5.1 Predpogojevanje. K 1 Ax = K 1 b,

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "5.1 Predpogojevanje. K 1 Ax = K 1 b,"

Transcript

1 5.1 Predpogojevanje Konvergenca metod podprostorov za reševanje linearnega sistema Ax = b je v veliki meri odvisna od razporeditve lastnih vrednosti (in lastnih vektorjev) matrike A. Kadar je konvergenca počasna, si lahko pomagamo s predpogojevanjem. To pomeni, da namesto sistema Ax = b rešujemo sistem K 1 Ax = K 1 b, kjer za nesingularno matriko K, ki ji pravimo predpogojenka, velja: a) matrika K je dobra aproksimacija matrike A, b) konstrukcija matrike K ni preveč zahtevna, c) sistem z matriko K lahko rešimo dosti enostavneje kot sistem z matriko A. Pri uporabi izbrane metode na predpogojenem sistemu moramo v vsakem koraku izračunati produkt vektorja z matriko K 1 A. Te matrike na izračunamo eksplicitno, temveč v vsakem koraku najprej množimo vektor z matriko A, potem pa rešimo sistem z matriko K.

2 Levo predpogojevanje Če namesto Ax = b rešujemo sistem K 1 Ax = K 1 b, potem je to levo predpogojevanje. Če uporabljamo katero izmed metod, ki vrača minimalni ostanek (GMRES, MINRES, QMR), potem sedaj namesto ostanka r k = b Ax k minimiziramo predpogojeni ostanek K 1 (b Ax k ). Zaradi tega moramo paziti pri ustavitvenem kriteriju, saj se lahko zgodi, da ostanka nista dovolj usklajena. Problem z levim predpogojevanjem je, da npr. v primeru, ko sta matriki A in K simetrični, matrika K 1 A ni več simetrična. Če je K s.p.d., potem lahko definiramo skalarni produkt [x, y] = x, Ky. skalarnem produktu je K 1 A sebiadjungirana, saj je V tem [K 1 Ax, y] = K 1 Ax, Ky = Ax, y = x, Ay = [x, K 1 Ay]. Če je matrika A pozitivno definitna, potem to v [.,.] velja tudi za K 1 A, saj je [K 1 Ax, x] = K 1 Ax, Kx = Ax, x > 0.

3 Predpogojeni CG Če je K s.p.d., potem levo predpogojevanje lakko uporabimo v CG v kombinaciji s skalarnim produktom [x, y] = x, Ky. Tako ohranimo simetrijo. Običajni CG Predpogojeni CG r 0 = b Ax 0, p 1 = r 0 j = 1, 2,..., k α j = r j 1 2 p T j Ap j x j = x j 1 + α j p j r j = r j 1 α j Ap j β j = r j 2 r j 1 2 p j+1 = r j + β j p j r 0 = b Ax 0, p 1 = K 1 r 0 j = 1, 2,..., k α j = rt j 1 K 1 r j 1 p T j Ap j x j = x j 1 + α j p j r j = r j 1 α j Ap j β j = rt j K 1 r j r T j 1 K 1 r j 1 p j+1 = K 1 r j + β j p j Če primerjamo zahtevnosti, imamo pri predpogojenem CG dodatno: 1 reševanje sistema z matriko K in 1 pomožni vektor (K 1 r j ) več.

4 Levo predpogojeni GMRES Navadna metoda GMRES v grobem je: 1) izberi x 0, določi dimenzijo k za podprostor Krilova, izračunaj r 0 = b Ax 0. 2) naredi k korakov Arnoldijevega algoritma z matriko A in začetnim vektorjem v 1 = r 0 / r 0 da dobiš H k+1,k in V k+1. 3) po metodi najmanjših kvadratov poišči y k, ki minimizira r 0 e 1 H k+1,k y k. Končni približek je potem x k = x 0 + V k y k. Metoda GMRES z levim predpogojevanjem je: 1) izberi x 0, določi dimenzijo k za podprostor Krilova, izračunaj r 0 = K 1 (b Ax 0 ). 2) naredi k korakov Arnoldijevega algoritma z matriko K 1 A in začetnim vektorjem v 1 = r 0 / r 0 da dobiš H k+1,k in V k+1. 3) po metodi najmanjših kvadratov poišči y k, ki minimizira r 0 e 1 H k+1,k y k. Končni približek je potem x k = x 0 + V k y k.

