Tokovni transformator z elektronskim ojačevalnikom
|
|
- ÍΑἰνείας Σκλαβούνος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Tokovn transformator z elektronskm ojačevalnkom Tokovn transformator se sestoj z prmarnega navtja skoz katerga teče merjen tok n sekundarnega navtja. a sekundarno navtje je prklopljen merln upor s kompleksno mpedanco Z. Shema realnega transformatorja Slka : sestoj z dealnega transformatorja z napetostnm n tokovnm prestavnm razmerjem U U, n elementov realnega transformatorja. R n R sta upornost prmarnega n sekundarnega navtja, medtem ko sta X n X admtanc navtj zarad stresanega polja. Upornost R 0 podaja Joulske zgube v jedru transformatorja (vrtnčne zgube), X 0 pa določa velkost nduktvne komponente magnetlnega toka. Shema realnega transformatorja postane preglednejša, če predpostavmo enakost prmarnh n sekundarnh ovojev, oz. če reducramo prmarno stran vezja na sekundarno (al obratno, če je to prročnejše). U U,, R R ( ) z sheme se zlahka opaz, da razmerje U /U napetost realnega transformatorja n enako razmerju ovojev /. apetost poleg tega tud nsta v faz. Razlog temu je padec napetost na elementh R, X, R n X. Delovanju dealnega transformatorja se prblžamo čmmanjša je obrementev transformatorja tj. v praznem teku. Podobno velja tud za tokovno razmerje /, k odstopa od razmerja ovojev / n scer zarad tokov g n µ. Odstopanje je tem manjše čmbolj se transformator prblža stanju popolnega kratkega stka (kratek stk sekundarnh sponk). Tokovn n fazn pogrešek tokovnega transformatorja sta tedaj najmanjša, saj je tok magnetzranja enak nč (dealno).
2 To je lepo razvdno z kazalčnega dagrama. Slka : Kazalčn dagram tokovnega transformatorja Sekundarn tok povzroča na nadomestn upornost n stresan nduktvnost sekundarnega navtja n prključenem bremenu (ZR+jX) padec napetost, k je enak nducran napetost v sekundarnem navtju U ( R + jx + Z) nducrana napetost je proporconalna sprememb magnetnega pretoka, k se zaključuje skoz prmarno n sekundarno navtje U d Φ dt V faz z magnetnm pretokom je komponenta µ magnetlnega toka 0, medtem ko je njegova delovna komponenta v faz z U. Vektorska vsota tokov n 0 je enaka prmarnemu toku reducranem na sekundarno stran. Ker se n razlkujeta tako po ampltud kot tud po faz govormo o tokovnem n faznem pogrešku tokovnega transformatorja. Če predpostavmo, da je nazvno transformatorsko razmerje K enako razmerju ovojev /, potem je tokovn pogrešek enak K p 00 [%] 00 [%] ozroma p 0 00 [%, ] medtem ko fazn pogrešek podajamo kot 0 sn δ sn( β0 β s). Vdmo, da sta oba pogreška odvsna od razmerja 0 /. Ker je magnetln tok pr tokovnh transformatorjh relatvno majhen (tež se namreč, da je U čm manša) lahko namesto 0 nadomestmo zgolj z njegovo osnovno harmonsko komponento 0(). Dobmo razmerje tokov, k je podrobneje zpeljano v []
3 0 () P π fvfe ϑ µ. σ Razmerje tokov, ter s tem tud tokovn n fazn pogrešek, raste s povečevanjem prenesene navdezne moč preko jedra ter pada z večanjem frekvence, volumnom jedra, permeablnost µ σ n υ. Pr tem je υ vrednost prmarne poljske jakost ϑ. l FE a velkost tokovnega n faznega pogreška ma pr nekem danem transformatorju največj vplv permeablnost jedra, k zavs od velkost merjenega toka n mpedance merlnega upora. Značlno odvsnost permeablnost od merjenega toka pr konstantnem bremenu Z podaja spodnja slka. B µ H Slka Takšna odvsnost je posledca ukrvljenost magnetlnce B-H (devška krvulja). Pr majhnh tokovh je nducrana napetost U majhna kar velja posledčno tud za dφ n B. Ker se magnetlna točka tedaj nahaja blzu koordnatnega zhodšča B-H krvulje, kjer je permeablnost jedra majhna, je pogrešek tokovnega transformatorja občutno večj kot pr nazvnem toku, kjer je permeablnost mnogo večja. Opsana odvsnost se lepo odraz tud na oblkovanju dopustnh mej pogreška tokovnega transformatorja. Slka 4 a, b:
4 Merln tokovn transformatorj se po veljavnem predpsu umeščajo v šest točnostnh razredov. Tabela : Dopustne vrednost tokovnh n faznh pogreškov razred p [%] δ [mn] 0, 0,, 0, 0,, 0, 0,5 0, 0, 0, , 0,5 0,5 0, 0, ,5 0,75 0,5 0, , ,5 do, : meje nso predpsane 5 0,5 do, : 5 meje nso predpsane Oznaka točnostnega razreda je enaka absolutn vrednost mejnega tokovnega pogreška (v procenth) pr nazvnem toku n nazvnem bremenu. Zmanjšanje tokovnega n faznega pogreška s pomočjo elektronskega ojačevalnka V elektronskh merlnh napravah srečamo pogosto tokovne transformatorje manjšh moč, k galvansko ločujejo občutljve elektronske sklope od merlnega tokokroga. Merjen tok je v tem prmeru transformran v relatvno majhen (normran) tok ( A do 5 A), k na precznem merlnem uporu R povzroč padec napetost R. Ta napetost se nato zajame (obdela) z elektronskm sklopom, k ma velko vhodno upornost. Osnovno točnost takšnega transformatorja, k je določena z () lahko občutno zboljšamo, če zmanjšamo sekundarn tok ob sočasnem povečanju upornost R. Tedaj je ob stem padcu napetost na merlnem uporu prenesena moč transformatorja manjša. Vendar pa zmanjšanje sekundarnega toka zahteva povečanje števla sekundarnh ovojev, zarad česar je možno točnost zboljšat le deloma, saj pr večjem števlu ovojev (pr sth dmenzjah jedra) nastopjo dodatna odstopanja. Točnost tokovnega transformatorja občutneje zboljšamo z uporabo elektronskega ojačevalnka. Takšen sklop tokovnega transformatorja n ojačevalnka pogosto menujemo aktvn tokovnk. Poleg prmarnega n sekundarnega navtja ma transformator dodano še tretje t.. ndkacjsko navtje.
5 R R U VH U V U ZH Slka: Aktvn tokovnk ndkacjsko navtje je prključeno na vhod elektronskega ojačevalnka. jegova vhodna napetost je enaka nducran napetost v ndkacjskem navtju U, saj je tok (ter s tem tud padec napetost v tem tokokrogu) zarad velke vhodne upornost ojačevalnka zanemarljv. zhodn tok ojačevalnka teče skoz sekundarno navtje n merln upor R. Če predpostavmo dealn ojačevalnk z neskončnm ojačenjem A potem vhodna napetost U vh tež k vrednost nč. To pa je mogoče le tedaj, ko velja enakost ampernh ovojev n. V prmeru realnega ojačevalnka z ojačenjem A bo njegova zhodna napetost enaka U ZH ( R + R+ jx) U, medtem ko je vhodna napetost U ZH UVH. A nducrana napetost v navtju zato znaša U U U Z U ' ZH S A A /. Z S U + A / nducrana napetost U je pr velkem ojačenju A znatno manjša od Z S, kolkor znaša nducrana napetost brez uporabe ojačevalnka. a opsan načn se posledčno zmanjša tud razmerje tokov () n scer za +A / krat, če seveda predpostavmo konstantne ostale parametre. Povzetek: Povezavo ndkacjskega navtja n vhoda elektronskega ojačevalnka lahko smatramo kot preczn nčeln ndkator, katerega odstopanje zazna n korgra ojačevalnk tako, da skoz sekundarno navtje vsl kompenzacjsk tok. Rezultat je zmanjšanje vhodne napetost ojačevalnka, k tež k vrednost nč. Enaka ugotovtev velja tud za spremembo magnetnega pretoka Φ. Ker se delovna točka v magnetln krvulj B-H tako nahaja blzu koordnatnega zhodšča, je presek jedra lahko manjš vendar pa mora bt pločevna kakovostnejša. met mora večjo začetno permeablnost. Opsana zvedba tokovnega merlnka n prmerna za merjenje enosmernh tokov, saj je ndkacjsko navtje občutljvo zgolj na spremembo magnetnega pretoka Φ. To pa pomen, da tud ojačevalnk ne sme met preostale zhodne napetost (offset).
