Harry Van Trees Kristine L. Bell Steven Kay

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Harry Van Trees Kristine L. Bell Steven Kay"

Transcript

1 arry Van rees Kristine L. Bell Steven Kay DEECȚIA SEMNALELOR DEERMINISE CUNOSCUE Vom aborda problema detecției unui semnal cunoscut.un exemplu tipic pentru un astfel de caz, este transmisia digitală coerentă, aplicată în telecomunicații. estul, pe care se bazează detecția, va rezulta sub o formă liniară, cunoscută și sub denumirea de filtru adaptat la forma semnalului, sau, simplu, filtru adaptat. ermenul corespunzător în engleză este cel de matched filter. Efectul unui astfel de filtru este cel de maximizare a SNR. În figură (wikipedia) se sugerază efectul filtrului asupra unui semnal afectat, aditiv, de un zgomot alb, gaussian (AWGN). Filtrul adaptat la forma semnalului (the matched filter) Vom începe construcția detectorului de tip filtru adaptat, aplicând abordarea Neyman- Pearson (NP). Și abordarea bayesiană conduce la aceeași formă a detectorului, diferind doar pragurile de comparare și, evident, performanțele statistice. Problema constă în a alege între două ipoteze : xn [ ] = wn [ ] ;,,..., N- : xn [ ] = sn [ ] + wn [ ];,,..., N- wn [ ] N (, ) zgomotul w[n] fiind alb, gaussian, cu secvența de autocorelație de forma

2 { } δ ( ) rw [ k ] = E w [ n ] w [ n+ k } = [ k ] = N δ [ k ] Reamintim că, n =, n δ[ n] = u[ n] =, n, n< Detectorul NP decide că este ipoteza adevărată dacă raportul de plauzibilitate depăşeşte pragul testului, γ, adică ( π ) ( x; ) ( x; ) p L( x) = p >γ Datele x fiind gaussiene, e suficient să cunoaştem mediile şi dispersiile lor, în cele două ipoteze : E{ x[ n] } = E{ w[ n] } = : E{ xn [ ]} = E{ sn [ ] + wn [ ]} = E{ sn [ ]} + E{ wn [ ]} = sn [ ] : Disp{ x[ n] } = Disp{ w[ n] } = : Disp{ x[ n] } = Disp{ s[ n] + w[ n] } = Disp{ w[ n] } = Repartiţiile datelor, x, în cele două ipoteze, rezultă că sunt p( x; ) = exp ( x[ n] s[ n] ) ( π ) p( x; ) = exp ( x[ n] ) Dacă substituim acest ultim rezultat în raportul de plauzibilitate, condiţia de selectare a ipotezei devine N N L( x) = exp ( x[ n] s[ n] ) ( x[ n] ) γ > sau, după logaritmare N N l( x) = ln L( x) = ( sn [ ]) xnsn [ ] [ ] lnγ > Inegalitatea se pune sub forma ( ) [ ] > xnsn [ ] [ ] sn lnγ Deoarece s[n] este un semnal cunoscut, ce nu depinde de datele x, termenul marcat poate fi încorporat în prag aşa că ( x) = x[ n] s[ n] > lnγ + ( sn [ ]) = γ ( x) sau = x[ n] s[ n] > γ ()

3 Detectorul NP obţinut constă dintr-o statistică a testului, (x), ce depinde de realizările datelor, x, şi dintr-un prag al testului, γ. Valoarea pragului trebuie aleasă astfel încât să fie satisfăcută constrângerea impusă de valoarea acceptată pentru probabilitatea alarmei false. Vom considera un exemplu simplu, în care semnalul cunoscut este o componentă continuă, s[n]=a>. Substituind în test obţinem = ( x) = s[ n] A, A x[ n] Se substituie statistica în testul () şi împărţind cu NA>, ceeace nu schimbă sensul inegalităţii, obţinem ( x) = ( x) = x[ n] > NA N NA γ = γ Observaţie Pentru A>, decidem dacă: x > γ > Pentru A<, decidem dacă: x < γ < *** Detectorul care lucrează conform statististicii ce se utilizează în cazul general, ( x) = x[ n] s[ n] (3) se implementează sub forma unui corelator, cunoscut şi sub denumirea de corelator de replică în sensul că el păstrează o copie, o replică, a semnalului s[n] ce se caută (vezi figura). Implementarea detectorului se poate realiza şi cu un filtru FIR, adaptat la forma semnalului s[n] ce se caută (vezi figura). Dacă funcţia pondere a filtrului FIR este legată de forma semnalului determinist s[n] prin relaţia hn [ ] = sn [ n];,,..., N- 3