5 Desno predpogojevanje Pri desnem predpogojevanju namesto Ax = rešujemo AK 1 z = b, kjer je x = K 1 z. Prednost desnega predpogojevanja je, da ne vpliva na desno stran b. Sedaj imamo lahko težave pri metodah, kjer gledamo napako x x k, saj je x x k = K 1 (z z k ), mi pa gledamo z z k. Metoda GMRES z desnim predpogojevanjem: 1) izberi x 0, določi dimenzijo k za podprostor Krilova, izračunaj r 0 = b Ax 0. 2) naredi k korakov Arnoldijevega algoritma z matriko AK 1 in začetnim vektorjem v 1 = r 0 / r 0 da dobiš H k+1,k in V k+1. 3) po metodi najmanjših kvadratov poišči y k, ki minimizira r 0 e 1 H k+1,k y k. Končni približek je potem x k = x 0 + M 1 V k y k. Na začetku ne potrebujemo z 0, saj je r 0 = b Ax 0 = r 0 AM 1 z 0.

6 Primerjava desnega in levega predpogojevanja Pri levem predpogojevanju dobimo na koncu x L k = x 0 + p(k 1 A)s 0, kjer je s 0 = K 1 r 0 in je p L tisti polinom stopnje k 1, p L (0) = 1, ki minimizira s 0 K 1 Ap L (K 1 A)s 0. Če upoštevamo s 0 K 1 Ap L (K 1 A)s 0 = K 1 (r 0 Ap L (K 1 A)K 1 r 0 ) in dejstvo, da z vsak polinom velja p(m 1 A)M 1 r = M 1 p(am 1 )r, dobimo s 0 K 1 Ap L (K 1 A)s 0 = K 1 (r 0 AK 1 p L (AK 1 )r 0 ), torej p L minimizira K 1 (r 0 AK 1 p L (AK 1 )r 0 ).

7 Primerjava desnega in levega predpogojevanja 2 Pri levem predpogojevanju dobimo x L k = x 0 + p(k 1 A)s 0, kjer je s 0 = K 1 r 0 in p L minimizira K 1 (r 0 AK 1 p L (AK 1 )r 0 ). Pri desnem predpogojevanju dobimo na koncu x R k = x 0 + K 1 p R (AK 1 )r 0, kjer je p R tisti polinom stopnje k 1, p R (0) = 1, ki minimizira r 0 AK 1 p R (AK 1 )r 0. Vektorja x R k in xl k sta iz istega afinega podprostora, saj je x 0 + K k (K 1 A, s 0 ) = x 0 + K 1 K k (AK 1, r 0 ), pri čemer pri levem predpogojevanju minimiziramo K 1 (r 0 AK 1 p(ak 1 )r 0 ), pri desnem pa r 0 AK 1 p(ak 1 )r 0 po vseh polinomih p stopnje k 1 z p(0) = 1.

8 Obojestransko predpogojevanje Pri obojestranskem predpogojevanju namesto Ax = rešujemo kjer je x = K 1 2 z. K 1 1 AK 1 2 z = K 1 1 b, To je uporabno v primeru, ko imamo K podan v obliki razcepa K = K 1 K 2. Npr., pri CG lahko v primeru, ko je znan razcep Choleskega K = LL T, metodo CG uporabimo na s.p.d. sistemu L 1 AL T y = L 1 b, x = L T y. Prav tako lahko uporabimo CG na sistemu K 1/2 AK 1/2 y = K 1/2 b, x = K 1/2 y. Druga varianta je ekvivalentna uporabi levega predpogojevanja v kombinaciji s skalarnim produktom [x, y] = x, Ky.

9 5.2 Izbira predpogojenke Prva možnost je uporaba katere izmed klasičnih iterativnih metod. Pri teh pri reševanju Ax = b matriko A razdelimo na A = M + N, potem pa sistem Mx = Nx + b rešujemo iterativno kot Mx k+1 = Nx k + b. Tako dobimo iteracijo x k+1 = Rx k + f, kjer je f = M 1 b in R = M 1 N = M 1 (A M) = I M 1 A. To je v bistvu reševanje predpogojenega sistema M 1 Ax = M 1 b. Vsako matriko M lahko uporabimo za predpogojevanje iterativne metode podprostorov. Če matriko A razdelimo kot A = L + D + U, kjer je L spodnji trikotnik brez diagonale, D diagonala in U zgornji trikotnik brez diagonale, potem poznamo naslednje variante: Jacobi: M J = D, Gauss-Seidel: M GS = L + D, SOR: M SOR = 1 (D + ωl), ω 1 SSOR: M SSOR = ω(2 ω) (D + ωl)d 1 (D + ωu). Izkaže se, da Gauss-Seidel in SOR ne prideta v poštev, saj neprimerno preslikata lastne vrednosti matrike A. Ostaneta Jacobi in SSOR, pri čemer optimalni ω ni tako pomemben.

10 Nepopolni razcep Druga popularna možnost je uporaba nepopolnega LU razcepa. Tu računamo LU razcep kot po osnovnem algoritmu, le da delamo neničelne elemente le na izbranih mestih (ponavadi tam, kjer ima A ničle). To pride prav pri razpršenih matrikah, kjer matriki L in U iz popolnega LU razcepa nista več razpršeni. Pri nepopolnem LU razcepu na koncu sicer ne velja A = LU, je pa K = LU lahko dobra matrika za predpogojevanje. Ker že poznamo njej LU razcep, se da sistem z matriko K rešiti na učinkovit način. Denimo, da je S {(i, j) 1 i, j n} množica indeksov, kjer v L in U dopuščamo neničelne elemente. Vedno mora S vsebovati vse diagonalne elemente. Osnovna varianta nepopolnega LU razcepa, ki povozi A z matrikama L in U, je Za vse (i, j) S nastavi a ij = 0. j = 1, 2,..., n 1 i = j + 1,..., n (samo za (i, j) S) a ij = a ij /a jj k = j + 1,..., n (samo za (i, k) S) a ik = a ik a ij a jk

11 Zero fill-in ILU Ponovadi za S vzamemo indekse neničelnih elementov matrike A, oziroma S = {(i, j) a ij 0}. V tem primeru je to razcep ILU(0) oziroma (zero fill-in) nepopolni LU. Pri ILU(0) dobimo matriki L in U, ki imata neničelne elemente le na mestih S in za M = LU velja m ij = a ij za (i, j) S. Na ostalih mestih ima M lahko neničelne elemente tam, kjer jih A nima. Z zgornjim pogojem ILU(0) ni enolično določen, običajno pa vzamemo kar razcep, ki ga vrne modificiran algoritem za LU razcep brez pivotiranja. Množico indeksov lahko določimo tudi tako, da imata L in U več neničelnih elementov kot matrika A. Pri tem imamo več strategij: Pri ILU(p) določimo S rekurzivno tako, da zavzema vsa neničelna mesta matrike LU, ki jo dobimo iz ILU(p 1) razcepa matrike A. Začnemo z ILU(0). Množico S lahko določimo vnaprej in ni potrebno računati p nepopolnih LU razcepov. Lahko se odločimo, da postavimo določeno mejo za velikost neničelnega elementa. Potem dopustimo tudi neničelne elemente izven S, če so zadosti veliki (kar pomeni, da so dovolj pomembni). Tu množico S določamo sproti med računanjem nepopolnega razcepa. Če uporabimo prag, dobimo ILU(0), pri pragu 0 pa popolni LU razcep.

12 Ostale možnosti Pri implementaciji je zelo pomembno, kako je razpršena matrika predstavljena, saj imamo različne variante LU razcepa glede na to, v kakšnem vrstnem redu uredimo tri zanke. Tudi pri nepopolnem LU lahko pivotiramo. Podobno kot nepopolni LU obstaja tudi nepopolni razcep Choleskega, ki ga uporabimo za simetrične pozitivno definitne matrike.

13 6. Na kaj moramo še paziti pri iterativnem reševanju sistemov Ustavitveni kriterij: Ponavadi kot ustavitveni kriterij uporabimo r k ɛ za izbrani ɛ, radi pa bi imeli, da je norma x x k dovolj majhna. Pri numeričnem računanju je težava še ta, da ostanek in približek ponavadi posodabljamo kot x k+1 = x k + w k, r k+1 = r k Aw k. Pri računanju r k lahko pride do prištevanja vektorjev z veliko normo, zato se natančnost r k lahko hitro izgubi. Tu izstopa npr. metoda CGS, kjer vmesni veliki ostanki lahko povzročijo v nadaljevanju velike napake. To, da bi ostanek računali kot r k = b Ax k, ni ne ekonomično ne natančneje. Namesto tega lahko posodobimo r k samo v primeru, ko dobimo nov najmanjši ostanek. V tem primeru vsakič, ko dobimo nov minimalni ostanek, shranimo trenutni z = x k in vmes shranjujemo le vsoto skupnih popravkov za x k v y k. Ko dobimo nov minimalni ostanek, vzamemo z = z + y k in izračunamo r = b Az.

14 Na kaj moramo še paziti pri iterativnem reševanju sistemov Pri MINRES (in ostalih metodah, ki uporabljajo tričlenske rekurzivne formule), lahko pride do velikih zaokrožitvenih napak in bazni vektorji niso več ortogonalni. Ker je CG v bistvu varianta D-Lanczosa za simetrične pozitivno definitne matrike, pri D-Lanczosu pa imamo prav tako tričlensko rekurzijo, lahko to pričakujemo tudi pri CG. Izkaže se, da je situacija pri CG vseeno boljša, saj tu uporabljamo le dvočlenske rekurzije. Pri tročlenskih rekurzijah se pojavi parazitska rešitev, ki lahko pokvari in zamegli pravo rešitev, pri dvočlenski pa se to ne more zgoditi.

