Analisis untuk penukar boost berasaskan kepada anggapan berikut:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Analisis untuk penukar boost berasaskan kepada anggapan berikut:"

Transcript

1 -4 Penukar Bs Kendalan penukar bs. Penukar bs adalah penukar lankah nak yan menhaslkan vlan keluaran lebh n darpada vlan masukannya. Sebaamana lar buck, lar n jua menandun a kmpnen uama au sus, dd dan pearuh. ajah -4 menunjukkan penukar bs. Semasa sus n, dd pncan balkan dan enaa dar masukan dhanar ke pearuh. Pada keka n, enaa ke beban dsalurkan leh pemua Semasa sus ff, arus pearuh akan menalr menerus dd, memndahkan sebahaan enaa yan ersmpan ke beban. Sebaamana lar buck, lar n jua mempunya dua raam penalran; raam penalran bererusan dan raam penalran ak bererusan, beranun kepada keadaan arus pearuh. Arus pearuh yan dak jauh ke sfar menhaslkan raam penalran bererusan dan arus pearuh yan jauh ke sfar unuk beberapa keka menhaslkan raam penalran ak bererusan. -4- Analss lar penukar bs Analss unuk penukar bs berasaskan kepada anapan berku:. Kendalan lar dalam keadaan manap.. Arus pearuh bererusan (raam penalran bererusan). 3. Pemua adalah ama besar sehna vlan keluaran bleh danap malar pada nla. n adalah anapan erb perama; anapan erb berkunya akan mempermbankan nla erhna ba pemua ba menla rak pada vlan keluaran. 4. Temph pensusan adalah T; sus berkeadaan eruup unuk selan masa DT dan berkeadaan erbuka unuk selan masa (-D)T. 5. Kmpnen-kmpnen lar adalah unul. Mendapakan hubunan puraa vlan keluaran-masukan, /. Dalam keadaan manap, elmban v akan berulan dar sau kar ke kar yan berkunya. Oleh u kamran vlan v erhadap masa unuk selan masa T adalah bersamaan denan sfar. T 0 n ff vd = vd = 0 0 v d 0 DT ( ) ( D) T = 0 = D (-9a) aau 3

2 - D F50 - (a) v (b) (c) s s - A B,max,mn DT (-D)T (d) D,max,mn c - / v v ajah -4 (a) lar penukar buck (b) lar semasa sus n unuk selan masa DT (c) lar semasa sus ff unuk selan masa (-D)T (d) elmban-elmban penn. 4

3 s = D (-9b) D sampn hubunan hubunan anara vlan keluaran puraa denan vlan masukan, ka jua bleh mendapakan hubunan anara arus keluaran denan arus masukan puraa. Denan menanap lar anpa kehlanan, P = P, leh u dan = Perlu jua dna bahawa unuk lar penukar bs, = = ( D) (-0) = (-) Unuk lar penukar bs dalam raam penalran bererusan, ka dapa bahawa vlan keluaran berubah secara dak lnear denan kar uas sus unuk suau nla vlan masukan. a dak beranun kepada parameer lar yan lan selan kar uas sus. Mendapakan persamaan rak arus pearuh, ak puncak ke puncak ba arus aruhan bleh dperleh melalu DT = v d 0 = [luas d bawah raf v (luasa)] aau = DT (-a) = ( ) ( D) T (-b) Darpada ka bleh dapakan,mn dan, mak.,mn, mak = (-3a) = (-3b) 5

4 Unuk mendapakan nla arus pearuh puraa, ka bleh mendapakannya denan menunakan hubunan persamaan (-0) dan (-) maka = ( D) = = (-4) ( D) ( D) Mendapakan rak vlan keluaran, v. Seper yan dnyaakan dalam anapan sebelum n, rak pada vlan keluaran, sama denan rak vlan pemua, bleh danarkan denan menunakan makluma arus pemua c. v = vc = d c = [ luas d bawah raf c ] = DT maka v = DT (-5) Perhakan bahawa, ba ujuan bukan penjumlahan luas d bawah raf c dambl sebaa bernla psf. nh -4-- Penukar Bs (analss) Penukar bs mempunya parameer seper berku: = = 30 = 0µH = 50µF f = 5kHz = 50Ω Anap kmpnen lar adalah unul dan adalah ama besar, kra (a) kar uas sus D, (b) nla pearuh mnmum dan maksmum, dan (c) rak vlan keluaran. akarkan elmban yan berkaan dan labelkan. Kendalan dalam raam penalran bererusan. 6

5 Penyelesaan (a) kar uas, D dperleh darpada persamaan (-9a) D = = = (b) rak arus pearuh dperleh denan menunakan persamaan (-a) = = DT = = 6.4A Arus pearuh puraa dperleh melalu persamaan (-4) 30 = = =. ( D) ( 0.6)50 5 Arus pearuh mnmum dan maksmum dperleh melalu persamaan (-3a) dan (-3b) A,mn, mak =.4 =.5 = 0.3A =.4 =.5 =.7A.7A =.4 A 0.3A 4µs 40µs Perhakan bahawa arus pearuh mnmum adalah psf, n menesahkan kendalan dalam raam penalran bererusan. 7

6 (c) ak vlan keluaran bleh dkra berdasarkan persamaan (-5) v = DT 30 6 = (0.6)(40 0 ) = Perhakan bahawa v adalah kecl, menesahkan anapan bahawa vlan keluaran malar kerana yan besar. nh -4-- Penukar bs (reka benuk) Sebuah penukar bs dkehendak unuk menhaslkan vlan keluaran = darpada sebuah baer = 6. nanan seara beban = 4 Ω dan frekuens pensusan f s = 00 khz. (a) Dapakan nla kar uas, D dan arus puraa pearuh,. (b) Kra nla supaya rak puncak-ke-puncak ba arus pearuh,, bersamaan denan 0% darpada arus puraa pearuh,. (c) Plh supaya rak puncak-ke-puncak vlan keluaran, v adalah 0.0. Penyelesaan (a) Darpada hubunan = D 6 D = = = 0.5 = = = 3 A 4 Dkeahu = ( D) 3 = = = 6A ( D) ( 0.5) (b) Dber bersamaan denan 0% darpada arus puraa pearuh. Dkeahu bahawa = = = = 0. 6A =. A DT DT = =.5µ H 8

7 (c) Dber v adalah 0.0. v = DT = DT v = ( ) = 375µ F Glsar Penukar D-D D-D nverer Pemenal hpper Penukar bs Bs nverer aam Penalran Bererusan nnuus nducn Mde (M) aam Penalran Tak Bererusan Dscnnuus nducn Mde (DM) Pearuh nducr Pemua apacr Penaps lulus rendah w pass fler ak pple Anaran erb perama Frs rder apprxman Anaran erb kedua Secnd rder apprxman 9

2.1 Pengenalan. Untuk isyarat berkala, siri Fourier digunakan untuk mendapatkan spektrum frekuensi dalam bentuk spektrum garisan.

