Elektrokemijski članci
|
|
- Αγρίππας Αναγνωστάκης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Elektrokemijski članci
2 Elektrokemijski članci - sustavi u kojima dolazi do pretvorbe kemijske energije u električnu i obrnuto Vrste članaka Galvanski članci Spontana kemijska reakcija kao posljedica razlike potencijala elektroda Elektrolitički članci Kemijska reakcija omogućena vanjskim izvorom električne energije
3 Shematski prikaz Galvanskog članka φ L φ D Δφ 1 L Δφ D 2 ELEKTRODA 1 ELEKTROLIT ELEKTRODA 2 elektronski vodič 1 Δφ E 1 ionski vodič Δφ 2 E elektronski vodič 2 E = φ D φ L = Δφ D 2 + Δφ 2 E +Δφ E 1 +Δφ 1 L φ D φ L = (φ D φ 2 ) +(φ 2 φ E ) + (φ E φ 1 ) + (φ 1 φ L )
4 Razlike potencijala na granicama faza posljedica su (re)distribucije naboja Otapanje metala (prijelaz iona metala s elektrode u otopinu) Nakupljanje suviška suprotno nabijenih iona oko metala Polarizacija molekula otapala
5 Zadatak 10. Koliki je naboj sfere promjera 10 cm električnog potencijala 10 V. Pretpostavimo li da je navedeni elektrostatski potencijal posljedica suviška bakrovih iona, izračunajte masu suviška Cu 2+.
6 Nernstova jednadžba Definira elektrodni potencijal u ravnotežnim uvjetima Veza razlike potencijala između elektroda u elektrokemijskom članku pri I = 0 (elektromotorne sile) i sastava otopine Temelji fenomenološke termodinamike Primijenjiva isključivo za reverzibilne sustave Ox + ze Red φ = E RT zf ln a(red) a(ox) E = E D E L
7 Popularna limun-baterija primjer je kompleksnog, ireverzibilnog sustava za kojeg nije moguće definirati Nernstovu jednadžbu Razliku potencijala među elektrodama vrlo je problematično predvidjeti za takav elektrokemijski članak
8 Zadatak 11. Odredite elektromotornu silu članka pri 25ºC Ag(s) AgBr(s) KBr (aq, b= 0,05 b ) Cd NO (aq, b= 0,01 b ) Cd(s) º º 3 2 Eº(Cd +2 /Cd) = 0,40 V Eº(AgBr/Ag,Br ) = 0,0713 V
9 Osnovna podjela elektroda vrste elektroda: (a) elektroda prve vrste; (b) elektroda druge vrste; (c) elektroda treće vrste; (d) redoks elektroda
10 φ L φ D Δφ 1 L Δφ D 2 ELEKTRODA 1 METAL ELEKTRODA 2 elektronski vodič 1 Δφ E M ionski vodič Δφ 2 M elektronski vodič 2
11 Elektrokemijski potencijal du = TdS pdv + μ i dn i du = TdS pdv + μ i dn i + dq i φ du = TdS pdv + (μ i +φzf)dn i du = TdS pdv + (μ i +φzf)dn i i μ α el,i = μ i α + zfφ α Uvjet za međufaznu ravnotežu Uvjet za elektrokemijsku reakcijsku ravnotežu μ α el,i β = μ el,i ν i μ el,i = 0 i
12 φ L D μ el,e L = μ el,e φ D Δφ 1 L φ D φ L = 0 Δφ D 2 ELEKTRODA 1 METAL ELEKTRODA 2 elektronski vodič 1 Δφ E M ionski vodič Δφ 2 M elektronski vodič 2 φ L D μ el,e L μ el,e φ D Δφ 1 L φ D φ L 0 Δφ D 2 ELEKTRODA 1 ELEKTROLIT ELEKTRODA 2 elektronski vodič 1 Δφ E 1 ionski vodič Δφ 2 E elektronski vodič 2
13 Elektrokemijski potencijal u kontekstu Nernstove jednadžbe Zn + Cu e D Zn 2+ + Cu + 2e L ν i μ el,i = 0 i 0 = i ν i μ el,i = ν e μ el,e + ν i μ el,i e i e i e ν i μ el,i = e ν e μ el,e e ν i μ el,e = nμ el,e L nμ el,e D ν i μ el,e = nμ e L nμ e D + nf φ D φ L e ν i μ el,i = nf φ D φ L i e = nf φ D φ L