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

11.5 Metoda karakteristik za hiperbolične PDE

11.5 Metoda karakteristik za hiperbolične PDE 11.5 Metoda karakteristik za hiperbolične PDE Hiperbolična kvazi linearna PDE ima obliko au xx + bu xy + cu yy = f, (1) kjer so a, b, c, f funkcije x, y, u, u x in u y, ter velja b 2 4ac > 0. Če predpostavimo,

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

11. Posplošeni problemi lastnih vrednosti

11. Posplošeni problemi lastnih vrednosti 11. Posplošeni problemi lastnih vrednosti Dani sta kvadratni n n matriki A in B. Množico vseh matrik oblike A λb, kjer je λ C, imenujemo matrični šop in označimo z (A, B) ali A λb. Karakteristični polinom

Διαβάστε περισσότερα

8. Posplošeni problem lastnih vrednosti

8. Posplošeni problem lastnih vrednosti 8. Posplošeni problem lastnih vrednosti Bor Plestenjak NLA 13. april 2010 Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april 2010 1 / 15 Matrični šop Dani sta kvadratni n n matriki

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva

Διαβάστε περισσότερα

Iterativne numerične metode v linearni algebri

Iterativne numerične metode v linearni algebri Bor Plestenja Iterativne numerične metode v linearni algebri sripta verzija: 2. januar 204 Kazalo Klasične iterativne metode za linearne sisteme 4. Uvod............................................ 4.2

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Oznake in osnovne definicije

Oznake in osnovne definicije Oznake in osnovne definicije B Plestenjak, JKozak: Numerične metode 2011-2012 1 / 53 Sistem n linearnih enačb z n neznankami a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b

Διαβάστε περισσότερα

Reševanje sistema linearnih

Reševanje sistema linearnih Poglavje III Reševanje sistema linearnih enačb V tem kratkem poglavju bomo obravnavali zelo uporabno in zato pomembno temo linearne algebre eševanje sistemov linearnih enačb. Spoznali bomo Gaussovo (natančneje

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

Problem lastnih vrednosti 1 / 20

Problem lastnih vrednosti 1 / 20 Problem lastnih vrednosti 1 / 20 2 / 20 1 Uvod 2 Potenčna metoda 3 Inverzna iteracija 4 QR iteracija 5 Metode za simetrične matrike Sturmovo zaporedje Jacobijeva iteracija 3 / 20 Uvod Naj bo A R n n. Paru

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

3.1 Reševanje nelinearnih sistemov

3.1 Reševanje nelinearnih sistemov 3.1 Reševanje nelinearnih sistemov Rešujemo sistem nelinearnih enačb f 1 (x 1, x 2,..., x n ) = 0 f 2 (x 1, x 2,..., x n ) = 0. f n (x 1, x 2,..., x n ) = 0. Pišemo F (x) = 0, kjer je x R n in F : R n

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

Problem lastnih vrednosti

Problem lastnih vrednosti Problem lastnih vrednosti Naj bo A R n n. Iščemo lastni par, da zanj velja Ax = λx, kjer je x C n, x 0 (desni) lastni vektor, λ C pa lastna vrednost. Vektor y 0, pri katerem je y H A = λy H, je levi lastni

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

DISKRETNA FOURIERJEVA TRANSFORMACIJA

DISKRETNA FOURIERJEVA TRANSFORMACIJA 29.03.2004 Definicija DFT Outline DFT je linearna transformacija nekega vektorskega prostora dimenzije n nad obsegom K, ki ga označujemo z V K, pri čemer ima slednji lastnost, da vsebuje nek poseben element,

Διαβάστε περισσότερα

Splošno o interpolaciji

Splošno o interpolaciji Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo

Διαβάστε περισσότερα

Lastne vrednosti in lastni vektorji

Lastne vrednosti in lastni vektorji Poglavje VIII Lastne vrednosti in lastni vektorji V tem poglavju bomo privzeli, da so skalarji v vektorskih prostorih, koeficienti v matrikah itd., kompleksna števila. Algebraične operacije seštevanja,

Διαβάστε περισσότερα

Reševanje sistemov linearnih enačb

Reševanje sistemov linearnih enačb 1 / 37 Reševanje sistemov linearnih enačb Meteorologija z geofiziko, I. stopnja http://ucilnica.fmf.uni-lj.si/ 2 / 37 Matrični zapis sistema linearnih enačb Sistem m linearnih enačb z n neznankami a 11

Διαβάστε περισσότερα

Poglavje 2. Sistemi linearnih enačb

Poglavje 2. Sistemi linearnih enačb Poglavje 2 Sistemi linearnih enačb Najpogostejši problem, na katerega naletimo pri numeričnem računanju, je reševanje sistema linearnih enačb Tak sistem lahko dobimo direktno iz matematične formulacije

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

8. Navadne diferencialne enačbe

8. Navadne diferencialne enačbe 8. Navadne diferencialne enačbe 8.1. Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogoju y(x 0 ) = y 0, kjer je f dana dovolj gladka funkcija

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti Poglavje XI Kvadratne forme V zadnjem poglavju si bomo ogledali še eno vrsto preslikav, ki jih tudi lahko podamo z matrikami. To so tako imenovane kvadratne forme, ki niso več linearne preslikave. Kvadratne

Διαβάστε περισσότερα

Analiza 2 Rešitve 14. sklopa nalog

Analiza 2 Rešitve 14. sklopa nalog Analiza Rešitve 1 sklopa nalog Navadne diferencialne enačbe višjih redov in sistemi diferencialnih enačb (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) 6 + 8 0, (b)

Διαβάστε περισσότερα

Bor Plestenjak. Numerične metode. delovna verzija. verzija: 4. marec 2010

Bor Plestenjak. Numerične metode. delovna verzija. verzija: 4. marec 2010 Bor Plestenjak Numerične metode delovna verzija verzija: 4. marec 200 Kazalo Uvod 7. Numerična matematika................................. 7.2 Plavajoča vejica...................................... 0.3

Διαβάστε περισσότερα

Uvod v numerične metode (matematika)

Uvod v numerične metode (matematika) Bor Plestenjak Uvod v numerične metode (matematika) delovna verzija verzija: 5. oktober 202 Kazalo Uvod 5. Numerična matematika................................. 5.2 Plavajoča vejica......................................

Διαβάστε περισσότερα

Numerične metode 2 (finančna matematika)

Numerične metode 2 (finančna matematika) Bor Plestenjak Numerične metode 2 (finančna matematika) delovna verzija verzija:. februar 203 Kazalo Nesimetrični problem lastnih vrednosti 5. Uvod............................................ 5.2 Schurova

Διαβάστε περισσότερα

Numerična analiza. Bor Plestenjak. Fakulteta za matematiko in fiziko. Jadranska 21, 4. nadstropje, soba 4.04

Numerična analiza. Bor Plestenjak. Fakulteta za matematiko in fiziko. Jadranska 21, 4. nadstropje, soba 4.04 Numerična analiza Bor Plestenjak Fakulteta za matematiko in fiziko Jadranska 21, 4. nadstropje, soba 4.04 govorilne ure: četrtek 11-12 oz. po dogovoru bor.plestenjak@fmf.uni-lj.si http://www-lp.fmf.uni-lj.si/plestenjak/vaje/vaje.htm

Διαβάστε περισσότερα

VEKTORJI. Operacije z vektorji

VEKTORJI. Operacije z vektorji VEKTORJI Vektorji so matematični objekti, s katerimi opisujemo določene fizikalne količine. V tisku jih označujemo s krepko natisnjenimi črkami (npr. a), pri pisanju pa s puščico ( a). Fizikalne količine,

Διαβάστε περισσότερα

Dodatna poglavja iz linearne algebre za 1. letnik finančne matematike na FMF. Primož Moravec

Dodatna poglavja iz linearne algebre za 1. letnik finančne matematike na FMF. Primož Moravec Dodatna poglavja iz linearne algebre za 1 letnik finančne matematike na FMF Primož Moravec 13 september 2017 1 CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 51264(0758)

Διαβάστε περισσότερα

V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant.

V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant. Poglavje IV Determinanta matrike V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant 1 Definicija Preden definiramo determinanto,

Διαβάστε περισσότερα

Navadne diferencialne enačbe

Navadne diferencialne enačbe Navadne diferencialne enačbe Navadne diferencialne enačbe prvega reda V celotnem poglavju bo y = dy dx. Diferencialne enačbe z ločljivima spremeljivkama Diferencialna enačba z ločljivima spremeljivkama

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

Uvod v numerične metode

Uvod v numerične metode Uvod v numerične metode Bor Plestenjak soba 4.04 bor.plestenjak@fmf.uni-lj.si http://www-lp.fmf.uni-lj.si/plestenjak/vaje/vaje.htm asistent: Gašper Jaklič Režim 2 sklopa domačih nalog - 20% pisne ocene

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

Uvod v numerične metode

Uvod v numerične metode Uvod v numerične metode B. Plestenjak, J.Kozak: Uvod v numerične metode 2011-2012 1 / 56 Jernej Kozak Jadranska 21, IV. nadstropje, št. 407. Iz dvigala, v desno, do konca hodnika in korak v smeri Krima.

Διαβάστε περισσότερα

Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik

Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik Univerza v Ljubljani Fakulteta za računalništvo in informatiko Fakulteta za matematiko in fiziko Peter Škvorc Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik DIPLOMSKO DELO UNIVERZITETNI

Διαβάστε περισσότερα

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

Matematika. Funkcije in enačbe

Matematika. Funkcije in enačbe Matematika Funkcije in enačbe (1) Nariši grafe naslednjih funkcij: (a) f() = 1, (b) f() = 3, (c) f() = 3. Rešitev: (a) Linearna funkcija f() = 1 ima začetno vrednost f(0) = 1 in ničlo = 1/. Definirana

Διαβάστε περισσότερα

Linearne preslikave. Poglavje VII. 1 Definicija linearne preslikave in osnovne lastnosti

Linearne preslikave. Poglavje VII. 1 Definicija linearne preslikave in osnovne lastnosti Poglavje VII Linearne preslikave V tem poglavju bomo vektorske prostore označevali z U,V,W,... Vsi vektorski prostori bodo končnorazsežni. Zaradi enostavnosti bomo privzeli, da je pripadajoči obseg realnih

Διαβάστε περισσότερα

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1 Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni

Διαβάστε περισσότερα

REˇSITVE. Naloga a. b. c. d Skupaj. FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost 2. kolokvij 23.

REˇSITVE. Naloga a. b. c. d Skupaj. FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost 2. kolokvij 23. Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost. kolokvij 3. januar 08 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Nalog je 6,

Διαβάστε περισσότερα

Poliedri Ines Pogačar 27. oktober 2009

Poliedri Ines Pogačar 27. oktober 2009 Poliedri Ines Pogačar 27. oktober 2009 Pri linearnem programiranju imamo opravka s končnim sistemom neenakosti in končno spremenljivkami, torej je množica dopustnih rešitev presek končno mnogo polprostorov.

Διαβάστε περισσότερα

Navadne diferencialne enačbe

Navadne diferencialne enačbe Poglavje 6 Navadne diferencialne enačbe 6.1 Uvod Splošna rešitev navadne diferencialne enačbe n-tega reda F(x, y, y, y,..., y (n) ) = 0 je n-parametrična družina funkcij. Kadar želimo iz splošne rešitve

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

Osnove linearne algebre

Osnove linearne algebre Osnove linearne algebre Matrike Matrika razsežnosti n m je A = a 1 1 a 1 2 a 1 m a 2 1 a 2 2 a 2 m a n 1 a n 2 a n m Če je n = m, tedaj matriko imenujemo kvadratna matrika Elementi matrike so lahko realna

Διαβάστε περισσότερα

Zbirka rešenih izpitnih nalog iz numeričnih metod

Zbirka rešenih izpitnih nalog iz numeričnih metod Zbirka rešenih izpitnih nalog iz numeričnih metod Borut Jurčič - Zlobec Andrej Perne Univerza v Ljubljani Fakulteta za elektrotehniko Ljubljana 6 Kazalo Iterativno reševanje nelinearnih enačb 4 Navadna

Διαβάστε περισσότερα

Dragi polinom, kje so tvoje ničle?

Dragi polinom, kje so tvoje ničle? 1 Dragi polinom, kje so tvoje ničle? Vito Vitrih FAMNIT - Izlet v matematično vesolje 17. december 2010 Polinomi: 2 Polinom stopnje n je funkcija p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, a i R.

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

Matrike. Poglavje II. Matrika je pravokotna tabela realnih števil. Na primer: , , , 0 1

Matrike. Poglavje II. Matrika je pravokotna tabela realnih števil. Na primer: , , , 0 1 Poglavje II Matrike Matrika je pravokotna tabela realnih števil Na primer: [ ] 1 1 1, 2 3 1 1 0 1 3 2 1, 0 1 4 [ ] 2 7, Matrika je sestavljena iz vrstic in stolpcev Vrstici matrike [ ] 1 1 1 2 3 1 [ ]

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

Prepoznavanje krožnic na digitalnih slikah

Prepoznavanje krožnic na digitalnih slikah Univerza v Ljubljani Fakulteta za računalništvo in informatiko Domen Kren Prepoznavanje krožnic na digitalnih slikah DIPLOMSKO DELO UNIVERZITETNI INTERDISCIPLINARNI ŠTUDIJSKI PROGRAM PRVE STOPNJE RAČUNALNIŠTVO

Διαβάστε περισσότερα

Vektorski prostori s skalarnim produktom

Vektorski prostori s skalarnim produktom Poglavje IX Vektorski prostori s skalarnim produktom Skalarni produkt dveh vektorjev v R n smo spoznali v prvem poglavju. Sedaj bomo pojem skalarnega produkta razširili na poljuben vektorski prostor V

Διαβάστε περισσότερα

Algebraične strukture

Algebraične strukture Poglavje V Algebraične strukture V tem poglavju bomo spoznali osnovne algebraične strukture na dani množici. Te so podane z eno ali dvema binarnima operacijama. Binarna operacija paru elementov iz množice

Διαβάστε περισσότερα

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO MATEMATIKA II

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO MATEMATIKA II UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA II Maribor, 2016 Kazalo Uvod v linearno algebro 1 1.1 Matrike................................ 1 1.2 Računanje

Διαβάστε περισσότερα

Uporabna matematika za naravoslovce

Uporabna matematika za naravoslovce Uporabna matematika za naravoslovce Zapiski predavanj Študijski programi: Aplikativna kineziologija, Biodiverziteta Študijsko leto 203/4 doc.dr. Barbara Boldin Fakulteta za matematiko, naravoslovje in

Διαβάστε περισσότερα

Osnove matematične analize 2016/17

Osnove matematične analize 2016/17 Osnove matematične analize 216/17 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Kaj je funkcija? Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja

Διαβάστε περισσότερα

Programi v Matlabu za predmet numerične metode

Programi v Matlabu za predmet numerične metode Programi v Matlabu za predmet numerične metode 18. 04 2002 1 1 Reševanje nelinearnih enačb Napisali bomo program za reševanje nelinearnih enačb z uporabo posameznih metod. Rešujete nelinearne enačbe oblike

Διαβάστε περισσότερα

Algoritmi nad grafi v jeziku linearne algebre

Algoritmi nad grafi v jeziku linearne algebre Univerza v Ljubljani Fakulteta za računalništvo in informatiko Fakulteta za matematiko in fiziko Tinkara Toš Algoritmi nad grafi v jeziku linearne algebre DIPLOMSKO DELO UNIVERZITETNI ŠTUDIJSKI PROGRAM

Διαβάστε περισσότερα

MATEMATIČNI IZRAZI V MAFIRA WIKIJU

MATEMATIČNI IZRAZI V MAFIRA WIKIJU I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH

Διαβάστε περισσότερα

Transformator. Delovanje transformatorja I. Delovanje transformatorja II

Transformator. Delovanje transformatorja I. Delovanje transformatorja II Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.

Διαβάστε περισσότερα

Enočlenske metode veljajo trenutno za najprimernejše metode v numeričnem reševanju začetnih problemov. Skoraj vse sodijo v

Enočlenske metode veljajo trenutno za najprimernejše metode v numeričnem reševanju začetnih problemov. Skoraj vse sodijo v Enočlenske metode J.Kozak Uvod v numerične metode - / 4 Enočlenske metode veljajo trenutno za najprimernejše metode v numeričnem reševanju začetnih problemov. Skoraj vse sodijo v skupino Runge-Kutta metod.

Διαβάστε περισσότερα

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta Matematika Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 6. november 200 Poglavje 2 Zaporedja in številske vrste 2. Zaporedja 2.. Uvod Definicija 2... Zaporedje (a n ) = a, a 2,..., a n,... je predpis,

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

Domača naloga 6: dušeno nihanje

Domača naloga 6: dušeno nihanje Domača naloga 6: dušeno nihanje Vaje iz predmeta Numerične metode v fiziki Igor Grešovnik Kazalo: 1 Naloga 6a Nihanje... 1.1 Enačbe nihanja... 1. Numerično reševanje problema... 3 1..1 Reševanje sistema

Διαβάστε περισσότερα

Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA

Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA. Naj bo vektorsko polje R : R 3 R 3 dano s predpisom R(x, y, z) = (2x 2 + z 2, xy + 2yz, z). Izračunaj pretok polja R skozi površino torusa

Διαβάστε περισσότερα

Matematika 2. Diferencialne enačbe drugega reda

Matematika 2. Diferencialne enačbe drugega reda Matematika 2 Diferencialne enačbe drugega reda (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) y 6y + 8y = 0, (b) y 2y + y = 0, (c) y + y = 0, (d) y + 2y + 2y = 0. Rešitev:

Διαβάστε περισσότερα

Lastne vrednosti in vektorji

Lastne vrednosti in vektorji Poglavje Lastne vrednosti in vetorji Naloga Gerschgorinov izre Naj bo A C n n in C i = {z C i, z a ii n j=,j i a ij } rog v omplesni ravnini, za i =,, n Vse lastne vrednosti matrie A ležijo v uniji rogov

Διαβάστε περισσότερα

Numerične metode za linearne sisteme upravljanja

Numerične metode za linearne sisteme upravljanja Bor Plestenjak Numerične metode za linearne sisteme upravljanja skripta verzija: 3 april 212 Kazalo 1 Uvod 6 11 Sistemi upravljanja 6 12 Lastnosti sistemov 8 13 Laplaceova transformacija 12 14 Prenosna

Διαβάστε περισσότερα

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,

Διαβάστε περισσότερα

Funkcije več spremenljivk

Funkcije več spremenljivk DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

PROCESIRANJE SIGNALOV

PROCESIRANJE SIGNALOV Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:

Διαβάστε περισσότερα

Interpolacija in aproksimacija funkcij

Interpolacija in aproksimacija funkcij Poglavje 4 Interpolacija in aproksimacija funkcij Na interpolacijo naletimo, kadar moramo vrednost funkcije, ki ima vrednosti znane le v posameznih točkah (pravimo jim interpolacijske točke), izračunati

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

22. Kdaj sta dva vektorja vzporedna? FGG geodezija UNI Matematika I, 2005/ Kdaj so vektorji a 1, a 2,..., a n linearno neodvisni?

