1. Preliminarii 1.1 Ce este un algoritm?

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1. Preliminarii 1.1 Ce este un algoritm?"

Transcript

1 1. Preliminarii 1.1 Ce este un algoritm? Abu Ja`far Mohammed ibn Musa al-khowarizmi (autor persan, sec. VIII-IX), a scris o carte de matematica cunoscuta in traducere latina ca Algorithmi de numero indorum, iar apoi ca Liber algorithmi, unde algorithm provine de la al-khowarizmi, ceea ce literal inseamna din orasul Khowarizm. In prezent, acest oras se numeste Khiva si se afla in Uzbechistan. Atat al-khowarizmi, cat si alti matematicieni din Evul Mediu, intelegeau prin algoritm o regula pe baza careia se efectuau calcule aritmetice. Astfel, in timpul lui Adam Riese (sec. XVI), algoritmii foloseau la: dublari, injumatatiri, inmultiri de numere. Alti algoritmi apar in lucrarile lui Stifer ( Arithmetica integra, Nürnberg, 1544) si Cardano ( Ars magna sive de reguli algebraicis, Nürnberg, 1545). Chiar si Leibniz vorbeste de algoritmi de inmultire. Termenul a ramas totusi multa vreme cu o intrebuintare destul de restransa, chiar si in domeniul matematicii. Kronecker (in 1886) si Dedekind (in 1888) semneaza actul de nastere al teoriei functiilor recursive. Conceptul de recursivitate devine indisolubil legat de cel de algoritm. Dar abia in deceniile al treilea si al patrulea ale secolului nostru, teoria recursivitatii si algoritmilor incepe sa se constituie ca atare, prin lucrarile lui Skolem, Ackermann, Sudan, Gödel, Church, Kleene, Turing, Peter si altii. Este surprinzatoare transformarea gandirii algoritmice, dintr-un instrument matematic particular, intr-o modalitate fundamentala de abordare a problemelor in domenii care aparent nu au nimic comun cu matematica. Aceasta universalitate a gandirii algoritmice este rezultatul conexiunii dintre algoritm si calculator. Astazi, intelegem prin algoritm o metoda generala de rezolvare a unui anumit tip de problema, metoda care se poate implementa pe calculator. In acest context, un algoritm este esenta absoluta a unei rutine. Cel mai faimos algoritm este desigur algoritmul lui Euclid pentru aflarea celui mai mare divizor comun a doua numere intregi. Alte exemple de algoritmi sunt metodele invatate in scoala pentru a inmulti/imparti doua numere. Ceea ce da insa generalitate notiunii de algoritm este faptul ca el poate opera nu numai cu numere. Exista astfel algoritmi algebrici si algoritmi logici. Pana si o reteta culinara este in esenta un algoritm. Practic, s-a constatat ca nu exista nici un domeniu, oricat ar parea el de imprecis si de fluctuant, in care sa nu putem descoperi sectoare functionand algoritmic. 1

2 2 Preliminarii Capitolul 1 Un algoritm este compus dintr-o multime finita de pasi, fiecare necesitand una sau mai multe operatii. Pentru a fi implementabile pe calculator, aceste operatii trebuie sa fie in primul rand definite, adica sa fie foarte clar ce anume trebuie executat. In al doilea rand, operatiile trebuie sa fie efective, ceea ce inseamna ca in principiu, cel putin o persoana dotata cu creion si hartie trebuie sa poata efectua orice pas intr-un timp finit. De exemplu, aritmetica cu numere intregi este efectiva. Aritmetica cu numere reale nu este insa efectiva, deoarece unele numere sunt exprimabile prin secvente infinite. Vom considera ca un algoritm trebuie sa se termine dupa un numar finit de operatii, intr-un timp rezonabil de lung. Programul este exprimarea unui algoritm intr-un limbaj de programare. Este bine ca inainte de a invata concepte generale, sa fi acumulat deja o anumita experienta practica in domeniul respectiv. Presupunand ca ati scris deja programe intr-un limbaj de nivel inalt, probabil ca ati avut uneori dificultati in a formula solutia pentru o problema. Alteori, poate ca nu ati putut decide care dintre algoritmii care rezolvau aceeasi problema este mai bun. Aceasta carte va va invata cum sa evitati aceste situatii nedorite. Studiul algoritmilor cuprinde mai multe aspecte: i) Elaborarea algoritmilor. Actul de creare a unui algoritm este o arta care nu va putea fi niciodata pe deplin automatizata. Este in fond vorba de mecanismul universal al creativitatii umane, care produce noul printr-o sinteza extrem de complexa de tipul: tehnici de elaborare (reguli) + creativitate (intuitie) = solutie. Un obiectiv major al acestei carti este de a prezenta diverse tehnici fundamentale de elaborare a algoritmilor. Utilizand aceste tehnici, acumuland si o anumita experienta, veti fi capabili sa concepeti algoritmi eficienti. ii) Exprimarea algoritmilor. Forma pe care o ia un algoritm intr-un program trebuie sa fie clara si concisa, ceea ce implica utilizarea unui anumit stil de programare. Acest stil nu este in mod obligatoriu legat de un anumit limbaj de programare, ci, mai curand, de tipul limbajului si de modul de abordare. Astfel, incepand cu anii 80, standardul unanim acceptat este cel de programare structurata. In prezent, se impune standardul programarii orientate pe obiect. iii) Validarea algoritmilor. Un algoritm, dupa elaborare, nu trebuie in mod necesar sa fie programat pentru a demonstra ca functioneaza corect in orice situatie. El poate fi scris initial intr-o forma precisa oarecare. In aceasta forma, algoritmul va fi validat, pentru a ne asigura ca algoritmul este corect, independent de limbajul in care va fi apoi programat. iv) Analiza algoritmilor. Pentru a putea decide care dintre algoritmii ce rezolva aceeasi problema este mai bun, este nevoie sa definim un criteriu de apreciere a valorii unui algoritm. In general, acest criteriu se refera la timpul de calcul si la memoria necesara unui algoritm. Vom analiza din acest punct de vedere toti algoritmii prezentati.

3 Sectiunea 1.1 Ce este un algoritm? 3 v) Testarea programelor. Aceasta consta din doua faze: depanare (debugging) si trasare (profiling). Depanarea este procesul executarii unui program pe date de test si corectarea eventualelor erori. Dupa cum afirma insa E. W. Dijkstra, prin depanare putem evidentia prezenta erorilor, dar nu si absenta lor. O demonstrare a faptului ca un program este corect este mai valoroasa decat o mie de teste, deoarece garanteaza ca programul va functiona corect in orice situatie. Trasarea este procesul executarii unui program corect pe diferite date de test, pentru a-i determina timpul de calcul si memoria necesara. Rezultatele obtinute pot fi apoi comparate cu analiza anterioara a algoritmului. Aceasta enumerare serveste fixarii cadrului general pentru problemele abordate in carte: ne vom concentra pe domeniile i), ii) si iv). Vom incepe cu un exemplu de algoritm. Este vorba de o metoda, cam ciudata la prima vedere, de inmultire a doua numere. Se numeste inmultirea a la russe. Vom scrie deinmultitul si inmultitorul (de exemplu 45 si 19) unul langa altul, formand sub fiecare cate o coloana, conform urmatoarei reguli: se imparte numarul de sub deinmultit la 2, ignorand fractiile, apoi se inmulteste cu 2 numarul de sub inmultitor. Se aplica regula, pana cand numarul de sub deinmultit este 1. In final, adunam toate numerele din coloana inmultitorului care corespund, pe linie, unor numere impare in coloana deinmultitului. In cazul nostru, obtinem: = 855. Cu toate ca pare ciudata, aceasta este tehnica folosita de hardware-ul multor calculatoare. Ea prezinta avantajul ca nu este necesar sa se memoreze tabla de inmultire. Totul se rezuma la adunari si inmultiri/impartiri cu 2 (acestea din urma fiind rezolvate printr-o simpla decalare). Pentru a reprezenta algoritmul, vom utiliza un limbaj simplificat, numit pseudo-cod, care este un compromis intre precizia unui limbaj de programare si usurinta in exprimare a unui limbaj natural. Astfel, elementele esentiale ale algoritmului nu vor fi ascunse de detalii de programare neimportante in aceasta faza. Daca sunteti familiarizat cu un limbaj uzual de programare, nu veti avea nici o dificultate in a intelege notatiile folosite si in a scrie programul respectiv.

4 4 Preliminarii Capitolul 1 Cunoasteti atunci si diferenta dintre o functie si o procedura. In notatia pe care o folosim, o functie va returna uneori un tablou, o multime, sau un mesaj. Veti intelege ca este vorba de o scriere mai compacta si in functie de context veti putea alege implementarea convenabila. Vom conveni ca parametrii functiilor (procedurilor) sa fie transmisi prin valoare, exceptand tablourile, care vor fi transmise prin adresa primului element. Notatia folosita pentru specificarea unui parametru de tip tablou va fi diferita, de la caz la caz. Uneori vom scrie, de exemplu: procedure proc1(t) atunci cand tipul si dimensiunile tabloului T sunt neimportante, sau cand acestea sunt evidente din context. Intr-un astfel de caz, vom nota cu #T numarul de elemente din tabloului T. Daca limitele sau tipul tabloului sunt importante, vom scrie: procedure proc2(t[1.. n]) sau, mai general: procedure proc3(t[a.. b]) In aceste cazuri, n, a si b vor fi considerati parametri formali. De multe ori, vom atribui unor elemente ale unui tablou T valorile ±, intelegand prin acestea doua valori numerice extreme, astfel incat pentru oricare alt element T[i] avem < T[i] < +. Pentru simplitate, vom considera uneori ca anumite variabile sunt globale, astfel incat sa le putem folosi in mod direct in proceduri. Iata acum si primul nostru algoritm, cel al inmultirii a la russe : function russe(a, B) arrays X, Y {initializare} X[1] A; Y[1] B i 1 {se construiesc cele doua coloane} while X[i] > 1 do X[i+1] X[i] div 2 {div reprezinta impartirea intreaga} Y[i+1] Y[i]+Y[i] i i+1 {aduna numerele Y[i] corespunzatoare numerelor X[i] impare} prod 0 while i > 0 do if X[i] este impar then prod prod+y[i] i i 1 return prod