14 Reverzibilnost Daniellovog članka? Daniellov članak nije u termodinamičkoj ravnoteži u slučaju otvorenog strujnog kruga - difuzija iona iz elektrolita E = E Nernst + E J E J = φ CuSO4 φ ZnSO4
15 Pt H 2 HCl(m 1 ) HCl(m 2 ) H 2 Pt t + μ el.h + (2) + t μ el.cl (1) = t + μ el.h + (1) + t μ el.cl (2) t + (μ el.h + (2) μ el.h + 1 ) = t (μ el.cl 1 μ el.cl 2 ) E J = t + (RT ln a 1 a 2 + F φ 1 φ 2 + t (RT ln a 2 a 1 F φ 2 φ 1 E J = (t + t ) RT F ln a 1 a 2 = (2t + 1) RT F ln a 1 a 2
16 Ag AgCl M1Cl(m) M2Cl(m) AgCl Ag E = E J M1 M2 E J / mv Li + Na + -2,6 Li + Cs + -7,8 H + NH H + Li + 33,8 Korištenjem solnog mosta drastično se smanjuje E J zbog približno jednake mobilnosti K + i Cl iona u vodenim otopinama i visoke koncentracije KCl zbog čega migracija drugih iona postaje zanemariva
17 Definicija i određivanje standardnog redukcijskog (elektrodnog) potencijala Standardna elektromotivnost članka u kojem je lijeva elektroda vodikova elektroda. Određuje se ekstrapolacijom na nultu ionsku jakost
18 Zadatak 12. Odredite standardnu elektromotornu silu članka: pri 25ºC prema podacima u tablici: Pt(s) (g, a 1) HCl(aq, b) AgCl(s) Ag(s) b / bº 0, , , , , , , E / V 0,5207 0, , , , , ,44991
19 U slučaju reverzibilnih članaka te onih u kojima je E J sveden na minimum (<1 mv) na temelju potenciometrijskih mjerenja može se odrediti standardna reakcijska Gibbsova energija i konstanta ravnoteže reakcije Nije ograničeno na redoks reakcije
20 Zadatak 13. Pt H 2 1 bar NaOH m 1, NaCl(m 2 ) AgCl(s) Pt Za gore navedeni članak pri 25 C izraz: E E + RT F ln( m Cl m OH ) teži vrijednosti 0,8279 V pri nultoj ionskoj jakosti. Odredite standardnu konstantu ravnoteže disocijacije vode pri 25 C.
21 Određivanje drugih termodinamičkih funkcija reakcija pomoću potenciometrijskih mjerenja μ T = S i Δ r G T = Δ rs Δ r S = nf E T Δ r C p = nft 2 E T 2
22 Zadatak 14. Standardna elektromotorna sila članka: ovisi o temperaturi prema jednadžbi: Pt(s) (g, p ) HCl(aq) AgCl(s) Ag(s) E / V=0, , ( / C) 3, ( / C) 5, ( / C) Odredite Δ r Gº, Δ r Sº, i Δ r Hº pri 25ºC za reakciju tog članka.
23 Zadatak 15. Zadane su molarne provodnosti pri beskonačnom razrjeđenju za NaAc, AgAc i NaIO 3, koje iznose: L 0 (NaIO 3 ) = 76,94 S cm 2 mol -1 L 0 (NaAc) = 78,16 S cm 2 mol -1 L 0 (AgAc) = 88,80 S cm 2 mol -1 Kolika je molarna provodnost pri beskonačnom razrjeđenju srebrovog jodata? Zadatak 16. U konduktometrijskoj ćeliji (K cell = 0,0362 cm -1 ) napunjenoj vodenim otopinama KCl, NaNO 3, odnosno NaCl (c = 10-5 mol dm -3 ) izmjereni su otpori 27800, i Ω pri 18 ºC. Odredite molarnu provodnost pri beskonačnom razrjeđenju za otopinu kalijevog nitrata. Zadatak 17. Eksperimentom prema Hittorfu izmjeren je prijenosni broj H + iona u otopini HCl i iznosi t(h + ) = 0,82. Molarna provodnost HCl određena je konduktometrijski i iznosi L(HCl) = 426 S cm 2 mol -1. Koliki je prijenosni broj Cl iona te molarna provodnost H + i Cl iona.
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Heterogene ravnoteže taloženje i otapanje. u vodi u prisustvu zajedničkog iona u prisustvu kompleksirajućegreagensa pri različitim ph vrijednostima
Heterogene ravnoteže taloženje i otapanje u vodi u prisustvu zajedničkog iona u prisustvu kompleksirajućegreagensa pri različitim ph vrijednostima Ako je BA teško topljiva sol (npr. AgCl) dodatkom
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
IV RAČUNSKE VEŽBE RAVNOTEŽE U REDOKS SISTEMIMA
IV RAČUNSKE VEŽBE RAVNOTEŽE U REDOKS SISTEMIMA Redoks reakcije su reakcije razmene elektrona. U ovim reakcijama dolazi do promene oksidacionog broja supstanci koje učestvuju u procesu oksidacije i redukcije.
Kemijska ravnoteža. dr.sc. M. Cetina, doc. Tekstilno-tehnološki fakultet, Zavod za primijenjenu kemiju
Kemijska ravnoteža Svaka povratna ili reverzibilna reakcija može se općenito prikazati sljedećom jednadžbom: m A + n B o C + p D. v = k [A] m [B] n v = k [C] o [D] p U trenutku kada se brzine reakcije
KEMIJSKA RAVNOTEŽA II
Fakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu Seminar 08 EMIJSA RAVNOTEŽA II Ravnoteže u otopinama elektrolita 1 dr. sc. Biserka Tkalčec dr. sc. Lidija Furač EMIJSA RAVNOTEŽA II -
ΜΑΞΙΜΟΣ ΚΟΤΕΛΙΔΑΣ. β) Να βρεθεί σε ποια οµάδα και σε ποια περίοδο του Περιοδικού Πίνακα ανήκουν.
ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΜΑΤΑ: 03490 ΗΜΕΡΟΜΗΝΙΑ: 27/5/2014 ΟΙ ΚΑΘΗΓΗΤΕΣ: ΜΑΞΙΜΟΣ ΚΟΤΕΛΙΔΑΣ ΕΚΦΩΝΗΣΕΙΣ Θέμα 2ο Α) Για τα στοιχεία: 12 Μg και 8 Ο α) Να κατανεµηθούν τα ηλεκτρόνιά τους σε στιβάδες. (µονάδες 2) β)
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
PRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
A B C D. v v k k. k k
Brzina kemijske reakcije proporcionalna je aktivnim masama reagirajućih tvari!!! 1 A B C D v2 1 1 2 2 o C D m A B v m n o p v v k k m A B o C D p C a D n A a B A B C D 1 2 1 2 o m p n 1 2 n v v k k K a
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
Elektrodinamika ( ) ELEKTRODINAMIKA Q t l R = ρ R R R R = W = U I t P = U I
Elektrodinamika ELEKTRODINAMIKA Jakost električnog struje I definiramo kao količinu naboja Q koja u vremenu t prođe kroz presjek vodiča: Q I = t Gustoća struje J je omjer jakosti struje I i površine presjeka
C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ
»»...» -300-0 () -300-03 () -3300 3.. 008 4 54. 4. 5 :.. ;.. «....... :. : 008. 37.. :....... 008.. :. :.... 54. 4. 5 5 6 ... : : 3 V mnu V mn AU 3 m () ; N (); N A 6030 3 ; ( ); V 3. : () 0 () 0 3 ()
ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΜΒΟΛΟ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Α ΛΥΚΕΙΟΥ ΑΝΤΙ ΡΑΣΕΙΣ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Α ΛΥΚΕΙΟΥ ΑΝΤΙ ΡΑΣΕΙΣ Όλες οι αντιδράσεις που ζητούνται στη τράπεζα θεµάτων πραγµατοποιούνται. Στην πλειοψηφία των περιπτώσεων απαιτείται αιτιολόγηση της πραγµατοποίησης των αντιδράσεων.
Kemijska termodinamika
Kemijska termodinamika 1. Entalpija reakcije NH 3 (aq) + HCl(aq) NH 4 Cl(aq) odreñena je u reakcijskom kalorimetru. U kalorimetrijskoj posudi nalazilo se 20 cm 3 otopine NH 3 koncentracije 0,1 mol dm 3.
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Masa, Centar mase & Moment tromosti
FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:
Precipitacija i otapanje
Precipitacija i otapanje Uklanjanje karbonatne tvrdoće vode CaCO 3 (c) Ca 2+ + CO 3 2- Uklanjanje toksičnih iona teških metala Pb(OH) 2 (c) Pb 2+ + 2OH - Uklanjanje željeza i mangana Fe(OH) 3 (c)
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
-ELEKTROHEMIJA- OSNOVNI PRINCIPI REDOKS REAKCIJA
-ELEKTROHEMIJA- OSNOVNI PRINCIPI REDOKS REAKCIJA ŠTA SU TO REDOKS REAKCIJE? KAKVE SU REDOKS REAKCIJE? REDOKS PO ČEMU SE RAZLIKUJU U ODNOSU NA DRUGE REAKCIJE? Redoks je termin koji označava reakcije u kojima
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
11. ELEKTROKEMIJA C 40,5 kw h ,5 mol 0,133 cm
11. ELEKTROKEMIJA 11.1. Vidi STEHIOMETRIJA Najprije izračunajmo množinu bakra u 80 kg bakra.. m(cu) 80 000 g n(cu) = = = 1258,85 mol M(Cu) 63,55 g mol 1 Napišimo najprije jednadžbu reakcije. Cu 2+ (aq)
Vježba 4. STRUJNO-NAPONSKA KARAKTERISTIKA PEM GORIVNOG ČLANKA
Vježba 4. STRUJNO-NAPONSKA KARAKTERISTIKA PEM GORIVNOG ČLANKA Gorivni članci su uređaji za direktnu pretvorbu kemijske u električnu energiju. Za razliku od galvanskih članaka kod kojih je aktivni materijal
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Χημεία Α Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΒΑΣΙΛΗΣ ΛΟΓΟΘΕΤΗΣ
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Γενικής Παιδείας Χημεία Α Λυκείου Επιμέλεια: ΒΑΣΙΛΗΣ ΛΟΓΟΘΕΤΗΣ e-mail: info@iliaskos.gr www.iliaskos.gr 1 57 1.. 1 kg = 1000 g 1 g = 0,001 kg 1
SEKUNDARNE VEZE međumolekulske veze
PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj
Zadaak (Ines, hoelijerska škola) Ako je g, izračunaj + 5 + Rješenje Korisimo osnovnu rigonomerijsku relaciju: + Znači svaki broj n možemo zapisai n n n ( + ) + + + + 5 + 5 5 + + + + + 7 + Zadano je g Tangens
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
XHMEIA. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο. Να δώσετε τη σωστή απάντηση στις παρακάτω περιπτώσεις.
ΘΕΜΑ ο Α ΛΥΚΕΙΟΥ-ΧΗΜΕΙΑ ο ΔΙΑΓΩΝΙΣΜΑ Να δώσετε τη σωστή απάντηση στις παρακάτω περιπτώσεις.. Η πυκνότητα ενός υλικού είναι 0 g / cm. Η πυκνότητά του σε g/ml είναι: a. 0,00 b., c. 0,0 d. 0,000. Ποιο από
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A
Osnove elektrotehnike I popravni parcijalni ispit 1..014. VARIJANTA A Prezime i ime: Broj indeksa: Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. A C 1.1. Tri naelektrisanja
6 Primjena trigonometrije u planimetriji
6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije
4. ΤΑ ΑΛΑΤΑ. Επιμέλεια παρουσίασης Παναγιώτης Αθανασόπουλος Δρ - Χημικός
4. ΤΑ ΑΛΑΤΑ Επιμέλεια παρουσίασης Παναγιώτης Αθανασόπουλος Δρ - Χημικός Σκοπός του μαθήματος: Να κατανοήσουμε πως παράγονται εργαστηριακά τα άλατα χλωριούχο νάτριο και θειικό βάριο. Να γράφουμε τις ιοντικές
Κεφάλαιο 3 Χημικές Αντιδράσεις
Κεφάλαιο 3 Χημικές Αντιδράσεις Οι χημικές αντιδράσεις μπορούν να ταξινομηθούν σε δύο μεγάλες κατηγορίες, τις οξειδοαναγωγικές και τις μεταθετικές. Α. ΟΞΕΙΔΟΑΝΑΓΩΓΙΚΕΣ ΑΝΤΙΔΡΑΣΕΙΣ Στις αντιδράσεις αυτές
konst. Električni otpor
Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
Kiselo bazni indikatori
Kiselo bazni indikatori Slabe kiseline ili baze koje imaju različite boje nejonizovanog i jonizovanog oblika u rastvoru Primer: slaba kiselina HIn(aq) H + (aq) + In (aq) nejonizovani oblik jonizovani oblik
3 o Μάθημα : Αντιδράσεις απλής αντικατάστασης
3 o Μάθημα : Αντιδράσεις απλής αντικατάστασης 1. Στόχοι του μαθήματος Οι μαθητές να γνωρίσουν:i) πότε πραγματοποιείται μια αντίδραση απλής αντικατάστασης, με βάση τη σειρά δραστικότητας των μετάλλων και
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Ονοματεπώνυμο: Χημεία Α Λυκείου Αριθμός Οξείδωσης Ονοματολογία Απλή Αντικατάσταση. Αξιολόγηση :
Ονοματεπώνυμο: Μάθημα: Υλη: Επιμέλεια διαγωνίσματος: Αξιολόγηση : Χημεία Α Λυκείου Αριθμός Οξείδωσης Ονοματολογία Απλή Αντικατάσταση Τσικριτζή Αθανασία Θέμα Α 1. Να επιλέξετε τη σωστή απάντηση σε καθεμία
XHMEIA Α ΛΥΚΕΙΟΥ GI_A_CHIM_0_3499 ΜΑΡΑΓΚΟΥ ΝΙΚΗ
ΜΑΘΗΜΑ: ΘΕΜΑΤΑ: XHMEIA Α ΛΥΚΕΙΟΥ GI_A_CHIM_0_3499 ΗΜΕΡΟΜΗΝΙΑ: 26/05/2014 ΟΙ ΚΑΘΗΓΗΤΕΣ: ΜΑΡΑΓΚΟΥ ΝΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Θέµα 2ο 2.1 Α) Να υπολογιστεί ο αριθµός οξείδωσης του αζώτου στις παρακάτω χηµικές ενώσεις:
XHMEIA Α ΛΥΚΕΙΟΥ GI_A_CHIM_0_2530 ΗΛΙΟΠΟΥΛΟΥ ΜΑΡΙΑ
ΜΑΘΗΜΑ: ΘΕΜΑΤΑ: XHMEIA Α ΛΥΚΕΙΟΥ GI_A_CHIM_0_2530 ΗΜΕΡΟΜΗΝΙΑ: 26/05/2014 ΟΙ ΚΑΘΗΓΗΤΕΣ: ΗΛΙΟΠΟΥΛΟΥ ΜΑΡΙΑ ΕΚΦΩΝΗΣΕΙΣ 2.1 Δίνονται: υδρογόνο, 1H, άζωτο, 7N α) Να γράψετε την κατανοµή των ηλεκτρονίων σε στιβάδες
ELEKTROKEMIJA. Dr. sc. Mirjana Metikoš-Huković, red. prof. Interni udžbenik. Zagreb, Sveučilište u Zagrebu
Sveučilište u Zagrebu Fakultet kemijskog inženjerstva i tehnologije Zavod za elektrokemiju Dr. sc. Mirjana Metikoš-Huković, red. prof. ELEKTROKEMIJA Interni udžbenik Zagreb, 2000. S A D R Ž A J Predgovor
Gauss, Stokes, Maxwell. Vektorski identiteti ( ),
Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i
1. Arrhenius. Ion equilibrium. ก - (Acid- Base) 2. Bronsted-Lowry *** ก - (conjugate acid-base pairs) HCl (aq) H + (aq) + Cl - (aq)
Ion equilibrium ก ก 1. ก 2. ก - ก ก ก 3. ก ก 4. (ph) 5. 6. 7. ก 8. ก ก 9. ก 10. 1 2 สารล ลายอ เล กโทรไลต (Electrolyte solution) ก 1. strong electrolyte ก HCl HNO 3 HClO 4 NaOH KOH NH 4 Cl NaCl 2. weak
Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom
Kolegij: Obrada industrijskih otpadnih voda Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom Zadatak: Ispitati učinkovitost procesa koagulacije/flokulacije na obezbojavanje
ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΕΝΟΤΗΤΑ - 4 ΗΛΕΚΤΡΟΧΗΜΕΙΑ
ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΕΝΟΤΗΤΑ - 4 ΗΛΕΚΤΡΟΧΗΜΕΙΑ Σταύρος Κ. Φαράντος Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
KEMIJSKA RAVNOTEŽA II
Fakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu Seminar 09 EMIJSA RAVNOTEŽA II Ravnoteže u otopinama elektrolita 2 dr. s. Biserka Tkalče dr. s. Lidija Furač EMIJSA RAVNOTEŽA II ONJUGIRANE
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ 1 η : A) 9,8g H 3 PO 4 αντιδρούν με την κατάλληλη ποσότητα NaCl σύμφωνα με την χημική εξίσωση: H 3 PO 4 + 3NaCl Na 3 PO 4 + 3HCl. Να υπολογίσετε πόσα λίτρα αέριου HCl παράγονται,
Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici.
Za adani sustav prostornih sila i j k () oktant i j k () oktant koje djeluju na materijalnu toku odredite: a) reultantu silu? b) ravnotežnu silu? a) eultanta sila? i j k 8 Vektor reultante: () i 8 j k
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
γ) Βa(ΟΗ) 2 (aq) + ΗBr(aq)
Θέμα 2 ο 2.1. Να συμπληρώσετε τις χημικές εξισώσεις (προϊόντα και συντελεστές) των παρακάτω αντιδράσεων που γίνονται όλες. α) CaI 2 (aq) + AgNO 3 (aq) β) Cl 2 (g) + H 2 S(aq) γ) Βa(ΟΗ) 2 (aq) + ΗBr(aq)
13. ΔΙΑΛΥΤΟΤΗΤΑ ΚΑΙ ΙΣΟΡΡΟΠΙΕΣ ΣΥΜΠΛΟΚΩΝ
13. ΔΙΑΛΥΤΟΤΗΤΑ ΚΑΙ ΙΣΟΡΡΟΠΙΕΣ ΣΥΜΠΛΟΚΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Η σταθερά γινομένου διαλυτότητας Διαλυτότητα και επίδραση κοινού ιόντος Υπολογισμοί καθίζησης Επίδραση του ph στη διαλυτότητα Σχηματισμός συμπλόκων
5η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ (Ηλεκτροχημεία)
5η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ (Ηλεκτροχημεία) ΘΕΜΑ 1. Ένα γεωμετρικό στοιχείο διατομής S και μήκους L πληρούται κατ αρχήν με 0, 1 KCl στους 25 C. Η αντίστασή του (R 1 ) βρέθηκε ίση με 24, 36 Ω. Αν το KCl αντικατασταθεί
Elektrodinamika
Elektrodinamika.. Gibanje električnog naboja u električnom polju.2. Električna struja.3. Električni otpor.4. Magnetska sila.5. Magnetsko polje električne struje.6. Magnetski tok.7. Elektromagnetska indukcija
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ
ΤΑΞΗ: ΜΑΘΗΜΑ: A ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ Ημερομηνία: Σάββατο 20 Απριλίου 2019 Διάρκεια Εξέτασης: 2 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α1. Δίνεται στοιχείο Χ το οποίο έχει οκτώ ηλεκτρόνια στην εξωτερική του στιβάδα.
PREDNAPETI BETON Primjer nadvožnjaka preko autoceste
PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina
panagiotisathanasopoulos.gr
. Παναγιώτης Αθανασόπουλος Χηµικός ιδάκτωρ Παν. Πατρών. Οξειδοαναγωγή Παναγιώτης Αθανασόπουλος Χημικός, Διδάκτωρ Πανεπιστημίου Πατρών 95 Χηµικός ιδάκτωρ Παν. Πατρών 96 Χηµικός ιδάκτωρ Παν. Πατρών. Τι ονοµάζεται
, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova
Grupa A 29..206. agreb Prvi kolokvij Analognih sklopova i lektroničkih sklopova Kolokvij se vrednuje s ukupno 42 boda. rijednost pojedinog zadatka navedena je na kraju svakog zadatka.. a pojačalo na slici
6 Polinomi Funkcija p : R R zadana formulom
6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
SADRŽAJ PREDMETA PREDAVANJA ~ PRINCIPI HEMIJSKE RAVNOTEŽE ~ KISELINE, BAZE I SOLI RAVNOTEŽA U VODENIM RASTVORIMA ~ RAVNOTEŽA U HETEROGENIM SISTEMIMA
SADRŽAJ PREDMETA PREDAVANJA ~ PRINCIPI HEMIJSKE RAVNOTEŽE ~ KISELINE, BAZE I SOLI RAVNOTEŽA U VODENIM RASTVORIMA ~ RAVNOTEŽA U HETEROGENIM SISTEMIMA SLABO RASTVORLJIVA JEDINJENJA PROIZVOD RASTVORLJIVOSTI
ΑΠΑΝΤΗΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ
ΑΘΗΑ - ΕΞΕΤΑΖΟΕΝΗ ΥΛΗ ΧΗΕΙΑ Γ ΛΥΚΕΙΟΥ ΚΑΘΗΓΗΤΗΣ ΤΗΑ ΠΑΡΑΡΤΗΑ ΔΙΑΡΚΕΙΑ 3 ΩΡΕΣ ΘΕΑ Α ΑΠΑΝΤΗΣΕΙΣ ΤΩΝ ΘΕΑΤΩΝ Α1. 3, Α2. 3, Α3. 2, Α4. 3 Α5. 1. Λάθος, 2. Λάθος, 3. Σωστό, 4. Λάθος, 5. Σωστό. ΘΕΑ Β Β1. Ι) 1.
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ
ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ Ηµεροµηνία: Τετάρτη 23 Απριλίου 2014 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιο σας τον αριθµό κάθε µίας από τις ερωτήσεις A1 έως A4 και δίπλα
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
Prikaz sustava u prostoru stanja
Prikaz sustava u prostoru stanja Prikaz sustava u prostoru stanja je jedan od načina prikaza matematičkog modela sustava (uz diferencijalnu jednadžbu, prijenosnu funkciju itd). Promatramo linearne sustave
7. ΔΙΑΛΥΤΟΤΗΤΑ ΚΑΙ ΙΣΟΡΡΟΠΙΕΣ ΣΥΜΠΛΟΚΩΝ ΙΟΝΤΩΝ
7. ΔΙΑΛΥΤΟΤΗΤΑ ΚΑΙ ΙΣΟΡΡΟΠΙΕΣ ΣΥΜΠΛΟΚΩΝ ΙΟΝΤΩΝ Σχηματισμός ιζήματος χρωμικού μολύβδου(ιι) ΠΕΡΙΕΧΟΜΕΝΑ Η σταθερά γινομένου διαλυτότητας Διαλυτότητα και επίδραση κοινού ιόντος Υπολογισμοί καθίζησης Επίδραση
HEMIJSKE RAVNOTEŽE. a = f = f c.
II RAČUNSKE VEŽBE HEMIJSKE RAVNOTEŽE TEORIJSKI DEO I POJAM AKTIVNOSTI JONA Razblaženi rastvori (do 0,1 mol/dm ) u kojima je interakcija između čestica rastvorene supstance zanemarljiva ponašaju se kao
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
Postupak rješavanja bilanci energije
Postupak rješavanja bilanci energije 1. Postaviti procesnu shemu 2. Riješiti bilancu tvari 3. Napisati potreban oblik jednadžbe za bilancu energije (zatvoreni otvoreni sustav) 4. Odabrati referentno stanje
ZBIRKA ZADATAKA IZ FIZIKALNE KEMIJE
Sveučilište u Zagrebu Fakultet kemijskog inženjerstva i tehnologije Zavod za fizikalnu kemiju ZBIRKA ZADATAKA IZ FIZIKALNE KEMIJE (interna zbirka odabranih poglavlja iz Fizikalne kemije za studente Fakulteta
površina metala se naelektriše negativno u odnosu na rastvor. Metal je jače redukciono sredstvo a njegovi joni slabije oksidaciono sredstvo.
ELEKTROHEMIJA II GRANIČNA OBLAST DODIRA ELEKTRODA-ELEKTROLIT Uranjanjem metala u vodeni rastvor njegovih jona nastaje REDOKS SISTEM: M s = M z+ aq + ze Pri rastvaranju, joni sa površine metala prelaze
ΙΑΦΑ Φ ΝΕΙ Ε ΕΣ Ε ΧΗΜΕ Μ Ι Ε ΑΣ ΓΥΜΝ Μ ΑΣΙΟΥ H
Hταξινόµηση των στοιχείων τάξη Γ γυµνασίου Αναγκαιότητα ταξινόµησης των στοιχείων Μέχρι το 1700 µ.χ. ο άνθρωπος είχε ανακαλύψει µόνο 15 στοιχείακαι το 1860 µ.χ. περίπου 60στοιχεία. Σηµαντικοί Χηµικοί της
2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)
2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:
REAKCIJE OKSIDO-REDUKCIJE (REDOKS REAKCIJE)
REAKCIJE OKSIDO-REDUKCIJE (REDOKS REAKCIJE) OKSIDACIJA - REAKCIJE SA KISEONIKOM i NASTANAK OKSIDA... Najpoznatije takve reakcije jesu reakcije SAGOREVANJA! 2 Ca(s) + O 2 (g) 2 CaO(s) 2 H 2 (g) + O 2 (g)
Κανόνες διαλυτότητας για ιοντικές ενώσεις
Κανόνες διαλυτότητας για ιοντικές ενώσεις 1. Ενώσεις των στοιχείων της Ομάδας 1A και του ιόντος αμμωνίου (Ιόντα: Li +, Na +, K +, Rb +, Cs +, NH 4+ ) είναι ευδιάλυτες, χωρίς εξαίρεση: πχ. NaCl, K 2 S,
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
ZBIRKA ZADATAKA IZ ANALITIČKE KEMIJE
EMIJSO-TEHNOLOŠI FAULTET U SPLITU Silvestar rka - Eni Generalić ZBIRA ZADATAA IZ ANALITIČE EMIJE Split,. listopada 0. SADRŽAJ UVOD...3 Sastav otopine...3 RAVNOTEŽA...0 Ravnoteža vode... Aktivitet, ionska
Pripremila i uredila: Doc. dr. sc. Blaženka Foretić OSNOVE KEMIJSKOG RAČUNANJA
Pripremila i uredila: Doc. dr. sc. Blaženka Foretić OSNOVE KEMIJSKOG RAČUNANJA Relativna skala masa elemenata: atomska jedinica mase 1/12 mase atoma ugljika C-12. Unificirana jedinica atomske mase (u)
FAKULTET PROMETNIH ZNANOSTI
SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA
Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor
Θέματα Ανόργανης Χημείας Γεωπονικής ΓΟΜΗ ΑΣΟΜΩΝ
Θέματα Ανόργανης Χημείας Γεωπονικής 1 ΓΟΜΗ ΑΣΟΜΩΝ 1. α) Γχζηε ηζξ ααζζηέξ ανπέξ μζημδυιδζδξ ημο δθεηηνμκζημφ πενζαθήιαημξ ηςκ αηυιςκ Mg (Z=12), K (Z=19), ηαζ Ag (Ε=47). Δλδβήζηε ιε ηδ εεςνία ηςκ ιμνζαηχκ