4 răspunsul filtrului FIR, calculat prin convoluţie este N N yn [ ] = hn [ kxk ] [ ] = sn [ n kxk ] [ ] k= k= Răspunsul y[n] se eşantionează după recepţia celor N eşantioane de date, adică la momentul discret N-, şi se obţine chiar expresia statisticii () yn [ ] = skxk [ ] [ ] = ( x) k= Vom aborda problema de detecţie şi altfel. *** Vom cere, ca înainte de a lua o decizie, să maximizăm şansele unei detecţii corecte, prin mărirea SNR la ieşirea unui filtru FIR, cu funcţia pondere h[n]. Vom căuta acea funcţie h[n] care maximizează SNR, fiind cunoscute s[n] şi caracteristicile statistice ale zgomotului w[n]. Expresia SNR este hn [ ke ] ( { } { sk [ ] + wk [ ]} E y[ ]; ) k= η = = Disp{ y[ ]; } N E h[ k] w[ k] k= hn [ ksk ] [ ] k= = E h[ k] w[ k] k= x = [ x[] x[]... x[n-] ] [ s[] s[]... s[n-] ] ; w [ w[] w[]... w[n-] ] [ h[n-] h[n-]... h[] ] s= = h = Introducem următoarele notaţii vectoriale Atentie, secventă inversă! Prin calcul direct se stabilesc relaţiile N N hs= hn [ ksk ] [ ]; hw= hn [ kwk ] [ ] ( ) ( ) hw = hwhw = hwwh Media statistică a acestui ultim pătrat se determină cu E {( ) } = E{ } E hw h ww h Zgomotul fiind alb, gaussian, matricea sa de covarianţă se reduce la o formă diagonală { } = w = ww C I Putem rescrie acum expresia raportului semnal/zgomot, SNR ( ) η = hs hh u 4

5 În literatura de specialitate se prezintă inegalitatea Cauchy-Schwarz, pentru funcţii f ( xg ) ( x) dx f( x) dx g( x) dx; egalul are loc dacă, si numai dacă, g( x) = cf( x) şi pentru vectori xy xx yy; egalul are loc dacă, si numai dacă, y=cx ( ) ( )( ) ( ) ( )( ) *** Aplicând inegalitatea de mai sus pentru vectorii h şi s, avem hs hh ss; egalul are loc dacă, si numai dacă, h=cs inegalitate care, aplicată raportului semnal/zgomot, SNR, conduce la ( ) ( )( ) hh ( hh) ( ) hs hh ss ss η = = ; egalul are loc dacă, si numai dacă, h= cs În concluzie, pentru un semnal determinist dat, s, există un filtru h=cs, cu c o constantă, în secvenţă inversă, care maximizează SNR, notat cu η. Ponderile filtrului FIR sunt hn [ ] = sn [ n];,,..., N- Valoarea maximă a raportului semnal/zgomot este η ( ss) = ; = = N max unde = ss=( s[ n] ) este este energia semnalului determinist iar N = este densitatea spectrală de putere a zgomotului alb, gaussian. În concluzie: Pentru rezolvarea unei probleme de detecţie a unui semnal determinist, complet cunoscut, afectat în mod aditiv de un zgomot alb, gaussian, atât criteriul Neyman-Pearson cât şi criteriul maximizării raportului semnal/zgomot, conduc la aceeaşi soluţie, cea a filtrului adaptat la forma semnalului. Deoarece criteriul Neyman-Pearson conduce la un detector optimal, rezultă că şi criteriul maximizării raportului semnal/zgomot conduce la un detector optimal. *** Filtrul adaptat la forma semnalului maximizează raportul semnal/zgomot chiar şi pentru un zgomot non-gaussian, dar nu mai este optimal, în sensul criteriului NP. 5