5 Sectiunea 1.1 Ce este un algoritm? 5 Un programator cu experienta va observa desigur ca tablourile X si Y nu sunt de fapt necesare si ca programul poate fi simplificat cu usurinta. Acest algoritm poate fi programat deci in mai multe feluri, chiar folosind acelasi limbaj de programare. Pe langa algoritmul de inmultire invatat in scoala, iata ca mai avem un algoritm care face acelasi lucru. Exista mai multi algoritmi care rezolva o problema, dar si mai multe programe care pot descrie un algoritm. Acest algoritm poate fi folosit nu doar pentru a inmulti pe 45 cu 19, dar si pentru a inmulti orice numere intregi pozitive. Vom numi (45, 19) un caz (instance). Pentru fiecare algoritm exista un domeniu de definitie al cazurilor pentru care algoritmul functioneaza corect. Orice calculator limiteaza marimea cazurilor cu care poate opera. Aceasta limitare nu poate fi insa atribuita algoritmului respectiv. Inca o data, observam ca exista o diferenta esentiala intre programe si algoritmi. 1.2 Eficienta algoritmilor Ideal este ca, pentru o problema data, sa gasim mai multi algoritmi, iar apoi sa-l alegem dintre acestia pe cel optim. Care este insa criteriul de comparatie? Eficienta unui algoritm poate fi exprimata in mai multe moduri. Putem analiza a posteriori (empiric) comportarea algoritmului dupa implementare, prin rularea pe calculator a unor cazuri diferite. Sau, putem analiza a priori (teoretic) algoritmul, inaintea programarii lui, prin determinarea cantitativa a resurselor (timp, memorie etc) necesare ca o functie de marimea cazului considerat. Marimea unui caz x, notata cu x, corespunde formal numarului de biti necesari pentru reprezentarea lui x, folosind o codificare precis definita si rezonabil de compacta. Astfel, cand vom vorbi despre sortare, x va fi numarul de elemente de sortat. La un algoritm numeric, x poate fi chiar valoarea numerica a cazului x. Avantajul analizei teoretice este faptul ca ea nu depinde de calculatorul folosit, de limbajul de programare ales, sau de indemanarea programatorului. Ea salveaza timpul pierdut cu programarea si rularea unui algoritm care se dovedeste in final ineficient. Din motive practice, un algoritm nu poate fi testat pe calculator pentru cazuri oricat de mari. Analiza teoretica ne permite insa studiul eficientei algoritmului pentru cazuri de orice marime. Este posibil sa analizam un algoritm si printr-o metoda hibrida. In acest caz, forma functiei care descrie eficienta algoritmului este determinata teoretic, iar valorile numerice ale parametrilor sunt apoi determinate empiric. Aceasta metoda permite o predictie asupra comportarii algoritmului pentru cazuri foarte mari, care nu pot fi testate. O extrapolare doar pe baza testelor empirice este foarte imprecisa.

6 6 Preliminarii Capitolul 1 Este natural sa intrebam ce unitate trebuie folosita pentru a exprima eficienta teoretica a unui algoritm. Un raspuns la aceasta problema este dat de principiul invariantei, potrivit caruia doua implementari diferite ale aceluiasi algoritm nu difera in eficienta cu mai mult de o constanta multiplicativa. Adica, presupunand ca avem doua implementari care necesita t 1 (n) si, respectiv, t 2 (n) secunde pentru a rezolva un caz de marime n, atunci exista intotdeauna o constanta pozitiva c, astfel incat t 1 (n) ct 2 (n) pentru orice n suficient de mare. Acest principiu este valabil indiferent de calculatorul (de constructie conventionala) folosit, indiferent de limbajul de programare ales si indiferent de indemanarea programatorului (presupunand ca acesta nu modifica algoritmul!). Deci, schimbarea calculatorului ne poate permite sa rezolvam o problema de 100 de ori mai repede, dar numai modificarea algoritmului ne poate aduce o imbunatatire care sa devina din ce in ce mai marcanta pe masura ce marimea cazului solutionat creste. Revenind la problema unitatii de masura a eficientei teoretice a unui algoritm, ajungem la concluzia ca nici nu avem nevoie de o astfel de unitate: vom exprima eficienta in limitele unei constante multiplicative. Vom spune ca un algoritm necesita timp in ordinul lui t, pentru o functie t data, daca exista o constanta pozitiva c si o implementare a algoritmului capabila sa rezolve fiecare caz al problemei intr-un timp de cel mult ct(n) secunde, unde n este marimea cazului considerat. Utilizarea secundelor in aceasta definitie este arbitrara, deoarece trebuie sa modificam doar constanta pentru a margini timpul la at(n) ore, sau bt(n) microsecunde. Datorita principiului invariantei, orice alta implementare a algoritmului va avea aceeasi proprietate, cu toate ca de la o implementare la alta se poate modifica constanta multiplicativa. In Capitolul 5 vom reveni mai riguros asupra acestui important concept, numit notatie asimptotica. Daca un algoritm necesita timp in ordinul lui n, vom spune ca necesita timp liniar, iar algoritmul respectiv putem sa-l numim algoritm liniar. Similar, un algoritm este patratic, cubic, polinomial, sau exponential daca necesita timp in ordinul lui n 2, n 3, n k, respectiv c n, unde k si c sunt constante. Un obiectiv major al acestei carti este analiza teoretica a eficientei algoritmilor. Ne vom concentra asupra criteriului timpului de executie. Alte resurse necesare (cum ar fi memoria) pot fi estimate teoretic intr-un mod similar. Se pot pune si probleme de compromis memorie - timp de executie. 1.3 Cazul mediu si cazul cel mai nefavorabil Timpul de executie al unui algoritm poate varia considerabil chiar si pentru cazuri de marime identica. Pentru a ilustra aceasta, vom considera doi algoritmi elementari de sortare a unui tablou T de n elemente:

7 Secþiunea 1.3 Cazul mediu si cazul cel mai nefavorabil 7 procedure insert(t[1.. n]) for i 2 to n do x T[i]; j i 1 while j > 0 and x < T[ j] do T[ j+1] T[ j] j j 1 T[ j+1] x procedure select (T[1.. n]) for i 1 to n 1 do minj i; minx T[i] for j i+1 to n do if T[ j] < minx then minj j minx T[ j] T[minj] T[i] T[i] minx Ideea generala a sortarii prin insertie este sa consideram pe rand fiecare element al sirului si sa il inseram in subsirul ordonat creat anterior din elementele precedente. Operatia de inserare implica deplasarea spre dreapta a unei secvente. Sortarea prin selectie lucreaza altfel, plasand la fiecare pas cate un element direct pe pozitia lui finala. Fie U si V doua tablouri de n elemente, unde U este deja sortat crescator, iar V este sortat descrescator. Din punct de vedere al timpului de executie, V reprezinta cazul cel mai nefavorabil iar U cazul cel mai favorabil. Vom vedea mai tarziu ca timpul de executie pentru sortarea prin selectie este patratic, independent de ordonarea initiala a elementelor. Testul if T[ j] < minx este executat de tot atatea ori pentru oricare dintre cazuri. Relativ micile variatii ale timpului de executie se datoreaza doar numarului de executari ale atribuirilor din ramura then a testului. La sortarea prin insertie, situatia este diferita. Pe de o parte, insert(u) este foarte rapid, deoarece conditia care controleaza bucla while este mereu falsa. Timpul necesar este liniar. Pe de alta parte, insert(v) necesita timp patratic, deoarece bucla while este executata de i 1 ori pentru fiecare valoare a lui i. (Vom analiza acest lucru in Capitolul 5). Daca apar astfel de variatii mari, atunci cum putem vorbi de un timp de executie care sa depinda doar de marimea cazului considerat? De obicei consideram analiza pentru cel mai nefavorabil caz. Acest tip de analiza este bun atunci cand timpul de executie al unui algoritm este critic (de exemplu, la controlul unei centrale nucleare). Pe de alta parte insa, este bine uneori sa cunoastem timpul mediu de executie al unui algoritm, atunci cand el este folosit foarte des pentru cazuri diferite. Vom vedea ca timpul mediu pentru sortarea prin insertie este tot patratic. In anumite cazuri insa, acest algoritm poate fi mai rapid. Exista un

8 8 Preliminarii Capitolul 1 algoritm de sortare (quicksort) cu timp patratic pentru cel mai nefavorabil caz, dar cu timpul mediu in ordinul lui n log n. (Prin log notam logaritmul intr-o baza oarecare, lg este logaritmul in baza 2, iar ln este logaritmul natural). Deci, pentru cazul mediu, quicksort este foarte rapid. Analiza comportarii in medie a unui algoritm presupune cunoasterea a priori a distributiei probabiliste a cazurilor considerate. Din aceasta cauza, analiza pentru cazul mediu este, in general, mai greu de efecuat decat pentru cazul cel mai nefavorabil. Atunci cand nu vom specifica pentru ce caz analizam un algoritm, inseamna ca eficienta algoritmului nu depinde de acest aspect (ci doar de marimea cazului). 1.4 Operatie elementara O operatie elementara este o operatie al carei timp de executie poate fi marginit superior de o constanta depinzand doar de particularitatea implementarii (calculator, limbaj de programare etc). Deoarece ne intereseaza timpul de executie in limita unei constante multiplicative, vom considera doar numarul operatiilor elementare executate intr-un algoritm, nu si timpul exact de executie al operatiilor respective. Urmatorul exemplu este testul lui Wilson de primalitate (teorema care sta la baza acestui test a fost formulata initial de Leibniz in 1682, reluata de Wilson in 1770 si demonstrata imediat dupa aceea de Lagrange): function Wilson(n) {returneaza true daca si numai daca n este prim} if n divide ((n 1)! + 1) then return true else return false Daca consideram calculul factorialului si testul de divizibilitate ca operatii elementare, atunci eficienta testului de primalitate este foarte mare. Daca consideram ca factorialul se calculeaza in functie de marimea lui n, atunci eficienta testului este mai slaba. La fel si cu testul de divizibilitate. Deci, este foarte important ce anume definim ca operatie elementara. Este oare adunarea o operatie elementara? In teorie, nu, deoarece si ea depinde de lungimea operanzilor. Practic, pentru operanzi de lungime rezonabila (determinata de modul de reprezentare interna), putem sa consideram ca adunarea este o operatie elementara. Vom considera in continuare ca adunarile, scaderile, inmultirile, impartirile, operatiile modulo (restul impartirii intregi), operatiile booleene, comparatiile si atribuirile sunt operatii elementare.

9 Sectiunea 1.5 De ce avem nevoie de algoritmi eficienti? De ce avem nevoie de algoritmi eficienti? Performantele hardware-ului se dubleaza la aproximativ doi ani. Mai are sens atunci sa investim in obtinerea unor algoritmi eficienti? Nu este oare mai simplu sa asteptam urmatoarea generatie de calculatoare? Sa presupunem ca pentru rezolvarea unei anumite probleme avem un algoritm exponential si un calculator pe care, pentru cazuri de marime n, timpul de rulare este de n secunde. Pentru n = 10, este nevoie de 1/10 secunde. Pentru n = 20, sunt necesare aproape 2 minute. Pentru n = 30, o zi nu este de ajuns, iar pentru n = 38, chiar si un an ar fi insuficient. Cumparam un calculator de 100 de ori mai rapid, cu timpul de rulare de n secunde. Dar si acum, pentru n = 45, este nevoie de mai mult de un an! In general, daca in cazul masinii vechi intr-un timp anumit se putea rezolva problema pentru cazul n, pe noul calculator, in acest timp, se poate rezolva cazul n+7. Sa presupunem acum ca am gasit un algoritm cubic care rezolva, pe calculatorul vechi, cazul de marime n in 10 2 n 3 secunde. In Figura 1.1, putem urmari cum Figura 1.1 Algoritmi sau hardware?

10 10 Preliminarii Capitolul 1 evolueaza timpul de rulare in functie de marimea cazului. Pe durata unei zile, rezolvam acum cazuri mai mari decat 200, iar in aproximativ un an am putea rezolva chiar cazul n = Este mai profitabil sa investim in noul algoritm decat intr-un nou hardware. Desigur, daca ne permitem sa investim atat in software cat si in hardware, noul algoritm poate fi rulat si pe noua masina. Curba 10 4 n 3 reprezinta aceasta din urma situatie. Pentru cazuri de marime mica, uneori este totusi mai rentabil sa investim intr-o noua masina, nu si intr-un nou algoritm. Astfel, pentru n = 10, pe masina veche, algoritmul nou necesita 10 secunde, adica de o suta de ori mai mult decat algoritmul vechi. Pe vechiul calculator, algoritmul nou devine mai performant doar pentru cazuri mai mari sau egale cu Exemple Poate ca va intrebati daca este intr-adevar posibil sa acceleram atat de spectaculos un algoritm. Raspunsul este afirmativ si vom da cateva exemple Sortare Algoritmii de sortare prin insertie si prin selectie necesita timp patratic, atat in cazul mediu, cat si in cazul cel mai nefavorabil. Cu toate ca acesti algoritmi sunt excelenti pentru cazuri mici, pentru cazuri mari avem algoritmi mai eficienti. In capitolele urmatoare vom analiza si alti algoritmi de sortare: heapsort, mergesort, quicksort. Toti acestia necesita un timp mediu in ordinul lui n log n, iar heapsort si mergesort necesita timp in ordinul lui n log n si in cazul cel mai nefavorabil. Pentru a ne face o idee asupra diferentei dintre un timp patratic si un timp in ordinul lui n log n, vom mentiona ca, pe un anumit calculator, quicksort a reusit sa sorteze in 30 de secunde de elemente, in timp ce sortarea prin insertie ar fi durat, pentru acelasi caz, peste noua ore. Pentru un numar mic de elemente insa, eficienta celor doua sortari este asemanatoare Calculul determinantilor Fie det( M ) determinantul matricii M = (a ij ) i, j = 1,, n si fie M ij submatricea de (n 1) (n 1) elemente, obtinuta din M prin stergerea celei de-a i-a linii si celei de-a j-a coloane. Avem binecunoscuta definitie recursiva

11 Sectiunea 1.6 Exemple 11 n j+ 1 det( M) = ( 1) a1j det( M1j) j= 1 Daca folosim aceasta relatie pentru a evalua determinantul, obtinem un algoritm cu timp in ordinul lui n!, ceea ce este mai rau decat exponential. O alta metoda clasica, eliminarea Gauss-Jordan, necesita timp cubic. Pentru o anumita implementare s-a estimat ca, in cazul unei matrici de elemente, in timp ce algoritmul Gauss-Jordan dureaza 1/20 secunde, algoritmul recursiv ar dura mai mult de 10 milioane de ani! Nu trebuie trasa de aici concluzia ca algoritmii recursivi sunt in mod necesar neperformanti. Cu ajutorul algoritmului recursiv al lui Strassen, pe care il vom studia si noi in Sectiunea 7.8, se poate calcula det( M ) intr-un timp in ordinul lui n lg 7, unde lg 7 2,81, deci mai eficient decat prin eliminarea Gauss-Jordan Cel mai mare divizor comun Un prim algoritm pentru aflarea celui mai mare divizor comun al intregilor pozitivi m si n, notat cu cmmdc(m, n), se bazeaza pe definitie: function cmmdc-def (m, n) i min(m, n) + 1 repeat i i 1 until i divide pe m si n return i Timpul este in ordinul diferentei dintre min(m, n) si cmmdc(m, n). Exista, din fericire, un algoritm mult mai eficient, care nu este altul decat celebrul algoritm al lui Euclid. function Euclid(m, n) if n = 0 then return m else return Euclid(n, m mod n) Prin m mod n notam restul impartirii intregi a lui m la n. Algoritmul functioneaza pentru orice intregi nenuli m si n, avand la baza cunoscuta proprietate cmmdc(m, n) = cmmdc(n, m mod n) Timpul este in ordinul logaritmului lui min(m, n), chiar si in cazul cel mai nefavorabil, ceea ce reprezinta o imbunatatire substantiala fata de algoritmul precedent. Pentru a fi exacti, trebuie sa mentionam ca algoritmul originar al lui Euclid (descris in Elemente, aprox. 300 a.ch.) opereaza prin scaderi succesive, si nu prin impartire. Interesant este faptul ca acest algoritm se pare ca provine dintr-un algoritm si mai vechi, datorat lui Eudoxus (aprox. 375 a.ch.).

12 12 Preliminarii Capitolul Numerele lui Fibonacci Sirul lui Fibonacci este definit prin urmatoarea recurenta: f0 = 0; f1 = 1 f = f + f pentru n 2 n n 1 n 2 Acest celebru sir a fost descoperit in 1202 de catre Leonardo Pisano (Leonardo din Pisa), cunoscut sub numele de Leonardo Fibonacci. Cel de-al n-lea termen al sirului se poate obtine direct din definitie: function fib1(n) if n < 2 then return n else return fib1(n 1) + fib1(n 2) Aceasta metoda este foarte ineficienta, deoarece recalculeaza de mai multe ori aceleasi valori. Vom arata in Sectiunea ca timpul este in ordinul lui φ n, unde φ = (1+ 5 )/2 este sectiunea de aur, deci este un timp exponential. Iata acum o alta metoda, mai performanta, care rezolva aceeasi problema intr-un timp liniar. function fib2(n) i 1; j 0 for k 1 to n do j i + j i j i return j Mai mult, exista si un algoritm cu timp in ordinul lui log n, algoritm pe care il vom argumenta insa abia in Capitolul 7: function fib3(n) i 1; j 0; k 0; h 1 while n > 0 do if n este impar then t h 2 h 2kh+t k k 2 +t n n div 2 return j t jh j ih+jk+t i ik+t Va recomandam sa comparati acesti trei algoritmi, pe calculator, pentru diferite valori ale lui n.

13 Secþiunea 1.7 Exercitii Exercitii 1.1 Aplicati algoritmii insert si select pentru cazurile T = [1, 2, 3, 4, 5, 6] si U = [6, 5, 4, 3, 2, 1]. Asigurati-va ca ati inteles cum functioneaza. 1.2 Inmultirea a la russe este cunoscuta inca din timpul Egiptului antic, fiind probabil un algoritm mai vechi decat cel al lui Euclid. Incercati sa intelegeti rationamentul care sta la baza acestui algoritm de inmultire. Indicatie: Faceti legatura cu reprezentarea binara. 1.3 In algoritmul Euclid, este important ca n m? 1.4 Elaborati un algoritm care sa returneze cel mai mare divizor comun a trei intregi nenuli. Solutie: function Euclid-trei(m, n, p) return Euclid(m, Euclid(n, p)) 1.5 Programati algoritmul fib1 in doua limbaje diferite si rulati comparativ cele doua programe, pe mai multe cazuri. Verificati daca este valabil principiul invariantei. 1.6 Elaborati un algoritm care returneaza cel mai mare divizor comun a doi termeni de rang oarecare din sirul lui Fibonacci. Indicatie: Un algoritm eficient se obtine folosind urmatoarea proprietate *, valabila pentru oricare doi termeni ai sirului lui Fibonacci: cmmdc( f m, f n ) = f cmmdc(m, n) 1.7 Fie matricea M = Calculati produsul vectorului ( f n 1, f n ) cu matricea M m, unde f n 1 si f n sunt doi termeni consecutivi oarecare ai sirului lui Fibonacci. * Aceastã surprinzãtoare proprietate a fost descoperitã în 1876 de Lucas.

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Laborator 1: INTRODUCERE ÎN ALGORITMI. Întocmit de: Claudia Pârloagă. Îndrumător: Asist. Drd. Gabriel Danciu

Laborator 1: INTRODUCERE ÎN ALGORITMI. Întocmit de: Claudia Pârloagă. Îndrumător: Asist. Drd. Gabriel Danciu INTRODUCERE Laborator 1: ÎN ALGORITMI Întocmit de: Claudia Pârloagă Îndrumător: Asist. Drd. Gabriel Danciu I. NOŢIUNI TEORETICE A. Sortarea prin selecţie Date de intrare: un şir A, de date Date de ieşire:

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

Esalonul Redus pe Linii (ERL). Subspatii.

Esalonul Redus pe Linii (ERL). Subspatii. Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

Criptosisteme cu cheie publică III

Criptosisteme cu cheie publică III Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

ALGORITMI FUNDAMENTALI O PERSPECTIVĂ C++

ALGORITMI FUNDAMENTALI O PERSPECTIVĂ C++ ALGORITMI FUNDAMENTALI O PERSPECTIVĂ C++ RĂZVAN ANDONIE ILIE GÂRBACEA ALGORITMI FUNDAMENTALI O PERSPECTIVĂ C++ Editura Libris Cluj-Napoca, 1995 Referent: Leon Livovschi Coperta: Zoltán Albert Copyright

Διαβάστε περισσότερα

Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b.

Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b. Lucrare Soluţii 28 aprilie 2015 Varianta 1 I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2 Definiţie. Numărul întreg p se numeşte număr prim dacă p 0,

Διαβάστε περισσότερα

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi

Διαβάστε περισσότερα

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R În cele ce urmează, vom studia unele proprietăţi ale mulţimilor din R. Astfel, vom caracteriza locul" unui punct în cadrul unei mulţimi (în limba

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

III. Reprezentarea informaţiei în sistemele de calcul

III. Reprezentarea informaţiei în sistemele de calcul Metode Numerice Curs 3 III. Reprezentarea informaţiei în sistemele de calcul III.1. Reprezentarea internă a numerelor întregi III. 1.1. Reprezentarea internă a numerelor întregi fără semn (pozitive) Reprezentarea

Διαβάστε περισσότερα

Matrice. Determinanti. Sisteme liniare

Matrice. Determinanti. Sisteme liniare Matrice 1 Matrice Adunarea matricelor Înmulţirea cu scalar. Produsul 2 Proprietăţi ale determinanţilor Rangul unei matrice 3 neomogene omogene Metoda lui Gauss (Metoda eliminării) Notiunea de matrice Matrice

Διαβάστε περισσότερα

1.3 Baza a unui spaţiu vectorial. Dimensiune

1.3 Baza a unui spaţiu vectorial. Dimensiune .3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este

Διαβάστε περισσότερα

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

Eficienta algoritmilor

Eficienta algoritmilor Eficienta algoritmilor În cursul de introducere am menţionat că, oricât de rapid ar deveni un calculator, sau oricât de mult s-ar ieftini memoria, eficienţa va fi un factor decisiv în alegerea unui algoritm.

Διαβάστε περισσότερα

Subiecte Clasa a V-a

Subiecte Clasa a V-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul numarului intrebarii

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea

Διαβάστε περισσότερα

prin egalizarea histogramei

prin egalizarea histogramei Lucrarea 4 Îmbunătăţirea imaginilor prin egalizarea histogramei BREVIAR TEORETIC Tehnicile de îmbunătăţire a imaginilor bazate pe calculul histogramei modifică histograma astfel încât aceasta să aibă o

Διαβάστε περισσότερα

Laborator 6. Integrarea ecuaţiilor diferenţiale

Laborator 6. Integrarea ecuaţiilor diferenţiale Laborator 6 Integrarea ecuaţiilor diferenţiale Responsabili: 1. Surdu Cristina(anacristinasurdu@gmail.com) 2. Ştirbăţ Bogdan(bogdanstirbat@yahoo.com) Obiective În urma parcurgerii acestui laborator elevul

Διαβάστε περισσότερα

Examen AG. Student:... Grupa: ianuarie 2016

Examen AG. Student:... Grupa: ianuarie 2016 16-17 ianuarie 2016 Problema 1. Se consideră graful G = pk n (p, n N, p 2, n 3). Unul din vârfurile lui G se uneşte cu câte un vârf din fiecare graf complet care nu-l conţine, obţinându-se un graf conex

Διαβάστε περισσότερα

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili Anexa 2.6.2-1 SO2, NOx şi de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili de bioxid de sulf combustibil solid (mg/nm 3 ), conţinut de O 2 de 6% în gazele de ardere, pentru

Διαβάστε περισσότερα

Să se arate că n este număr par. Dan Nedeianu

Să se arate că n este număr par. Dan Nedeianu Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)

Διαβάστε περισσότερα

Proiectarea Algoritmilor 2. Scheme de algoritmi Divide & Impera

Proiectarea Algoritmilor 2. Scheme de algoritmi Divide & Impera Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Proiectarea Algoritmilor 2. Scheme de algoritmi Divide & Impera Cuprins Scheme de algoritmi Divide et impera Exemplificare

Διαβάστε περισσότερα

Noţiuni introductive

Noţiuni introductive Metode Numerice Noţiuni introductive Erori. Condiţionare numerică. Stabilitatea algoritmilor. Complexitatea algoritmilor. Metodele numerice reprezintă tehnici prin care problemele matematice sunt reformulate

Διαβάστε περισσότερα

Metode de sortare. Se dau n numere întregi, elemente ale unui vector a. Se cere să se aranjeze elementele vectorului a în ordine crescătoare.

Metode de sortare. Se dau n numere întregi, elemente ale unui vector a. Se cere să se aranjeze elementele vectorului a în ordine crescătoare. Metode de sortare Se dau n numere întregi, elemente ale unui vector a. Se cere să se aranjeze elementele vectorului a în ordine crescătoare. 1. Sortare prin selecţie directă Sortarea prin selecţia minimului

Διαβάστε περισσότερα

Progresii aritmetice si geometrice. Progresia aritmetica.

Progresii aritmetice si geometrice. Progresia aritmetica. Progresii aritmetice si geometrice Progresia aritmetica. Definitia 1. Sirul numeric (a n ) n N se numeste progresie aritmetica, daca exista un numar real d, numit ratia progresia, astfel incat a n+1 a

Διαβάστε περισσότερα

Ecuatii exponentiale. Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. a x = b, (1)

Ecuatii exponentiale. Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. a x = b, (1) Ecuatii exponentiale Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. Cea mai simpla ecuatie exponentiala este de forma a x = b, () unde a >, a. Afirmatia.

Διαβάστε περισσότερα

Principiul Inductiei Matematice.

Principiul Inductiei Matematice. Principiul Inductiei Matematice. Principiul inductiei matematice constituie un mijloc important de demonstratie in matematica a propozitiilor (afirmatiilor) ce depind de argument natural. Metoda inductiei

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

z a + c 0 + c 1 (z a)

z a + c 0 + c 1 (z a) 1 Serii Laurent (continuare) Teorema 1.1 Fie D C un domeniu, a D şi f : D \ {a} C o funcţie olomorfă. Punctul a este pol multiplu de ordin p al lui f dacă şi numai dacă dezvoltarea în serie Laurent a funcţiei

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15

Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15 MĂSURI RELE Cursul 13 15 Măsuri reale Fie (,, µ) un spaţiu cu măsură completă şi f : R o funcţie -măsurabilă. Cum am văzut în Teorema 11.29, dacă f are integrală pe, atunci funcţia de mulţime ν : R, ν()

Διαβάστε περισσότερα

Sisteme liniare - metode directe

Sisteme liniare - metode directe Sisteme liniare - metode directe Radu T. Trîmbiţaş 27 martie 2016 1 Eliminare gaussiană Să considerăm sistemul liniar cu n ecuaţii şi n necunoscute Ax = b, (1) unde A K n n, b K n 1 sunt date, iar x K

Διαβάστε περισσότερα

CURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă.

CURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă. Sala: 2103 Decembrie 2014 Conf. univ. dr.: Dragoş-Pătru Covei CURS 11: ALGEBRĂ Specializarea: C.E., I.E., S.P.E. Nota: Acest curs nu a fost supus unui proces riguros de recenzare pentru a fi oficial publicat.

Διαβάστε περισσότερα

I. Noţiuni introductive

I. Noţiuni introductive Metode Numerice Curs 1 I. Noţiuni introductive Metodele numerice reprezintă tehnici prin care problemele matematice sunt reformulate astfel încât să fie rezolvate numai prin operaţii aritmetice. Prin trecerea

Διαβάστε περισσότερα

Sortare. 29 martie Utilizarea şi programarea calculatoarelor. Curs 16

Sortare. 29 martie Utilizarea şi programarea calculatoarelor. Curs 16 Sortare 29 martie 2005 Sortare 2 Sortarea. Generalitǎţi Sortarea = aranjarea unei liste de obiecte dupǎ o relaţie de ordine datǎ (ex.: pentru numere, ordine lexicograficǎ pt. şiruri, etc.) una din clasele

Διαβάστε περισσότερα

O generalizare a unei probleme de algebră dată la Olimpiada de Matematică, faza judeţeană, 2013

O generalizare a unei probleme de algebră dată la Olimpiada de Matematică, faza judeţeană, 2013 O generalizare a unei probleme de algebră dată la Olimpiada de Matematică, faza judeţeană, 2013 Marius Tărnăuceanu 1 Aprilie 2013 Abstract În această lucrare vom prezenta un rezultat ce extinde Problema

Διαβάστε περισσότερα

Examen AG. Student:... Grupa:... ianuarie 2011

Examen AG. Student:... Grupa:... ianuarie 2011 Problema 1. Pentru ce valori ale lui n,m N (n,m 1) graful K n,m este eulerian? Problema 2. Să se construiască o funcţie care să recunoască un graf P 3 -free. La intrare aceasta va primi un graf G = ({1,...,n},E)

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare

Διαβάστε περισσότερα

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, aprilie 7 Proba scrisă la MATEMATICĂ SUBIECTUL I (3 puncte) ) (5 puncte) Fie matricele A = 3 4 9 8

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ

CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ CONCURS DE ADMITERE, 7 iulie 207 Proba scrisă la MATEMATICĂ SUBIECTUL I (30 puncte) ) (0 puncte) Să se arate că oricare ar

Διαβάστε περισσότερα

Activitatea A5. Introducerea unor module specifice de pregătire a studenţilor în vederea asigurării de şanse egale

Activitatea A5. Introducerea unor module specifice de pregătire a studenţilor în vederea asigurării de şanse egale Investeşte în oameni! FONDUL SOCIAL EUROPEAN Programul Operaţional Sectorial pentru Dezvoltarea Resurselor Umane 2007 2013 Axa prioritară nr. 1 Educaţiaşiformareaprofesionalăînsprijinulcreşteriieconomiceşidezvoltăriisocietăţiibazatepecunoaştere

Διαβάστε περισσότερα

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt. liberi 1 liberi 2 3 4 Segment orientat liberi Fie S spaţiul geometric tridimensional cu axiomele lui Euclid. Orice pereche de puncte din S, notată (A, B) se numeşte segment orientat. Dacă A B, atunci direcţia

Διαβάστε περισσότερα

Programarea dinamica I

Programarea dinamica I Programarea dinamica I Principiile programării dinamice Programarea dinamică, ca și metoda divide et impera, rezolvă problemele combinând soluţiile subproblemelor. După cum am văzut, algoritmii de divide

Διαβάστε περισσότερα

8 Intervale de încredere

8 Intervale de încredere 8 Intervale de încredere În cursul anterior am determinat diverse estimări ˆ ale parametrului necunoscut al densităţii unei populaţii, folosind o selecţie 1 a acestei populaţii. În practică, valoarea calculată

Διαβάστε περισσότερα

Proiectarea filtrelor prin metoda pierderilor de inserţie

Proiectarea filtrelor prin metoda pierderilor de inserţie FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri

Διαβάστε περισσότερα

Cum folosim cazuri particulare în rezolvarea unor probleme

Cum folosim cazuri particulare în rezolvarea unor probleme Cum folosim cazuri particulare în rezolvarea unor probleme GHEORGHE ECKSTEIN 1 Atunci când întâlnim o problemă pe care nu ştim s-o abordăm, adesea este bine să considerăm cazuri particulare ale acesteia.

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 21.2 - Sistemul de criptare ElGamal Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Scurt istoric

Διαβάστε περισσότερα

Ακαδημαϊκός Λόγος Κύριο Μέρος

Ακαδημαϊκός Λόγος Κύριο Μέρος - Επίδειξη Συμφωνίας În linii mari sunt de acord cu...deoarece... Επίδειξη γενικής συμφωνίας με άποψη άλλου Cineva este de acord cu...deoarece... Επίδειξη γενικής συμφωνίας με άποψη άλλου D'une façon générale,

Διαβάστε περισσότερα

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB 1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

Εμπορική αλληλογραφία Ηλεκτρονική Αλληλογραφία

Εμπορική αλληλογραφία Ηλεκτρονική Αλληλογραφία - Εισαγωγή Stimate Domnule Preşedinte, Stimate Domnule Preşedinte, Εξαιρετικά επίσημη επιστολή, ο παραλήπτης έχει ένα ειδικό τίτλο ο οποίος πρέπει να χρησιμοποιηθεί αντί του ονόματος του Stimate Domnule,

Διαβάστε περισσότερα

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy Metode Runge-Kutta Radu T. Trîmbiţaş 8 ianuarie 7 Probleme scalare, pas constant Dorim să aproximăm soluţia problemei Cauchy y (t) = f(t, y), a t b, y(a) = α. pe o grilă uniformă de (N + )-puncte din [a,

Διαβάστε περισσότερα

INTERPOLARE. y i L i (x). L(x) = i=0

INTERPOLARE. y i L i (x). L(x) = i=0 INTERPOLARE Se dau punctele P 0, P 1,..., P n in plan sau in spatiu, numite noduri si avand vectorii de pozitie r 0, r 1,..., r n. Problemă. Să se găsească o curbă (dintr-o anumită familie) care să treacă

Διαβάστε περισσότερα

Teme de implementare in Matlab pentru Laboratorul de Metode Numerice

Teme de implementare in Matlab pentru Laboratorul de Metode Numerice Teme de implementare in Matlab pentru Laboratorul de Metode Numerice As. Ruxandra Barbulescu Septembrie 2017 Orice nelamurire asupra enunturilor/implementarilor se rezolva in cadrul laboratorului de MN,

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

Principiul incluziunii si excluziunii. Generarea şi ordonarea permutărilor. Principiul porumbeilor. Pri

Principiul incluziunii si excluziunii. Generarea şi ordonarea permutărilor. Principiul porumbeilor. Pri Generarea şi ordonarea permutărilor. Principiul porumbeilor. Principiul incluziunii si excluziunii Recapitulare din cursul trecut Presupunem că A este o mulţime cu n elemente. Recapitulare din cursul trecut

Διαβάστε περισσότερα

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)).

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)). Teoremă. (Y = f(x)). Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism Demonstraţie. f este continuă pe X: x 0 X, S Y (f(x 0 ), ε), S X (x 0, ε) aşa ca f(s X (x 0, ε)) = S Y (f(x 0 ), ε) : y

Διαβάστε περισσότερα

Exemple de probleme rezolvate pentru cursurile DEEA Tranzistoare bipolare cu joncţiuni

Exemple de probleme rezolvate pentru cursurile DEEA Tranzistoare bipolare cu joncţiuni Problema 1. Se dă circuitul de mai jos pentru care se cunosc: VCC10[V], 470[kΩ], RC2,7[kΩ]. Tranzistorul bipolar cu joncţiuni (TBJ) este de tipul BC170 şi are parametrii β100 şi VBE0,6[V]. 1. să se determine

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

7 Distribuţia normală

7 Distribuţia normală 7 Distribuţia normală Distribuţia normală este cea mai importantă distribuţie continuă, deoarece în practică multe variabile aleatoare sunt variabile aleatoare normale, sunt aproximativ variabile aleatoare

Διαβάστε περισσότερα

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1

Διαβάστε περισσότερα