6 Primjena trigonometrije u planimetriji
|
|
- Σεβαστιανός Αλεβιζόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z Slika 3. Graf funkcije sinus - sinusoida Funkcija kosinus (f(x) = cos x; f : R [ 1, 1]); cos( x) = cosx; cosx = cos(x + kπ), k Z Slika 4. Graf funkcije kosinus - kosinusoida Funkcija tangens (f(x) = tgx; f : R \ {kπ/, k Z} R); tg( x) = tgx; tgx = tg(x + kπ), k Z.
2 Slika 5. Graf funkcije tangens - tangensoida Funkcija kotangens (f(x) = ctgx; f : R \ {kπ, k Z} R); ctg( x) = ctgx; ctgx = ctg(x + kπ), k Z Osnovne veze: Slika 6. Graf funkcije kotangens - kotangensoida cos α + sin α = 1 tgα ctgα = tg α = 1 cos α 1 + ctg α = 1 sin α
3 Adicione formule: sin(α ± β) = sin α cosβ ± cosαsin β cos(α ± β) = cos α cosβ sin α sin β tgα ± tgβ tg(α ± β) = 1 tgα tgβ ctgα ctgβ 1 ctg(α ± β) = ctgβ ± ctgα Formule dvostrukog kuta: sin α = sinα cosα cos α = cos α sin α tg α = tgα 1 tg α ctg α = ctg α 1 ctgα Zadatak 1. Dokažite sljedeće formule: Zadatak. Zapišite izraz Zadatak 3. Dokažite: cos α = 1 + cosα, sin α = 1 cosα. 1 + ctg x u obliku umnoška. sin x sin x sin x sin 4x + sin 5x cosx cos x cos 4x + cos 5x 6. Trigonometrija pravokutnog trokuta = tg 3x. C b a A α c β B Trigonometrijske funkcije šiljastih kutova pravokutnog trokuta:
4 nasuprotna kateta sin α = = a hipotenuza c, cos α = tgα = ctgα = Očigledno vrijede sljedeće jednakosti: priležeća kateta hipotenuza = b c, nasuprotna kateta priležeća kateta = a b, priležeća kateta nasuprotna kateta = b a. tgα = sin α cosα, cosα ctgα = sin α, ctgα = 1 tgα. Zadatak 4. Izračunajte duljine stranica i kutove pravokutnog trokuta ako je zadano: 1. P = 60cm, α = a + b = 3cm, c = 17cm 3. a = 4cm, v = 6.7cm 4. a : b = 3 : 4, v = 19.cm 5. O = 10cm, α = a : c = 3 : 5, ortogonalna projekcija katete a na hipotenuzu 36cm Zadatak 5. Visina pravokutnog trokuta dijeli trokut na dva dijela kojima se površine odnose kao 1 : 4. Koliki su kutovi tog trokuta? Zadatak 6. Kut nasuprot osnovice jednakokračnog trokuta jednak je α, a visina spuštena na krak ima duljinu v. Koliki su polumjeri R i r, tom trokutu opisane i upisane kružnice? Zadatak 7. Dva sukladna pravokutna trokuta ABC i ABC 1 imaju tajedničku hipotenuzu AB, a katete AC i BC 1 sijeku se u točki D. Kolika je površina ABD ako je AC = 10cm i β = ABC = 64 30? Zadatak 8. Simetrala pravog kuta pravokutnog trokuta dijeli hipotenuzu na dijelove čijr su duljine u omjeru : 3. Koliki su kutovi tog trokuta?
5 Zadatak 9. Točka D nožište je visine spuštene iz vrha A jednakokračnog ABC na krak AC. Ako je AC + CD = ( AB + BD ), koliki su kutovi tog trokuta? Zadatak 10. Izračunajte površinu pravokutnika kojemu je dijagonala d, a šiljasti kut medu dijagonalama je ϕ. 6.3 Trigonometrija kosokutnog trokuta γ C b a A α c β B Kosinusov poučak: a = b + c bc cosα, b = a + c ac cosβ, c = a + b ab cosγ. Sinusov poučak: a sin α = b sin β = c sin γ = R, R - polumjer trokutu opisane kružnice. Tangensov poučak: P(ABC) = 1 ab sin γ = 1 ac sin β = 1 abc bc sin α = 4R. α + β a + b tg a b = tg α β, Zadatak 11. Dokažite tangensov poučak. β + γ b + c tg b c = tg β γ, γ + α c + a tg c a = tg γ α.
6 Zadatak 1. Dokažite da je duljina t a težišnice povučene iz vrha A trokuta dana sa t a = 1 (b + c ) a. Pomoću ovog rezultata dokažite da je t a = 1 b + c + bc cos(α). Zadatak 13. Neka duljine stranica trokuta zadovoljavaju jednakost: Dokažite da je tada β = a + b + 1 b + c = 3 a + b + c. Zadatak 14. Ako za površinu trokuta vrijedi jednakost P = 1 4 (b +c a ), dokažite da je α = 45. Zadatak 15. Dokažite da vrijedi: (b + c a )tgα + (a + c b )tgβ + (a + b c )tgγ = 1P. Zadatak 16. Oko trokuta kojemu su duljine stranica a = 15cm, b = 0cm, c = 7cm opisana je kružnica. Izračunajte površinu onog odsječka kružnice kojem je stranica a tetiva. Zadatak 17. Opseg trokuta iznosi 0cm, a dva su mu kuta α = 41.6 i β = Izračunajte duljine stranica tog trokuta. Zadatak 18. Izračunajte kutove trokuta ako je α : β = 1 : i a : b = 1 : 3. Zadatak 19. Duljine osnovica trapeza su a = 8cm i c = 4cm, a kutovi uz veću osnovicu su α = 80 i β = 44. Koliki su krakovi tog trapeza? Zadatak 0. Zadanom točkom A kružnice polumjera r povučen je promjer AB. Točkom A povučene su tetive AC i AD takve da su one s različite strane pravca AB i s njime zatvaraju kutove α i β. Odredite duljinu tetive CD. Zadatak 1. Duljine stranica trokuta ABC su tri uzastopna broja, a najmanji kut trokuta je upola manji od njegovog najvećeg kuta. Odredite stranice i kutove trokuta ABC.
7 Zadatak. Jednakokračnom trapezu zadane su osnovice a, c i krak b. Odredite polumjer trapezu opisane kružnice. Zadatak 3. U trokutu ABC O je ortocentar. Odredite duljinu dužine AO ako je AB = 13cm, BC = 14cm, AC = 15cm. Zadatak 4. Ako je u tetivnom četverokutu ABCD BC = CD, dokažite da se površina toga četverokuta može računati po formuli P = 1 sin α, gdje je α kut u vrhu A toga četverokuta.
Zdaci iz trigonometrije trokuta Izračunaj ostale elemente trokuta pomoću zadanih:
Zdaci iz trigonometrije trokuta... 1. Izračunaj ostale elemente trokuta pomoću zadanih: a) a = 1 cm, α = 66, β = 5 ; b) a = 7.3 cm, β =86, γ = 51 ; c) b = 13. cm, α =1 48`, β =13 4`; d) b = 44.5 cm, α
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
4 Sukladnost i sličnost trokuta
4 Sukladnost i sličnost trokuta 4.1 Sukladnost trokuta Neka su ABC i A B C trokuti sa stranicama duljina a b c odnosno a b c. Kažemo da su ti trokuti sukladni ako postoji bijekcija f : {A B C} {A B C }
2n 2, 2n, 2n + 2. a = 2n 2, b = 2n, c = 2n + 2. a b c. a P =
Zadatak (Tomislav gimnazija) Nađite sve pravokutne trokute čije su stranice tri uzastopna parna roja Rješenje inačica pća formula za parne rojeve je n n N udući da se parni rojevi povećavaju za možemo
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u 1.zadatku.
. Na brojevnoj kružnici označi točke: A (05π), A 2 ( 007π 2 ), A 3 ( 553π 3 ) i A 4 ( 40 o ). 2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u.zadatku. 3.
MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.
Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.
RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.
Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA
POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica
Prof. Mira Mihajlović Petković 1
Prof. Mira Mihajlović Petković 1 TRIGONOMETRIJSKE FUNKCIJE ŠILJASTOG KUTA sin nasuprotna kateta a hipotenuza c cos priležeća kateta b hipotenuza c tg nasuprotna kateta a priležeća kateta b ctg Definicijski
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
Pošto se trebaju napisati sve nastavne cjeline i gradivo sva četiri razreda (opće i jezično) potrajati će duži vremenski period.
Zadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine. Tako da će u slijedećem vremenskom periodu nastati mala zbirka koja će biti popraćena s teorijom. Pošto
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Planimetrija. Sličnost trouglova. GF 000 Dužine stranica trougla su 5cm, cm i 8cm. Dužina najduže stranice njemu sličnog
1.1.** Dokaži da tvrdnja vrijedi ako su točke E i D na produžecima dužina AC i BC kroz C.
Geometrija 1. dio. 1.1. U trokutu ABC na dužinama AC i BC odabrane su točke E i D. Simetrale kutova CAD i CBE sijeku se u točki F. Dokaži da vrijedi: AEB + ADB = 2 AF B. 1.1.* Dokaži da tvrdnja 1.1. vrijedi
Rijeseni neki zadaci iz poglavlja 4.5
Rijeseni neki zdci iz poglvlj 4.5 Prije rijesvnj zdtk prisjetimo se itnih stvri koje ce ns prtiti tijekom njihovog promtrnj. Definicij: (Trigonometrij prvokutnog trokut) ktet nsuprot kut ϕ sin ϕ hipotenuz
4.1 Elementarne funkcije
. Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom
PRIMJERI ZADATAKA ZA TEST IZ MATEMATIKE
PRIMJERI ZADATAKA ZA TEST IZ MATEMATIKE . 0.: 0.0 0. 0.0 je: 5000 0.0 5 0.00. Izračunajte 0.% od : 0. 4 0. 0.0 0.00 0.. Skratite razlomak a a a 4a + 4 + a a a a a a 0.77 4. Rješenje jednadžbe =. 5 je -
2s v A. 0 B. 1 C. 2 D. 4 E. A. 4 B. 3 C. 2 D. 1 E. 0
17 1989 1 1.1. Ako je v = gt + v 0 i s = g 2 t2 + v 0 t, onda je t jednak A. 2s B. v + v 0 2s C. v v 0 s D. v v 0 2s v E. 2s v 1.2. Broj rješenja jednadžbe x + 1 x = 10 u skupu realnih brojeva x R, iznosi
1.1.** Dokaži da tvrdnja vrijedi ako su točke E i D na produžecima dužina AC i BC kroz C.
1.1. U trokutu ABC na dužinama AC i BC odabrane su točke E i D. Simetrale kutova CAD i CBE sijeku se u točki F. Dokaži da vrijedi: AEB + ADB = 2 AF B. 1.1.* Dokaži da tvrdnja 1.1. vrijedi ako je E=C. 1.1.**
OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK
OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika
Repetitorij matematike zadaci za maturu 2008.
Repetitorij matematike zadaci za maturu 008 Izračunaj : 7 : 5 + : = 5 5 8 Izračunaj : a ( 05 y ) = y b 8 n 7 9 n+ n n Rastavi na faktore : 5 a + a 8a 6= Skrati razlomke : a ( ) + + a b a b a + a b+ ab
Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu
Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate
Udaljenosti karakterističnih točaka trokuta
Udaljenosti karakterističnih točaka trokuta Kristijan Kilassa Kvaternik 1 U trokutu postoje četiri karakteristične točke: težište G, ortocentar H, središte upisane kružnice I i središte opisane kružnice
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
f(x) = a x, 0<a<1 (funkcija strogo pada)
Eksponencijalna funkcija (baze a) f() a, a > 0, a domena D(f) R; slika funkcije f(d) (0,+ ); nema nultočaka, jer je a > 0, za sve R; graf G(f) je krivulja u ravnini prikazana na slici desno; f() a, 0
Udaljenosti karakterističnih točaka trokuta
Udaljenosti karakterističnih točaka trokuta Kristijan Kilassa Kvaternik U trokutu postoje četiri karakteristične točke: težište G, ortocentar H, središte upisane kružnice I i središte opisane kružnice
2. KOLOKVIJ IZ MATEMATIKE 1
2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
Temeljni pojmovi trigonometrije i vektorskog računa
1 Temeljni pojmovi trigonometrije i vektorskog računa 1. Trigonometrijske funkcije Trigonometrijske funkcije su omjeri stranica u pravokutnom trokutu. Mjerenjem je utvrdeno - da medusobni - omjeri stranica
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Zadaci iz trigonometrije za seminar
Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;
DODATAK UDŽBENIKU ZA 7. RAZRED DEVETOGODIŠNJE ŠKOLE SUSTAVA KATOLIČKIH ŠKOLA ZA EUROPU
DODATAK UDŽBENIKU ZA 7. RAZRED DEVETOGODIŠNJE ŠKOLE SUSTAVA KATOLIČKIH ŠKOLA ZA EUROPU Izrada: Dalila Ljevo Lektorisala: Ivana Mostarac Tehnička obrada: Edin Tabak Sadržaj CIJELI BROJEVI...4 Svojstva zbrajanja
5. PARCIJALNE DERIVACIJE
5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
1. Trigonometrijske funkcije
. Trigonometrijske funkcije . Trigonometrijske funkcije.. Ponovimo Brojevna kružnica Kružnicu k polumjera smjestimo u koordinatnu ravninu tako da joj je središte u ishodištu. Na kružnicu k prislonimo brojevni
ISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule)
FORMULE Implicitni oblik jednadžbe pravca A, B i C koeficijenti (barem jedan A ili B različiti od nule) Eksplicitni oblik jednadžbe pravca ili Pravci paralelni s koordinatnim osima - Kada je u općoj jednadžbi
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
11. GEOMETRIJA. Zadaci:
11. GEOMETRIJA elementarna geometrija likova u ravnini drediti mjeru kuta razlikovati vrste trokuta rabiti poučke o sukladnosti trokuta rabiti Pitagorin poučak i njegov obrat rabiti osnovna svojstva paralelograma
Trigonometrija 1. Trigonometrijska kružnica. Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Trigonometrija Trigonometrijska kružnica Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije Projektna nastava Osnovne trigonometrijske relacije:. +. tgx. ctgx tgx.
OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA
OSNOVE TRIGONOMETRIJE PRVOKUTNOG TROKUT - DEFINIIJ TRIGONOMETRIJSKIH FUNKIJ - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKIJ KUTOV OD - PRIMJEN N PRVOKUTNI TROKUT - PRIMJEN U PLNIMETRIJI 4.1. DEFINIIJ TRIGONOMETRIJSKIH
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
13. SFERNA TRIGONOMETRIJA
Geodetski fakultet, dr sc J Beban-Brkić Predavanja iz Matematike 1 13 SFERNA TRIGONOMETRIJA UVOD Trigonometrija je dio geometrije unutar koje se proučavaju odnosi između stranica i kutova u ravninskom
Op cinsko natjecanje Osnovna ˇskola 4. razred
9 1. Općinsko natjecanje Općinsko (gradsko) natjecanje je prvi stupanj natjecanja koji se organizira po jedinstvenim kriterijima Državnog povjerenstva za matematička natjecanja. Godine 1996. ono je održano
Elementarni zadaci iz Euklidske geometrije II
Elementarni zadaci iz Euklidske geometrije II Sličnost trouglova 1. Neka su dati krugovi k 1 (O 1, r 1 ), k 2 (O 2, r 2 ) i k 3 (O 3, r 3 ) takvi da k 1 dodiruje krug k 2 u tački P, k 2 dodiruje krug k
POPIS ZADATAKA: 1.Odredi modul IZI iz kompleksnog broja Z=4+3i 2.Riješi zadatak:izi= *
POPIS ZADATAKA:.Odredi modul IZI iz kompleksnog broja Z=+i i i.riješi zadatak:izi= * i i.izračunaj:(8+6i)(8-6i)=.odredi realne brojeve i y za koje vrijedi:(-i)+(+i)y=i.riješi kvadratnu jednadžbu :9²-=0
Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika
Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Rešenja. Matematičkom indukcijom dokazati da za svaki prirodan broj n važi jednakost: + 5 + + (n )(n + ) = n n +.
4. Trigonometrija pravokutnog trokuta
4. Trigonometrij prvokutnog trokut po školskoj ziri od Dkić-Elezović 4. Trigonometrij prvokutnog trokut Formule koje koristimo u rješvnju zdtk: sin os tg tg ktet nsuprot kut hipotenuz ktet uz kut hipotenuz
Geometrijski trikovi i metode bez imena
Geometrijski trikovi i metode bez imena Matija Bašić lipanj 2016. U ovom tekstu želimo na jednom mjestu navesti vrlo klasične ideje u rješavanju planimetrijskih zadataka. Primjeri variraju od jednostavnih
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Proljetno kolo 2017./2018.
MAT liga 0./0.. kolo.0.0. Proljetno kolo 0./0. ŠKOLA EKIPA KATEGORIJA POVJERENIK NATJECANJA A R. IME I PREZIME UČENIKA RAZRED IME I PREZIME MENTORA.... ODGOVORI:. razred. razred. razred. razred.........................................6..6..6..6..................9..9..9..9..0..0..0..0.................
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE
OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 9. siječnja 009. 1. Riješi nejednadžbu x + x Rješenje. 1 u skupu prirodnih brojeva. x + x 1 x + x + 0 x x < 0 x
ALFA List - 1. Festival matematike "Split 2013." Otvoreno ekipno natjecanje učenika osnovnih i srednjih škola Split, 10. svibnja 2013.
ALFA List - 1 Točan odgovor: 10 bodova Pogrešan odgovor: 5 bodova Bez odgovora: 0 bodova 1. Ako je (x+ 3): 4=( x ):3, onda je x jednako: A) 1 B) 1 C) 17 D) 17 E) 6. Kut od 1º30' gleda se kroz povećalo
0 = 5x 20 => 5x = 20 / : 5 => x = 4.
Zadatak 00 (Denis, ekonomska škola) U kojoj točki pravac s jednadžbom = 8 siječe os? Rješenje 00 Svaka točka koja pripada osi ima koordinate T(0, ). Budući da točka pripada i pravcu = 8, uvrstit ćemo njezine
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
4 Elementarne funkcije
4 Elementarne funkcije 4. Polinom Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom
Temeljni pojmovi o trokutu
1. Temeljni pojmovi o trokutu U ovom poglavlju upoznat ćemo osnovne elemente trokuta i odnose medu - njima. Zatim ćemo definirati težišnice, visine, srednjice, simetrale stranica i simetrale kutova trokuta.
2.7 Primjene odredenih integrala
. INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu
ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 15. ožujka 2010.
ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 15. ožujka 010. UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA, POVJEREN- STVO JE DUŽNO I TAJ POSTUPAK BODOVATI I OCIJENITI
Pitanja za usmeni dio ispita iz matematike
PITANJA ZA MATURALNI ISPIT Pitanja za usmeni dio ispita iz matematike. Dokazati da je zbroj unutarnjih kutova u trokutu 80 0,a spoljnjih 60 0.. Dokazati da je spoljnji kut trokuta jednak zbroju dva nesusjedna
3.1 Elementarne funkcije
3. Elementarne funkcije 3.. Polinom Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Ako dva trougla imaju dvije stranice proporcionalne i podudaran ugao izme du njih tada su ta dva trougla slična.
Sličnost trouglova i Talesova teorema Definicija sličnosti trouglova Dva trougla ABC i A B C su slična ako su im sva tri ugla redom podudarna i ako su im a odgovarajuće stranice proporcionalne tj. = b
L. Kralj, Z. Ćurković, D. Glasnović Gracin, S. Banić, M. Stepić. Petica+ 5. udžbenik i zbirka zadataka za 5. razred osnovne škole DRUGI SVEZAK
L. Kralj, Z. Ćurković, D. Glasnović Gracin, S. Banić, M. Stepić Petica+ 5 udžbenik i zbirka zadataka za 5. razred osnovne škole DRUGI SVEZAK 1. izdanje Zagreb, 010. Autorice: Dubravka Glasnović Gracin,
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos
. KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..
Sveučilište u Zagrebu. Prirodoslovno-matematički fakultet Matematički odsjek. Tonio Škaro. Diplomski rad
Sveučilište u Zagrebu Prirodoslovno-matematički fakultet Matematički odsjek Tonio Škaro Težišnice trokuta i težište Diplomski rad Zagreb, rujan, 015 Sveučilište u Zagrebu Prirodoslovno-matematički fakultet
Još neki dokazi leptirovog teorema
POUČAK 50 Još neki dokazi leptirovog teorema Šefket Arslanagić, Alija Muminagić U [] su dana četiri razna dokaza Leptirovog teorema (Butterfly s theorems), od kojih su dva čisto planimetrijska, jedan je
mogućih vrijednosti rs3. Za m, n N, mn+1 m 2 +n 2 m2 + n 2 mn + 1 je kvadrat prirodnog broja.
r1. Neka je n fiksan prirodan broj. Neka je k bilo koji prirodan broj ne veći od n i neka je S skup nekih k različitih prostih brojeva. Ivica i Marica igraju naizmjenično sljedeću igru. Svako od njih bira
Analitička geometrija Zadaci. 13. siječnja 2014.
Analitička geometrija Zadaci 13. siječnja 2014. 2 Sadržaj 1 Poglavlje 5 1.1 Ponavljanje. Uvod............................ 5 1.2 Koordinatizacija............................. 6 1.3 Skalarni produkt.............................
( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( )
Zadatak (Mariela, gimazija) Nađite derivaciju fukcije f() a + b c + d Rješeje Neka su f(), g(), h() fukcije ezavise varijable, a f (), g (), h () derivacije tih fukcija po Osova pravila deriviraja Derivacija
Algebra Vektora. pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske
Algebra Vektora 1 Algebra vektora 1.1 Definicija vektora pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske veličine za opis skalarne veličine trebamo zadati samo njezin iznos (npr.
Proširenje na poučku o obodnom i središnjem kutu
Proširenje na poučku o obodnom i središnjem kutu Ratko Višak 1. Uvod Na osnovu poučka o obodnom i središnjem kutu izvedene su relacije kada točka nije na kružnici, nego je izvan ili unutar nje. Relacije
OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače razred-rješenja
OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače 00. 4. razred-rješenja. 00 + 00 + 00 3 + 00 4 + 00 = 00 ( + + 3 + 4 + ) = 00 = 300... UKUPNO 4 BODA. 96 8 : 4 + 0 ( 68 66 ) = 96 7 + 0 = 89 + 0 = 09...
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Kut je skup točaka ravnine odre - den dvama polupravcima sa. Polupravci a i b su krakovi kuta, a njihov zajednički početak V je vrh kuta.
UDŽBENIK 2. dio Pojam kuta Dva polupravca sa zajedničkim početkom dijele ravninu na dva dijela (jače naglašeni i manje naglašeni dio). Svaki od tih dijelova zajedno s polupravcima zove se kut. Da bi se
Proširenje na poučku o obodnom i središnjem kutu
Proširenje na poučku o obodnom i središnjem kutu Ratko Višak 1. Uvod Na osnovu poučka o obodnom i središnjem kutu izvedene su relacije kada točka nije na kružnici, nego je izvan ili unutar nje. Relacije
Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1
Ispit održan dana 9 0 009 Naći sve vrijednosti korjena 4 z ako je ( ) 8 y+ z Data je prava a : = = kroz tačku A i okomita je na pravu a z = + i i tačka A (,, 4 ) Naći jednačinu prave b koja prolazi ( +
ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 4. veljače 2010.
ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 4. veljače 010. UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA, POVJEREN- STVO JE DUŽNO I TAJ POSTUPAK BODOVATI I
Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu
5. GEOMETRIJA 5.1 Opcenito o kutevima Poznate su slijedece vrste kuteva: siljasti kut α < 90 pravi kut α = 90 tupi kut 90 < α < 180 ravni kut α = 180 izboceni kut 180 < α < 360 puni kut α = 360 Komplementi
ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B varijanta 17. siječnja 2013.
ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B varijanta 17. siječnja 01. UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA, POVJERE- NSTVO JE DUŽNO I TAJ POSTUPAK BODOVATI I
Ljetno kolo 2017./2018.
Ljetno kolo 217./218. ŠKOLA EKIPA KATEGORIJA POVJERENIK NATJECANJA C3 R. IME I PREZIME UČENIKA RAZRED IME I PREZIME MENTORA 1. 2. 3.. ODGOVORI: 1. 11. 26. 2. 12. 27. 3. 13. 28.. 1. 29. 5. 15. 3. 6. 16.
1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
γ = 120 a 2, a, a + 2. a + 2
Zdtk (Slvi, gimnzij) Duljine strni trokut čine ritmetički niz (slijed) s rzlikom Jedn kut iznosi Koliki je opseg trokut? Rješenje inči udući d duljine strni trokut čine ritmetički niz (slijed) s rzlikom,
OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE
Ministarstvo znanosti, obrazovanja i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A kategorija
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
PRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8