5.1 Predpogojevanje. K 1 Ax = K 1 b,
|
|
- Δάμων Παπακωνσταντίνου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 5.1 Predpogojevanje Konvergenca metod podprostorov za reševanje linearnega sistema Ax = b je v veliki meri odvisna od razporeditve lastnih vrednosti (in lastnih vektorjev) matrike A. Kadar je konvergenca počasna, si lahko pomagamo s predpogojevanjem. To pomeni, da namesto sistema Ax = b rešujemo sistem K 1 Ax = K 1 b, kjer za nesingularno matriko K, ki ji pravimo predpogojenka, velja: a) matrika K je dobra aproksimacija matrike A, b) konstrukcija matrike K ni preveč zahtevna, c) sistem z matriko K lahko rešimo dosti enostavneje kot sistem z matriko A. Pri uporabi izbrane metode na predpogojenem sistemu moramo v vsakem koraku izračunati produkt vektorja z matriko K 1 A. Te matrike na izračunamo eksplicitno, temveč v vsakem koraku najprej množimo vektor z matriko A, potem pa rešimo sistem z matriko K.
2 Levo predpogojevanje Če namesto Ax = b rešujemo sistem K 1 Ax = K 1 b, potem je to levo predpogojevanje. Če uporabljamo katero izmed metod, ki vrača minimalni ostanek (GMRES, MINRES, QMR), potem sedaj namesto ostanka r k = b Ax k minimiziramo predpogojeni ostanek K 1 (b Ax k ). Zaradi tega moramo paziti pri ustavitvenem kriteriju, saj se lahko zgodi, da ostanka nista dovolj usklajena. Problem z levim predpogojevanjem je, da npr. v primeru, ko sta matriki A in K simetrični, matrika K 1 A ni več simetrična. Če je K s.p.d., potem lahko definiramo skalarni produkt [x, y] = x, Ky. skalarnem produktu je K 1 A sebiadjungirana, saj je V tem [K 1 Ax, y] = K 1 Ax, Ky = Ax, y = x, Ay = [x, K 1 Ay]. Če je matrika A pozitivno definitna, potem to v [.,.] velja tudi za K 1 A, saj je [K 1 Ax, x] = K 1 Ax, Kx = Ax, x > 0.
3 Predpogojeni CG Če je K s.p.d., potem levo predpogojevanje lakko uporabimo v CG v kombinaciji s skalarnim produktom [x, y] = x, Ky. Tako ohranimo simetrijo. Običajni CG Predpogojeni CG r 0 = b Ax 0, p 1 = r 0 j = 1, 2,..., k α j = r j 1 2 p T j Ap j x j = x j 1 + α j p j r j = r j 1 α j Ap j β j = r j 2 r j 1 2 p j+1 = r j + β j p j r 0 = b Ax 0, p 1 = K 1 r 0 j = 1, 2,..., k α j = rt j 1 K 1 r j 1 p T j Ap j x j = x j 1 + α j p j r j = r j 1 α j Ap j β j = rt j K 1 r j r T j 1 K 1 r j 1 p j+1 = K 1 r j + β j p j Če primerjamo zahtevnosti, imamo pri predpogojenem CG dodatno: 1 reševanje sistema z matriko K in 1 pomožni vektor (K 1 r j ) več.
4 Levo predpogojeni GMRES Navadna metoda GMRES v grobem je: 1) izberi x 0, določi dimenzijo k za podprostor Krilova, izračunaj r 0 = b Ax 0. 2) naredi k korakov Arnoldijevega algoritma z matriko A in začetnim vektorjem v 1 = r 0 / r 0 da dobiš H k+1,k in V k+1. 3) po metodi najmanjših kvadratov poišči y k, ki minimizira r 0 e 1 H k+1,k y k. Končni približek je potem x k = x 0 + V k y k. Metoda GMRES z levim predpogojevanjem je: 1) izberi x 0, določi dimenzijo k za podprostor Krilova, izračunaj r 0 = K 1 (b Ax 0 ). 2) naredi k korakov Arnoldijevega algoritma z matriko K 1 A in začetnim vektorjem v 1 = r 0 / r 0 da dobiš H k+1,k in V k+1. 3) po metodi najmanjših kvadratov poišči y k, ki minimizira r 0 e 1 H k+1,k y k. Končni približek je potem x k = x 0 + V k y k.
5 Desno predpogojevanje Pri desnem predpogojevanju namesto Ax = rešujemo AK 1 z = b, kjer je x = K 1 z. Prednost desnega predpogojevanja je, da ne vpliva na desno stran b. Sedaj imamo lahko težave pri metodah, kjer gledamo napako x x k, saj je x x k = K 1 (z z k ), mi pa gledamo z z k. Metoda GMRES z desnim predpogojevanjem: 1) izberi x 0, določi dimenzijo k za podprostor Krilova, izračunaj r 0 = b Ax 0. 2) naredi k korakov Arnoldijevega algoritma z matriko AK 1 in začetnim vektorjem v 1 = r 0 / r 0 da dobiš H k+1,k in V k+1. 3) po metodi najmanjših kvadratov poišči y k, ki minimizira r 0 e 1 H k+1,k y k. Končni približek je potem x k = x 0 + M 1 V k y k. Na začetku ne potrebujemo z 0, saj je r 0 = b Ax 0 = r 0 AM 1 z 0.
6 Primerjava desnega in levega predpogojevanja Pri levem predpogojevanju dobimo na koncu x L k = x 0 + p(k 1 A)s 0, kjer je s 0 = K 1 r 0 in je p L tisti polinom stopnje k 1, p L (0) = 1, ki minimizira s 0 K 1 Ap L (K 1 A)s 0. Če upoštevamo s 0 K 1 Ap L (K 1 A)s 0 = K 1 (r 0 Ap L (K 1 A)K 1 r 0 ) in dejstvo, da z vsak polinom velja p(m 1 A)M 1 r = M 1 p(am 1 )r, dobimo s 0 K 1 Ap L (K 1 A)s 0 = K 1 (r 0 AK 1 p L (AK 1 )r 0 ), torej p L minimizira K 1 (r 0 AK 1 p L (AK 1 )r 0 ).
7 Primerjava desnega in levega predpogojevanja 2 Pri levem predpogojevanju dobimo x L k = x 0 + p(k 1 A)s 0, kjer je s 0 = K 1 r 0 in p L minimizira K 1 (r 0 AK 1 p L (AK 1 )r 0 ). Pri desnem predpogojevanju dobimo na koncu x R k = x 0 + K 1 p R (AK 1 )r 0, kjer je p R tisti polinom stopnje k 1, p R (0) = 1, ki minimizira r 0 AK 1 p R (AK 1 )r 0. Vektorja x R k in xl k sta iz istega afinega podprostora, saj je x 0 + K k (K 1 A, s 0 ) = x 0 + K 1 K k (AK 1, r 0 ), pri čemer pri levem predpogojevanju minimiziramo K 1 (r 0 AK 1 p(ak 1 )r 0 ), pri desnem pa r 0 AK 1 p(ak 1 )r 0 po vseh polinomih p stopnje k 1 z p(0) = 1.
8 Obojestransko predpogojevanje Pri obojestranskem predpogojevanju namesto Ax = rešujemo kjer je x = K 1 2 z. K 1 1 AK 1 2 z = K 1 1 b, To je uporabno v primeru, ko imamo K podan v obliki razcepa K = K 1 K 2. Npr., pri CG lahko v primeru, ko je znan razcep Choleskega K = LL T, metodo CG uporabimo na s.p.d. sistemu L 1 AL T y = L 1 b, x = L T y. Prav tako lahko uporabimo CG na sistemu K 1/2 AK 1/2 y = K 1/2 b, x = K 1/2 y. Druga varianta je ekvivalentna uporabi levega predpogojevanja v kombinaciji s skalarnim produktom [x, y] = x, Ky.
9 5.2 Izbira predpogojenke Prva možnost je uporaba katere izmed klasičnih iterativnih metod. Pri teh pri reševanju Ax = b matriko A razdelimo na A = M + N, potem pa sistem Mx = Nx + b rešujemo iterativno kot Mx k+1 = Nx k + b. Tako dobimo iteracijo x k+1 = Rx k + f, kjer je f = M 1 b in R = M 1 N = M 1 (A M) = I M 1 A. To je v bistvu reševanje predpogojenega sistema M 1 Ax = M 1 b. Vsako matriko M lahko uporabimo za predpogojevanje iterativne metode podprostorov. Če matriko A razdelimo kot A = L + D + U, kjer je L spodnji trikotnik brez diagonale, D diagonala in U zgornji trikotnik brez diagonale, potem poznamo naslednje variante: Jacobi: M J = D, Gauss-Seidel: M GS = L + D, SOR: M SOR = 1 (D + ωl), ω 1 SSOR: M SSOR = ω(2 ω) (D + ωl)d 1 (D + ωu). Izkaže se, da Gauss-Seidel in SOR ne prideta v poštev, saj neprimerno preslikata lastne vrednosti matrike A. Ostaneta Jacobi in SSOR, pri čemer optimalni ω ni tako pomemben.
10 Nepopolni razcep Druga popularna možnost je uporaba nepopolnega LU razcepa. Tu računamo LU razcep kot po osnovnem algoritmu, le da delamo neničelne elemente le na izbranih mestih (ponavadi tam, kjer ima A ničle). To pride prav pri razpršenih matrikah, kjer matriki L in U iz popolnega LU razcepa nista več razpršeni. Pri nepopolnem LU razcepu na koncu sicer ne velja A = LU, je pa K = LU lahko dobra matrika za predpogojevanje. Ker že poznamo njej LU razcep, se da sistem z matriko K rešiti na učinkovit način. Denimo, da je S {(i, j) 1 i, j n} množica indeksov, kjer v L in U dopuščamo neničelne elemente. Vedno mora S vsebovati vse diagonalne elemente. Osnovna varianta nepopolnega LU razcepa, ki povozi A z matrikama L in U, je Za vse (i, j) S nastavi a ij = 0. j = 1, 2,..., n 1 i = j + 1,..., n (samo za (i, j) S) a ij = a ij /a jj k = j + 1,..., n (samo za (i, k) S) a ik = a ik a ij a jk
11 Zero fill-in ILU Ponovadi za S vzamemo indekse neničelnih elementov matrike A, oziroma S = {(i, j) a ij 0}. V tem primeru je to razcep ILU(0) oziroma (zero fill-in) nepopolni LU. Pri ILU(0) dobimo matriki L in U, ki imata neničelne elemente le na mestih S in za M = LU velja m ij = a ij za (i, j) S. Na ostalih mestih ima M lahko neničelne elemente tam, kjer jih A nima. Z zgornjim pogojem ILU(0) ni enolično določen, običajno pa vzamemo kar razcep, ki ga vrne modificiran algoritem za LU razcep brez pivotiranja. Množico indeksov lahko določimo tudi tako, da imata L in U več neničelnih elementov kot matrika A. Pri tem imamo več strategij: Pri ILU(p) določimo S rekurzivno tako, da zavzema vsa neničelna mesta matrike LU, ki jo dobimo iz ILU(p 1) razcepa matrike A. Začnemo z ILU(0). Množico S lahko določimo vnaprej in ni potrebno računati p nepopolnih LU razcepov. Lahko se odločimo, da postavimo določeno mejo za velikost neničelnega elementa. Potem dopustimo tudi neničelne elemente izven S, če so zadosti veliki (kar pomeni, da so dovolj pomembni). Tu množico S določamo sproti med računanjem nepopolnega razcepa. Če uporabimo prag, dobimo ILU(0), pri pragu 0 pa popolni LU razcep.
12 Ostale možnosti Pri implementaciji je zelo pomembno, kako je razpršena matrika predstavljena, saj imamo različne variante LU razcepa glede na to, v kakšnem vrstnem redu uredimo tri zanke. Tudi pri nepopolnem LU lahko pivotiramo. Podobno kot nepopolni LU obstaja tudi nepopolni razcep Choleskega, ki ga uporabimo za simetrične pozitivno definitne matrike.
13 6. Na kaj moramo še paziti pri iterativnem reševanju sistemov Ustavitveni kriterij: Ponavadi kot ustavitveni kriterij uporabimo r k ɛ za izbrani ɛ, radi pa bi imeli, da je norma x x k dovolj majhna. Pri numeričnem računanju je težava še ta, da ostanek in približek ponavadi posodabljamo kot x k+1 = x k + w k, r k+1 = r k Aw k. Pri računanju r k lahko pride do prištevanja vektorjev z veliko normo, zato se natančnost r k lahko hitro izgubi. Tu izstopa npr. metoda CGS, kjer vmesni veliki ostanki lahko povzročijo v nadaljevanju velike napake. To, da bi ostanek računali kot r k = b Ax k, ni ne ekonomično ne natančneje. Namesto tega lahko posodobimo r k samo v primeru, ko dobimo nov najmanjši ostanek. V tem primeru vsakič, ko dobimo nov minimalni ostanek, shranimo trenutni z = x k in vmes shranjujemo le vsoto skupnih popravkov za x k v y k. Ko dobimo nov minimalni ostanek, vzamemo z = z + y k in izračunamo r = b Az.
14 Na kaj moramo še paziti pri iterativnem reševanju sistemov Pri MINRES (in ostalih metodah, ki uporabljajo tričlenske rekurzivne formule), lahko pride do velikih zaokrožitvenih napak in bazni vektorji niso več ortogonalni. Ker je CG v bistvu varianta D-Lanczosa za simetrične pozitivno definitne matrike, pri D-Lanczosu pa imamo prav tako tričlensko rekurzijo, lahko to pričakujemo tudi pri CG. Izkaže se, da je situacija pri CG vseeno boljša, saj tu uporabljamo le dvočlenske rekurzije. Pri tročlenskih rekurzijah se pojavi parazitska rešitev, ki lahko pokvari in zamegli pravo rešitev, pri dvočlenski pa se to ne more zgoditi.
13. Jacobijeva metoda za računanje singularnega razcepa
13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva
11.5 Metoda karakteristik za hiperbolične PDE
11.5 Metoda karakteristik za hiperbolične PDE Hiperbolična kvazi linearna PDE ima obliko au xx + bu xy + cu yy = f, (1) kjer so a, b, c, f funkcije x, y, u, u x in u y, ter velja b 2 4ac > 0. Če predpostavimo,
Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
11. Posplošeni problemi lastnih vrednosti
11. Posplošeni problemi lastnih vrednosti Dani sta kvadratni n n matriki A in B. Množico vseh matrik oblike A λb, kjer je λ C, imenujemo matrični šop in označimo z (A, B) ali A λb. Karakteristični polinom
8. Posplošeni problem lastnih vrednosti
8. Posplošeni problem lastnih vrednosti Bor Plestenjak NLA 13. april 2010 Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april 2010 1 / 15 Matrični šop Dani sta kvadratni n n matriki
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
Tretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):
4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n
Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik
Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva
Iterativne numerične metode v linearni algebri
Bor Plestenja Iterativne numerične metode v linearni algebri sripta verzija: 2. januar 204 Kazalo Klasične iterativne metode za linearne sisteme 4. Uvod............................................ 4.2
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
Oznake in osnovne definicije
Oznake in osnovne definicije B Plestenjak, JKozak: Numerične metode 2011-2012 1 / 53 Sistem n linearnih enačb z n neznankami a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b
Reševanje sistema linearnih
Poglavje III Reševanje sistema linearnih enačb V tem kratkem poglavju bomo obravnavali zelo uporabno in zato pomembno temo linearne algebre eševanje sistemov linearnih enačb. Spoznali bomo Gaussovo (natančneje
Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013
Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:
Problem lastnih vrednosti 1 / 20
Problem lastnih vrednosti 1 / 20 2 / 20 1 Uvod 2 Potenčna metoda 3 Inverzna iteracija 4 QR iteracija 5 Metode za simetrične matrike Sturmovo zaporedje Jacobijeva iteracija 3 / 20 Uvod Naj bo A R n n. Paru
KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
3.1 Reševanje nelinearnih sistemov
3.1 Reševanje nelinearnih sistemov Rešujemo sistem nelinearnih enačb f 1 (x 1, x 2,..., x n ) = 0 f 2 (x 1, x 2,..., x n ) = 0. f n (x 1, x 2,..., x n ) = 0. Pišemo F (x) = 0, kjer je x R n in F : R n
Gimnazija Krˇsko. vektorji - naloge
Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor
IZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
Problem lastnih vrednosti
Problem lastnih vrednosti Naj bo A R n n. Iščemo lastni par, da zanj velja Ax = λx, kjer je x C n, x 0 (desni) lastni vektor, λ C pa lastna vrednost. Vektor y 0, pri katerem je y H A = λy H, je levi lastni
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,
SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK
SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi
DISKRETNA FOURIERJEVA TRANSFORMACIJA
29.03.2004 Definicija DFT Outline DFT je linearna transformacija nekega vektorskega prostora dimenzije n nad obsegom K, ki ga označujemo z V K, pri čemer ima slednji lastnost, da vsebuje nek poseben element,
Splošno o interpolaciji
Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo
Lastne vrednosti in lastni vektorji
Poglavje VIII Lastne vrednosti in lastni vektorji V tem poglavju bomo privzeli, da so skalarji v vektorskih prostorih, koeficienti v matrikah itd., kompleksna števila. Algebraične operacije seštevanja,
Reševanje sistemov linearnih enačb
1 / 37 Reševanje sistemov linearnih enačb Meteorologija z geofiziko, I. stopnja http://ucilnica.fmf.uni-lj.si/ 2 / 37 Matrični zapis sistema linearnih enačb Sistem m linearnih enačb z n neznankami a 11
Poglavje 2. Sistemi linearnih enačb
Poglavje 2 Sistemi linearnih enačb Najpogostejši problem, na katerega naletimo pri numeričnem računanju, je reševanje sistema linearnih enačb Tak sistem lahko dobimo direktno iz matematične formulacije
Numerično reševanje. diferencialnih enačb II
Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke
8. Navadne diferencialne enačbe
8. Navadne diferencialne enačbe 8.1. Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogoju y(x 0 ) = y 0, kjer je f dana dovolj gladka funkcija
Booleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti
Poglavje XI Kvadratne forme V zadnjem poglavju si bomo ogledali še eno vrsto preslikav, ki jih tudi lahko podamo z matrikami. To so tako imenovane kvadratne forme, ki niso več linearne preslikave. Kvadratne
Analiza 2 Rešitve 14. sklopa nalog
Analiza Rešitve 1 sklopa nalog Navadne diferencialne enačbe višjih redov in sistemi diferencialnih enačb (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) 6 + 8 0, (b)
Bor Plestenjak. Numerične metode. delovna verzija. verzija: 4. marec 2010
Bor Plestenjak Numerične metode delovna verzija verzija: 4. marec 200 Kazalo Uvod 7. Numerična matematika................................. 7.2 Plavajoča vejica...................................... 0.3
Uvod v numerične metode (matematika)
Bor Plestenjak Uvod v numerične metode (matematika) delovna verzija verzija: 5. oktober 202 Kazalo Uvod 5. Numerična matematika................................. 5.2 Plavajoča vejica......................................
Numerične metode 2 (finančna matematika)
Bor Plestenjak Numerične metode 2 (finančna matematika) delovna verzija verzija:. februar 203 Kazalo Nesimetrični problem lastnih vrednosti 5. Uvod............................................ 5.2 Schurova
Numerična analiza. Bor Plestenjak. Fakulteta za matematiko in fiziko. Jadranska 21, 4. nadstropje, soba 4.04
Numerična analiza Bor Plestenjak Fakulteta za matematiko in fiziko Jadranska 21, 4. nadstropje, soba 4.04 govorilne ure: četrtek 11-12 oz. po dogovoru bor.plestenjak@fmf.uni-lj.si http://www-lp.fmf.uni-lj.si/plestenjak/vaje/vaje.htm
VEKTORJI. Operacije z vektorji
VEKTORJI Vektorji so matematični objekti, s katerimi opisujemo določene fizikalne količine. V tisku jih označujemo s krepko natisnjenimi črkami (npr. a), pri pisanju pa s puščico ( a). Fizikalne količine,
Dodatna poglavja iz linearne algebre za 1. letnik finančne matematike na FMF. Primož Moravec
Dodatna poglavja iz linearne algebre za 1 letnik finančne matematike na FMF Primož Moravec 13 september 2017 1 CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 51264(0758)
V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant.
Poglavje IV Determinanta matrike V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant 1 Definicija Preden definiramo determinanto,
Navadne diferencialne enačbe
Navadne diferencialne enačbe Navadne diferencialne enačbe prvega reda V celotnem poglavju bo y = dy dx. Diferencialne enačbe z ločljivima spremeljivkama Diferencialna enačba z ločljivima spremeljivkama
Kotne in krožne funkcije
Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete
Uvod v numerične metode
Uvod v numerične metode Bor Plestenjak soba 4.04 bor.plestenjak@fmf.uni-lj.si http://www-lp.fmf.uni-lj.si/plestenjak/vaje/vaje.htm asistent: Gašper Jaklič Režim 2 sklopa domačih nalog - 20% pisne ocene
*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center
Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )
Uvod v numerične metode
Uvod v numerične metode B. Plestenjak, J.Kozak: Uvod v numerične metode 2011-2012 1 / 56 Jernej Kozak Jadranska 21, IV. nadstropje, št. 407. Iz dvigala, v desno, do konca hodnika in korak v smeri Krima.
Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik
Univerza v Ljubljani Fakulteta za računalništvo in informatiko Fakulteta za matematiko in fiziko Peter Škvorc Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik DIPLOMSKO DELO UNIVERZITETNI
Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.
Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.
Matematika. Funkcije in enačbe
Matematika Funkcije in enačbe (1) Nariši grafe naslednjih funkcij: (a) f() = 1, (b) f() = 3, (c) f() = 3. Rešitev: (a) Linearna funkcija f() = 1 ima začetno vrednost f(0) = 1 in ničlo = 1/. Definirana
Linearne preslikave. Poglavje VII. 1 Definicija linearne preslikave in osnovne lastnosti
Poglavje VII Linearne preslikave V tem poglavju bomo vektorske prostore označevali z U,V,W,... Vsi vektorski prostori bodo končnorazsežni. Zaradi enostavnosti bomo privzeli, da je pripadajoči obseg realnih
Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1
Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni
REˇSITVE. Naloga a. b. c. d Skupaj. FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost 2. kolokvij 23.
Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost. kolokvij 3. januar 08 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Nalog je 6,
Poliedri Ines Pogačar 27. oktober 2009
Poliedri Ines Pogačar 27. oktober 2009 Pri linearnem programiranju imamo opravka s končnim sistemom neenakosti in končno spremenljivkami, torej je množica dopustnih rešitev presek končno mnogo polprostorov.
Navadne diferencialne enačbe
Poglavje 6 Navadne diferencialne enačbe 6.1 Uvod Splošna rešitev navadne diferencialne enačbe n-tega reda F(x, y, y, y,..., y (n) ) = 0 je n-parametrična družina funkcij. Kadar želimo iz splošne rešitve
8. Diskretni LTI sistemi
8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z
Osnove linearne algebre
Osnove linearne algebre Matrike Matrika razsežnosti n m je A = a 1 1 a 1 2 a 1 m a 2 1 a 2 2 a 2 m a n 1 a n 2 a n m Če je n = m, tedaj matriko imenujemo kvadratna matrika Elementi matrike so lahko realna
Zbirka rešenih izpitnih nalog iz numeričnih metod
Zbirka rešenih izpitnih nalog iz numeričnih metod Borut Jurčič - Zlobec Andrej Perne Univerza v Ljubljani Fakulteta za elektrotehniko Ljubljana 6 Kazalo Iterativno reševanje nelinearnih enačb 4 Navadna
Dragi polinom, kje so tvoje ničle?
1 Dragi polinom, kje so tvoje ničle? Vito Vitrih FAMNIT - Izlet v matematično vesolje 17. december 2010 Polinomi: 2 Polinom stopnje n je funkcija p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, a i R.
Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)
Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2
Matrike. Poglavje II. Matrika je pravokotna tabela realnih števil. Na primer: , , , 0 1
Poglavje II Matrike Matrika je pravokotna tabela realnih števil Na primer: [ ] 1 1 1, 2 3 1 1 0 1 3 2 1, 0 1 4 [ ] 2 7, Matrika je sestavljena iz vrstic in stolpcev Vrstici matrike [ ] 1 1 1 2 3 1 [ ]
Delovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
Prepoznavanje krožnic na digitalnih slikah
Univerza v Ljubljani Fakulteta za računalništvo in informatiko Domen Kren Prepoznavanje krožnic na digitalnih slikah DIPLOMSKO DELO UNIVERZITETNI INTERDISCIPLINARNI ŠTUDIJSKI PROGRAM PRVE STOPNJE RAČUNALNIŠTVO
Vektorski prostori s skalarnim produktom
Poglavje IX Vektorski prostori s skalarnim produktom Skalarni produkt dveh vektorjev v R n smo spoznali v prvem poglavju. Sedaj bomo pojem skalarnega produkta razširili na poljuben vektorski prostor V
Algebraične strukture
Poglavje V Algebraične strukture V tem poglavju bomo spoznali osnovne algebraične strukture na dani množici. Te so podane z eno ali dvema binarnima operacijama. Binarna operacija paru elementov iz množice
UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO MATEMATIKA II
UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA II Maribor, 2016 Kazalo Uvod v linearno algebro 1 1.1 Matrike................................ 1 1.2 Računanje
Uporabna matematika za naravoslovce
Uporabna matematika za naravoslovce Zapiski predavanj Študijski programi: Aplikativna kineziologija, Biodiverziteta Študijsko leto 203/4 doc.dr. Barbara Boldin Fakulteta za matematiko, naravoslovje in
Osnove matematične analize 2016/17
Osnove matematične analize 216/17 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Kaj je funkcija? Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja
Programi v Matlabu za predmet numerične metode
Programi v Matlabu za predmet numerične metode 18. 04 2002 1 1 Reševanje nelinearnih enačb Napisali bomo program za reševanje nelinearnih enačb z uporabo posameznih metod. Rešujete nelinearne enačbe oblike
Algoritmi nad grafi v jeziku linearne algebre
Univerza v Ljubljani Fakulteta za računalništvo in informatiko Fakulteta za matematiko in fiziko Tinkara Toš Algoritmi nad grafi v jeziku linearne algebre DIPLOMSKO DELO UNIVERZITETNI ŠTUDIJSKI PROGRAM
MATEMATIČNI IZRAZI V MAFIRA WIKIJU
I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH
Transformator. Delovanje transformatorja I. Delovanje transformatorja II
Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.
Enočlenske metode veljajo trenutno za najprimernejše metode v numeričnem reševanju začetnih problemov. Skoraj vse sodijo v
Enočlenske metode J.Kozak Uvod v numerične metode - / 4 Enočlenske metode veljajo trenutno za najprimernejše metode v numeričnem reševanju začetnih problemov. Skoraj vse sodijo v skupino Runge-Kutta metod.
Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta
Matematika Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 6. november 200 Poglavje 2 Zaporedja in številske vrste 2. Zaporedja 2.. Uvod Definicija 2... Zaporedje (a n ) = a, a 2,..., a n,... je predpis,
1. Trikotniki hitrosti
. Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca
Domača naloga 6: dušeno nihanje
Domača naloga 6: dušeno nihanje Vaje iz predmeta Numerične metode v fiziki Igor Grešovnik Kazalo: 1 Naloga 6a Nihanje... 1.1 Enačbe nihanja... 1. Numerično reševanje problema... 3 1..1 Reševanje sistema
Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA
Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA. Naj bo vektorsko polje R : R 3 R 3 dano s predpisom R(x, y, z) = (2x 2 + z 2, xy + 2yz, z). Izračunaj pretok polja R skozi površino torusa
Matematika 2. Diferencialne enačbe drugega reda
Matematika 2 Diferencialne enačbe drugega reda (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) y 6y + 8y = 0, (b) y 2y + y = 0, (c) y + y = 0, (d) y + 2y + 2y = 0. Rešitev:
Lastne vrednosti in vektorji
Poglavje Lastne vrednosti in vetorji Naloga Gerschgorinov izre Naj bo A C n n in C i = {z C i, z a ii n j=,j i a ij } rog v omplesni ravnini, za i =,, n Vse lastne vrednosti matrie A ležijo v uniji rogov
Numerične metode za linearne sisteme upravljanja
Bor Plestenjak Numerične metode za linearne sisteme upravljanja skripta verzija: 3 april 212 Kazalo 1 Uvod 6 11 Sistemi upravljanja 6 12 Lastnosti sistemov 8 13 Laplaceova transformacija 12 14 Prenosna
NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE
NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,
Funkcije več spremenljivk
DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
PROCESIRANJE SIGNALOV
Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:
Interpolacija in aproksimacija funkcij
Poglavje 4 Interpolacija in aproksimacija funkcij Na interpolacijo naletimo, kadar moramo vrednost funkcije, ki ima vrednosti znane le v posameznih točkah (pravimo jim interpolacijske točke), izračunati
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
22. Kdaj sta dva vektorja vzporedna? FGG geodezija UNI Matematika I, 2005/ Kdaj so vektorji a 1, a 2,..., a n linearno neodvisni?
FGG geodezija UNI Matematika I, 2005/06 1. Definicija enakosti množic (funkcij, kompleksnih števil, urejenih n teric)? 2. Definicija kartezičnega produkta množic A in B. Definicija množice R n. 3. Popolna
Izpeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega
Izeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega 1. Najosnovnejše o konveksnih funkcijah Definicija. Naj bo X vektorski rostor in D X konveksna množica. Funkcija ϕ: D R je konveksna,
α i y n i + h β i f n i = 0, Splošni nastavek je k
10.4 Večkoračne metode Splošni nastavek je k α i y n i + h i=0 k β i f n i = 0, kjer je f i = f(x i, y i ), privzamemo pa še α 0 = 1. Če je β 0 = 0, je metoda eksplicitna, sicer pa implicitna. i=0 Adamsove
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA SANDRA BOLTA LASTNE VREDNOSTI GRAFA DIPLOMSKO DELO
UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA SANDRA BOLTA LASTNE VREDNOSTI GRAFA DIPLOMSKO DELO LJUBLJANA, 2014 2 UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA Študijska smer: Fizika in matematika SANDRA BOLTA
Linearna algebra. Bojan Orel Fakulteta za računalništvo in informatiko
Linearna algebra Bojan Orel Fakulteta za računalništvo in informatiko 23. februar 205 CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 52.64(075.8)(0.034.2) OREL, Bojan
MATEMATIKA 1 UNIVERZITETNI ŠTUDIJSKI PROGRAM BIOKEMIJA 1. LETNIK
abc MATEMATIKA 1 UNIVERZITETNI ŠTUDIJSKI PROGRAM BIOKEMIJA 1. LETNIK ŠTEVILA PRIBLIŽNO RAČUNANJE PRIBLIŽNO RAČUNANJE Ta fosil dinozavra je star 7 milijonov in šest let, pravi paznik v muzeju.??? Ko sem
Matematika vaja. Matematika FE, Ljubljana, Slovenija Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija
Matematika 1 3. vaja B. Jurčič Zlobec 1 1 Univerza v Ljubljani, Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija Matematika FE, Ljubljana, Slovenija 2011 Določi stekališča zaporedja a
Metoda glavnih komponent
Metoda glavnih komponent Metoda glavnih kompnent je ena najpogosteje uporabljenih multivariatnih metod. Osnoval jo je Karl Pearson (1901). Največ zaslug za nadaljni razvoj pa ima Hotelling (1933). Osnovna
Afina in projektivna geometrija
fina in projektivna geometrija tožnice () kiciraj stožnico v evklidski ravnini R, ki je določena z enačbo 6 3 8 + 6 =. Rešitev: tožnica v evklidski ravnini je krivulja, ki jo določa enačba a + b + c +
INTEGRALI RACIONALNIH FUNKCIJ
UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA NIKA HREN INTEGRALI RACIONALNIH FUNKCIJ DIPLOMSKO DELO LJUBLJANA, 203 UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA MATEMATIKA - RAČUNALNIŠTVO NIKA HREN Mentor: izr.
Osnove elektrotehnike uvod
Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.