2.1 Pengenalan. Untuk isyarat berkala, siri Fourier digunakan untuk mendapatkan spektrum frekuensi dalam bentuk spektrum garisan. . JELMAAN FOURIER DAN PENGGUNAANNYA. Pengenalan Unuk isyara berkala, siri Fourier digunakan unuk mendapakan spekrum frekuensi dalam benuk spekrum garisan. Unuk isyara ak berkala, garisan-garisan spekrum

Διαβάστε περισσότερα

3.1 Pengenalan (1) (2) + v c. i L. i c. + v L

3.1 Pengenalan (1) (2) + v c. i L. i c. + v L 3.1 Pengenalan Dalam bab yang lepa, kia elah liha bahawa kedua-dua elemen pemua dan peraruh, berkebolehan menyimpan enaga. Unuk pemua, enaga diimpan dalam benuk medan elekrik manakala unuk peraruh pula,

Διαβάστε περισσότερα

ANALISIS LITAR ELEKTRIK OBJEKTIF AM

ANALISIS LITAR ELEKTRIK OBJEKTIF AM ANALSS LTA ELEKTK ANALSS LTA ELEKTK OBJEKTF AM Unit Memahami konsep-konsep asas Litar Sesiri, Litar Selari, Litar Gabungan dan Hukum Kirchoff. OBJEKTF KHUSUS Di akhir unit ini anda dapat : Menerangkan

Διαβάστε περισσότερα

STRUKTUR BAJA 2 TKS 1514 / 3 SKS PROGRAM STUDI TEKNIK SIPIL UNIVERSITAS JEMBER

STRUKTUR BAJA 2 TKS 1514 / 3 SKS PROGRAM STUDI TEKNIK SIPIL UNIVERSITAS JEMBER STRUKTUR BAJA 2 TKS 1514 / 3 SKS PROGRAM STUDI TEKNIK SIPIL UNIVERSITAS JEMBER Winda Tri Wahyuningtyas Gati Annisa Hayu Plate Girder Plate girder adalah balok besar yang dibuat dari susunan yang disatukan

Διαβάστε περισσότερα

Keterusan dan Keabadian Jisim

Keterusan dan Keabadian Jisim Pelajaran 8 Keterusan dan Keabadian Jisim OBJEKTIF Setelah selesai mempelajari Pelajaran ini anda sepatutnya dapat Mentakrifkan konsep kadar aliran jisim Mentakrifkan konsep kadar aliran Menerangkan konsep

Διαβάστε περισσότερα

Tegangan Permukaan. Kerja

Tegangan Permukaan. Kerja Tegangan Permukaan Kerja Cecair lebih cenderung menyesuaikan bentuknya ke arah yang luas permukaan yang minimum. Titisan cecair berbentuk sfera kerana nisbah luas permukaan terhadap isipadu adalah kecil.

Διαβάστε περισσότερα

LITAR ARUS ULANG ALIK (AU)

LITAR ARUS ULANG ALIK (AU) TA AUS UANG AK (AU) TA AUS UANG AK (AU) OBJEKTF AM Memahami litar asas arus Ulang alik dan litar sesiri yang mengandungi, dan. Unit OBJEKTF KHUSUS Di akhir unit ini anda dapat : Menjelaskan bahawa dalam

Διαβάστε περισσότερα

BAB 4: MODEL KEADAAN-RUANG (State Space Model)

BAB 4: MODEL KEADAAN-RUANG (State Space Model) BAB 4: MODEL KEADAAN-RUANG (Sae Space Model) 4. Model am Persamaan kebezaan erib n diungkap semula sebagai sau se erdiri dari n persamaan kebezaan erib perama. Persamaan in diwakili oleh & = A Bu y = C

Διαβάστε περισσότερα

DETERMINATION OF CFRP PLATE SHEAR MODULUS BY ARCAN TEST METHOD SHUKUR HJ. ABU HASSAN

DETERMINATION OF CFRP PLATE SHEAR MODULUS BY ARCAN TEST METHOD SHUKUR HJ. ABU HASSAN DETERMINATION OF CFRP PLATE SHEAR MODULUS BY ARCAN TEST METHOD SHUKUR HJ. ABU HASSAN OBJEKTIF KAJIAN Mendapatkan dan membandingkan nilai tegasan ricih, τ, dan modulus ricih, G, bagi plat CFRP yang berorientasi

Διαβάστε περισσότερα

SEE 3533 PRINSIP PERHUBUNGAN Bab III Pemodulatan Sudut. Universiti Teknologi Malaysia

SEE 3533 PRINSIP PERHUBUNGAN Bab III Pemodulatan Sudut. Universiti Teknologi Malaysia SEE 3533 PRINSIP PERHUBUNGAN Bab III Universiti Teknologi Malaysia 1 Pengenalan Selain daripada teknik pemodulatan amplitud, terdapat juga teknik lain yang menggunakan isyarat memodulat untuk mengubah

Διαβάστε περισσότερα

KALKULUS LANJUT. Integral Lipat. Resmawan. 7 November Universitas Negeri Gorontalo. Resmawan (Math UNG) Integral Lipat 7 November / 57

KALKULUS LANJUT. Integral Lipat. Resmawan. 7 November Universitas Negeri Gorontalo. Resmawan (Math UNG) Integral Lipat 7 November / 57 KALKULUS LANJUT Integral Lipat Resmawan Universitas Negeri Gorontalo 7 November 218 Resmawan (Math UNG) Integral Lipat 7 November 218 1 / 57 13.3. Integral Lipat Dua pada Daerah Bukan Persegipanjang 3.5

Διαβάστε περισσότερα

BAB 2 PEMODULATAN AMPLITUD

BAB 2 PEMODULATAN AMPLITUD BAB MODULATAN LITUD enghantaran iyarat yang engandungi akluat elalui atu aluran perhubungan eerlukan anjakan frekueni iyarat akluat kepada julat frekueni yang euai untuk penghantaran - roe ini diapai elalui

Διαβάστε περισσότερα

PERSAMAAN KUADRAT. 06. EBT-SMP Hasil dari

PERSAMAAN KUADRAT. 06. EBT-SMP Hasil dari PERSAMAAN KUADRAT 0. EBT-SMP-00-8 Pada pola bilangan segi tiga Pascal, jumlah bilangan pada garis ke- a. 8 b. 6 c. d. 6 0. EBT-SMP-0-6 (a + b) = a + pa b + qa b + ra b + sab + b Nilai p q = 0 6 70 0. MA-77-

Διαβάστε περισσότερα

SARJANA MUDA KEJURUTERAAN MEKANIKAL FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA PEPERIKSAAN AKHIR SEMESTER DISEMBER SESI 1999/2000

SARJANA MUDA KEJURUTERAAN MEKANIKAL FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA PEPERIKSAAN AKHIR SEMESTER DISEMBER SESI 1999/2000 SARJANA MUDA KEJURUTERAAN MEKANIKAL FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA PEPERIKSAAN AKHIR SEMESTER DISEMBER SESI 1999/2000 KOD MATAPELAJARAN : SMJ 3403 NAMA MATAPELAJARAN : TERMODINAMIK

Διαβάστε περισσότερα

( 2 ( 1 2 )2 3 3 ) MODEL PT3 MATEMATIK A PUSAT TUISYEN IHSAN JAYA = + ( 3) ( 4 9 ) 2 (4 3 4 ) 3 ( 8 3 ) ( 3.25 )

( 2 ( 1 2 )2 3 3 ) MODEL PT3 MATEMATIK A PUSAT TUISYEN IHSAN JAYA = + ( 3) ( 4 9 ) 2 (4 3 4 ) 3 ( 8 3 ) ( 3.25 ) (1) Tentukan nilai bagi P, Q, dan R MODEL PT MATEMATIK A PUSAT TUISYEN IHSAN JAYA 1 P 0 Q 1 R 2 (4) Lengkapkan operasi di bawah dengan mengisi petak petak kosong berikut dengan nombor yang sesuai. ( 1

Διαβάστε περισσότερα

HMT 221 FONETIK DAN FONOLOGI BAHASA MALAYSIA

HMT 221 FONETIK DAN FONOLOGI BAHASA MALAYSIA UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Kedua Sidang Akademik 2006/2007 April 2007 HMT 221 FONETIK DAN FONOLOGI BAHASA MALAYSIA Masa : 3 jam Sila pastikan bahawa kertas peperiksaan ini mengandungi

Διαβάστε περισσότερα

T Q. Ketaksamaan Clausius. Kaji seluruh kitaran T. (a) E bb. Dua enjin haba antara dua suhu yang sama T H Q H. W W tbb. E tbb. E bb L L Q L. Q L.

T Q. Ketaksamaan Clausius. Kaji seluruh kitaran T. (a) E bb. Dua enjin haba antara dua suhu yang sama T H Q H. W W tbb. E tbb. E bb L L Q L. Q L. Ketasamaan lausus E E t.t W W t Dua enn haba antara dua suhu yang sama Ka seluruh taran (a) E 3 (b) E t t t >,,, < < t t t 443 4 Dgabungan menad: Ketasamaan lausus a blehbal < a tablehbal 3 5 ENOPI B A

Διαβάστε περισσότερα

BAB 2 PEMACU ELEKTRIK

BAB 2 PEMACU ELEKTRIK BAB 2 PEMACU ELEKTRIK PENGENALAN Kebanyakan perindustrian moden dan komersial menggunakan pemacu elektrik berbanding dengan pemacu mekanikal kerana terdapat banyak kelebihan. Di antaranya ialah : a) binaannya

Διαβάστε περισσότερα

2 m. Air. 5 m. Rajah S1

2 m. Air. 5 m. Rajah S1 FAKULI KEJURUERAAN AL 1. Jika pintu A adalah segi empat tepat dan berukuran 2 m lebar (normal terhadap kertas), tentukan nilai daya hidrostatik yang bertindak pada pusat tekanan jika pintu ini tenggelam

Διαβάστε περισσότερα

Bab 1 Mekanik Struktur

Bab 1 Mekanik Struktur Bab 1 Mekanik Struktur P E N S Y A R A H : D R. Y E E M E I H E O N G M O H D. N O R H A F I D Z B I N M O H D. J I M A S ( D B 1 4 0 0 1 1 ) R E X Y N I R O AK P E T E R ( D B 1 4 0 2 5 9 ) J O H A N

Διαβάστε περισσότερα

TEORI PELUANG* TKS 6112 Keandalan Struktur. Pendahuluan

TEORI PELUANG* TKS 6112 Keandalan Struktur. Pendahuluan TKS 6112 Keandalan Struktur TEORI PELUANG* * www.zacoeb.lecture.ub.ac.id Pendahuluan Sebuah bangunan dirancang melalui serangkaian perhitungan yang cermat terhadap beban-beban rencana dan bangunan tersebut

Διαβάστε περισσότερα

Klasifikasi bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua

Klasifikasi bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua Matematika, 1999, Jilid 15, bil. 1, hlm. 37 43 c Jabatan Matematik, UTM. Klasifikasi bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua Nor Haniza Sarmin Jabatan Matematik, Fakulti

Διαβάστε περισσότερα

(a) Nyatakan julat hubungan itu (b) Dengan menggunakan tatatanda fungsi, tulis satu hubungan antara set A dan set B. [2 markah] Jawapan:

(a) Nyatakan julat hubungan itu (b) Dengan menggunakan tatatanda fungsi, tulis satu hubungan antara set A dan set B. [2 markah] Jawapan: MODUL 3 [Kertas 1]: MATEMATIK TAMBAHAN JPNK 015 Muka Surat: 1 Jawab SEMUA soalan. 1 Rajah 1 menunjukkan hubungan antara set A dan set B. 6 1 Set A Rajah 1 4 5 Set B (a) Nyatakan julat hubungan itu (b)

Διαβάστε περισσότερα

TH3813 Realiti Maya. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun

TH3813 Realiti Maya. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun TH383 Realiti Maa Transformasi 3D menggunakan multiplikasi matriks untuk hasilkan kompaun transformasi menggunakan kompaun transformasi - hasilkan sebarang transformasi dan ungkapkan sebagai satu transformasi

Διαβάστε περισσότερα

PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK

PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK 2 SKEMA MODUL PECUTAN AKHIR 20 No Jawapan Pembahagian (a) 00000 0000 0000 Jumlah 000 TIM00 #0300 TIM00 000 000 0M END Simbol dan data betul : 8 X 0.5M = 4M

Διαβάστε περισσότερα

Peta Konsep. 5.1 Sudut Positif dan Sudut Negatif Fungsi Trigonometri Bagi Sebarang Sudut FUNGSI TRIGONOMETRI

Peta Konsep. 5.1 Sudut Positif dan Sudut Negatif Fungsi Trigonometri Bagi Sebarang Sudut FUNGSI TRIGONOMETRI Bab 5 FUNGSI TRIGONOMETRI Peta Konsep 5.1 Sudut Positif dan Sudut Negatif 5. 6 Fungsi Trigonometri Bagi Sebarang Sudut FUNGSI TRIGONOMETRI 5. Graf Fungsi Sinus, Kosinus dan Tangen 5.4 Identiti Asas 5.5

Διαβάστε περισσότερα

Sebaran Peluang Gabungan

Sebaran Peluang Gabungan Sebaran Peluang Gabungan Peubah acak dan sebaran peluangnya terbatas pada ruang sampel berdimensi satu. Dengan kata lain, hasil percobaan berasal dari peubah acak yan tunggal. Tetapi, pada banyak keadaan,

Διαβάστε περισσότερα

Sebaran Kontinu HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNAND LOGO

Sebaran Kontinu HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNAND LOGO Sebaran Kontinu HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNAND Kompetensi menguraikan ciri-ciri suatu kurva normal menentukan luas daerah dibawah kurva normal menerapkan sebaran normal dalam

Διαβάστε περισσότερα

Rajah S1 menunjukkan talisawat dari jenis rata dengan dua sistem pacuan, digunakan untuk

Rajah S1 menunjukkan talisawat dari jenis rata dengan dua sistem pacuan, digunakan untuk SOALAN 1 Rajah S1 menunjukkan talisawat dari jenis rata dengan dua sistem pacuan, digunakan untuk menyambungkan dua takal yang terpasang kepada dua aci selari. Garispusat takal pemacu, pada motor adalah

Διαβάστε περισσότερα

Hendra Gunawan. 16 April 2014

Hendra Gunawan. 16 April 2014 MA101 MATEMATIKA A Hendra Gunawan Semester II, 013/014 16 April 014 Kuliah yang Lalu 13.11 Integral Lipat Dua atas Persegi Panjang 13. Integral Berulang 13.3 33Integral Lipat Dua atas Daerah Bukan Persegi

Διαβάστε περισσότερα

LATIHAN. PENYUSUN: MOHD. ZUBIL BAHAK Sign. : FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA SKUDAI JOHOR

LATIHAN. PENYUSUN: MOHD. ZUBIL BAHAK Sign. : FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA SKUDAI JOHOR 1. a) Nyatakan dengan jelas Prinsip Archimedes tentang keapungan. b) Nyatakan tiga (3) syarat keseimbangan STABIL jasad terapung. c) Sebuah silinder bergaris pusat 15 cm dan tinggi 50 cm diperbuat daripada

Διαβάστε περισσότερα

SMJ minyak seperti yang dilakarkan dalam Rajah S2. Minyak tersebut mempunyai. bahagian hujung cakera. Dengan data dan anggapan yang dibuat:

SMJ minyak seperti yang dilakarkan dalam Rajah S2. Minyak tersebut mempunyai. bahagian hujung cakera. Dengan data dan anggapan yang dibuat: SOALAN 1 Cakera dengan garis pusat d berputar pada halaju sudut ω di dalam bekas mengandungi minyak seperti yang dilakarkan dalam Rajah S2. Minyak tersebut mempunyai kelikatan µ. Anggap bahawa susuk halaju

Διαβάστε περισσότερα

MODUL 3 : KERTAS 2 Bahagian A [40 markah] (Jawab semua soalan dalam bahagian ini)

MODUL 3 : KERTAS 2 Bahagian A [40 markah] (Jawab semua soalan dalam bahagian ini) MODUL 3 [Kertas 2]: MATEMATIK TAMBAHAN JPNK 2015 Muka Surat: 1 1. Selesaikan persamaan serentak yang berikut: MODUL 3 : KERTAS 2 Bahagian A [40 markah] (Jawab semua soalan dalam bahagian ini) 2x y = 1,

Διαβάστε περισσότερα

UNTUK EDARAN DI DALAM JABATAN FARMASI SAHAJA

UNTUK EDARAN DI DALAM JABATAN FARMASI SAHAJA UNTUK EDARAN DI DALAM JABATAN FARMASI SAHAJA KEPUTUSAN MESYUARAT KALI KE 63 JAWATANKUASA FARMASI DAN TERAPEUTIK HOSPITAL USM PADA 24 SEPTEMBER 2007 (BAHAGIAN 1) DAN 30 OKTOBER 2007 (BAHAGIAN 2) A. Ubat

Διαβάστε περισσότερα

KONSEP ASAS & PENGUJIAN HIPOTESIS

KONSEP ASAS & PENGUJIAN HIPOTESIS KONSEP ASAS & PENGUJIAN HIPOTESIS HIPOTESIS Hipotesis = Tekaan atau jangkaan terhadap penyelesaian atau jawapan kepada masalah kajian Contoh: Mengapakah suhu bilik kuliah panas? Tekaan atau Hipotesis???

Διαβάστε περισσότερα

UNIT 5 PENUKAR AU-AT (PENERUS)

UNIT 5 PENUKAR AU-AT (PENERUS) PENUKAR AU-AT (PENERUS) E4140/UNIT 5/1 UNIT 5 PENUKAR AU-AT (PENERUS) OBJEKTIF Objektif am : Mengenali dan memahami jenis-jenis litar penukaran penukar AU-AT (Penerus) Objektif khusus : Di akhir unit ini

Διαβάστε περισσότερα

PENGERTIAN VOKAL: Vokal ialah bunyi-bunyi bersuara, dan apabila membunyikannya udara daripada paru-paru keluar melalui rongga mulut tanpa sekatan dan

PENGERTIAN VOKAL: Vokal ialah bunyi-bunyi bersuara, dan apabila membunyikannya udara daripada paru-paru keluar melalui rongga mulut tanpa sekatan dan PENGERTIAN VOKAL: Vokal ialah bunyi-bunyi bersuara, dan apabila membunyikannya udara daripada paru-paru keluar melalui rongga mulut tanpa sekatan dan gangguan. Bunyi-bunyi vokal mempunyai ciriciri kelantangan

Διαβάστε περισσότερα

E513 : TEKNIK ELEKTRONIK BAB 1 : 13

E513 : TEKNIK ELEKTRONIK BAB 1 : 13 E513 : TEKNIK ELEKTRONIK BAB 1 : 13 BAB 1 ( Bahagian 2) TAJUK : PENGKELASAN LITAR BERSEPADU OBJEKTIF Di akhir topik ini pelajar akan dapat : a. Mengklasifikasikan Litar Bersepadu berdasarkan kaedah pembikinan,

Διαβάστε περισσότερα

Konvergen dalam Peluang dan Distribusi

Konvergen dalam Peluang dan Distribusi limiting distribution Andi Kresna Jaya andikresna@yahoo.com Jurusan Matematika July 5, 2014 Outline 1 Review 2 Motivasi 3 Konvergen dalam peluang 4 Konvergen dalam distribusi Back Outline 1 Review 2 Motivasi

Διαβάστε περισσότερα

Kuliah 4 Rekabentuk untuk kekuatan statik

Kuliah 4 Rekabentuk untuk kekuatan statik 4-1 Kuliah 4 Rekabentuk untuk kekuatan statik 4.1 KEKUATAN STATIK Beban statik merupakan beban pegun atau momen pegun yang bertindak ke atas sesuatu objek. Sesuatu beban itu dikatakan beban statik sekiranya

Διαβάστε περισσότερα

Persamaan Diferensial Parsial

Persamaan Diferensial Parsial Persamaan Diferensial Parsial Turunan Parsial f (, ) Jika berubah ubah sedangkan tetap, adalah fungsi dari dan turunanna terhadap adalah f (, ) f (, ) f (, ) lim 0 disebut turunan parsialpertama dari f

Διαβάστε περισσότερα

Ciri-ciri Taburan Normal

Ciri-ciri Taburan Normal 1 Taburan Normal Ciri-ciri Taburan Normal Ia adalah taburan selanjar Ia adalah taburan simetri Ia adalah asimtot kepada paksi Ia adalah uni-modal Ia adalah keluarga kepada keluk Keluasan di bawah keluk

Διαβάστε περισσότερα

EEU104 - Teknologi Elektrik - Tutorial 11; Sessi 2000/2001 Litar magnet

EEU104 - Teknologi Elektrik - Tutorial 11; Sessi 2000/2001 Litar magnet UNIVERSITI SAINS MALAYSIA PUSAT PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK EEU104 - Teknologi Elektrik - Tutorial 11; Sessi 2000/2001 Litar magnet 1. Satu litar magnet mempunyai keengganan S = 4 x

Διαβάστε περισσότερα

gram positif yang diuji adalah Bacillus subtilis, Staphylococcus aureus ATCC 25923,

gram positif yang diuji adalah Bacillus subtilis, Staphylococcus aureus ATCC 25923, 3.2.2 Penskrinan aktiviti antimikrob Ekstrak metanol sampel Cassia alata L. dan Cassia tora L. dijalankan penskrinan aktiviti antimikrob dengan beberapa jenis mikrob yang patogenik kepada manusia seperti

Διαβάστε περισσότερα

JAWAPAN BAB 1 BAB 2. x y x y x y Asas Nombor

JAWAPAN BAB 1 BAB 2. x y x y x y Asas Nombor sas Nombor. Nombor dalam sas Dua, sas Lapan dan sas Lima (a) (e) (f) (g) (a) (e) (a) (e) (f) (g) (h) (i) (j) (k) (a) (e) (a) as as (a) 9 (a) (e) (a) 9 (a) (a) (e) 9 (a) as 9 as JWN (e) (f) (a) (a) (a)

Διαβάστε περισσότερα

FEEDER UNIT PROTECTION

FEEDER UNIT PROTECTION FEEDER UNIT PROTECTION ILSAS 27sep-8oct 2004 Subra@prot_kl 1 OBJEKTIF Para hadirin dapat mentakrifkan prinsip asas Arus Mengeliling dan kegunaannya dalam Perlindungan Pilot Wire jenis Solkor-RF tanpa sebarang

Διαβάστε περισσότερα

Sistem Koordinat dan Fungsi. Matematika Dasar. untuk Fakultas Pertanian. Uha Isnaini. Uhaisnaini.com. Matematika Dasar

Sistem Koordinat dan Fungsi. Matematika Dasar. untuk Fakultas Pertanian. Uha Isnaini. Uhaisnaini.com. Matematika Dasar untuk Fakultas Pertanian Uhaisnaini.com Contents 1 Sistem Koordinat dan Fungsi Sistem Koordinat dan Fungsi Sistem koordinat adalah suatu cara/metode untuk menentukan letak suatu titik. Ada beberapa macam

Διαβάστε περισσότερα

RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN

RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN Jurnal Teknologi, 38(C) Jun 003: 5 8 Universiti Teknologi Malaysia RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN 5 RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN YEOH WENG KANG & JAMALUDIN MD. ALI Abstrak. Rumus untuk

Διαβάστε περισσότερα

Kalkulus Multivariabel I

Kalkulus Multivariabel I Limit dan Statistika FMIPA Universitas Islam Indonesia Operasi Aljabar pada Pembahasan pada limit untuk fungsi dua peubah adalah memberikan pengertian mengenai lim f (x, y) = L (x,y) (a,b) Masalahnya adalah

Διαβάστε περισσότερα

Kalkulus 1. Sistem Koordinat. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia. Sistem Koordinat

Kalkulus 1. Sistem Koordinat. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia. Sistem Koordinat Kalkulus 1 Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Sistem koordinat adalah suatu cara/metode untuk menentukan letak suatu titik. Ada beberapa macam sistem koordinat, yaitu:

Διαβάστε περισσότερα

Bilangan Euler(e) Rukmono Budi Utomo Pengampu: Prof. Taufiq Hidayat. March 5, 2016

Bilangan Euler(e) Rukmono Budi Utomo Pengampu: Prof. Taufiq Hidayat. March 5, 2016 Bilangan Euler(e) Rukmono Budi Utomo 30115301 Pengampu: Prof. Taufiq Hidayat March 5, 2016 Asal Usul Bilangan Euler e 1 1. Bilangan Euler 2 3 4 Asal Usul Bilangan Euler e Bilangan Euler atau e = 2, 7182818284...

Διαβάστε περισσότερα

PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2005

PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2005 3472/2 Matematik Tambahan Kertas 2 September 2005 2½ jam MAKTAB RENDAH SAINS MARA 3472/2 PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2005 MATEMATIK TAMBAHAN Kertas 2 Dua jam tiga puluh minit 3 4 7 2

Διαβάστε περισσότερα

KEKUATAN KELULI KARBON SEDERHANA

KEKUATAN KELULI KARBON SEDERHANA Makmal Mekanik Pepejal KEKUATAN KELULI KARBON SEDERHANA 1.0 PENGENALAN Dalam rekabentuk sesuatu anggota struktur yang akan mengalami tegasan, pertimbangan utama ialah supaya anggota tersebut selamat dari

Διαβάστε περισσότερα

Kemahiran Hidup Bersepadu Kemahiran Teknikal 76

Kemahiran Hidup Bersepadu Kemahiran Teknikal 76 LOGO SEKOLAH Nama Sekolah UJIAN BERTULIS 2 Jam Kemahiran Hidup Bersepadu Kemahiran Teknikal 76 NAMA :..... ANGKA GILIRAN : TERHAD 2 BAHAGIAN A [60 markah] Jawab semua soalan pada bahagian ini di ruang

Διαβάστε περισσότερα

Pelajaran 9. Persamaan Bernoulli. Setelah selesai mempelajari Pelajaran ini anda sepatutnya dapat

Pelajaran 9. Persamaan Bernoulli. Setelah selesai mempelajari Pelajaran ini anda sepatutnya dapat Pelajaran 9 Persamaan Bernoulli OBJEKTIF Setelah selesai memelajari Pelajaran ini anda seatutnya daat Mentakrifkan konse kadar aliran jisim Mentakrifkan konse kadar aliran Menerangkan konse halaju urata

Διαβάστε περισσότερα

Matematika

Matematika Sistem Bilangan Real D3 Analis Kimia FMIPA Universitas Islam Indonesia Sistem Bilangan Real Himpunan: sekumpulan obyek/unsur dengan kriteria/syarat tertentu. 1 Himpunan mahasiswa D3 Analis Kimia angkatan

Διαβάστε περισσότερα

perubatan (Struelens, 1998). Strain Staphylococcus aureus dan juga beberapa strain efektif dari sumber semulajadi seperti tumbuhan adalah perlu.

perubatan (Struelens, 1998). Strain Staphylococcus aureus dan juga beberapa strain efektif dari sumber semulajadi seperti tumbuhan adalah perlu. 4.4 Aktiviti Antimikrob Peningkatan kes-kes yang melibatkan mikroorganisma resistans kepada agen antimikrobial dikalangan pesakit yang dirawat menjadi kerunsingan dikalangan pakar perubatan (Struelens,

Διαβάστε περισσότερα

FAKULTI KEJURUTERAAN ELEKTRIK UNIVERSITI TEKNOLOGI MALAYSIA MAKMAL ELEKTROTEKNIK : LENGKUK KEMAGNETAN ATAU CIRI B - H

FAKULTI KEJURUTERAAN ELEKTRIK UNIVERSITI TEKNOLOGI MALAYSIA MAKMAL ELEKTROTEKNIK : LENGKUK KEMAGNETAN ATAU CIRI B - H FAKULTI KEJURUTERAAN ELEKTRIK UNIVERSITI TEKNOLOGI MALAYSIA MAKMAL ELEKTROTEKNIK UJIKAJI TAJUK : E : LENGKUK KEMAGNETAN ATAU CIRI B - H 1. Tujuan : 2. Teori : i. Mendapatkan lengkuk kemagnetan untuk satu

Διαβάστε περισσότερα

TOPIK 1 : KUANTITI DAN UNIT ASAS

TOPIK 1 : KUANTITI DAN UNIT ASAS 1.1 KUANTITI DAN UNIT ASAS Fizik adalah berdasarkan kuantiti-kuantiti yang disebut kuantiti fizik. Secara am suatu kuantiti fizik ialah kuantiti yang boleh diukur. Untuk mengukur kuantiti fizik, suatu

Διαβάστε περισσότερα

KURIKULUM STANDARD SEKOLAH RENDAH DUNIA MUZIK

KURIKULUM STANDARD SEKOLAH RENDAH DUNIA MUZIK KEMENTERIAN PELAJARAN MALAYSIA KURIKULUM STANDARD SEKOLAH RENDAH DUNIA MUZIK TAHUN TIGA DOKUMEN STANDARD KURIKULUM STANDARD SEKOLAH RENDAH (KSSR) MODUL TERAS TEMA DUNIA MUZIK TAHUN TIGA BAHAGIAN PEMBANGUNAN

Διαβάστε περισσότερα

Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua nilai yang mungkin bagi X.

Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua nilai yang mungkin bagi X. BAB 8 : TABURAN KEBARANGKALIAN Sesi 1 Taburan Binomial A. Pembolehubah rawak diskret Contoh Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua

Διαβάστε περισσότερα

13 M. Syuhaimi.indd 149 5/28/10 4:21:43 PM

13 M. Syuhaimi.indd 149 5/28/10 4:21:43 PM 1 4 Kumpulan Penyelidikan Komputer dan Sekuriti Rangkaian, Jabatan Kejuruteraan Elektrik, Elektronik dan Sistem, Fakulti Kejuruteraan dan Alam Bina, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor,

Διαβάστε περισσότερα

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 6: Rantai Markov Waktu Kontinu Statistika FMIPA Universitas Islam Indonesia Rantai Markov Waktu Kontinu Peluang Kesetimbangan Pada bab ini, kita akan belajar mengenai rantai markov waktu kontinu yang

Διαβάστε περισσότερα

Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua nilai yang mungkin bagi X.

Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua nilai yang mungkin bagi X. BAB 8 : TABURAN KEBARANGKALIAN Sesi 1 Taburan Binomial A. Pembolehubah rawak diskret Contoh Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua

Διαβάστε περισσότερα

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 6: Rantai Markov Waktu Kontinu Statistika FMIPA Universitas Islam Indonesia Rantai Markov Waktu Kontinu Peluang Kesetimbangan Pada bab ini, kita akan belajar mengenai rantai markov waktu kontinu yang

Διαβάστε περισσότερα

TINJAUAN PUSTAKA. Sekumpulan bilangan (rasional dan tak-rasional) yang dapat mengukur. bilangan riil (Purcell dan Varberg, 1987).

TINJAUAN PUSTAKA. Sekumpulan bilangan (rasional dan tak-rasional) yang dapat mengukur. bilangan riil (Purcell dan Varberg, 1987). II. TINJAUAN PUSTAKA 2.1 Sistem Bilangan Riil Definisi Bilangan Riil Sekumpulan bilangan (rasional dan tak-rasional) yang dapat mengukur panjang, bersama-sama dengan negatifnya dan nol dinamakan bilangan

Διαβάστε περισσότερα

SESI: MAC 2018 DSM 1021: SAINS 1. Kelas: DCV 2

SESI: MAC 2018 DSM 1021: SAINS 1. Kelas: DCV 2 SESI: MAC 2018 DSM 1021: SAINS 1 TOPIK 4.0: KERJA, TENAGA DAN KUASA Kelas: DCV 2 PENSYARAH: EN. MUHAMMAD AMIRUL BIN ABDULLAH COURSE LEARNING OUTCOMES (CLO): Di akhir LA ini, pelajar akan boleh: 1. Menerangkan

Διαβάστε περισσότερα

BAB EMPAT PERBINCANGAN. 4.1 Analisis KLN Ekstrak Cassia alata L. dan Cassia tora L.

BAB EMPAT PERBINCANGAN. 4.1 Analisis KLN Ekstrak Cassia alata L. dan Cassia tora L. BAB EMPAT PERBINCANGAN 4.1 Analisis KLN Ekstrak Cassia alata L. dan Cassia tora L. Analisis KLN dijalankan ke atas sampel ekstrak daun Cassia alata L. dan Cassia tora L. Penskrinan fitokimia dijalankan

Διαβάστε περισσότερα

Kuasa Dua Tensor Yang Tak Abelan bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua

Kuasa Dua Tensor Yang Tak Abelan bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua Matematika, 1999, Jilid 15, bil., hlm. 143 156 c Jabatan Matematik, UTM. Kuasa Dua Tensor Yang Tak Abelan bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua Nor Haniza Sarmin Jabatan

Διαβάστε περισσότερα

JANGAN BUKA KERTAS SOALAN SEBELUM DIARAHKAN

JANGAN BUKA KERTAS SOALAN SEBELUM DIARAHKAN J17(ELEKTRONIK)KT2(K) PP KJ KK JUM - 2-2 No. Kad Pengenalan: PEPERIKSAAN PERKHIDMATAN JURUTEKNIK J17 KERTAS II (ELEKTRONIK) Tarikh : 18 Disember 2013 (Rabu) Masa : 9.00 pagi 12.00 tgh (3 jam) Tempat :

Διαβάστε περισσότερα

SARJANA MUDA PENGAJARAN (PENDIDIKAN SEKOLAH RENDAH) MEI 2012 (SMP KHAS) HBML1203 FONETIK DAN FONOLOGI BAHASA MELAYU NAMA : NORSITA BT LAKIBUL

SARJANA MUDA PENGAJARAN (PENDIDIKAN SEKOLAH RENDAH) MEI 2012 (SMP KHAS) HBML1203 FONETIK DAN FONOLOGI BAHASA MELAYU NAMA : NORSITA BT LAKIBUL SARJANA MUDA PENGAJARAN (PENDIDIKAN SEKOLAH RENDAH) MEI 2012 (SMP KHAS) HBML1203 FONETIK DAN FONOLOGI BAHASA MELAYU NAMA : NORSITA BT LAKIBUL MATRICULATION NO : 700927125552001 IDENTITY CARD NO. : 700927-12-5552

Διαβάστε περισσότερα

BAB 2 KEAPUNGAN DAN HIDROSTATIK

BAB 2 KEAPUNGAN DAN HIDROSTATIK BAB 2 KEAPUNGAN DAN HIDROSTATIK 2.1 Hukum Keapungan Archimedes Sebuah badan yang terendam di air ditindak oleh beberapa daya. Pertama ialah berat atau jisim badan itu sendiri yang dianggap bertindak ke

Διαβάστε περισσότερα

LITAR ELEKTRIK 1 EET101/4. Pn. Samila Mat Zali

LITAR ELEKTRIK 1 EET101/4. Pn. Samila Mat Zali LITAR ELEKTRIK 1 EET101/4 Pn. Samila Mat Zali STRUKTUR KURSUS Peperiksaan Akhir : 50% Ujian teori : 10% Mini projek : 10% Amali/praktikal : 30% 100% OBJEKTIF KURSUS Mempelajari komponen-komponen utama

Διαβάστε περισσότερα

Daftar notasi. jarak s 2, mm 2. lebar dari muka tekan komponen struktur, mm.

Daftar notasi. jarak s 2, mm 2. lebar dari muka tekan komponen struktur, mm. LAMPIRAN 467 Daftar notasi E c = modulus elastisitas beton, MPa. Es = modulus elastisitas baja tulangan non-prategang, MPa. f c = kuat tekan beton yang disyaratkan pada umur 28 hari, MPa. h = tinggi total

Διαβάστε περισσότερα

Kalkulus 1. Sistem Bilangan Real. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia

Kalkulus 1. Sistem Bilangan Real. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia Kalkulus 1 Sistem Bilangan Real Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Sistem Bilangan Real Himpunan: sekumpulan obyek/unsur dengan kriteria/syarat tertentu. 1 Himpunan mahasiswa

Διαβάστε περισσότερα

PEPERIKSAAN PERCUBAAN SPM /1 PRINSIP ELEKTRIK DAN ELEKTRONIK Kertas 1 September 2 ½ jam Dua jam tiga puluh minit

PEPERIKSAAN PERCUBAAN SPM /1 PRINSIP ELEKTRIK DAN ELEKTRONIK Kertas 1 September 2 ½ jam Dua jam tiga puluh minit SULIT Nama :. 2 8201/1 Kelas :. NO. KAD PENGENALAN: ANGKA GILIRAN: SEKOLAH MENENGAH VOKASIONAL ZON TENGAH PEPERIKSAAN PERCUBAAN SPM 2011 8201/1 PRINSIP ELEKTRIK DAN ELEKTRONIK Kertas 1 September 2 ½ jam

Διαβάστε περισσότερα

SEMINAR KEBANGSAAN PENDIDIKAN SAINS DAN MATEMATIK OKT 2008

SEMINAR KEBANGSAAN PENDIDIKAN SAINS DAN MATEMATIK OKT 2008 TAHAP KEFAHAMAN KEMAHIRAN KOMUNIKASI DAN MENGEKSPERIMEN DALAM KALANGAN PELAJAR TAHUN DUA PENDIDIKAN FIZIK MERENTAS PROGRAM PENGAJIAN HANIZAH BINTI MISBAH Fakulti Pendidikan Universiti Teknologi Malaysia

Διαβάστε περισσότερα

SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM. MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JUMLAH

SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM. MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JUMLAH 72/1 NAMA :. TINGKATAN : MATEMATIK TAMBAHAN Kertas 1 September 201 2 Jam SMK SERI MUARA, 6100 BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JANGAN BUKA KERTAS

Διαβάστε περισσότερα

ELEKTRIK KEMAHIRAN TEKNIKAL : BAB 1

ELEKTRIK KEMAHIRAN TEKNIKAL : BAB 1 MAKTAB RENDAH Add SAINS your company MARA BENTONG slogan Bab 1 ELEKTRIK KEMAHIRAN TEKNIKAL : BAB 1 LOGO Kandungan 1 Jenis Litar Elektrik 2 Meter Pelbagai 3 Unit Kawalan Utama 4 Kuasa Elektrik 1 1.1 Jenis

Διαβάστε περισσότερα

BAB 4 HASIL KAJIAN. dengan maklumat latar belakang responden, impak modal sosial terhadap prestasi

BAB 4 HASIL KAJIAN. dengan maklumat latar belakang responden, impak modal sosial terhadap prestasi BAB 4 HASIL KAJIAN 4.1 Pengenalan Bahagian ini menghuraikan tentang keputusan analisis kajian yang berkaitan dengan maklumat latar belakang responden, impak modal sosial terhadap prestasi pendidikan pelajar

Διαβάστε περισσότερα

KOMPONEN ELEKTRIK (PASIF) KOMPONEN ELEKTRIK (PASIF)

KOMPONEN ELEKTRIK (PASIF) KOMPONEN ELEKTRIK (PASIF) E1001 / UNIT 2/ 1 UNIT 2 KOMPONEN ELEKTRIK (PASIF) OBJEKTIF Objektif am : Mempelajari dan memahami konsep asas bagi komponenkomponen elektrik (pasif) seperti perintang, pearuh dan pemuat. Objektif khusus

Διαβάστε περισσότερα

FUNGSI P = {1, 2, 3} Q = {2, 4, 6, 8, 10}

FUNGSI P = {1, 2, 3} Q = {2, 4, 6, 8, 10} FUNGSI KERTAS 1 P = {1,, 3} Q = {, 4, 6, 8, 10} 1. Berdasarkan maklumat di atas, hubungan P kepada Q ditakrifkan oleh set pasangan bertertib {(1, ), (1, 4), (, 6), (, 8)}. Nyatakan (a) imej bagi 1, (b)

Διαβάστε περισσότερα

BAB 1 PENGENALAN 1.1 PENDAHULUAN

BAB 1 PENGENALAN 1.1 PENDAHULUAN 1 BAB 1 PENGENALAN 1.1 PENDAHULUAN Penghantaran makanan segera adalah perkhidmatan di mana satu rangkaian restoran yang menyampaikan makanan segera kepada pelanggan. Sesuatu pesanan yang biasanya dibuat

Διαβάστε περισσότερα

SEKOLAH MENENGAH KEBANGSAAN MENUMBOK. PEPERIKSAAN AKHIR TAHUN 2015 MATEMATIK TINGKATAN 4 Kertas 2 Oktober Dua jam tiga puluh minit

SEKOLAH MENENGAH KEBANGSAAN MENUMBOK. PEPERIKSAAN AKHIR TAHUN 2015 MATEMATIK TINGKATAN 4 Kertas 2 Oktober Dua jam tiga puluh minit NAMA TINGKATAN SEKOLAH MENENGAH KEBANGSAAN MENUMBOK PEPERIKSAAN AKHIR TAHUN 015 MATEMATIK TINGKATAN 4 Kertas Oktober ½ jam Dua jam tiga puluh minit JANGAN BUKA KERTAS SOALAN INI SEHINGGA DIBERITAHU 1.

Διαβάστε περισσότερα

PENGEMBANGAN INSTRUMEN

PENGEMBANGAN INSTRUMEN PENGEMBANGAN INSTRUMEN OLEH : IRFAN (A1CI 08 007) PEND. MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS HALUOLEO KENDARI 2012 A. Definisi Konseptual Keterampilan sosial merupakan kemampuan

Διαβάστε περισσότερα

PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA /2 FIZIK Kertas 2 Ogos / Sept 2 ½ jam Dua jam tiga puluh minit

PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA /2 FIZIK Kertas 2 Ogos / Sept 2 ½ jam Dua jam tiga puluh minit 1 SULIT NAMA:. TING : ANGKA GILIRAN : MAJLIS PENGETUA-PENGETUA SEKOLAH MENENGAH MALAYSIA CAWANGAN KELANTAN PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2017 4531/2 FIZIK Kertas 2 Ogos / Sept 2 ½ jam

Διαβάστε περισσότερα

MODUL PENINGKATAN AKADEMIK SPM 2017 PERATURAN PEMARKAHAN KERTAS 2 (4531/2) BAHAGIAN A. 1(a) (i) P R P 1 (b)(i) Ralat rawak // ralat paralaks 1

MODUL PENINGKATAN AKADEMIK SPM 2017 PERATURAN PEMARKAHAN KERTAS 2 (4531/2) BAHAGIAN A. 1(a) (i) P R P 1 (b)(i) Ralat rawak // ralat paralaks 1 MODUL PENINGKATAN AKADEMIK SPM 207 PERATURAN PEMARKAHAN KERTAS 2 (453/2) BAHAGIAN A Nombor (a) (i) P R P (b)(i) Ralat rawak // ralat paralaks (ii) Ulang eksperimen, kira bacaan purata//kedudukan mata berserenjang

Διαβάστε περισσότερα

SULIT 1449/2 1449/2 NO. KAD PENGENALAN Matematik Kertas 2 September ANGKA GILIRAN LOGO DAN NAMA SEKOLAH PEPERIKSAAN PERCUBAAN SPM 2007

SULIT 1449/2 1449/2 NO. KAD PENGENALAN Matematik Kertas 2 September ANGKA GILIRAN LOGO DAN NAMA SEKOLAH PEPERIKSAAN PERCUBAAN SPM 2007 SULIT 1449/2 1449/2 NO. KAD PENGENALAN Matematik Kertas 2 September ANGKA GILIRAN 2007 2 2 1 jam LOGO DAN NAMA SEKOLAH PEPERIKSAAN PERCUBAAN SPM 2007 MATEMATIK Kertas 2 Dua jam tiga puluh minit JANGAN

Διαβάστε περισσότερα

SESI: MAC 2018 DSM 1021: SAINS 1 DCV 2 PENSYARAH: EN. MUHAMMAD AMIRUL BIN ABDULLAH

SESI: MAC 2018 DSM 1021: SAINS 1 DCV 2 PENSYARAH: EN. MUHAMMAD AMIRUL BIN ABDULLAH SESI: MAC 2018 DSM 1021: SAINS 1 DCV 2 PENSYARAH: EN. MUHAMMAD AMIRUL BIN ABDULLAH TOPIK 1.0: KUANTITI FIZIK DAN PENGUKURAN COURSE LEARNING OUTCOMES (CLO): Di akhir LA ini, pelajar akan boleh: CLO3: Menjalankan

Διαβάστε περισσότερα

DAFTAR NOTASI. adalah jarak antara dua pengaku vertikal, mm. adalah luas efektif penampang, mm2. adalah luas efektif pelat sayap, mm2

DAFTAR NOTASI. adalah jarak antara dua pengaku vertikal, mm. adalah luas efektif penampang, mm2. adalah luas efektif pelat sayap, mm2 DAFTAR NOTASI SNI 03-1729-2002 A a A e A f a r A s A w b b f b cf b s C b C r C v D d d b d c adalah luas penampang, mm2 adalah jarak antara dua pengaku vertikal, mm adalah luas efektif penampang, mm2

Διαβάστε περισσότερα

A. Distribusi Gabungan

A. Distribusi Gabungan HANDOUT PERKULIAHAN Mata Kuliah Pokok Bahasan : Statistika Matematika : Distibusi Dua peubah Acak URAIAN POKOK PERKULIAHAN A. Distribusi Gabungan Definisi 1: Peubah Acak Berdimensi Dua Jika S merupakan

Διαβάστε περισσότερα

EAS 353/3 Rekabentuk Struktur Konkrit Bertetulang

EAS 353/3 Rekabentuk Struktur Konkrit Bertetulang UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Pertama Sidang Akademik 2003/2004 September / Oktober 2003 EAS 353/3 Rekabentuk Struktur Konkrit Bertetulang Masa : 3 jam Arahan Kepada Calon: 1. Sila pastikan

Διαβάστε περισσότερα

Transformasi Koordinat 2 Dimensi

Transformasi Koordinat 2 Dimensi Transformasi Koordinat 2 Dimensi RG141227 - Sistem Koordinat dan Transformasi Semester Gasal 2016/2017 Ira M Anjasmara PhD Jurusan Teknik Geomatika Sistem Koordinat 2 Dimensi Digunakan untuk mempresentasikan

Διαβάστε περισσότερα

artinya vektor nilai rata-rata dari kelompok ternak pertama sama dengan kelompok ternak kedua artinya kedua vektor nilai-rata berbeda

artinya vektor nilai rata-rata dari kelompok ternak pertama sama dengan kelompok ternak kedua artinya kedua vektor nilai-rata berbeda LAMPIRAN 48 Lampiran 1. Perhitungan Manual Statistik T 2 -Hotelling pada Garut Jantan dan Ekor Tipis Jantan Hipotesis: H 0 : U 1 = U 2 H 1 : U 1 U 2 Rumus T 2 -Hotelling: artinya vektor nilai rata-rata

Διαβάστε περισσότερα

BAB 4 PERENCANAAN PELAT LANTAI DAN PELAT ATAP

BAB 4 PERENCANAAN PELAT LANTAI DAN PELAT ATAP BAB 4 PERENCANAAN PELAT LANTAI DAN PELAT ATAP 41 Perencanaan Pelat Lantai dan Pelat Atap 5 4 3 1 500 500 500 500 I I 300 A B E G B A G C C D D F F H F E D D C C C D F F F D C D D F F F D D D D F F F D

Διαβάστε περισσότερα

BAB 5 DAPATAN KAJIAN DAN PERBINCANGAN Pengenalan

BAB 5 DAPATAN KAJIAN DAN PERBINCANGAN Pengenalan BAB DAPATAN KAJIAN DAN PERBINCANGAN Pengenalan Kajian ini adalah untuk meneroka Metakognisi dan Regulasi Metakognisi murid berpencapaian tinggi, sederhana dan rendah dalam kalangan murid tingkatan empat

Διαβάστε περισσότερα

Perubahan dalam kuantiti diminta bagi barang itu bergerak disepanjang keluk permintaan itu.

Perubahan dalam kuantiti diminta bagi barang itu bergerak disepanjang keluk permintaan itu. BAB 3 : ISI RUMAH SEBAGAI PENGGUNA SPM2004/A/S3 (a) Rajah tersebut menunjukkan keluk permintaan yang mencerun ke bawah dari kiri ke kanan. Ia menunjukkan hubungan negatif antara harga dengan kuantiti diminta.

Διαβάστε περισσότερα

SIJIL PELAJARAN MALAYSIA PEPERIKSAAN PERCUBAAN SPM /1 FIZIK Kertas 1 Ogos / September 1 ¼ jam Satu jam lima belas minit

SIJIL PELAJARAN MALAYSIA PEPERIKSAAN PERCUBAAN SPM /1 FIZIK Kertas 1 Ogos / September 1 ¼ jam Satu jam lima belas minit 1 NM : TING : NGK GILIRN : MJLIS PENGETU-PENGETU SEKOLH MENENGH MLYSI WNGN KELNTN SIJIL PELJRN MLYSI PEPERIKSN PERUN SPM 2017 4531/1 FIZIK Kertas 1 Ogos / September 1 ¼ jam Satu jam lima belas minit JNGN

Διαβάστε περισσότερα

Jawab semua soalan. 2. Maklumat berikut adalah tentang tanggam dalam reka bentuk dan teknologi

Jawab semua soalan. 2. Maklumat berikut adalah tentang tanggam dalam reka bentuk dan teknologi Panitia Kemahiran Hidup KBSM Jerantut Bahagian A [ 60 markah] Jawab semua soalan 1. Tandakan ( ) bagi cara pemakaian yang betul ketika di bengkel dan (x) yang salah pada petak yang disediakan. Memastikan

Διαβάστε περισσότερα

SULIT 3472/2 SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 2. Dua jam tiga puluh minit

SULIT 3472/2 SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 2. Dua jam tiga puluh minit MATEMATIK TAMBAHAN Kertas 2 September 2013 2½ Jam SMK SERI MUARA, 36100 BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 2 Dua jam tiga puluh minit JANGAN BUKA KERTAS

Διαβάστε περισσότερα