22. Kdaj sta dva vektorja vzporedna? FGG geodezija UNI Matematika I, 2005/ Kdaj so vektorji a 1, a 2,..., a n linearno neodvisni? FGG geodezija UNI Matematika I, 2005/06 1. Definicija enakosti množic (funkcij, kompleksnih števil, urejenih n teric)? 2. Definicija kartezičnega produkta množic A in B. Definicija množice R n. 3. Popolna

Διαβάστε περισσότερα

Izpeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega

Izpeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega Izeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega 1. Najosnovnejše o konveksnih funkcijah Definicija. Naj bo X vektorski rostor in D X konveksna množica. Funkcija ϕ: D R je konveksna,

Διαβάστε περισσότερα

α i y n i + h β i f n i = 0, Splošni nastavek je k

α i y n i + h β i f n i = 0, Splošni nastavek je k 10.4 Večkoračne metode Splošni nastavek je k α i y n i + h i=0 k β i f n i = 0, kjer je f i = f(x i, y i ), privzamemo pa še α 0 = 1. Če je β 0 = 0, je metoda eksplicitna, sicer pa implicitna. i=0 Adamsove

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA SANDRA BOLTA LASTNE VREDNOSTI GRAFA DIPLOMSKO DELO

UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA SANDRA BOLTA LASTNE VREDNOSTI GRAFA DIPLOMSKO DELO UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA SANDRA BOLTA LASTNE VREDNOSTI GRAFA DIPLOMSKO DELO LJUBLJANA, 2014 2 UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA Študijska smer: Fizika in matematika SANDRA BOLTA

Διαβάστε περισσότερα

Linearna algebra. Bojan Orel Fakulteta za računalništvo in informatiko

Linearna algebra. Bojan Orel Fakulteta za računalništvo in informatiko Linearna algebra Bojan Orel Fakulteta za računalništvo in informatiko 23. februar 205 CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 52.64(075.8)(0.034.2) OREL, Bojan

Διαβάστε περισσότερα

MATEMATIKA 1 UNIVERZITETNI ŠTUDIJSKI PROGRAM BIOKEMIJA 1. LETNIK

MATEMATIKA 1 UNIVERZITETNI ŠTUDIJSKI PROGRAM BIOKEMIJA 1. LETNIK abc MATEMATIKA 1 UNIVERZITETNI ŠTUDIJSKI PROGRAM BIOKEMIJA 1. LETNIK ŠTEVILA PRIBLIŽNO RAČUNANJE PRIBLIŽNO RAČUNANJE Ta fosil dinozavra je star 7 milijonov in šest let, pravi paznik v muzeju.??? Ko sem

Διαβάστε περισσότερα

Matematika vaja. Matematika FE, Ljubljana, Slovenija Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija

Matematika vaja. Matematika FE, Ljubljana, Slovenija Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija Matematika 1 3. vaja B. Jurčič Zlobec 1 1 Univerza v Ljubljani, Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija Matematika FE, Ljubljana, Slovenija 2011 Določi stekališča zaporedja a

Διαβάστε περισσότερα

Metoda glavnih komponent

Metoda glavnih komponent Metoda glavnih komponent Metoda glavnih kompnent je ena najpogosteje uporabljenih multivariatnih metod. Osnoval jo je Karl Pearson (1901). Največ zaslug za nadaljni razvoj pa ima Hotelling (1933). Osnovna

Διαβάστε περισσότερα

Afina in projektivna geometrija

Afina in projektivna geometrija fina in projektivna geometrija tožnice () kiciraj stožnico v evklidski ravnini R, ki je določena z enačbo 6 3 8 + 6 =. Rešitev: tožnica v evklidski ravnini je krivulja, ki jo določa enačba a + b + c +

Διαβάστε περισσότερα

INTEGRALI RACIONALNIH FUNKCIJ

INTEGRALI RACIONALNIH FUNKCIJ UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA NIKA HREN INTEGRALI RACIONALNIH FUNKCIJ DIPLOMSKO DELO LJUBLJANA, 203 UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA MATEMATIKA - RAČUNALNIŠTVO NIKA HREN Mentor: izr.

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα