Kemijska ravnoteža. dr.sc. M. Cetina, doc. Tekstilno-tehnološki fakultet, Zavod za primijenjenu kemiju
|
|
- Σαῦλος Αλεξάκης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Kemijska ravnoteža Svaka povratna ili reverzibilna reakcija može se općenito prikazati sljedećom jednadžbom: m A + n B o C + p D. v = k [A] m [B] n v = k [C] o [D] p U trenutku kada se brzine reakcije nastajanja produkata i raspadanja produkta izjednače sustav je u stanju ravnoteže (označavamo ili ). Grana kemije koja izučava brzine kemijskih reakcija naziva se kemijska kinetika. 1
2 U slučaju kada su brzine jednake, tj. kada je k [A] m [B] n = k [C] o [D] p za navedenu se reakciju može se definirati izraz: K = [C]o [D] p [A] m [B] n Taj je izraz poznat pod imenom zakon o djelovanju masa (Guldberg-Waage) ili zakon kemijske ravnoteže. Konstanta K naziva se konstantom kemijske ravnoteže i njena brojčana vrijednost konstantna je pri nekoj temperaturi. Konstanta kemijske ravnoteže odreñuje položaj ravnoteže. Što je veća vrijednost konstante ravnoteže to je u stanju ravnoteže veća koncentracija produkata reakcije u odnosu na koncentraciju reaktanata, tj. to je ravnoteža više pomaknuta u smjeru stvaranja produkata reakcije. Primjer: N 2 (g) + 3H 2 (g) 2NH 3 (g) K c = [NH 3 ] 2 * K p = [N 2 ] [H 2 ] 3 p 2 (NH 3 ) p(n 2 ) p 3 (H 2 ) * za plinove parcijalni tlakovi plinova 2
3 Ravnoteže u homogenim sustavima mogu se podijeliti na: ravnoteže u plinovitim sustavima ravnoteže u otopinama. Ravnoteže u heterogenim sustavima, koji se sastoje od više faza, mogu se promatrati u sljedećim sustavima: čvrsto - plinovito čvrsto tekuće tekuće plinovito tekuće tekuće. Heterogeni sustav čvrsto-tekuće Ovakav sustav čini čvrsta tvar u ravnoteži sa svojom zasićenom otopinom. Ravnoteža otapanja, odnosno taloženja može se općenito prikazati ovom jednadžbom: B + A (s) B + (aq) + A (aq) Konstanta ravnoteže dana je izrazom: [B + ] [ A ] = K c Konstanta ravnoteže u ovom se slučaju naziva konstanta produkta topljivosti (K pt, K so, K sp ). 3
4 Što je manja vrijednost konstante produkta topljivosti, to je i manja topljivost tvari, odnosno prije dolazi do njenog taloženja. Primjeri: AgCl Ag + + Cl ; K pt (AgCl) = [Ag + ] [Cl ] PbSO 4 Pb 2+ + SO 4 2 ; K pt (PbSO 4 ) = [Pb 2+ ] [SO 4 2 ] PbCl 2 Pb Cl ; K pt (PbCl 2 ) = [Pb 2+ ] [Cl ] 2 K pt nekih teško topljivih tvari u vodi (pri sobnoj temperaturi) Tvar K pt Tvar K pt AgBr 4, mol 2 dm 6 PbCl mol 3 dm 9 AgCl mol 2 dm 6 PbS 4, mol 2 dm 6 CaCO 3 1, mol 2 dm 6 PbSO 4 1, mol 2 dm 6 Iz K pt se može izračunati ravnotežna koncentracija iona u otopini, topljivost spoja u vodi i koncentracija iona potrebna za taloženje. AgCl Ag + + Cl ; K pt (AgCl) = [Ag + ] [Cl ] [Ag + ] [Cl ] < K pt (AgCl) nezasićena otopina [Ag + ] [Cl ] = K pt (AgCl) zasićena otopina [Ag + ] [Cl ] > K pt (AgCl) prezasićena otopina 4
5 Heterogeni sustav tekuće-tekuće Otapa li se neka tvar A u dvije tekućine koje se meñusobno ne miješaju, ona se razdijeli u dvije tekuće faze pričemu se uspostavi ravnoteža: A (faza 1) A (faza 2) Konstanta ravnoteže dana je izrazom: K = [A] (faza2) [A] (faza1) Odnos se naziva Nernstovim zakonom razdjeljenja (W.H. Nernst) koji kaže da je omjer koncentracija tvari koja je razdijeljena u dvije faze pri odreñenoj temperaturi stalan. Konstanta ravnoteže naziva se i koeficijentom razdjeljenja. Nernstov zakon vrijedi ako je molekulsko stanje otopljene tvari u obje faze isto. Primjer: ekstrakcija vodene otopine joda pomoću kloroforma I 2 I 2 (H 2 O) (CHCl 3 ) [I 2 ] CHCl3 K = = 250 [I 2 ] H 2 O 5
6 Prilikom kemijskih reakcija može doći do oslobañanja i vezanja topline. Reakcije kod kojih se toplina oslobaña nazivaju se egzotermnim reakcijama, a one kod kojih se toplina veže (apsorbira) nazivaju se endotermnim reakcijama. Promjena temperature utječe na ravnotežu, odnosno vrijednost konstante ravnoteže. Povišenje temperature, prema Le Chatelierovom principu, pogoduje endotermnim reakcijama, što znači da se povišenjem temperature ravnoteža pomiče s lijeve prema desnoj strani jednadžbe kemijske reakcije. Obratno, egzotermnim reakcijama pogoduje sniženje temperature pri čemu se ravnoteža pomiče prema desnoj strani, odnosno nastajanju produkata. 6
7 Ravnoteže u otopinama elektrolita Pri otapanju elektrolita u vodi dolazi do disocijacije. Pri tome, jaki elektroliti potpuno disociraju: BA(aq) B + (aq) + A (aq). U slučaju slabih elektrolita dolazi samo do djelomične disocijacije i postoji ravnoteža izmeñu nedisociranih molekula BA i hidratiziranih iona B + i A : BA(aq) B + (aq) + A (aq). Za navedenu reakciju disocijacije BA B + + A izraz za konstantu ravnoteže iznosi: K c = [B+ ] [A ] [BA] Konstanta ravnoteže K c naziva se u ovom slučaju konstanta disocijacije. Što je njezina brojčana vrijednost veća to je veća koncentracija iona u odnosu na koncentraciju nedisocirane molekule u otopini. To znači da je vrijednost konstante disocijacije i mjera za jakost elektrolita. 7
8 Ravnoteže u otopinama kiselina i baza Poznato je da voda vrlo slabo disocira na ione i učistoj vodi i u vodenim otopinama postoji ravnoteža ionizacije: H 2 O(l) + H 2 O(l) H 3 O + (aq) + OH (aq) ili kraće: H 2 O(l) H + (aq) + OH (aq) Konstanta ravnoteže naziva se ionski produkt vode i dana je izrazom: [H + ] [ OH ] = K w = mol 2 dm 6 (pri 25 o C). Navedena vrijednost vrijedi pri temperaturi 25 o C, dok je pri nižim temperaturama manja, a pri višim temperaturama veća od te vrijednosti. Iz prijašnje navedenog izraza slijedi da koncentracije vodikovih i hidroksidnih iona iznose: K [H + w K ] = [OH w ] = [ OH ] [ H+ ] Kako se voda ionizira na jednaki broj vodikovih i hidroksidnih iona, to je i njihova koncentracija jednaka i pri 25 o C iznosi: [H + ] = [ OH ] = mol dm = 10 7 mol dm 3. Zbog jednake koncentracije vodikovih i hidroksidnih iona čista voda je neutralna. Isto tako je i neutralna bilo koja druga otopina koja ima istu koncentraciju tih iona. 8
9 Ako je koncentracija vodikovih iona veća od 10 7 mol dm 3 tada je otopina kisela. Obratno, ako je koncentracija vodikovih iona manja od 10 7 mol dm 3 tada je otopina lužnata. neutralna otopina [H + ] = [ OH ] = 10 7 mol dm 3 kisela otopina lužnata otopina [H + ] > 10 7 mol dm 3 ; [ OH ] < 10 7 mol dm 3 [H + ] < 10 7 mol dm 3 ; [OH ] > 10 7 mol dm 3 Koncentracija vodikovih iona služi kao mjera za kiselost i lužnatost otopina. Da se vrijednost koncentracije vodikovih iona ne mora izražavati takvom visokom negativnom potencijom, danski kemičar P. L. Sørensen je predložio da se izražava samo negativnim eksponentom potencije, tzv. eksponentom ili potencijom vodikovih iona ph. ph = - log ([H + ] / mol dm 3 ); [H + ] = 10 ph poh = - log ([OH ] / mol dm 3 ); [OH ] = 10 poh [H + ] [ OH ] = mol 2 dm 6 ; ph + poh = 14 9
10 Danas je ph definiran elektromotornom silom odgovarajućeg članka i standardnim puferima, tj. ph je definiran postupkom odreñivanja, odnosno mjerenja. ph vrijednost otopina obično ima vrijednosti izmeñu 0 i 14, no može biti i ph < 0 i ph > 14. neutralna otopina ph = 7 kisela otopina ph < 7 lužnata otopina ph > 7 10
11 Indikatori su tvari kojima se može odrediti da li je neka otopina kisela, lužnata ili neutralna. To su najčešće organske molekule velike molekulske mase, a po kemijskom sastavu su slabe kiseline ili baze. + H + - H + metiloranž kiselo lužnato neutralno Indikator: metiloranž 11
12 Za približno odreñivanje ph vrijednosti služe trake papira natopljene indikatorom (lakmus, univerzalni indikator itd.), a za njihovo precizno mjerenje ph metri. 12
13 U vodenim otopinama kiselina postoji sljedeća općenita ravnoteža: HA H + + A Konstanta ravnoteže dana je izrazom: K a = [H + ] [A ] [HA] Konstantu K a nazivamo konstantom disocijacije kiseline i mjera je jakosti kiseline. Što je vrijednost konstante disocijacije veća to je kiselina jača i obratno. Naime, što je vrijednost konstante veća, to je veća i koncentracija vodikovih iona u odnosu na koncentraciju nedoscirane kiseline u otopini, odnosno kiseline u molekulskom obliku. Prema vrijednostima konstante disocijacije, kiseline obično dijelimo na: vrlo slabe kiseline slabe kiseline jake kiseline K a 10 7 mol dm mol dm 3 K a 10 2 mol dm mol dm 3 K a 10 3 mol dm 3 vrlo jake kiseline K a > 10 3 mol dm 3. 13
14 Kiselina Reakcija disocijacije K a / mol dm 3 HClO 4 HClO 4 H + + ClO 4 oko HCl HCl H + + Cl oko 10 3 H 2 SO 4 H 2 SO 4 H + + HSO 4 oko 10 3 HNO 3 HNO 3 H + + NO 3 oko 20 H 2 SO 3 H 2 SO 3 H + + HSO 3 1, H 3 PO 4 H 3 PO 4 H + + H 2 PO 4 1, HCOOH HCOOH HCOO + H + 1, CH 3 COOH CH 3 COOH CH 3 COO + H + 1, H 2 S H 2 S H + + HS 1, HCN HCN H + + CN 6, H 3 BO 3 H 3 BO 3 H + + H 2 BO vrlo jake kiseline; jake kiseline; slabe kiseline; vrlo slabe kiseline Disocijacija poliprotonskih kiselina H 2 SO 4 H + + HSO 4 HSO 4 H + + SO 4 2 K a = oko 10 3 mol dm 3 K a = mol dm 3 H 3 PO 4 H + + H 2 PO 4 K a = 1, mol dm 3 H 2 PO 4 H + + HPO 4 2 K a = 1, mol dm 3 HPO 4 2 H + + PO 4 3 K a = 1, mol dm 3 14
15 U vodenim otopinama baza postoji sljedeća općenita ravnoteža: B + H 2 O BH + + OH Konstanta ravnoteže dana je izrazom: K b = [BH + ] [OH ] [B] Konstantu K b nazivamo konstantom disocijacije baze. Što je vrijednost konstante disocijacije veća to je baza jača i obratno. Jake baze su svi hidroksidi alkalijskih i dio hidroksida zemnoalkalijskih metala, npr. NaOH, Ca(OH) 2, itd. Slabe baze su ostali metalni hidroksidi (npr. Fe(OH) 3 ) te amonijev hidroksid (NH 4 OH), s obzirom na vrijednost konstante disocijacije koja iznosi 1, mol dm 3. NH 3 (aq) + H 2 O NH 4+ (aq) + OH (aq) K b = [NH 4+ ] [OH ] [NH 3 ] = 1, mol dm 3. 15
16 Konstante disocijacije kiseline i baze povezane su i ovim izrazima kojima se iz poznate konstante disocijacije kiseline može izračunati konstanta disocijacije baze i obratno: K a K b = K w = mol 2 dm 6 K a = K w Kb K b = K w Ka Puferske ili tamponske otopine Puferske ili tamponske otopine su otopine slabih kiselina i njenih soli i slabih baza i njenih soli koje neznatno mijenjaju ph dodatkom kiseline ili baze. Primjeri: kiseli pufer bazični pufer CH 3 COOH / CH 3 COONa NH 4 OH / NH 4 Cl važan primjer pufera u prirodi H 2 CO 3 / HCO 3 16
17 Računski dokaz da otopine neznatno mijenjaju ph dodatkom pufera: doda li se 1 ml otopine NaOH koncentracije c b = 1 mol dm 3 u 100 ml čiste vode ph vrijednost iznosit će 12. doda li se 1 ml otopine NaOH iste koncentracije (c b = 1 mol dm 3 ) u 100 ml puferske otopine koja sadrži octenu kiselinu koncentracije c a (CH 3 COOH) = 1 mol dm 3 i natrijev acetat koncentracije c s (CH 3 COONa) = 1 mol dm 3 ph će se promijeniti samo za 0,01 (4,74 4,75). Redoks ravnoteže Elektrokemija proučava sve kemijske reakcije u kojima dolazi do prijenosa elektrona (oksidacijsko-redukcijske promjene). Postoje 2 vrste elektrokemijskih ćelija: galvanski članak elektrolitički članak 17
18 Galvanski članak je ureñaj u kojem se energija kemijske reakcije (redoks-reakcije) pretvara u električnu energiju (članak služi kao izvor napona), a kemijske reakcije su spontane. Galvanski članak se sastoji od dvije različite elektrode uronjene u otopinu ili talinu svojih iona (elektrolita) koje su meñusobno odjeljene polupropusnom membranom. Ako se elektrode spoje doći će na elektrodama do reakcija oksidacije i redukcije. Galvanski polučlanak - jedna metalna elektroda uronjena u otopinu (talinu) elektrolita. A(-) K(+) Zn(s) Cu(s) Cu 2+ (aq) + Zn(s) Cu(s) + Zn 2+ (aq) 18
19 Elektrodni potencijal Elektroni, koji su negativno nabijeni, teže putovati prema područjima pozitivnog električnog potencijala i zato putuju od jedne elektrode prema drugoj u galvanskom članku. Izmeñu metala i otopine postoji polje odreñenog potencijala - elektrodni potencijal, ali je problem što se razlika potencijala na jednoj graničnoj površini metalotopina ne može mjeriti. Mjeriti se može razlika potencijala ( V) izmeñu dviju elektroda (dvaju polučlanaka). Ona je jednaka elektromotornoj sili ili skraćeno EMS (E MF ). Standardni elektrodni potencijal (E Ө ) se odreñuje mjerenjem razlike elektrodnog potencijala galvanskog članka u kojem je jedan polučlanak elektroda mjernog redoks sustava, a drugi polučlanak standardna vodikova elektroda (referentna elektroda). Standardna vodikova elektroda ima dogovorom elektrodni potencijal nula uz [H + ] = 1 mol dm 3 : E Θ (H + 1/2H 2 ) = 0,00 V. 19
20 Dogovorom je odreñeno i da se standardni elektrodni potencijal odnosi na redoks sustav napisan u obliku: oksidirani oblik/ reducirani oblik. Npr. E Θ = - 0,763 V. Zn 2+ /Zn Takoñer, dogovorom, galvanski članak se prikazuje sljedećom shemom: granica faza Zn(s) ZnSO 4 (aq) CuSO 4 (aq) Cu(s) anoda polupropusna membranaelektrolitski katoda ključ (KCl-agar) Elektrolitski ključ je ionski vodič čiji ioni ne sudjeluju u reakcijama na elektrodama. On uravnotežuje naboje u otopini i električki povezuju elektrode. Na katodi se u prikazanom elektrodnom sustavu zbiva redukcija, a na anodi oksidacija. Razlika elektrodnih potencijala elektromotorna sila članka (EMF) jednaka je razlici elektrodnih potencijala katode i anode: E Θ MF = E k - E a. 20
21 Zn(s) Zn 2+ (aq) Cu 2+ (aq) Cu(s) E Θ Zn 2+ /Zn = - 0,763 V anoda Zn(s) Zn 2+ (aq) + 2e E Θ = 0,340 V Cu 2+ /Cu katoda Cu 2+ (aq) + 2e Cu(s) red 1 oks 1 + 2e oks 2 + 2e red 2 red 1 + oks 2 oks 1 + red 2 Zn(s) + Cu 2+ (aq) Zn 2+ (aq) + Cu(s) E Θ MF = E k - E a = 0,340 - ( ) = 1,103 V Što je standardni elektrodni potencijal (tzv. redoks potencijal) pozitivniji to je tvar jače oksidacijsko sredstvo, a što je negativniji to je jače redukcijsko sredstvo. Redoks polureakcije svrstane su u tzv. elektrokemijski niz ili Voltin niz (A. Volta) prema rastućim standardnim elektrodnim potencijalima. U tablici elektrokemijskog niza su sve polureakcije u polučlancima uvijek dogovorom napisane kao redukcija. 21
22 Standardni elektrodni potencijali pri 25 o C Najjače redukcijsko sredstvo Najjače oksidacijsko sredstvo Standardni elektrodni potencijali ovise o materijalu elektrode, efektivnoj koncentraciji iona u otopini i temperaturi. Primjena galvanskihčlanaka: baterije (ireverzibilni galvanskičlanci) akumulatori (reverzibilni galvanski članci). 22
23 Elektroliza Elektrolitski članak (elektrolitska ćelija) je ureñaj koji se sastoji od dviju elektroda uronjenih u elektrolit, a na elektrodama koje su priključene na izvor istosmjerne struje dolazi do reakcije oksidacije i redukcije elektrolize. Kemijske reakcije koje se odvijaju u elektrolitskom članku nisu spontane. Elektroliza razlaganje tvari pod utjecajem električne struje Galvanski članak Zn/Cu Spontani proces Daniellovčlanak Zn/Cu Elektrolitska ćelija Zn/Cu Nespontani proces Prisilni obrnuti proces (s narinutim naponom U > E MF članka) Oksidacija Redukcija Redukcija - Oksidacija + A(-) K (+) K(-) A(+) Zn se otapa Cu se taloži Zn se taloži Cu se otapa A(-): Zn(s) Zn 2+ (aq) + 2e K(+) : Cu 2+ (aq) +2e Cu(s) K(-): Zn 2+ (aq) + 2e Zn(s) A(+) : Cu(s) Cu 2+ (aq) + 2e 23
24 Na elektrodama uvijek dolazi do reakcije za koje je potrebna manja energija. Primjer: elektroliza vodene otopine natrijevog klorida uz grafitne elektrode (inertne). A(+) K(-) Ioni u otopini: Na +, Cl, H +, OH Ioni u otopini: Na +, Cl, H +, OH Moguće reakcije na katodi (-): Na + (aq) + e Na(s) 2H 2 O(l) + 2e H 2 (g) + 2OH (aq) E Θ E Θ = - 2,71 V = - 0,83 V Moguće reakcije na anodi (+): 2Cl (aq) Cl 2 (g) + 2e 4OH (aq) O 2 (g) + 2H 2 O + 4e E Θ E Θ = + 1,36 V = + 0,40 V K(-): 2H 2 O(l) + 2e H 2 (g) + 2OH (aq) A(+): 2Cl (aq) Cl 2 (g) + 2e 24
25 Svi metali koji se u elektrokemijskom nizu nalaze iznad vodika, tj. imaju E Θ < 0, dobivaju se isključivo elektrolizom talina njihovih soli: Li, Na, K..., Be, Ca, Mg, Al itd. Produkti elektrolize vodene otopine NaCl: K(-): 2H 2 O(l) + 2e H 2 (g) + 2OH (aq) A(+): 2Cl (aq) Cl 2 (g) + 2e Produkti elektrolize taline NaCl: K(-): 2Na + + 2e 2Na(s) A(+): 2Cl (aq) Cl 2 (g) + - 2e Prvi Faraday-ev zakon elektrolize Masa izlučene tvari na elektrodi pri procesu elektrolize proporcionalna je količini naboja (elektriciteta) koji je prošao kroz elektrolitsku ćeliju. m Q = I t; n = M m Q = n z F I t = M Q količina elektriciteta (C = A s) I t z jakost struje (A) vrijeme elektrolize (s) F z broj elektrona primljen ili otpušten na elektrodi potreban da bi se izlučio 1 mol tvari Primjer: 4OH (aq) O 2 (g) + 2H 2 O(l) + 4e ; z = 4 m = M 25
26 F, Faradayeva konstanta, predstavlja količinu naboja koja je sadržana u 1 molu elektrona. = množina elektriciteta koju prenosi 1 mol elektrona F = N A e = 6, mol 1 1, C = C mol 1. Drugi Faraday-ev zakon elektrolize Jednaka količina elektriciteta izluči mase različitih tvari u omjeru molekulskih masa njihovih ekvivalentnih jedinki. Uz jednake količine elektriciteta prilikom elektrolize dvaju serijski spojenih elektrolitskih ćelija različitih tvari vrijedi: Q 1 = Q 2 n 1 z 1 F = n 2 z 2 F n 1 z 1 = n 2 z 2 Tada je omjer masa izlučenih tvari jednak omjeru ekvivalentnih masa (M/z) tih tvari, tj. m 1 : m 2 = M 1 / z 1 : M 2 / z 2. 26
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
Heterogene ravnoteže taloženje i otapanje. u vodi u prisustvu zajedničkog iona u prisustvu kompleksirajućegreagensa pri različitim ph vrijednostima
Heterogene ravnoteže taloženje i otapanje u vodi u prisustvu zajedničkog iona u prisustvu kompleksirajućegreagensa pri različitim ph vrijednostima Ako je BA teško topljiva sol (npr. AgCl) dodatkom
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Elektrokemijski članci
Elektrokemijski članci Elektrokemijski članci - sustavi u kojima dolazi do pretvorbe kemijske energije u električnu i obrnuto Vrste članaka Galvanski članci Spontana kemijska reakcija kao posljedica razlike
KEMIJSKA RAVNOTEŽA II
Fakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu Seminar 08 EMIJSA RAVNOTEŽA II Ravnoteže u otopinama elektrolita 1 dr. sc. Biserka Tkalčec dr. sc. Lidija Furač EMIJSA RAVNOTEŽA II -
KEMIJSKA RAVNOTEŽA II
Fakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu Seminar 09 EMIJSA RAVNOTEŽA II Ravnoteže u otopinama elektrolita 2 dr. s. Biserka Tkalče dr. s. Lidija Furač EMIJSA RAVNOTEŽA II ONJUGIRANE
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
A B C D. v v k k. k k
Brzina kemijske reakcije proporcionalna je aktivnim masama reagirajućih tvari!!! 1 A B C D v2 1 1 2 2 o C D m A B v m n o p v v k k m A B o C D p C a D n A a B A B C D 1 2 1 2 o m p n 1 2 n v v k k K a
1. Arrhenius. Ion equilibrium. ก - (Acid- Base) 2. Bronsted-Lowry *** ก - (conjugate acid-base pairs) HCl (aq) H + (aq) + Cl - (aq)
Ion equilibrium ก ก 1. ก 2. ก - ก ก ก 3. ก ก 4. (ph) 5. 6. 7. ก 8. ก ก 9. ก 10. 1 2 สารล ลายอ เล กโทรไลต (Electrolyte solution) ก 1. strong electrolyte ก HCl HNO 3 HClO 4 NaOH KOH NH 4 Cl NaCl 2. weak
UKUPAN BROJ OSVOJENIH BODOVA
ŠIFRA DRŽAVNO TAKMIČENJE II razred UKUPAN BROJ OSVOJENIH BODOVA Test regledala/regledao...... Podgorica,... 008. godine 1. Izračunati steen disocijacije slabe kiseline, HA, ako je oznata analitička koncentracija
ELEKTRIČNA STRUJA KROZ TEKUĆINE. Elektrolitička disocijacija. čista destilirana voda izolator, uz npr. NaCl bolja vodljivost
ELEKTRIČNA STRUJA KROZ TEKUĆINE Elektrolitička disocijacija čista destilirana voda izolator, uz npr. NaCl bolja vodljivost otopine kiselina, lužina ili soli = elektroliti pozitivni i negativni ioni povećavaju
Otopine elektrolita. elektroliti tvari koje kada su rastaljene ili otopljene u vodi provode struju pomoću jona
Otopine elektrolita elektroliti tvari koje kada su rastaljene ili otopljene u vodi provode struju pomoću jona ioni (gr. oni koji putuju ) električki pozitivno i negativno nabijene čestice, nastaju raspadanjem
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
IV RAČUNSKE VEŽBE RAVNOTEŽE U REDOKS SISTEMIMA
IV RAČUNSKE VEŽBE RAVNOTEŽE U REDOKS SISTEMIMA Redoks reakcije su reakcije razmene elektrona. U ovim reakcijama dolazi do promene oksidacionog broja supstanci koje učestvuju u procesu oksidacije i redukcije.
konst. Električni otpor
Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Χημεία Α Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΒΑΣΙΛΗΣ ΛΟΓΟΘΕΤΗΣ
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Γενικής Παιδείας Χημεία Α Λυκείου Επιμέλεια: ΒΑΣΙΛΗΣ ΛΟΓΟΘΕΤΗΣ e-mail: info@iliaskos.gr www.iliaskos.gr 1 57 1.. 1 kg = 1000 g 1 g = 0,001 kg 1
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
SADRŽAJ PREDMETA PREDAVANJA ~ PRINCIPI HEMIJSKE RAVNOTEŽE ~ KISELINE, BAZE I SOLI RAVNOTEŽA U VODENIM RASTVORIMA ~ RAVNOTEŽA U HETEROGENIM SISTEMIMA
SADRŽAJ PREDMETA PREDAVANJA ~ PRINCIPI HEMIJSKE RAVNOTEŽE ~ KISELINE, BAZE I SOLI RAVNOTEŽA U VODENIM RASTVORIMA ~ RAVNOTEŽA U HETEROGENIM SISTEMIMA SLABO RASTVORLJIVA JEDINJENJA PROIZVOD RASTVORLJIVOSTI
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ
ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ Ηµεροµηνία: Τετάρτη 23 Απριλίου 2014 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιο σας τον αριθµό κάθε µίας από τις ερωτήσεις A1 έως A4 και δίπλα
Pripremila i uredila: Doc. dr. sc. Blaženka Foretić OSNOVE KEMIJSKOG RAČUNANJA
Pripremila i uredila: Doc. dr. sc. Blaženka Foretić OSNOVE KEMIJSKOG RAČUNANJA Relativna skala masa elemenata: atomska jedinica mase 1/12 mase atoma ugljika C-12. Unificirana jedinica atomske mase (u)
1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
Kiselo bazni indikatori
Kiselo bazni indikatori Slabe kiseline ili baze koje imaju različite boje nejonizovanog i jonizovanog oblika u rastvoru Primer: slaba kiselina HIn(aq) H + (aq) + In (aq) nejonizovani oblik jonizovani oblik
KEΦΑΛΑΙΟ 3 ΟΞΕΑ - ΒΑΣΕΙΣ ΚΑΙ ΙΟΝΤΙΚΗ ΙΣΟΡΡΟΠΙΑ
KEΦΑΛΑΙΟ 3 ΟΞΕΑ - ΒΑΣΕΙΣ ΚΑΙ ΙΟΝΤΙΚΗ ΙΣΟΡΡΟΠΙΑ 3.1. Ερωτήσεις πολλαπλής επιλογής Στις ερωτήσεις 1-46 βάλτε σε ένα κύκλο το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Ιοντισµός µιας µοριακής ένωσης ονοµάζεται:
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΜΒΟΛΟ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Α ΛΥΚΕΙΟΥ ΑΝΤΙ ΡΑΣΕΙΣ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Α ΛΥΚΕΙΟΥ ΑΝΤΙ ΡΑΣΕΙΣ Όλες οι αντιδράσεις που ζητούνται στη τράπεζα θεµάτων πραγµατοποιούνται. Στην πλειοψηφία των περιπτώσεων απαιτείται αιτιολόγηση της πραγµατοποίησης των αντιδράσεων.
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
ZBIRKA ZADATAKA IZ ANALITIČKE KEMIJE
EMIJSO-TEHNOLOŠI FAULTET U SPLITU Silvestar rka - Eni Generalić ZBIRA ZADATAA IZ ANALITIČE EMIJE Split,. listopada 0. SADRŽAJ UVOD...3 Sastav otopine...3 RAVNOTEŽA...0 Ravnoteža vode... Aktivitet, ionska
Precipitacija i otapanje
Precipitacija i otapanje Uklanjanje karbonatne tvrdoće vode CaCO 3 (c) Ca 2+ + CO 3 2- Uklanjanje toksičnih iona teških metala Pb(OH) 2 (c) Pb 2+ + 2OH - Uklanjanje željeza i mangana Fe(OH) 3 (c)
προσθέτουµε 500ml ΗΝΟ ( ) ) . Επίσης, θ = 25 C
Θέµ ο ( ) ( ) προσθέτουµε 500ml ΗΝΟ ( ) ) Α ιθέτουµε διάλυµ όγκου 500ml που περιέχει τις σθενείς βάσεις Β κι Γ µε συγκεντρώσεις 0,4Μ γι την κάθε µί Στο διάλυµ διλύµτος συγκέντρωσης 0,8Μ κι προκύπτει διάλυµ
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Ισχυροί και ασθενείς ηλεκτρολύτες μέτρα ισχύος οξέων και βάσεων νόμοι Ostwald
Ισχυροί και ασθενείς ηλεκτρολύτες μέτρα ισχύος οξέων και βάσεων νόμοι Ostwald Ποιους θα ονομάζουμε «ισχυρούς ηλεκτρολύτες»; Τις χημικές ουσίες που όταν διαλύονται στο νερό, ένα μεγάλο ποσοστό των mole
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002
ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1 ο Για τις ερωτήσεις 1.1-1.4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
Επαναληπτικά Θέµατα ΟΕΦΕ 2010 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΧΗΜΕΙΑ ΑΠΑΝΤΗΣΕΙΣ
Επαναληπτικά Θέµατα ΟΕΦΕ 010 1 ΘΕΜΑ 1 ο 1.1. δ 1.. α 1.. γ 1.4. β 1.5. α. ΛΑΘΟΣ β. ΛΑΘΟΣ γ. ΣΩΣΤΟ δ. ΣΩΣΤΟ ε. ΛΑΘΟΣ ΘΕΜΑ ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΧΗΜΕΙΑ ΑΠΑΝΤΗΣΕΙΣ.1. α. Για το Α: 1s s p 6 s p 6
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Dijagonalizacija operatora
Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite
Θέμα Α. Ονοματεπώνυμο: Χημεία Α Λυκείου Διαγώνισμα εφ όλης της ύλης. Αξιολόγηση :
Ονοματεπώνυμο: Μάθημα: Υλη: Επιμέλεια διαγωνίσματος: Αξιολόγηση : Χημεία Α Λυκείου Διαγώνισμα εφ όλης της ύλης Τσικριτζή Αθανασία Θέμα Α 1. Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις επόμενες ερωτήσεις.
NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika
NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan
Κανόνες διαλυτότητας για ιοντικές ενώσεις
Κανόνες διαλυτότητας για ιοντικές ενώσεις 1. Ενώσεις των στοιχείων της Ομάδας 1A και του ιόντος αμμωνίου (Ιόντα: Li +, Na +, K +, Rb +, Cs +, NH 4+ ) είναι ευδιάλυτες, χωρίς εξαίρεση: πχ. NaCl, K 2 S,
HEMIJSKE RAVNOTEŽE. a = f = f c.
II RAČUNSKE VEŽBE HEMIJSKE RAVNOTEŽE TEORIJSKI DEO I POJAM AKTIVNOSTI JONA Razblaženi rastvori (do 0,1 mol/dm ) u kojima je interakcija između čestica rastvorene supstance zanemarljiva ponašaju se kao
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΠΕΡΙΕΧΟΝΤΑΙ ΚΑΙ ΟΙ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ)
ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΠΕΡΙΕΧΟΝΤΑΙ ΚΑΙ ΟΙ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 9 ΙΟΥΝΙΟΥ
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ
ΤΑΞΗ: ΜΑΘΗΜΑ: A ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ Ημερομηνία: Σάββατο 20 Απριλίου 2019 Διάρκεια Εξέτασης: 2 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α1. Δίνεται στοιχείο Χ το οποίο έχει οκτώ ηλεκτρόνια στην εξωτερική του στιβάδα.
Osnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Osnove biokemije Seminar 2
Osnove biokemije Seminar 2 B. Mildner Rješenje zadaće 1.(zadaća od 4. 3. 2014) 1. D 11. C 2. C 12. B 3. B 13. C 4. B 14. B 5. C 15. D 6. D 16. A 7. A 17. C 8. B 18. D 9. D 19. A 10. C 20. C 1 1. Za vodu
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
(είναι οι αντιδράσεις στις οποίες δεν μεταβάλλεται ο αριθμός οξείδωσης σε κανένα από τα στοιχεία που συμμετέχουν)
Κατηγορίες Χημικών Αντιδράσεων Μεταθετικές Αντιδράσεις (είναι οι αντιδράσεις στις οποίες δεν μεταβάλλεται ο αριθμός οξείδωσης σε κανένα από τα στοιχεία που συμμετέχουν) l Αντιδράσεις εξουδετέρωσης Χαρακτηρίζονται
ΜΑΞΙΜΟΣ ΚΟΤΕΛΙΔΑΣ. β) Να βρεθεί σε ποια οµάδα και σε ποια περίοδο του Περιοδικού Πίνακα ανήκουν.
ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΜΑΤΑ: 03490 ΗΜΕΡΟΜΗΝΙΑ: 27/5/2014 ΟΙ ΚΑΘΗΓΗΤΕΣ: ΜΑΞΙΜΟΣ ΚΟΤΕΛΙΔΑΣ ΕΚΦΩΝΗΣΕΙΣ Θέμα 2ο Α) Για τα στοιχεία: 12 Μg και 8 Ο α) Να κατανεµηθούν τα ηλεκτρόνιά τους σε στιβάδες. (µονάδες 2) β)
8. Ιοντικές ισορροπίες σε υδατικά διαλύματα
8. Ιοντικές ισορροπίες σε υδατικά διαλύματα ΣΚΟΠΟΣ Σκοπός αυτού του κεφαλαίου είναι να γνωρίσουμε πώς εφαρμόζονται οι αρχές της χημικής ισορροπίας σε συστήματα που περιλαμβάνουν είτε ομογενείς ισορροπίες
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
Vodik. dr.sc. M. Cetina, doc. Tekstilno-tehnološki fakultet, Zavod za primijenjenu kemiju
Vodik Najzastupljeniji element u svemiru (maseni udio iznosi 90 %) i sastavni dio Zvijezda. Na Zemlji je po masenom udjelu deseti element po zastupljenosti. Zemljina gravitacija premalena je da zadrži
REAKCIJE OKSIDO-REDUKCIJE (REDOKS REAKCIJE)
REAKCIJE OKSIDO-REDUKCIJE (REDOKS REAKCIJE) OKSIDACIJA - REAKCIJE SA KISEONIKOM i NASTANAK OKSIDA... Najpoznatije takve reakcije jesu reakcije SAGOREVANJA! 2 Ca(s) + O 2 (g) 2 CaO(s) 2 H 2 (g) + O 2 (g)
ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ- Γ ΗΜΕΡΗΣΙΩΝ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΕΠΙΜΕΛΕΙΑ ΘΕΜΑΤΩΝ: ΚΑΛΑΜΑΡΑΣ ΓΙΑΝΝΗΣ.gr ΘΕΜΑ Α Για τις ερωτήσεις Α1 έως Α5 να γράψετε τον αριθμό της
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
ΙΠΛΗ ΑΝΤΙΚΑΤΑΣΤΑΣΗ. Η 2 SO 4 + BaCl 2 2HCl + BaSO 4. 2HCl + Na 2 CO 3 CO 2 + H 2 O + 2NaCl. 2HCl + Na 2 SO 3 SO 2 + H 2 O + 2NaCl
ΙΠΛΗ ΑΝΤΙΚΑΤΑΣΤΑΣΗ Οι αντιδράσεις διπλής αντικατάστασης γίνονται ανάµεσα σε ηλεκτρολύτες µε ανταλλαγή ιόντων. Για να πραγµατοποιηθεί µια αντίδραση διπλής αντικατάστασης πρέπει ένα τουλάχιστον από τα προϊόντα
3. Υπολογίστε το μήκος κύματος de Broglie (σε μέτρα) ενός αντικειμένου μάζας 1,00kg που κινείται με ταχύτητα1 km/h.
1 Ο ΚΕΦΑΛΑΙΟ ΑΣΚΗΣΕΙΣ 1. Ποια είναι η συχνότητα και το μήκος κύματος του φωτός που εκπέμπεται όταν ένα e του ατόμου του υδρογόνου μεταπίπτει από το επίπεδο ενέργειας με: α) n=4 σε n=2 b) n=3 σε n=1 c)
http://ekfe.chi.sch.gr ΙΑΝΟΥΑΡΙΟΣ 2010 Πειράματα Χημείας Χημικές αντιδράσεις και ποιοτική ανάλυση ιόντων
http://ekfe.chi.sch.g 5 η - 6 η Συνάντηση ΙΑΝΟΥΑΡΙΟΣ 010 Πειράματα Χημείας Χημικές αντιδράσεις και ποιοτική ανάλυση ιόντων Παρασκευή διαλύματος ορισμένης συγκέντρωσης αραίωση διαλυμάτων Παρασκευή και ιδιότητες
ΠΑΝΕΛΛΑ ΙΚΕΣ 2013 ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ
ΠΑΝΕΛΛΑ ΙΚΕΣ 2013 ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α1. γ Α2. β Α3. δ Α4. β Α5. α. 1) Οι βάσεις κατά Arrhenius δίνουν ΟΗ (όταν διαλυθούν στο νερό), ενώ οι βάσεις κατά Brönsted-Lowry είναι
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2005
ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 005 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1 Για τις ερωτήσεις 11-1 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση 11 Ο µέγιστος αριθµός
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
, ε) MgCl 2 NH 3. COOH, ι) CH 3
I.ΟΞΕΑΒΑΣΕΙΣ, ΙΟΝΤΙΚΑ ΥΔΑΤΙΚΑ ΔΙΑΛΥΜΑΤΑ(ΓΕΝΙΚΑ) 1. Ποιες από τις παρακάτω ενώσεις, όταν διαλυθούν στο νερό διίστανται και ποιες ιοντίζονται: α) Ca(NO 3 ) 2, β) KOH, γ) HCl, δ) NH 3, ε) MgCl 2, στ) NH 4
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ 1 η : A) 9,8g H 3 PO 4 αντιδρούν με την κατάλληλη ποσότητα NaCl σύμφωνα με την χημική εξίσωση: H 3 PO 4 + 3NaCl Na 3 PO 4 + 3HCl. Να υπολογίσετε πόσα λίτρα αέριου HCl παράγονται,
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
ΙΑΓΩΝΙΣΜΑ 1 Ο ( 1 Ο ΚΕΦΑΛΑΙΟ)
ΙΑΓΩΝΙΣΜΑ 1 Ο ( 1 Ο ΚΕΦΑΛΑΙΟ) ΘΕΜΑ 1 Ο Να εξηγήσετε ποιες από τις παρακάτω προτάσεις είναι σωστές και να διορθώσετε τις λανθασµένες: 1. Τα άτοµα όλων των στοιχείων είναι διατοµικά.. Το 16 S έχει ατοµικότητα
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ ΕΚΦΩΝΗΣΕΙΣ
ΤΑΞΗ: ΜΑΘΗΜΑ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή 26 Απριλίου 2015 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιο σας τον αριθµό κάθε µίας από τις ερωτήσεις A1 έως A5 και δίπλα
ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ
ΚΩΛΕΤΤΗ 9- -068 0 8464 0 847670 www.irakleitos.gr ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 0 ΜΑΙΟΥ 06 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) ΕΝΔΕΙΚΤΙΚΕΣ
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002
ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1 ο Για τις ερωτήσεις 1.1-1.4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
Kiselo-bazne ravnoteže
Uvod u biohemiju (školska 2016/17.) Kiselo-bazne ravnoteže NB: Prerađena/adaptirana prezentacija američkih profesora! Primeri kiselina i baza iz svakodnevnog života Arrhenius-ova definicija kiselina i
1. Στο παρακάτω διάγραμμα τα γράμματα Α, Β, Γ, Δ, Ε, Ζ, Θ, Κ, Λ
Επαναληπτικά δέντρα.. Ανόργανης στο ph. Στο παρακάτω διάγραμμα τα γράμματα Α, Β, Γ, Δ, Ε, Ζ, Θ, Κ, Λ αναφέρονται σε υδατικά διαλύματα. Το διάλυμα Α έχει όγκο 00mL και ph = HCl 00mL Ca(OH) 2 900mLH2O 0,448L
ΔΙΑΛΥΜΑΤΑ ΙΣΧΥΡΩΝ ΟΞΕΩΝ/ΒΑΣΕΩΝ
Ασκήσεις σε διαλύματα ισχυρών ηλεκτρολυτών I.ΥΔΑΤΙΚΑ ΔΙΑΛΥΜΑΤΑ ΙΣΧΥΡΩΝ ΟΞΕΩΝ/ΒΑΣΕΩΝ 1. Υδατικό διάλυμα NaOH έχει ph=12. Να υπολογισθεί η %w/v περιεκτικότητα του διαλύματος. [ Απ. 0,04%] 2. Ένα διάλυμα
SADRŽAJ PREDMETA PREDAVANJA ~ PRINCIPI HEMIJSKE RAVNOTEŽE ~ KISELINE, BAZE I SOLI RAVNOTEŽA U VODENIM RASTVORIMA ~ RAVNOTEŽA U HETEROGENIM SISTEMIMA
SADRŽAJ PREDMETA PREDAVANJA ~ PRINCIPI HEMIJSKE RAVNOTEŽE ~ KISELINE, BAZE I SOLI RAVNOTEŽA U VODENIM RASTVORIMA ~ RAVNOTEŽA U HETEROGENIM SISTEMIMA SLABO RASTVORLJIVA JEDINJENJA ~ KOORDINACIONA JEDINJENJA
Ημερομηνία: Τρίτη 18 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ 10/04/017 ΕΩΣ /04/017 ΤΑΞΗ: ΜΑΘΗΜΑ: A ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ XHMEIA Ημερομηνία: Τρίτη 18 Απριλίου 017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις παρακάτω προτάσεις Α1 Α5 να επιλέξετε τη σωστή απάντηση.
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
Ενδεικτικές Απαντήσεις Πανελλαδικών Εξετάσεων Χημείας 2016
Ενδεικτικές Απαντήσεις Πανελλαδικών Εξετάσεων Χημείας 2016 ΘΕΜΑ Α Α1 : γ Α2 : δ Α3 : γ Α4 : α Α5 : (α) Σωστό (β) Λάθος (γ) Λάθος (δ) Λάθος (ε) Σωστό ΘΕΜΑ Β Β1 α. 2NH 3 3CuO N 2 3Cu 3H 2O β. 5CH 3-CH-CH
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 1 ΙΟΥΝΙΟΥ 2012 ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 1 ΙΟΥΝΙΟΥ 01 ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α1: γ Α: β Α3: β Α4: γ ΑΠΑΝΤΗΣΕΙΣ A5: α) Είναι αδύνατον να υπάρχουν στο ίδιο άτοµο δύο ηλεκτρόνια
Χηµεία Α Γενικού Λυκείου
Χηµεία Α Γενικού Λυκείου Απαντήσεις στα θέματα της Τράπεζας Θεμάτων Συγγραφή απαντήσεων: 'Αρης Ασλανίδης Χρησιμοποιήστε τους σελιδοδείκτες (bookmarks) στο αριστερό μέρος της οθόνης για την πλοήγηση μέσα
TRANSFORMACIJE HEMIJSKE ENERGIJE U ELEKTRIČNU - ELEKTROHEMIJA. hemijska reakcija je izvor energije
TRANSFORMACIJE HEMIJSKE ENERGIJE U ELEKTRIČNU - ELEKTROHEMIJA hemijska reakcija je izvor energije Baterija koristi spontanu hemijsku reakciju koja je praćena promenom slobodne Gibbs-ove energije G (ΔG