6 Analiza performanţelor de detecţie ale filtrului adaptat la forma semnalului Ne propunem să determinăm valoarea probabilităţii de detecţie, pentru o valoare impusă a probabilităţii alarmei false. Aşa cum am arătat, detecţia se face comparând statistica cu un prag ( x) { ; } = { sx; } = { sw} = s { w} = { ; } { ; } { ( )} { } E E E E E E E E = sx = s s+ w = ss+ s w = ss= { } { ; } = { sx; } = { sw} = ( sw) = E{ swws} = se{ ww} s= { ; } = { sx; } = { s ( s+ w) } = Disp{ sw} = ss= Disp Disp Disp E Disp Disp Disp = x[ n] s[ n] > γ () Datele x fiind gaussiene, (x) are şi ea o repartiţie gaussiană. Este deci suficient sa-i determinam mediile şi dispersiile, în ambele ipoteze. Pentru medii avem relaţiile Putem determina acum şi dispersiile În cele două ipoteze, statistica (x) pe baza căreia se iau deciziile, are, în cele două ipoteze, distribuţii normale, adică N N ( ) ( ),, în ipoteza,, în ipoteza Suntem în cazul în care cele două ipoteze se disting prin mediile repartițpplor. Ca atare γ PFA = P{ > γ ; } = Q și PD P{ γ ; } Q γ = > = Din prima ecuație se determină pragul testului ca fiind γ = Q P FA ( ) Se substituie expresia pragului în expresia probabilității de detecție și obținem P D = Q Q ( PFA) = NA Dacă semalul de detectat este o componentă continuă, s[n]=a, energia se calculează cu 6

7 În figură se prezintă curbele de performanță ale detectorului NP, cu filtru adaptat la forma semnalului. Utilizarea filtrului adaptat ne conduce la conceptul de câștig de prelucrare. El poate fi privit ca descriind avantajul obținut dacă deciziile se iau pe baza unei statistici, față de cazul în care deciziile se iau direct, pe baza datelor primare. Câștigul de prelucrare se cuantifică prin creșterea SNR, obținută prin prelucrare. La intrarea filtrului adaptat, SNR este η = in La ieșirea filtrului adaptat, ca urmare a prelucrării a N eșantioane, SNR devine NA ηout = ηmax = Măsurat în db, câștigul de prelucrare (Processing Gain) este ηin PG = log = log N ηout Prelucrând nu unul, ci 4 eșantioane, obținem un câștig de prelucrare de 4dB. A Reamintim că, în prezentarea filtrului adaptat, am presupus că zgomotul este alb, gaussian. Se poate pune problema conceperii unui filtru adaptat pentru zgomot gaussian colorat, caracterizat de o matrice de covarianță C. 7

8 Filtrul adaptat generalizat (rezumat) Dacă eșantioanele de zgomot sunt corelate, atunci w N (, C) Elementele matricei de covarianță au expresiile [ C] = E{ w[ m] w[ n] } = rw [ m n] mn Drept urmare a formei funcției de corelație a zgomotului, matricea de covarianță are o formă oeplitz, simetrică. Vom presupune că urmărim să detectăm semnalul cunoscut, s, afectat, aditiv, de zgomotul colorat, w. Datele recepționate au, în cele două ipoteze, repartițiile (, C), în ipoteza x N N ( s, C), în ipoteza Densitățile de repartiție se determină cu relațiile p ( x; ) = N exp ( x s) C ( x s) ( π ) C p ( x; ) = N exp x C x ; unde C este determinantul C ( π ) Pentru a lua o decizie, vom construi criteriul raportului de plauzibilitate logaritmică p ( x; ) l( x) = ln L( x) = ln > lnγ p x; ( ) Prin calcul direct se arată că raportul de plauzibilitate poate fi pus în forma l ( x) = x C s sc s> lnγ ermenul marcat nu depinde de date, așa că poate fi inclus în prag ( x) = x C s> ln γ + s C s= γ (4) Detectorul definit prin relația (4), se numește corelator de replică generalizat,sau filtru adaptat (la forma semnalului), generalizat. Dacă transformăm mai întâi semnalul cunoscut, s, prin înmulțire cu inversa matricei de covarianță s = C s atunci corelatorul de replică generalizat poate fi considerat ca fiind un corelator de replică obișnuit, dar care are ca referință semnalul distorsionat, s ( ) x = x C s= x s Pentru exemplificare vom considera că eșantioanele de zgomot deși nu sunt corelate, au dispersii diferite între ele. Matricea de covarianță și inversa ei sunt 8

9 C= = diag = {,,, N } ; C diag{,,, N } Substituim în forma (4) a detectorului și, efectuând calculele obținem [] s [] s ( ) [ x[] x[] x[ N ] ] x = x C s= sn [ ] xnsn [ ] [ ] = > γ n Reamintim că se poate aplica*** tehnica de albire a datelor. Avem C =D D Pentru exemplul anterior avem C D D = = N N N Statistica testului se poate pune și sub forma ( ) ( ) ( ) x = x C s = x D Ds = Dx Ds = x s x = Dx si s = Ds Reamintim că matricea D se numește matrice de albire. Datele se decorelează prin înmultirea cu matricea de albire, dar și replica memorată a semnalului căutat trebuie înmulțită cu D. În rest avem de-a face cu un corelator de replică obișnuit, sau cu un filtru FIR adaptat obișnuit > γ 9

10 Performanțele statistice ale filtrului adaptat generalizat Se arată că statistica (4) ( ) = γ x x C s> are, în cele două ipoteze, repartițiile (, sc s), în ipoteza N N ( sc s, sc s), în ipoteza Cele două repartiții diferă prin medie, așa că vom calcula probabilitatea de detecție servindu-ne de relația stabilită anterior D ( ( ) ) FA P = Q Q P d în care coeficientul de deflexie are epresia D d ( μ μ ) = Substituind găsim d = sc s și ( ( ) ) FA P = Q Q P sc s (5) În cazul în care zgomotul este alb, probabilitatea de detecție depinde de raportul dintre energia semnalului util și puterea zgomotului, dar nu și de forma semnalului. În cazul zgomotului colorat, coeficientul de deflexie depinde de forma semnalului. Pentru a obține o probabilitate de detecție mare, am putea maximiza d, fără a crește energia semnalului cu care se face transmisia, doar alegând o formă adecvată. Este necesar să maximizăm expresia d = sc s cu constrângerea ss= Se costruiește lagrangeanul ( ss) F = sc s+ λ Reamintim regulile de derivare bx xax = b; = Ax, dacă: A = A x x Cu acestea F sc s ss = λ = C s λs= s s s sau, în final C s= λs

11 ceeace înseamnă că s este un vector propriu al inversei matricei de covarianță iar λ este o valoare proprie atașată acelui vector propriu. Din relația de constrângere rezultă sc s= λss= λ Membrul stâng trebuie maximizat; energia fiind constantă, maximul se obține pentru valoarea proprie, λ, maximă. Ne putem referi la matricea de covarianță, nu la inversa ei. În acel caz se arată că va trebui să alegem valoarea proprie, minimă, μ=/λ. Atragem atenția că vectorii proprii se determină cu norma unitară, motiv pentru care trebuie ponderată cu energia admisă pentru semnalul de transmisie. Pentru exemplificare vom considera că eșantioanele de zgomot sunt corelate, având matricea de covarianță ρ C = ρ limitată la dimensiunile x, deoarece la recepție se lucrează doar pe două eșantioane de date x = x[] x[] [ ] Se determină valorile proprii ale matricei de covarianță cu ecuația caracteristică μ ρ ρ = ( μ) ρ = ; μ = + ρ μ = ρ μ Se determină cei doi vectori proprii de normă unitară cu relațiile μi ρ vi ; = vi+ vi = ; i =, ρ μ i v i Vectorii proprii și valorile proprii aferente sunt v = ; μ = + ρ si v = ; μ = ρ Vom presupune că avem ρ>, (dar se poate considera și cazul opus). Valoarea proprie minimă și vectorul propriu corespunzător, precum și cele două eșantioane cu care se recomandă să efectuăm transmisiile sunt, în acest caz Dacă ρ > μmin = μ = ρ s = Cele două esantioane ale semnalului sunt s[] = ; s[] = ; Statistica testului care maximizează probabilitatea de detecție devine x x x x μmin ρ ( ) = = = [ [] []] = ( [] [] ) x x C s x

12 Decizia se va lua comparând o diferență ponderată a celor două eșantioane de date cu un prag. Din cauza corelării pozitive a eșantioanelor de zgomot, ele vor avea, statistic, același semn și valori apropiate. În consecință, efectul zgomotului asupra statisticii se reduce, nu însă și efectul semnaluilui util, după cum rezultă din diferența ( ) ( ) ( ) x[] x[] = s[] + w[] s[] + w[] = + w[] w[] Cu cele stabilite, se poate calcula coeficientul de deflexie. Deoarece λ=/μ deflexia devine d = s C s= λ max s ρ valoare ce trebuie utilizată în relația (5) pentru calculul probabilității de detecție, la o valoare impusă a probabilității alarmei false. Este de remarcat că pent ru μ ρ, d și, în consecință P D min ; Explicația este simplă. Cu cât corelarea eșantioanelor succesive de zgomot este mai apropiată de, cu atât mai mult scade, statistic, diferența lor, ceece duce la creșterea performanțelor de detecție

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

Vladimir Kotelnikov John Wozencraft Irwin Jacobs. Simon Haykin

Vladimir Kotelnikov John Wozencraft Irwin Jacobs. Simon Haykin Vladimir Kotelnikov John Wozencraft Irwin Jacobs Simon aykin Detecția mai multor semnale din zgomot. Abordarea detecției de până acum este cea a unui operator de RADAR sau SONAR. În ipoteza se presupunea

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

Seminar Algebra. det(a λi 3 ) = 0

Seminar Algebra. det(a λi 3 ) = 0 Rezolvari ale unor probleme propuse "Matematica const în a dovedi ceea ce este evident în cel mai puµin evident mod." George Polya P/Seminar Valori si vectori proprii : Solutie: ( ) a) A = Valorile proprii:

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval

Διαβάστε περισσότερα

8 Intervale de încredere

8 Intervale de încredere 8 Intervale de încredere În cursul anterior am determinat diverse estimări ˆ ale parametrului necunoscut al densităţii unei populaţii, folosind o selecţie 1 a acestei populaţii. În practică, valoarea calculată

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a

Διαβάστε περισσότερα

1.3 Baza a unui spaţiu vectorial. Dimensiune

1.3 Baza a unui spaţiu vectorial. Dimensiune .3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

Zgomotul se poate suprapune informaţiei utile în două moduri: g(x, y) = f(x, y) n(x, y) (6.2)

Zgomotul se poate suprapune informaţiei utile în două moduri: g(x, y) = f(x, y) n(x, y) (6.2) Lucrarea 6 Zgomotul în imagini BREVIAR TEORETIC Zgomotul este un semnal aleator, care afectează informaţia utilă conţinută într-o imagine. El poate apare de-alungul unui lanţ de transmisiune, sau prin

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

Statisticǎ - curs 3. 1 Seria de distribuţie a statisticilor de eşantioane 2. 2 Teorema limitǎ centralǎ 5. 3 O aplicaţie a teoremei limitǎ centralǎ 7

Statisticǎ - curs 3. 1 Seria de distribuţie a statisticilor de eşantioane 2. 2 Teorema limitǎ centralǎ 5. 3 O aplicaţie a teoremei limitǎ centralǎ 7 Statisticǎ - curs 3 Cuprins 1 Seria de distribuţie a statisticilor de eşantioane 2 2 Teorema limitǎ centralǎ 5 3 O aplicaţie a teoremei limitǎ centralǎ 7 4 Estimarea punctualǎ a unui parametru; intervalul

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

V O. = v I v stabilizator

V O. = v I v stabilizator Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,

Διαβάστε περισσότερα

Câteva limite fundamentale in telecomunicaţii. Curs festiv, an 5, promoţia iunie 2004

Câteva limite fundamentale in telecomunicaţii. Curs festiv, an 5, promoţia iunie 2004 Claude E. Shannon Vladimir Kotelniov Câteva limite fundamentale in telecomunicaţii Curs festiv, an 5, promoţia 004 9 iunie 004 Introducere Ieşirea unei surse discrete este o variabilă aleatoare S ce ia

Διαβάστε περισσότερα

10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu,

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, vidiu Gabriel Avădănei, Florin Mihai Tufescu, Capitolul 6 Amplificatoare operaţionale 58. Să se calculeze coeficientul de amplificare în tensiune pentru amplficatorul inversor din fig.58, pentru care se

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

ESTIMAREA PRIN METODA CELOR MAI MICI PĂTRATE (LS)

ESTIMAREA PRIN METODA CELOR MAI MICI PĂTRATE (LS) ESIMAREA PRI MEODA CELOR MAI MICI PĂRAE () MEODA CELOR MAI MICI PĂRAE În capitolele precedente am căutat estimatori optimali sau asimptotic optimali, din categoria estimatorilor nedeplasaţi şi cu dispersie

Διαβάστε περισσότερα

Curs 2 DIODE. CIRCUITE DR

Curs 2 DIODE. CIRCUITE DR Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

Esalonul Redus pe Linii (ERL). Subspatii.

Esalonul Redus pe Linii (ERL). Subspatii. Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste

Διαβάστε περισσότερα

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională

Διαβάστε περισσότερα

9 Testarea ipotezelor statistice

9 Testarea ipotezelor statistice 9 Testarea ipotezelor statistice Un test statistic constă în obţinerea unei deducţii bazată pe o selecţie din populaţie prin testarea unei anumite ipoteze (rezultată din experienţa anterioară, din observaţii,

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice

4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice 4. Măsurarea tensiunilor şi a curenţilor electrici oltmetre electronice analogice oltmetre de curent continuu Ampl.c.c. x FTJ Protectie Atenuator calibrat Atenuatorul calibrat divizor rezistiv R in const.

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

Principiul Inductiei Matematice.

Principiul Inductiei Matematice. Principiul Inductiei Matematice. Principiul inductiei matematice constituie un mijloc important de demonstratie in matematica a propozitiilor (afirmatiilor) ce depind de argument natural. Metoda inductiei

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB 1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare

Διαβάστε περισσότερα

Matrice. Determinanti. Sisteme liniare

Matrice. Determinanti. Sisteme liniare Matrice 1 Matrice Adunarea matricelor Înmulţirea cu scalar. Produsul 2 Proprietăţi ale determinanţilor Rangul unei matrice 3 neomogene omogene Metoda lui Gauss (Metoda eliminării) Notiunea de matrice Matrice

Διαβάστε περισσότερα

Lucrarea Nr. 5 Circuite simple cu diode (Aplicaţii)

Lucrarea Nr. 5 Circuite simple cu diode (Aplicaţii) ucrarea Nr. 5 Circuite simple cu diode (Aplicaţii) A.Scopul lucrării - Verificarea experimentală a rezultatelor obţinute prin analiza circuitelor cu diode modelate liniar pe porţiuni ;.Scurt breviar teoretic

Διαβάστε περισσότερα

z a + c 0 + c 1 (z a)

z a + c 0 + c 1 (z a) 1 Serii Laurent (continuare) Teorema 1.1 Fie D C un domeniu, a D şi f : D \ {a} C o funcţie olomorfă. Punctul a este pol multiplu de ordin p al lui f dacă şi numai dacă dezvoltarea în serie Laurent a funcţiei

Διαβάστε περισσότερα

Densitatea spectrală de putere şi trecerea semnalelor aleatoare prin sisteme liniare

Densitatea spectrală de putere şi trecerea semnalelor aleatoare prin sisteme liniare Densitatea spectrală de putere şi trecerea semnalelor aleatoare prin sisteme liniare Constantin VERTAN Densitatea spectrală de putere a unui proces (semnal aleator ξ(t este definită ca: F ξ T (t} (ω q

Διαβάστε περισσότερα

Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15

Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15 MĂSURI RELE Cursul 13 15 Măsuri reale Fie (,, µ) un spaţiu cu măsură completă şi f : R o funcţie -măsurabilă. Cum am văzut în Teorema 11.29, dacă f are integrală pe, atunci funcţia de mulţime ν : R, ν()

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Stabilizator cu diodă Zener

Stabilizator cu diodă Zener LABAT 3 Stabilizator cu diodă Zener Se studiază stabilizatorul parametric cu diodă Zener si apoi cel cu diodă Zener şi tranzistor. Se determină întâi tensiunea Zener a diodei şi se calculează apoi un stabilizator

Διαβάστε περισσότερα

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie) Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului

Διαβάστε περισσότερα

Analiza bivariata a datelor

Analiza bivariata a datelor Aaliza bivariata a datelor Aaliza bivariata a datelor! Presupue masurarea gradului de asoiere a doua variabile sub aspetul: Diretiei (aturii) Itesitatii Semifiatiei statistie Variabilele omiale Tabele

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)).

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)). Teoremă. (Y = f(x)). Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism Demonstraţie. f este continuă pe X: x 0 X, S Y (f(x 0 ), ε), S X (x 0, ε) aşa ca f(s X (x 0, ε)) = S Y (f(x 0 ), ε) : y

Διαβάστε περισσότερα

5.1. Noţiuni introductive

5.1. Noţiuni introductive ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul

Διαβάστε περισσότερα

Proiectarea filtrelor prin metoda pierderilor de inserţie

Proiectarea filtrelor prin metoda pierderilor de inserţie FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri

Διαβάστε περισσότερα

Cursul 6. Tabele de incidenţă Sensibilitate, specificitate Riscul relativ Odds Ratio Testul CHI PĂTRAT

Cursul 6. Tabele de incidenţă Sensibilitate, specificitate Riscul relativ Odds Ratio Testul CHI PĂTRAT Cursul 6 Tabele de incidenţă Sensibilitate, specificitate Riscul relativ Odds Ratio Testul CHI PĂTRAT Tabele de incidenţă - exemplu O modalitate de a aprecia legătura dintre doi factori (tendinţa de interdependenţă,

Διαβάστε περισσότερα

SEMINAR TRANSFORMAREA FOURIER. 1. Probleme

SEMINAR TRANSFORMAREA FOURIER. 1. Probleme SEMINAR TRANSFORMAREA FOURIER. Probleme. Să se precizeze dacă funcţiile de mai jos sunt absolut integrabile pe R şi, în caz afirmativ să se calculeze { transformata Fourier., t a. σ(t), t < ; b. f(t) σ(t)

Διαβάστε περισσότερα

Tranzistoare bipolare şi cu efect de câmp

Tranzistoare bipolare şi cu efect de câmp apitolul 3 apitolul 3 26. Pentru circuitul de polarizare din fig. 26 se cunosc: = 5, = 5, = 2KΩ, = 5KΩ, iar pentru tranzistor se cunosc următorii parametrii: β = 200, 0 = 0, μa, = 0,6. a) ă se determine

Διαβάστε περισσότερα

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili Anexa 2.6.2-1 SO2, NOx şi de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili de bioxid de sulf combustibil solid (mg/nm 3 ), conţinut de O 2 de 6% în gazele de ardere, pentru

Διαβάστε περισσότερα

7 Distribuţia normală

7 Distribuţia normală 7 Distribuţia normală Distribuţia normală este cea mai importantă distribuţie continuă, deoarece în practică multe variabile aleatoare sunt variabile aleatoare normale, sunt aproximativ variabile aleatoare

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener

Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener 1 Caracteristica statică a unei diode Zener În cadranul, dioda Zener (DZ) se comportă ca o diodă redresoare

Διαβάστε περισσότερα

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l +

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l + Semnul local al unei funcţii care are limită. Propoziţie. Fie f : D (, d) R, x 0 D. Presupunem că lim x x 0 f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl,

Διαβάστε περισσότερα

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, aprilie 7 Proba scrisă la MATEMATICĂ SUBIECTUL I (3 puncte) ) (5 puncte) Fie matricele A = 3 4 9 8

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

1. PROPRIETĂȚILE FLUIDELOR

1. PROPRIETĂȚILE FLUIDELOR 1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea

Διαβάστε περισσότερα

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective: TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi

Διαβάστε περισσότερα

Criptosisteme cu cheie publică III

Criptosisteme cu cheie publică III Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.

Διαβάστε περισσότερα

Integrale cu parametru

Integrale cu parametru 1 Integrle proprii cu prmetru 2 3 Integrle proprii cu prmetru Definiţi 1.1 Dcă f : [, b ] E R, E R este o funcţie cu propriette că pentru orice y E, funcţi de vribilă x x f (x, y) este integrbilă pe intervlul

Διαβάστε περισσότερα

Circuite electrice in regim permanent

Circuite electrice in regim permanent Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, Electronică - Probleme apitolul. ircuite electrice in regim permanent. În fig. este prezentată diagrama fazorială a unui circuit serie. a) e fenomen este

Διαβάστε περισσότερα

3. Vectori şi valori proprii

3. Vectori şi valori proprii Valori şi vectori proprii 7 Vectori şi valori proprii n Reamintim că dacă A este o matrice pătratică atunci un vector x R se numeşte vector propriu în raport cu A dacă x şi există un număr λ (real sau

Διαβάστε περισσότερα

Recapitulare - Tipuri de date

Recapitulare - Tipuri de date Recapitulare - Tipuri de date Date numerice vârsta, greutatea, talia, hemoglobina, tensiunea arterială, calcemia, glicemia, colesterolul, transaminazele etc. valori continue sau discrete numere întregi

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα

INTERPOLARE. y i L i (x). L(x) = i=0

INTERPOLARE. y i L i (x). L(x) = i=0 INTERPOLARE Se dau punctele P 0, P 1,..., P n in plan sau in spatiu, numite noduri si avand vectorii de pozitie r 0, r 1,..., r n. Problemă. Să se găsească o curbă (dintr-o anumită familie) care să treacă

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα