računski del izpita pri predmetu MATEMATIKA I Čas reševanja je 75 minut. Navodila: Pripravi osebni dokument. Ugasni in odstrani mobilni telefon.
Διαβάστε περισσότερα1. Trikotniki hitrosti
. Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca
Διαβάστε περισσότεραIspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Διαβάστε περισσότεραLJUDSKA UNIVERZA NOVA GORICA. MATEMATIKA 1 2. del. EKONOMSKI TEHNIK PTI gradivo za interno uporabo. Pripravila: Mateja Strnad Šolsko leto 2011/12
LJUDSKA UNIVERZA NOVA GORICA MATEMATIKA 1 2. del EKONOMSKI TEHNIK PTI gradivo za interno uporabo Pripravila: Mateja Strnad Šolsko leto 2011/12 KAZALO 1 POLINOMI... 1 1.1 Polinomi VAJE... 1 1.2 Operacije
Διαβάστε περισσότεραOsnove linearne algebre
Osnove linearne algebre Matrike Matrika razsežnosti n m je A = a 1 1 a 1 2 a 1 m a 2 1 a 2 2 a 2 m a n 1 a n 2 a n m Če je n = m, tedaj matriko imenujemo kvadratna matrika Elementi matrike so lahko realna
Διαβάστε περισσότεραUporabna matematika za naravoslovce
Uporabna matematika za naravoslovce Zapiski predavanj Študijski programi: Aplikativna kineziologija, Biodiverziteta Študijsko leto 203/4 doc.dr. Barbara Boldin Fakulteta za matematiko, naravoslovje in
Διαβάστε περισσότεραMatematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta
Matematika Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 6. november 200 Poglavje 2 Zaporedja in številske vrste 2. Zaporedja 2.. Uvod Definicija 2... Zaporedje (a n ) = a, a 2,..., a n,... je predpis,
Διαβάστε περισσότεραFrekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič
Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov
Διαβάστε περισσότεραD f, Z f. Lastnosti. Linearna funkcija. Definicija Linearna funkcija f : je definirana s predpisom f(x) = kx+n; k,
Linearna funkcija Linearna funkcija f : je definirana s predpisom f(x) = kx+n; k, n ᄀ. k smerni koeficient n začetna vrednost D f, Z f Definicijsko območje linearne funkcije so vsa realna števila. Zaloga
Διαβάστε περισσότεραLastne vrednosti in lastni vektorji
Poglavje VIII Lastne vrednosti in lastni vektorji V tem poglavju bomo privzeli, da so skalarji v vektorskih prostorih, koeficienti v matrikah itd., kompleksna števila. Algebraične operacije seštevanja,
Διαβάστε περισσότεραOsnove sklepne statistike
Univerza v Ljubljani Fakulteta za farmacijo Osnove sklepne statistike doc. dr. Mitja Kos, mag. farm. Katedra za socialno farmacijo e-pošta: mitja.kos@ffa.uni-lj.si Intervalna ocena oz. interval zaupanja
Διαβάστε περισσότεραINTEGRALI RACIONALNIH FUNKCIJ
UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA NIKA HREN INTEGRALI RACIONALNIH FUNKCIJ DIPLOMSKO DELO LJUBLJANA, 203 UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA MATEMATIKA - RAČUNALNIŠTVO NIKA HREN Mentor: izr.
Διαβάστε περισσότεραMATEMATIKA 1 UNIVERZITETNI ŠTUDIJSKI PROGRAM BIOKEMIJA 1. LETNIK
abc MATEMATIKA 1 UNIVERZITETNI ŠTUDIJSKI PROGRAM BIOKEMIJA 1. LETNIK ŠTEVILA PRIBLIŽNO RAČUNANJE PRIBLIŽNO RAČUNANJE Ta fosil dinozavra je star 7 milijonov in šest let, pravi paznik v muzeju.??? Ko sem
Διαβάστε περισσότεραMatematika vaja. Matematika FE, Ljubljana, Slovenija Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija
Matematika 1 3. vaja B. Jurčič Zlobec 1 1 Univerza v Ljubljani, Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija Matematika FE, Ljubljana, Slovenija 2011 Določi stekališča zaporedja a
Διαβάστε περισσότεραAlgebraične strukture
Poglavje V Algebraične strukture V tem poglavju bomo spoznali osnovne algebraične strukture na dani množici. Te so podane z eno ali dvema binarnima operacijama. Binarna operacija paru elementov iz množice
Διαβάστε περισσότεραKotni funkciji sinus in kosinus
Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje
Διαβάστε περισσότεραINŽENIRSKA MATEMATIKA I
INŽENIRSKA MATEMATIKA I REŠENE NALOGE za izredne študente VSŠ Tehnično upravljanje nepremičnin Marjeta Škapin Rugelj Fakulteta za gradbeništvo in geodezijo Kazalo Števila in preslikave 5 Vektorji 6 Analitična
Διαβάστε περισσότερα