PREDNAPETI BETON Primjer nadvožnjaka preko autoceste
|
|
- Ιόλη Βέργας
- 7 χρόνια πριν
- Προβολές:
Transcript
1 PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif.
2 PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina sidrenja i nastavljanja 3. Nacrt s iskazom armature 2 7. Auditorne vježbe
3 PLAN ARMATURE PREDNAPETOG Prednapeta armatura : 3 natege 6812 Nenapeta uzdužna armatura : 4 Ф20 polje(nosač) Ф20/13,5 cm ležaj(ploča) Vilice : Ф10/25 cm polje Ф10/18 cm ležaj 3 7. Auditorne vježbe
4 PLAN ARMATURE PREDNAPETOG Nenapeta armatura armatura (iz otkazivanja bez najave GSN) 4 Ф20 polje (nosač) Ф20/13,5 cm ležaj (ploča) 4 7. Auditorne vježbe
5 PLAN ARMATURE PREDNAPETOG Poprečna armatura (vilice) Ф10, m=2, s=18 cm (ležaj) Ф10, m=2, s=25 cm (polje) 5 7. Auditorne vježbe
6 PLAN ARMATURE PREDNAPETOG Poprečna armatura (vilice) Ф10, m=2, s=18 cm (ležaj) Ф10, m=2, s=25 cm (polje) Ф10, m=2, s=25 cm (polje) 6 7. Auditorne vježbe
7 PLAN ARMATURE PREDNAPETOG Konstruktivna armatura kod prednapetihelemenata potrebno predvidjeti najmanju konst. Armaturu -Za gredu (b w <h) na bočnim plohama: a = 1,0 ρ b ρ s,surf w w w w s,surf = 0,0013 = 0,13% min. koeficjent armiranja za C50/ 60 b = 54 cm širina hrpta a = = < 2 1,0 0, ,02cm /m' as,surf,od - Za pojasnicu na donjoj plohi: a = 1,0 ρ h ρ s,surf w f w = 0,0013 = 0,13% min. koeficjent armiranja za C50/ 60 h = 22,5 cm širina hrpta a f s,surf 2 = 1,0 0,13 22,5 = 2,925cm /m' < a s,surf,od Odabrano: Ф 12/17,5 cm Odabrano: Ф 10/20,0 cm 7 7. Auditorne vježbe
8 PLAN ARMATURE PREDNAPETOG Konstruktivna - Za pojasnicu na donjoj plohi: Odabrano: Ф 12/17,5 cm Odabrano: Ф 10/20,0 cm 8 7. Auditorne vježbe
9 PLAN ARMATURE PREDNAPETOG Minimalna konstruktivna armatura ovisno o području prednapetog elementa. Mjerodavna veća vrijednost Auditorne vježbe
10 f ck (N/mm 2 ) ρ( o / oo ) PLAN ARMATURE PREDNAPETOG Vrijednosti koeficijenta armiranja (PROMILI): ρ=0,16 f ctm /f yk Konstruktivna armatura ugrađuje se kao približno ortogonalnamreža u vlačno i tlačno područje elementa. 12 0, , , , , , , , , ,34 Najveći razmak šipki je 20 cm. 60 1, , , , , Auditorne vježbe
11 PLAN ARMATURE PREDNAPETOG Dodatna armatura oko sidara natega U tehničkim dopuštenjima proizvodaćanatega dane su preporuke za odabir dodatne armature oko sidara natega za preuzimanje velikih naprezanja nastalih uslijed unosa sile prednapinjanja u beton putem sidrene ploče. Veličina sidrene ploče i dodatna armatura u vidu dodatnih pravokutnih vilica i spirale odabire se uz pomoć tablica. Za natege 6812 odabiremo dodatnu armaturu za stvarnu čvrstoću betona u trenutku prednapinjanja f cm,0,cyl =33N/mm 2 Odabrano: 6 kvadratnih vilica Ф 12 vanjskih izmjera 38 cm Spirala (helix) s 6,5 namota Ф 16/4,5 cm Auditorne vježbe
12 PLAN ARMATURE PREDNAPETOG Dodatna armatura oko sidara natega U tehničkim dopuštenjima proizvodaćanatega dane su preporuke za odabir dodatne armature oko sidara natega za preuzimanje velikih naprezanja nastalih uslijed unosa sile prednapinjanja u beton putem sidrene ploče. Veličina sidrene ploče i dodatna armatura u vidu dodatnih pravokutnih vilica i spirale odabire se uz pomoć tablica. Za natege 6812 odabiremo dodatnu armaturu za stvarnu čvrstoću betona u trenutku prednapinjanja f cm,0,cyl =33N/mm 2 Odabrano: 6 kvadratnih vilica Ф 12 vanjskih izmjera 38/24 cm Spirala (helix) s 6,5 namota Ф 16/4,5 cm Auditorne vježbe
13 PLAN ARMATURE PREDNAPETOG Određivanje duljine sidrenja i nastavljanja armature Formule prema HRN EN 1992 ili iz tablica za brzo određivanje prema priručniku Auditorne vježbe
14 PLAN ARMATURE PREDNAPETOG Određivanje duljine sidrenja i nastavljanja armature Tablice za brzo određivanje duljine sidrenja i preklopa su izrađene za beton C25/30, pa je potrebno očitanje vrijednosti pomnožiti s korekcijskim faktorom: - C50/60: k=0,628 - C40/50: k=0,730 Kod odabira duljina sidrenja i preklopa važan je i omjer proračunom zahtijevane armature A S,req i odabirom osigurane armature A s,prov s kojom množimo očitane vrijednosti: k= A s,req As,prov Auditorne vježbe
15 PLAN ARMATURE PREDNAPETOG Određivanje duljine sidrenja i nastavljanja armature Prionjivost betona i armature ovisi o: -površini armature - izmjerama elementa - položaju i nagibu elementa tijekom betoniranja - prionjivost dobra ili umjerena Za elemente kojima debljina ne prelazi 25 cm računamo na dobru prionjivost (kolnička ploča mosta h<25 cm) Za nosač kojemu visina prelazi 60 cm prionjivost se određuje prema slijedećoj skici: Auditorne vježbe
16 PLAN ARMATURE PREDNAPETOG Određivanje duljine sidrenja i nastavljanja armature Auditorne vježbe
17 PLAN ARMATURE PREDNAPETOG Plan armature s iskazom Auditorne vježbe
6. Plan armature prednapetog nosača
6. Plan armature prednapetog nosača 6.1. Rekapitulacija odabrane armature Prednapeta armatura odabrano:3 natege 6812 Uzdužna nenapeta armatura. u polju donji rub nosača (mjerodavna je provjera nosivosti
Διαβάστε περισσότεραPREDNAPETI BETON Primjer nadvožnjaka preko autoceste
PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 5. VJEŽBE DIMENZIONIRANJE - GSN Dominik Skokandić, mag.ing.aedif. GRANIČNO STANJE NOSIVOSTI DIMENZIONIRANJE - GSN 1. Sila prednapinjanja 2. Provjera
Διαβάστε περισσότεραPRORAČUN GLAVNOG KROVNOG NOSAČA
PRORAČUN GLAVNOG KROVNOG NOSAČA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL Statički sustav glavnog krovnog nosača je slobodno oslonjena greda raspona l11,0 m. 45 0 65 ZAŠTITNI SLOJ BETONA
Διαβάστε περισσότερα4. STATIČKI PRORAČUN STUBIŠTA
JBAG 4. STATIČKI PRORAČUN STUBIŠTA PROGRA IZ KOLEGIJA BETONSKE I ZIDANE KONSTRUKCIJE 9 5 SVEUČILIŠTE U ZAGREBU JBAG 4. Statiči proračun stubišta 4.. Stubišni ra 4... Analiza opterećenja 5 5 4 6 8 5 6 0
Διαβάστε περισσότερα4. STATIČKI PRORAČUN STUBIŠTA
JBG 4. STTIČKI PRORČUN STUBIŠT PROGR IZ KOLEGIJ BETONSKE I ZIDNE KONSTRUKCIJE 9 6 5 5 SVEUČILIŠTE U ZGREBU JBG 4. Statiči proračun stubišta 4.. Stubišni ra 4... naliza opterećenja 5 5 4 6 8 0 Slia 4..
Διαβάστε περισσότερα7. Proračun nosača naprezanih poprečnim silama
5. ožujka 2018. 7. Proračun nosača naprezanih poprečnim silama Primjer sloma zbog djelovanja poprečne sile SLIKA 1. T- nosač slomljen djelovanjem poprečne sile Do sloma armirano-betonske grede uslijed
Διαβάστε περισσότεραBETONSKE KONSTRUKCIJE. Program
BETONSKE KONSTRUKCIJE Program Zagreb, 017. Ime i prezime 50 60 (h) 16 (h0) () () 600 (B) 600 (B) 500 () 500 () SDRŽJ 1. Tehnički opis.... Proračun ploče POZ 01-01... 3.1. naliza opterećenja ploče POZ 01-01...
Διαβάστε περισσότεραBETONSKE KONSTRUKCIJE. Program
BETONSKE KONSTRUKCIJE Program Zagreb, 009. Ime i prezime 50 60 (h) 16 (h0) (A) (A) 600 (B) 600 (B) 500 (A) 500 (A) SADRŽAJ 1. Tehnički opis.... Proračun ploče POZ 01-01...3.1. Analiza opterećenja ploče
Διαβάστε περισσότεραBETONSKE KONSTRUKCIJE 3 M 1/r dijagrami
BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami Izv. prof. dr.. Tomilav Kišiček dipl. ing. građ. 0.10.014. Betonke kontrukije III 1 NBK1.147 Slika 5.4 Proračunki dijagrami betona razreda od C1/15 do C90/105, lijevo:
Διαβάστε περισσότεραSVEUČILIŠTE U MOSTARU GRAĐEVINSKI FAKULTET
SVEUČILIŠTE U MOSTRU GRĐEVINSKI FKULTET Kolegij: Osnove betonskih konstrukcija k. 013/014 god. 8. pismeni (dodatni) ispit - 10.10.014. god. Zadatak 1 Dimenzionirati i prikazati raspored usvojene armature
Διαβάστε περισσότεραDimenzioniranje nosaa. 1. Uvjeti vrstoe
Dimenzioniranje nosaa 1. Uvjeti vrstoe 1 Otpornost materijala prouava probleme 1. vrstoe,. krutosti i 3. elastine stabilnosti konstrukcija i dijelova konstrukcija od vrstog deformabilnog materijala. Moraju
Διαβάστε περισσότεραTeorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd
Teorija betonskih konstrukcija 1 Vežbe br. 4 GF Beograd Teorija betonskih konstrukcija 1 1 "T" preseci - VEZANO dimenzionisanje Poznato: statički uticaji (M G,Q ) sračunato kvalitet materijala (f cd, f
Διαβάστε περισσότεραSPREGNUTE KONSTRUKCIJE
SPREGNUTE KONSTRUKCIJE Prof. dr. sc. Ivica Džeba Građevinski fakultet Sveučilišta u Zagrebu SPREGNUTI NOSAČI 1B. DIO PRIJENJIVO NA SVE KLASE POPREČNIH PRESJEKA OBAVEZNA PRIJENA ZA KLASE PRESJEKA 3 i 4
Διαβάστε περισσότεραTABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II
TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II TABLICA 1: PARCIJALNI KOEFICIJENTI SIGURNOSTI ZA DJELOVANJA Parcijalni koeficijenti sigurnosti γf Vrsta djelovanja Djelovanje Stalno Promjenjivo
Διαβάστε περισσότεραBETONSKE KONSTRUKCIJE 2
BETONSE ONSTRUCIJE 2 vježbe, 31.10.2017. 31.10.2017. DATUM SATI TEMATSA CJELINA 10.- 11.10.2017. 2 17.-18.10.2017. 2 24.-25.10.2017. 2 31.10.- 1.11.2017. uvod ponljanje poznatih postupaka dimenzioniranja
Διαβάστε περισσότεραOpšte KROVNI POKRIVAČI I
1 KROVNI POKRIVAČI I FASADNE OBLOGE 2 Opšte Podela prema zaštitnim svojstvima: Hladne obloge - zaštita hale od atmosferskih padavina, Tople obloge - zaštita hale od atmosferskih padavina i prodora hladnoće
Διαβάστε περισσότερα( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
Διαβάστε περισσότεραGRAĐEVINSKI FAKULTET U BEOGRADU Modul za konstrukcije PROJEKTOVANJE I GRAĐENJE BETONSKIH KONSTRUKCIJA 1 NOVI NASTAVNI PLAN
GRAĐEVINSKI FAKULTET U BEOGRADU pismeni ispit Modul za konstrukcije 16.06.009. NOVI NASTAVNI PLAN p 1 8 /m p 1 8 /m 1-1 POS 3 POS S1 40/d? POS 1 d p 16 cm 0/60 d? p 8 /m POS 5 POS d p 16 cm 0/60 3.0 m
Διαβάστε περισσότεραAGREGAT. Asistent: Josip Crnojevac, mag.ing.aedif. SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU
AGREGAT Asistent: Josip Crnojevac, mag.ing.aeif. jcrnojevac@gmail.com SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU JOSIP JURAJ STROSSMAYER UNIVERSITY OF OSIJEK 1 Pojela agregata PODJELA AGREGATA - PREMA
Διαβάστε περισσότεραOM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
Διαβάστε περισσότεραEliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Διαβάστε περισσότεραMatematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Διαβάστε περισσότεραPROSTA GREDA (PROSTO OSLONJENA GREDA)
ROS GRED (ROSO OSONJEN GRED) oprečna sila i moment savijanja u gredi y a b c d e a) Zadana greda s opterećenjem l b) Sile opterećenja na gredu c) Određivanje sila presjeka grede u presjeku a) Unutrašnje
Διαβάστε περισσότεραPRORAČUN AB STUPA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL
PRORAČUN AB STUPA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL Materijal: Beton: C25/30 C f ck /f ck,cube valjak/kocka f ck 25 N/mm 2 karakteristična tlačna čvrstoća fcd proračunska tlačna
Διαβάστε περισσότεραBetonske konstrukcije 1 - vežbe 1 -
Betonske konstrukcije 1 - vežbe 1 - Savijanje pravougaoni presek Sadržaj vežbi: Osnove proračuna Primer 1 vezano dimenzionisanje Primer 2 slobodno dimenzionisanje 1 SLOŽENO savijanje ε cu2 =3.5ä β2x G
Διαβάστε περισσότερα1 - KROVNA KONSTRUKCIJA : * krovni pokrivač, daska, letva: = 0,60 kn/m 2 * sneg, vetar : = 1,00 kn/m 2
OPTEREĆENJE KROVNE KONSTRUKCIJE : * krovni pokrivač, daska, letva: = 0,60 kn/m 2 * sneg, vetar : = 1,00 kn/m 2 1.1. ROGOVI : * nagib krovne ravni : α = 35 º * razmak rogova : λ = 80 cm 1.1.1. STATIČKI
Διαβάστε περισσότερα21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka
Διαβάστε περισσότεραKolegij: Konstrukcije Rješenje zadatka 2. Okno Građevinski fakultet u Zagrebu. Efektivna. Jedinična težina. 1. Glina 18,5 21,
Kolegij: Konstrukcije 017. Rješenje zadatka. Okno Građevinski fakultet u Zagrebu 1. ULAZNI PARAETRI. RAČUNSKE VRIJEDNOSTI PARAETARA ATERIJALA.1. Karakteristične vrijednosti parametara tla Efektivna Sloj
Διαβάστε περισσότεραGeometrijske karakteristike poprenih presjeka nosaa. 9. dio
Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino
Διαβάστε περισσότεραBetonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
Διαβάστε περισσότεραPT ISPITIVANJE PENETRANTIMA
FSB Sveučilišta u Zagrebu Zavod za kvalitetu Katedra za nerazorna ispitivanja PT ISPITIVANJE PENETRANTIMA Josip Stepanić SADRŽAJ kapilarni učinak metoda ispitivanja penetrantima uvjeti promatranja SADRŽAJ
Διαβάστε περισσότεραBetonske konstrukcije
SEUČILIŠTE U SPLITU FAKULTET GRAĐEINARSTA, ARHITEKTURE I GEODEZIJE Betonske konstrukcije Završni rad Antonia Pleština Split, 06 SEUČILIŠTE U SPLITU FAKULTET GRAĐEINARSTA,ARHITEKTURE I GEODEZIJE PROJEKT
Διαβάστε περισσότερα( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
Διαβάστε περισσότεραSVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD
SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU ZAVRŠNI RAD Osijek, 14. rujna 2017. Marijan Mikec SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU ZAVRŠNI RAD Izrada projektno-tehničke dokumentacije armiranobetonske
Διαβάστε περισσότεραOsnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Διαβάστε περισσότερα2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Διαβάστε περισσότερα1 Ulazni parametri programa Tutorial programa Primjeri riješeni programom... 58
SADRŽAJ: 1 Ulazni parametri programa... 1 1.1. Dimenzioniranje prema HRN EN 1992-1-1... 1 1.1.1. Dimenzioniranje pravokutnog presjeka na čisto savijanje... 1 1.1.2. Dvostruko armirani presjek opterećen
Διαβάστε περισσότεραGRANIČNA STANJA NOSIVOSTI BETONSKIH KONSTRUKCIJA SADRŽAJ
GRANIČNA STANJA NOSIVOSTI BETONSKIH KONSTRUKCIJA SADRŽAJ 1 FIZIKALNO-MEHANIČKA SVOJSTVA MATERIJALA... 2 1.1 Beton... 2 1.1.1 Računska čvrstoća betona... 6 1.1.2 Višeosno stanje naprezanja... 6 1.1.3 Razred
Διαβάστε περισσότεραANKERI TIPOVI, PRORAČUN I KONSTRUISANJE
KERI TIPOVI, PRORČU I KOSTRUISJE SPREGUTE KOSTRUKCIJE OD ČELIK I BETO STDRDI E 992-4- Proračun ankera za primenu u betonu E 992-4-2 Ubetonirani ankeri sa glavom E 992-4-3 nker kanali E 992-4-4 aknadno
Διαβάστε περισσότεραTRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Διαβάστε περισσότεραA MATEMATIKA Zadana je z = x 3 y + 1
A MATEMATIKA (.5.., treći kolokvij). Zdn je z 3 + os. () Izrčunjte ngib plohe u pozitivnom smjeru -osi. (b) Izrčunjte ngib pod ) u točki T(, ). () Izrčunjte z u T(, ). (5 bodov). Zdn je z 3 ln. () Izrčunjte
Διαβάστε περισσότεραNovi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
Διαβάστε περισσότεραPRESECI SA PRSLINOM - VELIKI EKSCENTRICITET
TEORIJA BETONSKIH KONSTRUKCIJA 1 PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET ODREĐIVANJE MOMENTA LOMA - "T" PRESEK Na skici dole su prikazane sve potrene geometrijske veličine, dijagrami dilatacija i napona,
Διαβάστε περισσότεραMasa, Centar mase & Moment tromosti
FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:
Διαβάστε περισσότεραPošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
Διαβάστε περισσότερα11 NAPREZANJA OD POPREČNE SILE
11 NAPREZANJA OD POPREČNE SILE 11.1 Uvod U poglavlju o ponašanju PB nosača pod rastućim opterećenjem razmotrili smo i djelovanje poprečne sile. Prisjetimo se da smo utvrdili kako pod djelovanjem poprečne
Διαβάστε περισσότεραOtpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
Διαβάστε περισσότεραPOVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA
POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica
Διαβάστε περισσότεραBETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar
BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj
Διαβάστε περισσότεραPismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Διαβάστε περισσότεραSVJEŽI BETON. Asistent: Josip Crnojevac, mag.ing.aedif. SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU
SJEŽI BETON Asistent: Josip Crnojevac, mag.ing.aedif. jcrnojevac@gmail.com SEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU JOSIP JURAJ STROSSMAYER UNIERSITY OF OSIJEK 1 Uvod Beton je umjetni građevni materijal
Διαβάστε περισσότεραNERASTAVLJIVE VEZE I SPOJEVI. Zakovični spojevi
NERASTAVLJIVE VEZE I SPOJEVI Zakovični spojevi Zakovice s poluokruglom glavom - za čelične konstrukcije (HRN M.B3.0-984), (lijevi dio slike) - za kotlove pod tlakom (desni dio slike) Nazivni promjer (sirove)
Διαβάστε περισσότεραPriveznice W re r R e o R p o e p S e l S ing n s
Priveznice Wire Rope Slings PRIVEZNICE OD ČEIČNO UŽEA (RAE) jenosruke SINE WIRE ROPE SINS Sanar EN P P P P P P P P P P P P ozvoljeno operećenje kg elemeni priveznice prekina jenokrako vešanje ) ouvaanje
Διαβάστε περισσότερα3525$&8158&1(',=$/,&(6$1$92-1,095(7(120
Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno
Διαβάστε περισσότεραObrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
Διαβάστε περισσότεραTABLICE AKTUARSKE MATEMATIKE
Na temelju članka 160. stavka 4. Zakona o mirovinskom osiguranju («Narodne novine», br. 102/98., 127/00., 59/01., 109/01., 147/02., 117/03., 30/04., 177/04., 92/05., 43/07., 79/07., 35/08., 40/10., 121/10.,
Διαβάστε περισσότεραVježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom
Kolegij: Obrada industrijskih otpadnih voda Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom Zadatak: Ispitati učinkovitost procesa koagulacije/flokulacije na obezbojavanje
Διαβάστε περισσότεραELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Διαβάστε περισσότεραNOSIVI DIJELOVI MEHATRONIČKIH KONSTRUKCIJA
NOSIVI DIJELOVI MEHATRONIČKIH KONSTRUKCIJA Zavareni spojevi - I. dio 1 ZAVARENI SPOJEVI Nerastavljivi spojevi Upotrebljavaju se prije svega za spajanje nosivih mehatroničkih dijelova i konstrukcija 2 ŠTO
Διαβάστε περισσότεραPREDNAPETI BETON 2 MATERIJALI, SUSTAVI I TEHNOLOGIJA PREDNAPINJANJA TE PODRUČJE PRIMJENE. Zahtjevi na beton u prednapetim konstrukcijama:
PREDNAPETI BETON 2 MATERIJALI, SUSTAVI I TEHNOLOGIJA PREDNAPINJANJA TE PODRUČJE PRIMJENE BETON Zahtjevi na beton u prednapetim konstrukcijama: Visoka tlačna čvrstoća (s niskim v/c odnosom) Mali iznos skupljanja
Διαβάστε περισσότεραOBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK
OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika
Διαβάστε περισσότεραVrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici.
Za adani sustav prostornih sila i j k () oktant i j k () oktant koje djeluju na materijalnu toku odredite: a) reultantu silu? b) ravnotežnu silu? a) eultanta sila? i j k 8 Vektor reultante: () i 8 j k
Διαβάστε περισσότερα3. REBRASTI GREDNI MOSTOVI
Građevinski fakultet Sveučilišta u Zagrebu predmet: MASIVNI MOSTOVI Skripte uz predavanja 3. REBRASTI GREDNI MOSTOVI SADRŽAJ: 3. REBRASTI GREDNI MOSTOVI... 0 3.1. OPĆENITO... 1 3.2. PRORAČUN PLOČE KOLNIKA
Διαβάστε περισσότεραIspitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Διαβάστε περισσότεραKaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Διαβάστε περισσότεραZadatak 4b- Dimenzionisanje rožnjače
Zadatak 4b- Dimenzionisanje rožnjače Rožnjača je statičkog sistema kontinualnog nosača raspona L= 5x6,0m. Usvaja se hladnooblikovani šuplji profil pravougaonog poprečnog preseka. Raster rožnjača: λ r 2.5m
Διαβάστε περισσότεραBETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar
BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj
Διαβάστε περισσότεραĈetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
Διαβάστε περισσότεραPRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
Διαβάστε περισσότεραProračun potrebne glavne snage rezanja i glavnog strojnog vremena obrade
Zaod a tehnologiju Katedra a alatne strojee Proračun potrebne glane snage reanja i glanog strojnog remena obrade Sadržaj aj ježbe be: Proračun snage kod udužnog anjskog tokarenja Glano strojno rijeme kod
Διαβάστε περισσότεραUnipolarni tranzistori - MOSFET
nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]
Διαβάστε περισσότεραnumeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Διαβάστε περισσότεραAustrotherm AMK element ispune za meduspratne konstrukcije
Austrotherm AMK element ispune za meduspratne konstrukcije standardne dimenzije punioca l/b/h = 50cm/40cm/16cm male težine i lako ugradiv idealan kod nadogradnje objekata To nikoga ne ostavlja hladnim!
Διαβάστε περισσότεραSANACIJE, REKONSTRUKCIJE I BETONSKIH KONSTRUKCIJA U VISOKOGRADNJI
GRAĐEVINSKI FAKULTET UNIVERZITETA U BEOGRADU Odsek za konstrukcije Katedra za materijale i konstrukcije (MIK) Master studije (28+28) I semester (2+2) Prof. dr Dušan Najdanović SANACIJE, REKONSTRUKCIJE
Διαβάστε περισσότεραCauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
Διαβάστε περισσότεραBETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar
BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj
Διαβάστε περισσότεραII. ODREĐIVANJE POLOŽAJA TEŽIŠTA
II. ODREĐIVANJE POLOŽAJA TEŽIŠTA Poožaj težišta vozia predstavja jednu od bitnih konstruktivnih karakteristika vozia s obzirom da ova konstruktivna karakteristika ima veiki uticaj na vučne karakteristike
Διαβάστε περισσότεραZdaci iz trigonometrije trokuta Izračunaj ostale elemente trokuta pomoću zadanih:
Zdaci iz trigonometrije trokuta... 1. Izračunaj ostale elemente trokuta pomoću zadanih: a) a = 1 cm, α = 66, β = 5 ; b) a = 7.3 cm, β =86, γ = 51 ; c) b = 13. cm, α =1 48`, β =13 4`; d) b = 44.5 cm, α
Διαβάστε περισσότερα6 Primjena trigonometrije u planimetriji
6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije
Διαβάστε περισσότεραKnauf zvučna zaštita. Knauf ploče Knauf sistemi Knauf detalji izvođenja. Dipl.inž.arh. Goran Stojiljković Rukovodilac tehnike suve gradnje
Knauf zvučna zaštita Knauf ploče Knauf sistemi Knauf detalji izvođenja Dipl.inž.arh. Goran Stojiljković Rukovodilac tehnike suve gradnje Knauf ploče Gipsana Gipskartonska Gipsano jezgro obostrano ojačano
Διαβάστε περισσότεραZnačenje indeksa. Konvencija o predznaku napona
* Opšte stanje napona Tenzor napona Značenje indeksa Normalni napon: indeksi pokazuju površinu na koju djeluje. Tangencijalni napon: prvi indeks pokazuje površinu na koju napon djeluje, a drugi pravac
Διαβάστε περισσότεραSrednjenaponski izolatori
Srednjenaponski izolatori Linijski potporni izolatori tip R-ET Komercijalni naziv LPI 24 N ET 1) LPI 24 L ET/5 1)2) LPI 24 L ET/6 1)2) LPI 38 L ET 1) Oznaka prema IEC 720 R 12,5 ET 125 N R 12,5 ET 125
Διαβάστε περισσότερα(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
Διαβάστε περισσότεραMATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Διαβάστε περισσότεραAkvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.
Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34
Διαβάστε περισσότεραBETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar
BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj
Διαβάστε περισσότεραIzravni posmik. Posmična čvrstoća tla. Laboratorijske metode određivanja kriterija čvratoće ( c i φ )
Posmična čvrstoća tla Posmična se čvrstoća se često prikazuje Mohr-Coulombovim kriterijem čvrstoće u - σ dijagramu c + σ n tanφ Kriterij čvrstoće C-kohezija φ -kut trenja c + σ n tan φ φ c σ n Posmična
Διαβάστε περισσότεραTrigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Διαβάστε περισσότεραProgram za tablično računanje Microsoft Excel
Program za tablično računanje Microsoft Excel Teme Formule i funkcije Zbrajanje Oduzimanje Množenje Dijeljenje Izračun najveće vrijednosti Izračun najmanje vrijednosti 2 Formule i funkcije Naravno da je
Διαβάστε περισσότεραApsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
Διαβάστε περισσότεραProgram testirati pomoću podataka iz sledeće tabele:
Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n
Διαβάστε περισσότερα2.7 Primjene odredenih integrala
. INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu
Διαβάστε περισσότεραANALIZA DJELOVANJA (OPTEREĆENJA) - EUROKOD
GRAĐEVINSKO - ARHITEKTONSKI FAKULTET Katedra za metalne i drvene konstrukcije Kolegij: METALNE KONSTRUKCIJE ANALIZA DJELOVANJA (OPTEREĆENJA) - EUROKOD TLOCRTNI PRIKAZ NOSIVOG SUSTAVA OBJEKTA 2 PRORAČUN
Διαβάστε περισσότεραARMATURA. EN EN (Sistem za označavanje čelika Dio 1- Nazivi čelika, Dio 2: Brojčani sistem )
1 ARMATURA Armatura predstavlja građevinski proizvod koji se koristi za armiranje betona. Čelik za prethodno naprezanje se takođe može smatrati armaturom, koja se koristi za prethodno napregnute konstrukcije.
Διαβάστε περισσότεραBIPOLARNI TRANZISTOR Auditorne vježbe
BPOLARN TRANZSTOR Auditorne vježbe Struje normalno polariziranog bipolarnog pnp tranzistora: p n p p - p n B0 struja emitera + n B + - + - U B B U B struja kolektora p + B0 struja baze B n + R - B0 gdje
Διαβάστε περισσότεραBETONSKE KONSTRUKCIJE (1) pismeni ispit (str. 1)
UNIVERZITET U NOVOM SADU 2012 03 FAKULTET TEHNIČKIH NAUKA datum: 07. April 2012 DEPARTMAN ZA GRAĐEVINARSTVO I GEODEZIJU BETONSKE KONSTRUKCIJE (1) pismeni ispit (str. 1) Zadatak 1 (100%) - eliminatorni
Διαβάστε περισσότεραMEHANIKA FLUIDA. Prosti cevovodi
MEHANIKA FLUIDA Prosti ceooi zaatak Naći brzin oe kroz naglaak izlaznog prečnika =5 mm, postaljenog na kraj gmenog crea prečnika D=0 mm i žine L=5 m na čijem je prenjem el građen entil koeficijenta otpora
Διαβάστε περισσότεραProračunski model - pravougaoni presek
Proračunski model - pravougaoni presek 1 ε b 3.5 σ b f B "" ηx M u y b x D bu G b h N u z d y b1 a1 "1" b ε a1 10 Z au a 1 Složeno savijanje - VEZNO dimenzionisanje Poznato: statički uticaji za (M i, N
Διαβάστε περισσότεραGEOTEHNIČKO INŽENJERSTVO
GEOTEHNIČKO INŽENJERSTVO POMOĆNI DIJAGRAMI, TABLICE I FORMULE ZA ISPIT dopunjeno za ak.god. 016/017 Slika 1. Parcijalni koeficijenti za GEO/STR za djelovanja, parametre materijala i otpore prema EC-7 Slika.
Διαβάστε περισσότεραBETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar
BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj
Διαβάστε περισσότερα