Ράβδος σε κατακόρυφη στροφική κίνηση που "ελευθερώνεται".
|
|
- Τασούλα Μιχαλολιάκος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Ράβδος σε αταόρφη στροφιή ίνηση πο "ελεθερώνεται". Μια ομογενής λινδριή ράβδος μάζας Μ =,5g αι μήος = 1,m είναι αρθρωμένη στο ένα άρο της αι μπορεί να στρέφεται χωρίς τριβές σε αταόρφο επίπεδο περί οριζόντιο άξονα πο φ διέρχεται από το άρο της. Φέρομε την ράβδο σε οριζόντια θέση αι την αφήνομε ελεύθερη να ετελέσει στροφιή ίνηση. Όταν η ράβδος έχει στραφεί ατά ία φ το μέτρο της ταχύτητας το έντρο μάζας της ράβδο μεταβάλλεται με ρθμό d m = 1,8. s α) Στη θέση ατή να βρείτε το ρθμό μεταβολής της στροφορμής της ράβδο ως προς τον άξονα περιστροφής. Όταν η ράβδος γίνεται αταόρφη με άποιο μηχανισμό αφαιρείται ο άξονας περιστροφής της ράβδο από τη άρθρωση αι η ράβδος ελεθερώνεται. Η αφαίρεση το άξονα περιστροφής διαρεί απειροελάχιστο χρόνο χωρίς την δράση εξωτεριών ροπών στη ράβδο αι την απώλεια ενέργειας. β) Να βρείτε τη ιαή ταχύτητα περιστροφής της ράβδο αμέσως την αφαίρεση το άξονα. γ) Να πολογίσετε την δύναμη πο ασεί η άρθρωση στη ράβδο αμέσως την αφαίρεση το άξονα. Μετά χρόνο t = 0,4s την αφαίρεση το άξονα αι την ελεθέρωση της ράβδο να πολογίσετε: δ) την ινητιή ενέργεια αι την στροφορμή της ράβδο ως προς τον άξονα περιστροφής της, ε) το ρθμούς μεταβολής της ινητιής ενέργειας αι της στροφορμής της ράβδο ως προς τον άξονα περιστροφής της. ν η ράβδος τπάει στο οριζόντιο δάπεδο αφού διαγράψει δύο στροφές την ελεθέρωσή της να βρείτε: στ) την απόσταση το έντρο μάζας της ράβδο από το δάπεδο μόλις ατή ελεθερώνεται. Δίνονται η ροπή αδράνειας της ράβδο ως προς άξονα άθετο σε ατή πο διέρχεται από το έντρο μάζας της Ι = 1 M 1, g = 10ms - αι π = 10. ι απαντήσεις 1 Βασίλης Τσούνης mail@btsounis.gr
2 α) I I M 1 I = M + M 1 1 I = M I = 1,Kgm 3 d d d d a a = 3rad / s dl = Στ = I a dl Kgm = 3,6 s φ Μg a β) ς βρούμε τη ιαή ταχύτητα στροφιής ίνησης της ράβδο αι την ταχύτητα το μόλις ατή γίνει αταόρφη αι την αφαίρεση το άξονα περιστροφής I ω = Μg M ω = Μg 3 3g ω= ω= 5rad / s = ω = 3m / s Μέτα την αφαίρεση το άξονα η ράβδος ετελεί: μία στροφιή ίνηση γύρω από ελεύθερο (νοητό) οριζόντιο άξονα άθετο στη ράβδο πο διέρχεται από το έντρο μάζας ατής, αι μια μεταφοριή ίνηση Υπολογισμός της ιαής ταχύτητας ω αμέσως την αφαίρεση το άξονα περιστροφής. 1η αντιμετώπιση: Η ταχύτητα το σημείο αμέσως είναι όσο αι (δεν πρόλαβε να αλλάξει...όπως αι η ) δηλαδή μηδέν... ω φ ω U = 0 ω ω = 0 = ω ω = ω ω= ω ω = 5rad / s (...δεν μπορούμε...χωρίς πολογισμούς να πούμε ότι δεν πρόλαβε να αλλάξει αι η ω γιατί άλλαξε ο άξονας περιστροφής...).
3 Με δεδομένη την παρατήρηση ότι η δεν πρόλαβε να αλλάξει, αμέσως =, αμέσως = = ω μπορούμε να αντιμετωπίσομε το πρόβλημα ενεργειαά αλλά αι με διατήρηση στροφορμής. η αντιμετώπιση : φού δεν πάρχον απώλειες ενέργειας = Ιω = Ιω + Μ / βλ. πόθεση M ω = M ω + Μ ω M ω = M ω + M ω ω= ω ω = 5rad / s η αντιμετώπιση : φού δεν πάρχον ροπές εξωτεριών δνάμεων ατά την διάρεια αφαίρεσης το άξονα περιστροφής έχομε διατήρηση στροφορμής... 3 L = L / βλ. πόθεση I ω= I ω + M 1 1 M ω= M ω + Mω 3 1 ω= ω ω = 5rad / s γ) ια τον πολογισμό της δύναμης της άρθρωσης μελετάμε την ίνηση το έντρο μάζας...πο είναι λιή...θεωρώντας όλες τις δνάμεις ως ασούμενες στο αι όλη της μάζα της ράβδο στο. Έστω ότι η άρθρωση ασεί μια δύναμη την οποία αναλύομε σε δύο σνιστώσες την ατινιή αι τη εφαπτομενιή. ράφομε για το αι τος δύο ατούς άξονες τον ο νόμο Newton... ΣF = Ma - Mg = M r - Mg = Mω r = 6,5N = Mg + Mω ΣF = Ma... ε = M a...αι επειδή ε = 0, άρα = = 6,5N M ω= M ω + Mω α () ε ε r Μg ( ) ω = 0 (γιατί;) θα έχομε
4 4 δ) Μέτα την αφαίρεση το άξονα, στη ράβδο ασείται μόνο το βάρος της πο όμως δεν έχει ροπή ως προς τον άξονα περιστροφής αι έτσι η ράβδος ετελεί σύνθετη ίνηση η οποία αποτελείται από : μια ομαλή στροφιή ίνηση - γύρω από ελεύθερο (νοητό) οριζόντιο άξονα άθετο στη ράβδο πο διέρχεται από το έντρο μάζας της - με σταθερή ιαή ταχύτητα ω = 5rad / s, αι μια μεταφοριή ίνηση ατά την οποία το της διαγράφει οριζόντια βολή. Την ίνηση ατή την μελετάμε σε δύο άξονες έναν οριζόντιο αι ένα αταόρφο. Στο οριζόντιο άξονα η ίνηση είναι εθύγραμμη ομαλή με = = σταθερή = 3m / s αι =t = 3t (S.I). Στον αταόρφο άξονα - πο ασείται το βάρος - έχομε ελεύθερη πτώση με σταθερή επιτάχνση a = g =10m / s αι με εξισώσεις ταχύτητας αι θέσης 1 = gt = 5t ( S. I ). Ύστερα από t = 0,4s η ράβδος θα έχει = 3m / s, = 4m / s, = + = 5 m / s αι ω = 5rad / s. ινητιή ενέργεια : K = K + K μετ στροφ 1 1 K= Μ + Iω 1 I = Μ I = 0,3Kgm K =, ,3.5 K = 35J Θα μπορούσαμε να βρούμε πόσο ατέβηε το αι να πάρομε Θ.Μ..Ε ή διατήρηση μηχανιής ενέργειας... = 5t =0,8m.. - αρχ =W B = Mg = αρχ + Mg 1 1 = Iω + M + Mg... = 35J Στροφορμή: L = I ω L= 0,3Kgm 5rad / s = gt L= 1,5Kgm / s = 10t (S.I) αι ω = ω
5 ε) K= Μ + Iω K= Μ Μ + Iω αι με απλή παραγώγιση επειδή = st αι ω = st παίρνομε dk d = Μ Μ + Iω dk d 1 = Μ dk 1 d dk = Μ = Μ a Mg dk = 100J / s Ρθμός μεταβολής της στροφορμής... dl = Στ = 0 στ) φού η ράβδος διαγράφει δύο πλήρεις στροφές τπάει στο έδαφος με το άτω άρο της αι την ίδια ατεύθνση πο είχε μόλις αφέθηε "ελεθερώθηε"..π 4π Χρόνος αθόδο: t k = T = s ω 5 1 Μετατόπιση έντρο μάζας ατά την άθοδο Δ = gtk... Δ = 3m πόσταση από το δάπεδο H = 3m+0,6m H = 3,6m = ω Δ H ω l 5
Διαγώνισμα στην κυκλική κίνηση.
Διαγώνισμα στην λιή ίνηση. Θέμα. (ια τις ερωτήσεις. έως αι.4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης αι δίπλα το γράμμα πο αντιστοιχεί στη σωστή πρόταση.).) Στην ομαλή λιή ίνηση ενός ινητού
Η κύλιση σφαίρας σε κατακόρυφη κυκλική στεφάνη
Η ύλιση σφαίρας σε αταόρφη λι στεφάνη Μια ομογενς μιρ σφαίρα έχει μάζα m ατίνας r αι ροπ αδράνειας ς προς άξονα πο διέρχεται από το έντρο της I = mr. Η σφαίρα λίεται χρίς ολίσθηση σε οριζόντιο αι εισέρχεται
Μην χάσουμε τον σύνδεσμο ή τον κινηματικό περιορισμό!!!
Μην χάσομε τον σύνδεσμο ή τον κινηματικό περιορισμό!!! Σε πάρα πολλές περιπτώσεις κατά τη µελέτη το στερεού, το πρόβληµα επιλύεται µε εφαρµογή το ο νό- µο το Νεύτωνα, τόσο για την περιστροφική κίνηση κάποιο
Άλλη μια ράβδος στρέφεται
Άλλη μια ράβδος στρέφεται B υ Η ομογενής ράβδος του σχήματος μάζας Μkg και μήκους m, είναι αρθρωμένη στο άκρο της Ο, γύρω από το οποίο μπορεί να στρέφεται χωρίς τριβές. Η ράβδος ισορροπεί, κρεμασμένη στο
ΛΥΣΕΙΣ. γ) 1Kg 2 m/s δ) 1Kg m/s 2 (Μονάδες 5)
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 0-0 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: /0/ ΛΥΣΕΙΣ ΘΕΜΑ ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό κάθε µίας από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα
Κρούσεις: Η διατήρηση της ορμής - παρανοήσεις και συμπεράσματα.
Κρούσεις: Η διατήρηση της ορμής - παρανοήσεις και σμπεράσματα. Γενικά για να ισχύει η διατήρηση της ορμής σε ένα σύστημα πρέπει το σύστημα των σγκροομένων σωμάτων να είναι μονωμένο, δηλαδή να μην ασκούνται
Ελαστική κρούση σώματος με άλλο ακίνητο πολύ μεγαλύτερης μάζας, λάθη- παρανοήσεις- συμπεράσματα.
Ελαστικ κρούση σώματος με άλλο ακίνητο πολύ μεγαλύτερης μάζας, λάθη- παρανοσεις- σμπεράσματα. Α. Μετωπικ ελαστικ κρούση μικρς σφαίρας με μεγάλη ακίνητη σφαίρα ελεύθερη για μετακίνηση Στο σχμα μια πολύ
w w w.k z a c h a r i a d i s.g r
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 4 Γραµµική ταχύτητα : ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ds. Γωνιακή ταχύτητα : dθ ω ωr Οµαλή κκλική κίνηση : σταθερό
ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β. β) Από το πυθαγόρειο θεώρηµα στο ορθογώνιο τρίγωνο ΚΛΣ ( ˆK = 90 0 ) παίρνου- 4 = 25λ 1
Απαντήσεις πανελληνίων εξετάσεων 08 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α γ Α δ Α3 α Α4 δ Α5. (α) Λ (β) Σ (γ) Λ (δ) Σ (ε) Λ ΘΕΜΑ Β Β. α) Σωστή απάντηση είναι η i. µε: β) Από το πθαγόρειο θεώρηµα στο ορθογώνιο τρίγωνο ΚΛΣ
Η τριβή στην κύλιση τροχού
Η τριβή στην ύλιση τροχού Στο εφάλαιο της δυναμιής στην ίνηση στερεού σώματος αι συγεριμένα ατά την ύλιση τροχού, πρωτεύοντα ρόλο έχει η τριβή που εμφανίζεται στην επαφή μεταξύ τροχού αι δαπέδου ύλισης.
ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Ο Στις ερωτήσεις -4 να βρείτε τη σωστή πρόταση.. Η ροπή αδράνειας ενός στερεού σώµατος εξαρτάται: α. Από τη ροπή της δύναµης που ασκείται στο στερεό. β. από
Κριτήριο αξιολόγησης στην οριζόντια βολή- κυκλική κίνηση
Κριτήριο αξιολόγησης στην οριζόντια βολή- κκλική κίνηση (Σε όλα τα παρακάτω θέματα το γήινο βαρτικό πεδίο θεωρείται περίπο ομογενές, γιατί οι βολές γίνονται σε μικρά ύψη και μικρές γεωγραφικές αποκλίσεις.)
1. Η αβαρής λεπτή ράβδος του διπλανού σχήµατος έχει
Αβαρής ράβδος πο στο άκρο της έχει µικρό σώµα ή δίσκο ελεύθερο ή δίσκο σταθερό Τρεις παρόµοιες ασκήσεις πο εστιάζον στη διαφορετική σµπεριφορά λικού σηµείο ή σώµατος πο κινείται µεταφορικά και σώµατος
Ισχύουν οι αρχές διατήρησης; Πώς εφαρµόζονται;
Ισχύον οι αρχές διατήρησης; Πώς εφαρµόζονται; - Ένα βλήµα σφηνώνεται σε ένα ξύλο πο είναι πακτωµένο στο έδαφος. Για την κρούση ατή ισχύει η αρχή διατήρησης της ορµής (Α..Ο.), για το σύστηµα βλήµα - ξύλο;
O φ L/2. Η ροπή της δύναμης F ως προς το σημείο Ο έχει μέτρο L 2
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 13 ΣΕΠΤΕΜΒΡΙΟΥ 007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:
f δ(b) = f B1 f B2 f δ(b) = = ρgy υ = 2gy υ + υ 2 υ - υ f. υ + υ - υ + υ υ + υ υ - υ f - f = ηχ 1 ηχ 2 υ - υ υ - υ υ + υ - υ + υ υ - υ
ΘΕΜΑ Α ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 4 ΑΠΡΙΛΙΟΥ 06 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΟΜΑ Α ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Α. β Α. α Α. β Α4. γ
Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ÊÁËÁÌÁÔÁ. λ 2
Επαναηπτικά Θέµατα ΟΕΦΕ 009 ΘΕΜΑ ο β δ 3 α γ 5. α Λάθος β Σωστό γ Σωστό δ Σωστό ε Λάθος ΘΕΜΑ ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ. Σωστό το β. Έστω r και r µε r > r οι αποστάσεις
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 28 Απριλίου 2013 ιάρκεια Εξέτασης: 2 ώρες ΑΠΑΝΤΗΣΕΙΣ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 03 Ε_3.Φλ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: Α ΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΜΑ Α Ηµεροµηνία: Κριακή 8 Απριλίο 03 ιάρκεια Εξέτασης: ώρες Α. δ Α. γ Α3. β Α4. δ Α5. α Σ, β Λ, γ Σ, δ Σ, ε Λ. ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Β
ΠΑΡΑΤΗΡΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ
ΠΑΡΑΤΗΡΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ Στα προβλήματα ατού το κεφαλαίο, το πρώτο πο πρέπει να διακρίνομε είναι αν έχομε ισορροπία, μόνο στροφική κίνηση (δηλαδή γύρω από σταθερό άξονα περιστροφής)
Βασική θεωρία & μεθοδολογία
Ελεύθερη πτώση Σημειώσεις Φσικής Βασική θεωρία & μεθοδολογία Οριζόντια βολή Αν από κάποιο ύψος h εκτοξεύσομε ένα σώμα με οριζόντια ταχύτητα 0 και κατά τη διάρκεια της κίνησής το δέχεται μόνο το βάρος το,
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΘΕΜΑ B B1. Σωστή απάντηση είναι η
ΣΕΛΙΔΑ 1 ΑΠΟ 7. Α2. Το πλάτος φθίνουσας μηχανικής αρμονικής ταλάντωσης δίνεται από την εξίσωση A A 0
ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ 07 ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α Α4 να γράψετε στο τετράδιο σας τον αριθμό της πρότασης και δίπλα το γράμμα πο αντιστοιχεί στη φράση, η
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α
3 o ΔΙΑΓΩΝΙΣΜΑ ΦΕΒΡΟΥΑΡΙOΣ 0: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. δ. γ 3. α 4. δ 5. α.σ β.λ γ.σ δ.λ ε.λ ΘΕΜΑ Β. Σωστή είναι
Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΠΑΝΤΗΣΕΙΣ
Επαναληπτικά Θέµατα ΟΕΦΕ 00 Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ ο. γ.. γ.. δ. 4. δ 5. α Λάθος β. Σωστό γ. Σωστό δ. Σωστό ε. Λάθος ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ ο Α. Α. γ Σωστό q Α. Ε=U E
Επανάληψη Θεωρίας και Τυπολόγιο
ΕΠΑΝΑΛΗΨΗ ΣΤΗΝ ΠΡΟΕΤΟΙΜΑΣΙΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Επανάληψη Θεωρίας και Τπολόγιο ΕΞΙΣΩΣΕΙΣ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ Γενικές έννοιες Περιοδική ονομάζεται η κίνηση πο επαναλαμβάνεται κατά τον
Ηµεροµηνία: Τρίτη 5 Ιανουαρίου 2016 ιάρκεια Εξέτασης: 2 ώρες ΑΠΑΝΤΗΣΕΙΣ
ΤΑΞΗ: Β ΓΕΝΙΟΥ ΛΥΕΙΟΥ ΠΡΟΑΝΑΤΟΛΙΜΟ: ΘΕΤΙΩΝ ΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΦΥΙΗ Ηµεροµηνία: Τρίτη 5 Ιανουαρίου 6 ιάρεια Εξέτασης: ώρες ΑΠΑΝΤΗΕΙ ΘΕΜΑ Α A. β A. δ A. α A. γ A5. α. Λάθος β. Λάθος γ. ωστό δ. Λάθος ε. ωστό
ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 2017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ
5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό
1η Επαναληπτική συνδυαστική άσκηση στη Φυσική της Α Λυκείου.
η Επαναληπτική σνδαστική άσκηση στη Φσική της Α Λκείο. Δύο σώματα με μάζες m = 6Kg και m = 4kg είναι δεμένα στα άκρα αβαρούς και μη εκτατού νήματος το οποίο διέρχεται από το αλάκι τροχαλίας αμελητέας μάζας.
Physica by Chris Simopoulos
ΜΗΧΑΝΙΚΗ ΕΝΕΡΓΕΙΑ - ΘΜΚΕ Η μηχανική ενέργεια είναι το άθροισμα της κινητικής και της δναμικής ενέργειας το σώματος. Όπως είναι γνωστό οι σχέσεις πο δίνον τις ενέργειες ατές είναι: E = 1.m. (7) και Ε Δ
ÖÑÏÍÔÉÓÔÇÑÉÁ ÐÑÉÓÌÁ ÐÁÔÑÁ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 25 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β
ΘΕΜΑ Α ΦΥΣΙΗ ΑΤΕΥΘΥΝΣΗΣ Γ ΥΕΙΟΥ & ΕΠΑ.. Β 5 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. γ, Α. β, Α3. γ, Α4. γ Α5. α. Σ, β. Σ γ. δ. ε. Σ ΘΕΜΑ Β Β. Σωστό το γ. θα αέρας νερό Αρχικά Snell µεταξύ νερού αέρα n ηµ θ n ηµ90, Όµως
2o Επαναληπτικό διαγώνισμα προσομοίωσης Φυσικής Β Λυκείου Θετικού Προσανατολισμού
o Επαναληπτικό διαγώνισμα ομοίωσης Φσικής Β Λκείο Θετικού Προσανατολισμού ΘΕΜΑ Α : (Για τις ερωτήσεις Α. έως και Α.5 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα πο αντιστοιχεί
ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ Α A1 α Α2 β Α3 β Α4 α Α5. α Σ β Σ γ Λ δ Λ ε Σ
ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΡΙΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΘΕΜΑ Α α Α β Α β Α α Α5. α Σ β Σ γ Λ
Οι δίσκοι και η ροπή της τριβής
Οι δίσκοι και η ροπή της τριβής Οριζόντιος οµογενής δίσκος (1) µάζας 1 =1kg, και ακτίνας R=, περιστρέφεται µε γωνιακή ταχύτητα µέτρου ω 1 =10rad/s κατά τη φορά κίνησης των δεικτών του ρολογιού. εύτερος,
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 25 ΜΑΪΟΥ 2012
ΦΥΣΙΗ ΑΤΕΥΘΥΝΣΗΣ Γ ΥΕΙΟΥ & ΕΠΑ.. Β 5 ΜΑΪΟΥ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. γ, Α. β, Α3. γ, Α4. γ Α5. α. Σ, β. Σ γ. δ. ε. Σ ΘΕΜΑ Β Β. Σωστό το γ. θα αέρας νερό Αρχικά Snell µεταξύ νερού αέρα n ηµ θ n ηµ9, Όµως n και
2. Στο σύστηµα αξόνων του πιο πάνω σχήµατος, να προσδιορίσετε τις συντεταγµένες. 3. Να βρεθεί το µέτρο της τελικής ταχύτητας υ Τ
ιονύσης Μητρόπολος Β κείο Οριζόντια βολή Άσκηση στην οριζόντια βολή ο (0,0) x Η h Τ φ Μεταλλική σφαίρα µάζας m = 0,4kg εκτοξεύεται οριζόντια από την άκρη της ταράτσας κτιρίο ύψος Η = 0m, µε ταχύτητα µέτρο
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α Α.1. Η γωνιακή επιτάχυνση ενός οµογενούς δίσκου που στρέφεται γύρω από σταθερό άξονα, που διέρχεται από το κέντρο
Ελαστική κρούση σώµατος µε ράβδο που µπορεί να στρέφεται γύρω από το άκρο της. Πότε µεγιστοποιείται η µεταφορά ενέργειας;
. Μητρόπολος Μηχανική Στερεού σώµατος Ελαστική κρούση σώµατος µε ράβδο πο µπορεί να στρέφεται γύρ από το άκρο της. Πότε µεγιστοποιείται η µεταφορά ενέργειας; ο,, ΠΡΙΝ ΜΕΤ Η ράβδος το σχήµατος έχει µάζα,
ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 5 ΙΟΥΝΙΟΥ 04 ΕΞΕΤΑΖΟΕΝΟ ΑΘΗΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Ενδεικτικές Λύσεις Θέµα Α
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Ενδεικτικές Λύσεις Θέµα Α Α.1. Ενας δίσκος στρέφεται γύρω από άξονα που διέρχεται από το κέντρο του και είναι κάθετος στο επίπεδό του. Η τιµή
ΑΠΑΝΤΗΣΕΙΣ. Γ1. Μελέτη κίνησης τροχού από τη θέση (Β) μέχρι τη θέση (Γ)
ΑΠΑΝΤΗΣΕΙΣ Θέμα Γ Γ1. Μελέτη κίνησης τροχού από τη θέση (Β) μέχρι τη θέση (Γ) ημφ = H/d d = H/ημφ d = 2Η d = 70m d = d 1 + d 2 d 2 = d d 1 d 2 = 10m h 2 = d 2 ημφ h 2 = 5m Εφαρμόζουμε ΑΔΜΕ και παίρνουμε
Μηχανικό Στερεό. Μια εργασία για την Επανάληψη
Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Απλές προτάσεις Για τον έλεγχο της κατανόησης και εφαρμογής των εννοιών Δογραματζάκης Γιάννης 9/5/2013 Απλές προτάσεις για τον έλεγχο της κατανόησης και εφαρμογής
Μια κρούση, δύο ολισθήσεις και μια ενδεχόμενη κύλιση
Μια κρούση, δύο ολισθήσεις και μια ενδεχόμενη κύλιση Δύο πανομοιότυπες ομογενείς και λείες σφαίρες και με μάζες m=0,1kg και ακτίνες R=0,1m βρίσκονται ακίνητες σε λείο οριζόντιο επίπεδο. Εκτοξεύουμε τη
Η στροφορμή σώματος που στρέφεται περί άξονα που διέρχεται από cm.
Η τροφορμή ώματος πο τρέφεται περί άξονα πο διέρχεται από. ενική πρόταη: Η τροφορμή ενός τερεού ώματος πο τρέφεται με γωνιακή ταχύτητα, περί άξονα κάθετο το επίπεδό το πο διέρχεται από το κέντρο μάζας
Απολυτήριες εξετάσεις Γ Τάξης Ημερήσιου Γενικού Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ
Αποτήριες εξετάσεις Γ Τάξης Ημερήσιο Γενικού Λκείο ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 5 05 01 ΘΕΜΑ Α A1. Σωστό το γ. A. Σωστό το β. A. Σωστό το γ. A4. Σωστό το γ. A5. α. Σωστό β. Σωστό γ. Λάθος δ. Λάθος ε. Σωστό ΘΕΜΑ
Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ÅÐÉËÏÃÇ
Επαναληπτικά Θέµατα ΟΕΦΕ 011 1 Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΜΑ 1 ο 1. δ. β. γ 4. β 5. α-λ, β-σ, γ-σ, δ-σ, ε-λ. ΘΕΜΑ ο ΑΠΑΝΤΗΣΕΙΣ 1. Τα δύο σώµατα αφήνονται να κινηθούν χωρίς αρχική ταχύτητα µε την επίδραση
ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ Ο.Π Β Λ Γ Λ ΧΡΗΣΤΟΣ ΚΑΡΑΒΟΚΥΡΟΣ ΙΩΑΝΝΗΣ ΤΖΑΓΚΑΡΑΚΗΣ
ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ Ο.Π Β Λ Γ Λ 5//08 ΧΡΗΣΤΟΣ ΚΑΡΑΒΟΚΥΡΟΣ ΙΩΑΝΝΗΣ ΤΖΑΓΚΑΡΑΚΗΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α4 και δίπλα το γράμμα που αντιστοιχεί
όµως κινείται εκτρέπεται από την πορεία του, ένδειξη ότι το σωµατίδιο δέχονται δύναµη, από τα στατικά µαγνητικά πεδία. ανάλογη:
Φσικός ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ ( Fields) 47 ΥΝΑΜΗ ΠΟΥ ΑΣΚΕΙ ΤΟ ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ ΣΕ ΚΙΝΟΥΜΕΝΟ ΦΟΡΤΙΟ ύναµη Lorentz Ένα ακίνητο φορτισµένο σωµατίδιο (0) δεν αντιδρά µέσα σε ένα στατικό µαγνητικό πεδίο. ηλαδή δεν
4ο Επαναληπτικό Διαγώνισμα Φυσικής Α τάξης Λυκείου
4ο Επαναληπτικό Διαγώνισμα Φσικής Α τάξης Λκείο Θέμα Α: (ια τις ερωτήσεις Α. έως και Α.4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα πο αντιστοιχεί στη σωστή πρόταση.) Α. Δύο
Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ
Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ. Αρµονικό κύµα διαδίδεται σε ένα εθύγραµµο ελαστικό µέσο. Όλα τα σηµεία το µέσο διάδοσης, πο ταλαντώνονται λόγω της διέλεσης
Μηχανική Στερεού Σώματος
Και αν κόβαμε το νήμα Δ; Θέμα Δ 017 μια παραλλαγή Μία ομογενής άκαμπτη ράβδος Α μήκους L=m σταθερής διατομής έχει μάζα Μ=4Kg. Η ράβδος ισορροπεί σε οριζόντια θέση και το άκρο της Α συνδέεται με άρθρωση
ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ
Ονοµατεπώνυµο: Διάρκεια: (3 45)+5=50 min Τµήµα: ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ Ζήτηµα ο Ένα στερεό µπορεί να στρέφεται γύρω από σταθερό άξονα και αρχικά ηρεµεί. Σε µια στιγµή δέχεται (ολική) ροπή
Physics by Chris Simopoulos
ΒΟΛΗ ΣΕ ΒΑΡΥΤΙΚΟ ΠΕΔΙΟ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΑΠΟ ΥΨΟΣ. Οι καμπλόγραμμες βολές θεωρούνται σύνθετες κινήσεις. Έτσι κάθε ανσματικό μέγεθος όπως ταχύτητα, επιτάχνση κλ.π θα αναλύεται σε δύο άξονες έναν οριζόντιο
Επειδή η διαφορά φάσης των δύο ταλαντώσεων είναι Δ φ = rad, για το. πλάτος Α της συνισταμένης ταλάντωσης έχουμε: (2)
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 06 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α δ Α β Α γ Α δ Α5 α Σ, β Σ, γ Λ, δ
ΑΠΑΝΤΗΣΕΙΣ. Η κινητική ενέργεια του κυλίνδρου λόγω της μεταφορικής του κίνησης δίνεται από την σχέση: Κ μετ = 1 m u 2 cm
ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΟΥ ΛΥΕΙΟΥ Μ.ΤΕΤΑΡΤΗ 0 ΑΠΡΙΛΙΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΗ ΘΕΤΙΗΣ - ΤΕΧΝΟΛΟΓΙΗΣ ΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ Θέμα 1 ο 1. γ. γ 3. α 4. δ 5. α) Λ β) Σ γ)
Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ
Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α:. Σωστό το Γ.. Σωστό το Β. 3. Σωστό το Γ. 4. Σωστό το Γ. 5. Σωστά τα Β, Γ, Δ. ΘΕΜΑ Β:. Σωστό το Γ. Αιτιολόγηση: Έστω Κ και Κ η κινητική ενέργεια το σώµατος
ιονύσης Μητρόπουλος Ζ Ο
Πρισµατικό σώµα και κύλινδρος (ΙΙ) Κίνηση σε οριζόντιο επίπεδο (Σ 2 ) (Σ 1 ) A F εξ Ζ Ο Πρισµατικό σώµα (Σ 2 ) µάζας m = 4kg και κύλινδρος (Σ 1 ) ίσης µάζας m και ακτίνας R = 0,2m βρίσκονται πάνω σε οριζόντιο
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014
ΘΕΜΑΤΑ ΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΩΝ ΕΞΕΤΑΣΕΩΝ 04 ΦΥΣΙΗ ΑΤΕΥΘΥΝΣΗΣ Θέμα Α Στις ερωτήσεις Α-Α4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και, δίπλα, το γράμμα που αντιστοιχεί στη φράση η οποία συμπληρώνει
Μια κινούμενη τροχαλία.
Μια κινούμενη τροχαλία. Γύρω από µια τροχαλία µάζας Μ0,8kg έχοµε τλίξει ένα αβαρές νήµα, στο άκρο το ο- ποίο έχοµε δέσει ένα σώµα µάζας m0,kg. γκρατούµε τα δο σώµατα µε τα χέρια µας, ώστε το νήµα να είναι
ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ
ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ Αντικείμενο: Κεφάλαιο 4 Θέμα 1ο Α. Να επιλέξετε τη σωστή απάντηση που ακολουθεί κάθε μια από τις πιο κάτω προτάσεις α. Ένα σώμα ηρεμεί εκτός πεδίου βαρύτητας. Ασκούμε
Εσωτερικές Αλληλεπιδράσεις Νο 3.
Το θέμα του 05, (επαναληπτικές) Εσωτερικές λληλεπιδράσεις Νο 3. Δύο ράβδοι είναι συνδεδεμένες στο άκρο τους και σχηματίζουν σταθερή γωνία 60 ο μεταξύ τους, όπως φαίνεται στο Σχήμα. Οι ράβδοι είναι διαφορετικές
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Α ΦΑΣΗ
ΟΜΟΠΟΝ ΙΑ ΕΠΑΙ ΕΥΤΙΩΝ ΦΡΟΝΤΙΤΩΝ ΕΛΛΑ Ο (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΑ ΘΕΜΑΤΑ 6 Α ΦΑΗ Ε_3.ΦλΘ(α) ΤΑΞΗ: Β ΓΕΝΙΟΥ ΛΥΕΙΟΥ ΠΡΟΑΝΑΤΟΛΙΜΟ: ΘΕΤΙΩΝ ΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΦΥΙΗ Ηµεροµηνία: Τρίτη 5 Ιανουαρίου
% ] Βαγγέλης Δημητριάδης 4 ο ΓΕΛ Ζωγράφου
1. Ομογενής και ισοπαχής ράβδος μήκους L= 4 m και μάζας M= 2 kg ισορροπεί οριζόντια. Το άκρο Α της ράβδου συνδέεται με άρθρωση σε κατακόρυφο τοίχο. Σε σημείο Κ της ράβδου έχει προσδεθεί το ένα άκρο κατακόρυφου
ΘΕΜΑ Α. 2 ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΤΕΡΙΝΗΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2015 ΤΑΞΗ: Β ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ Ο.Π.
ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΤΕΡΙΝΗΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 15 ΤΑΞΗ: Β ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Ονοματεπώνμο : Κατερίνη 1 Μαΐο 15 ΘΕΜΑ Α (Μονάδες 5x5=5) Α1. Ο
Εξέταση Προσοµοίωσης Γ τάξης Ενιαίου Λυκείου Απρίλης 2013 Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης Συνοπτικές Λύσεις. Θέµα Β
Φσική Γ Λκείο Α.1. Α.2. Α.3. Α.. Α.1. Εξέταση Προσοµοίωσης Γ τάξης Ενιαίο Λκείο Απρίλης 2013 Φσική Θετικής και Τεχνολογικής Κατεύθνσης Σνοπτικές Λύσεις (δ) (ϐ) (δ) (γ) Λ, Σ, Σ, Σ, Σ Θέµα Α Θέµα Β Β.1.
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α Α.1. Ενα στερεό σώµα περιστρέφεται γύρω από ακλόνητο άξονα. Εάν διπλασιαστεί η στροφορµή
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1- Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή
ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΑΥΕΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014
ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΑΥΕΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/04 ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα πο αντιστοιχεί στη ράση η οποία τη
ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ Α2. β Α3. γ Α4. γ Α5. α. Σ, β. Λ, γ. Σ, δ. Λ, ε. Λ. ΘΕΜΑ Β Β 1. β. F ελ1. F ελ2. Θέση Φυσικού Μήκους. F ελ.
ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. γ Α. β Α. γ Α4. γ Α5. α. Σ, β. Λ, γ. Σ, δ. Λ, ε. Λ ΘΕΜΑ Β Β. β F ελ F ελ Θέση Φυσικού Μήκους A F ελ F ελ Σ m A W W Τ W Τ W Τ Τ W W Στη θέση ισορροπίας για κάθε σύστημα ισχύει ΣF=0:
Τεχνολογικό Πανεπιστήµιο Κύπρου
Τεχνολογιό Πανεπιστήµιο Κύπρου Σχολή Μηχανιής αι Τεχνολογίας Τμήμα Πολιτιών Μηχανιών αι Μηχανιών Γεωπληροφοριής ΦΥΣΙΚΗ (ΠΟΜ 114) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Διδάσων/ Συντονιστής μαθήματος Εξάμηνο Δρ Ευάγγελος Αύλας
Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ÏÅÖÅ
Επαναληπτικά Θέµατα ΟΕΦΕ 0 Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΜΑ ο. δ. β. γ 4. β 5. α-λ, β-σ, γ-σ, δ-σ, ε-λ. ΘΕΜΑ ο ΑΠΑΝΤΗΣΕΙΣ. Τα δύο σώµατα αφήνονται να κινηθούν χωρίς αρχική ταχύτητα µε την επίδραση µόνο
3. γ Αφού οι άνθρωποι πλησιάζουν τον άξονα περιστροφής Ι 2 < Ι 1 ω1 Ι2
ΕΠΑΝΑΛΗΠΙΚΕΣ ΑΠΟΛΥΗΡΙΕΣ ΕΞΕΑΣΕΙΣ Γ ΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΕΡΑ ΙΟΥΛΙΟΥ 005 ΕΞΕΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΜΑ Ο, β,, 4 δ 5 Σ β Σ Σ δ Σ ε Λ ΘΕΜΑ Ο π I ωq, ω π I ωq I I ωq π I Ι Ι β λ λ 4 δεσμοί d
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Στερεό (Μέχρι Ροπή Αδράνειας) Γ ΛΥΚΕΙΟΥ. Α)Σε κάθε μια από τις ερωτήσεις (1-4) να σημειώσετε στο τετράδιό σας τη σωστή απάντηση.
ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ Στερεό (Μέχρι Ροπή δράνειας) Γ ΛΥΚΕΙΟΥ ΘΕΜ 1 Ο : )Σε κάθε μια από τις ερωτήσεις (1-4) να σημειώσετε στο τετράδιό σας τη σωστή απάντηση. 1. Για ένα ζεύγος δυνάμεων Η ροπή του, εξαρτάται
ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. 1. Δ 2. Α 3. Β 4. Α 5. Α Β. 1.Λ 2.Λ 3.Λ 4.Σ 5.Λ Ν 1 Ν 2
ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α Δ Α Β 4 Α 5 Α Β Λ Λ Λ 4Σ 5Λ Ν Ν ΘΕΜΑ Β Β Σωστή η α) Αρχικά απο την ισορροπία έχουμε N+ N = w= 00N και ως προς το
ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΡΓΑΣΙΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2015 ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ
ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΡΓΑΣΙΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2015 ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ Οριζόντια βολή: Είναι η κίνηση (παραβολική τροχιά) που κάνει ένα σώμα το οποίο βάλλεται με οριζόντια ταχύτητα U 0 μέσα στο πεδίο βαρύτητας
ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 A ΦΑΣΗ ΦΥΣΙΚΗ
ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΑΘΗΑ: ΦΥΣΙΚΗ Ημερομηνία: Πέμπτη 4 Ιανοαρίο 08 Διάρκεια Εξέτασης: ώρες ΘΕΑ Α ΑΠΑΝΤΗΣΕΙΣ ΕΡΩΤΗΣΗ Α Α Α3 Α4 Α5 ΑΠΑΝΤΗΣΗ β α γ α α. Λάθος ΘΕΑ Β Β Σωστή
ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 5 ΙΟΥΝΙΟΥ 04 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ)
ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα πο αντιστοιχεί στη σωστή απάντηση Η ταχύτητα διάδοσης ενός αρμονικού κύματος: α είναι πάντοτε ίση
Οι συνθήκες ισορροπίας του στερεού σώματος και η λανθασμένη ερώτηση Α.3 της Φυσικής των Πανελλαδικών εξετάσεων 2014.
Οι συνθήκες ισορροπίας του στερεού σώματος και η λανθασμένη ερώτηση.3 της Φυσικής των Πανελλαδικών εξετάσεων 04.. ερεό που ισορροπεί μεταφορικά και στροφικά. Έστω ένα στερεό που ισορροπεί μεταφορικά και
Επειδή η διαφορά φάσης των δύο ταλαντώσεων είναι Δ φ = rad, για το. πλάτος Α της συνισταμένης ταλάντωσης έχουμε: (2)
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 06 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α δ Α β Α γ Α δ Α5 α Σ, β Σ, γ Λ, δ
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 03 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. c Α. d Α3. c Α4. c Α5. Σ, Λ, Σ, Σ, Λ ΘΕΜΑ Β Β. Σωστή απάντηση είναι η (γ). Γνωρίζουμε (σχολικό βιβλίο, σελ. 3) ότι ένα
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΦΥΣΙΚΗ
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΦΥΣΙΚΗ Ον/μο:.. Ύλη:Στερεό Είμαστε τυχεροί που είμαστε δάσκαλοι Γ Λυκείου Θετ-Τεχν Κατ. 09-0-14 Θέμα 1 ο : 1) Σε ένα μολύβι που ισορροπεί σε οριζόντια επιφάνεια ασκούμε τις δυνάμεις F 1
Αντιμετώπιση προβλημάτων που αλλάζουν την στροφική τους κατάσταση, εξαιτίας εξωτερικών ροπών
Αντιμετώπιση προβλημάτων που αλλάζουν την τους κατάσταση, εξαιτίας εξωτερικών ροπών Σ' ένα πρόβλημα, παρατηρώ αλλαγή στη κατάσταση ενός στερεού (ή συστήματος στερεών), καθώς αυτό δέχεται εξωτερικές ροπές.
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Α ΦΑΣΗ. Ηµεροµηνία: Πέµπτη 5 Ιανουαρίου 2017 ιάρκεια Εξέτασης: 2 ώρες ΑΠΑΝΤΗΣΕΙΣ
ΕΠΑΝΑΛΗΠΤΙΑ ΘΕΜΑΤΑ 7 Ε_3.ΦλΘ(α) ΤΑΞΗ: Β ΓΕΝΙΟΥ ΛΥΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΗ ΘΕΜΑ Α Ηµεροµηνία: Πέµπτη 5 Ιανοαρίο 7 ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ ΕΡΩΤΗΣΗ Α Α Α3 Α4 ΑΠΑΝΤΗΣΗ γ
Παίζοντας με ένα γιο γιο
Παίζοντας με ένα γιο γιο Ένα γιο γιο είναι κατασκευασμένο από ένα λεπτό σωλήνα μάζας m Σ και ακτίνας =π/4 και δύο ομογενείς δίσκους με μάζα m και ακτίνα 0 = ο καθένας. Τα κέντρα των τριών σωμάτων είναι
γνωρίζουµε ότι δεν καταφέρνει να κάνει ανακύκλωση. Β. Καθώς η ράβδος κατέρχεται και περνά από την
Μηδενική ύναµη Από Άξονα Ένας κινητήρας φέρει τροχαλία και συνδέεται µέσω ιµάντα µε µία ράβδο µάζας M=3kg και µήκους =5 όπως φαίνεται στο σχήµα. Με τον τρόπο αυτό η ράβδος µπορεί να στρέφεται αριστερόστροφα
1ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 30 Οκτώβρη 2016 Φυσική Προσανατολισµού - Μηχανική - Ι. Ενδεικτικές Λύσεις. Θέµα Α
1ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 30 Οκτώβρη 2016 Φυσική Προσανατολισµού - Μηχανική - Ι Ενδεικτικές Λύσεις Θέµα Α Α.1 Η εκτόξευση ενός σώµατος µικρών διαστάσεων από ένα ύψος h µε ορι- Ϲόντια
= = = = 2. max,1 = 2. max,2
ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ ΑΠΡΙΛΙΟΥ 03 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. α Α. β Α3. β Α. γ Α5. α) Σ β) Λ γ)
[1kgm 2, 5m/s, 3,2cm, 8rad/s][1kgm 2, 5m/s, 3,2cm, 8rad/s]
ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 5: ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΕΡΓΟ ΔΥΝΑΜΗΣ ΣΤΗ ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ 34. Μία κατακόρυφη ράβδος μάζας μήκους, μπορεί να περιστρέφεται στο κατακόρυφο επίπεδο γύρω από
Ακόμη μια σύνθετη κίνηση δοκού
κόμη μια σύνθετη κίνηση δοκού Β Η δοκός Β το σχήματος έχει μάζα m και μήκος. Στο άκρο της δοκού πάρχον δύο μικρές προεξοχές αμελητέας μάζας. Με την βοήθεια τν δύο προεξοχών η δοκός στηρίζεται σε δύο οριζόντια
ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 2018: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ
5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 018: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1α. (δ) Α1β. (α) Αα. (α) Αβ. (δ) Α3α. (β) Α3β. (γ) Α4α. (β)
Γ τάξη Γενικού Λυκείου: Διαγώνισμα Φυσικής Κατεύθυνσης-Απαντήσεις
Γ τάξη Γενικού Λκείο: Διαγώνισμα Φσικής Κατεύθνσης-Απαντήσεις Θέμα Α: -γ, -γ, -δ, -α, 5(α-Λ, β-λ, γ-σ, δ-λ, ε-σ) Θέμα B: Β. = + = ± = + + = + ± m m m m m = + + =,8J ή =,J άρα σωστή η πρόταση (γ). n Β.
ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1 α Α2 δ Α3 γ Α4 β Α5 α Σ, β Λ, γ Σ, δ Σ, ε Λ.
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 07 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α α Α δ Α3 γ Α4 β Α α
Σύστημα σωμάτων vs Στερεό σώμα
Σύστημα σωμάτων vs Στερεό σώμα Μια σφαίρα μάζας Μ και ακτίνας R είναι συνδεμένη με ράβδο μήκους l και μάζας m μέσω ενός κατακόρυφου άξονα περιστροφής, έτσι ώστε να υπάρχει η δυνατότητα περιστροφής της
Συνταγολόγιο Φυσικής Μηχανική Στερεού Σώµατος. Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός.
Συνταγολόγιο Φυσικής Μηχανική Στερεού Σώµατος Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός http://perifysikhs.wordpress.com 1 Κίνηση Ράβδου σε κατακόρυφο επίπεδο Εστω µια οµογενής ϱάβδος ΟΑ µάζας Μ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ
ΠΡΟΒΛΗΜΑ 1 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ Η λεπτή, ομογενής ράβδος ΟΑ του σχήματος έχει μήκος, μάζα και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο ακλόνητο άξονα (άρθρωση) που διέρχεται
Φ3-4o0-0 α) ħ β) ħ γ) δ) Ι r 4. Σφαίρα µάζας κινείται µε σταθερή ταχύτητα και σγκρούεται ελαστικά µε τον κατακόρφο τοίχο το σχήµατος. Αν η γωνία πρόσπ
Φ3-4o0-0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ): ΦΥΣΙΚΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΚΡΟΥΣΕΙΣ ΘΕΜΑ Α Στις ερωτήσεις -5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης
= L 2 = L. x L. x c L = L c. = x = 0 = 6. dv dt = = = σχέση x
ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΤΩΝ ΠΡΟΒΛΗΜΑΤΩΝ ΤΗΣ ΠΡΟΟΔΟΥ ΣΤΗ ΦΥΣΙΚΗ I (//4) ο ΘΕΜΑ: Μια υλινδριή ανομοιογενής ράδος μήους έχει πυνότητα που δίνεται από τη σχέση ρ ( ) ρ όπου c θετιή σταθερά αι η απόσταση από τη
Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ
Προτεινόμενα θέματα Πανεαδικών εξετάσεων Φσική Θετικής και Τεχνοογικής Κατεύθνσης o ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Προτεινόμενα θέματα Πανεαδικών εξετάσεων στη Φσική Θετικής και Τεχνοογικής Κατεύθνσης - ο (γ), (δ), (γ),
12 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Αρχή διατήρησης στροφορμής
1 η Εβδομάδα Δυναμική Περιστροφικής κίνησης Αρχή διατήρησης στροφορμής Βασικές εξισώσεις Στροφορμή υλικού σημείου μάζας m ως προς σημείο Ο. L = r p = m( r υ) Στροφορμή στερεού σώματος που περιστρέφεται