6 Offset b bl sprejemljv le tedaj, če b ga lahko zanesljvo obvladoval n scer s cljem, da b delovno točko premaknl v strmejš del magnetlne krvulje B-H. Frekvenčna meja aktvnh tokovnkov zavs predvsem od stresanh polj v sekundarnem navtju ter frekvenčne meje uporabljenega ojačevalnka (slew rate). Tpčne vrednost sodobnega aktvnega tokovnka podaja spodnja tabela. Tabela : tokovno območje A do 00 A točnost 0, % frekvenčno območje 0 Hz do 500 khz Poleg merlnh aplkacj, kjer se zahteva relatvno velka točnost, so t tokovn merlnk zanmv tud kot zaščtn transformatorj. Le-t morajo točno zmert tud nekajkratno povečano vrednost nazvnega toka. Za razlko od pasvnh transformatorjev pr katerh lahko tedaj prde do nasčenja jedra, je to pr aktvnem tokovnku ob dovolj zmogljvem ojačevalnku skoraj nemogoče.
Numerično reševanje. diferencialnih enačb II
Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke
Delovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
Transformator. Delovanje transformatorja I. Delovanje transformatorja II
Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.
PONOVITEV SNOVI ZA 4. TEST
PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.
Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
Transformator. Izmenični signali, transformator 22.
zmenični signali, transformator. Transformator Vsebina: Zapis enačb transformatorja kot dveh sklopljenih tuljav, napetostna prestava, povezava medd maksimalnim fluksom in napetostjo, neobremenjen transformator
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
Osnove elektrotehnike uvod
Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.
Gimnazija Krˇsko. vektorji - naloge
Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor
1. Trikotniki hitrosti
. Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca
Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
Merilniki gostote magnetnega polja na osnovi Lorentzove sile
Merilniki gostote magnetnega polja na osnovi Lorentzove sile Lorentzova sila je temelj tako allovega kot tudi magnetoupornostnega efekta v polprevodniških strukturah. Zgradba in osnovni princip delovanja
5 TIRISTORSKA STIKALA IN NASTAVLJALNIKI
Močnostna elektronka 5. Trstorska stkala n nastavljalnk 5 TIISTOSKA STIKALA IN NASTAVLJALNIKI Za vklapljanje n zklapljanje elektrškh tokokrogov lahko namesto mehanskh porabmo td polprevodnška (elektronska)
Tretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
Znižanje parnega tlaka Parni tlak idealnih raztopin neelektrolitov podamo z Raoultovim zakonom.(1).
. vaja: IZOTONIČNE IN UFRNE RAZTOINE. Uvod Človeško telo je sestavljeno z 66 % vode n scer 4 % kot ntracelularna tekočna (ICT) n 6 % kot ekstracelularna tekočna (ECT). K ECT sodjo nterstcjska tekočna (
Poglavje 5. Poglavje 5. Poglavje 5. c = 1! SPOMNIMO SE!!! Regulacijski sistemi. Regulacijski sistemi
Reglacjsk ssem lka 5. : Vekorja saorskega n roorskega oka v prosor Faklea za elekroehnko Reglacjsk ssem POMNIMO E!!! lka. 5: Kompleksn vekor saorskega oka γ jγ ( e ) j0 j ( ) c ( ) e ( ) e ( ) c! Faklea
1. Enosmerna vezja. = 0, kar zaključena
1. Enosmerna vezja Vsebina polavja: Kirchoffova zakona, Ohmov zakon, električni viri (idealni realni, karakteristika vira, karakteristika bremena matematično in rafično, delovna točka). V enosmernih vezjih
KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
TOPNOST, HITROST RAZTAPLJANJA
OPNOS, HIOS AZAPLJANJA Denja: onos (oz. nasčena razona) redsavlja sanje, ko je oljene (rdn, ekoč, lnas) v ravnoežju z razono (oljenem, razoljenm v olu). - kvanavn zraz - r določen - homogena molekularna
8. Diskretni LTI sistemi
8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z
1. VAJA IZ TRDNOSTI. (linearna algebra - ponovitev, Kroneckerjev δ i j, permutacijski simbol e i jk )
VAJA IZ TRDNOSTI (lnearna algebra - ponovtev, Kroneckerev δ, permutacsk smbol e k ) NALOGA : Zapš vektor a = [, 2,5,] kot lnearno kombnaco vektorev e = [,,,], e 2 = [,2,3,], e 3 = [2,,, ] n e 4 = [,,,]
IZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA
Državni izpitni center *M543* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek,. junij 05 SPLOŠNA MATURA RIC 05 M543 M543 3 IZPITNA POLA Naloga Odgovor Naloga Odgovor Naloga Odgovor Naloga Odgovor
Bilance procesov brez reakcije. Kemijsko inženirstvo 2 Snovne in energijske bilance
Blance procesov brez reakcje Kemjsko nženrstvo 2 Snovne n energjske blance Izračun lastnost stanj Izračun lastnost stanj v smslu sprememb notranje energje n entalpje, povezanh s procesom: spremembe v P
Zaporedna in vzporedna feroresonanca
Visokonapetostna tehnika Zaporedna in vzporedna feroresonanca delovanje regulacijskega stikala T3 174 kv Vaja 9 1 Osnovni pogoji za nastanek feroresonance L C U U L () U C () U L = U L () U C = ωc V vezju
Transformatorji in dušilke
Univerza v Ljubljani Fakulteta za elektrotehniko Danilo Makuc Transformatorji in dušilke Zbirka nalog z rešitvami Danilo Makuc, FE UN LJ, januar 011 Predgovor Zbirka vsebuje rešene naloge iz preteklih
Analiza nadomestnega vezja transformatorja s programskim paketom SPICE OPUS
s programskim paketom SPICE OPS Danilo Makuc 1 VOD SPICE OPS je brezplačen programski paket za analizo električnih vezij. Gre za izpeljanko simulatorja SPICE3, ki sicer ne ponuja programa za shematski
DELOVANJE TRANSFORMATORJA
Univerza v Ljubljani Fakulteta za elektrotehniko DELOVANJE TRANSFORMATORJA Seminar pri predmetu Razdelilna in industrijska omrežja Poročilo izdelal: Mitja Smešnik Predavatelj: prof. dr. Grega Bizjak Študijsko
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
3. AMPEROV ZAKON. SLIKA: Zanka v magnetnem polju. Integral komponente magnetnega polja v smeri zanke je sorazmeren toku, ki ga zanka oklepa.
3. AMPEROV ZAKON Equation Section 3 Vsebina poglavja: Integral polja po zaključeni zanki je sorazmeren toku, ki ga zanka objame. Izračuni polja s pomočjo Amperovega zakona za: tokovno premico, solenoid,
Bipolarni transistor se sestoji iz treh polprevodniških slojev različne prevodnosti. Glede na njihovo zaporedje ločimo NPN in PNP tranzistorje.
polarn ranzsor polarn ranssor se sesoj z reh polprevodnškh slojev razlčne prevodnos. Glede na njhovo zaporedje ločmo NPN n PNP ranzsorje. Slka: Zgradba n smbol NPN n PNP ranzsorja NPN ranzsor je orej sesavljen
Izmenični signali kompleksni račun
zenicni_signali-kopleksni_racun(8).doc /7.6.6 zenični signali kopleksni račun Kopleksni račun e poebno orode za analizo vezi z izeničnii haroničnii signali. V osnovi diferencialne enačbe lahko z uporabo
MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9
.cwww.grgor nik ol i c NVERZA V MARBOR FAKTETA ZA EEKTROTEHNKO, RAČNANŠTVO N NFORMATKO 2000 Maribor, Smtanova ul. 17 Študij. lto: 2011/2012 Skupina: 9 MERTVE ABORATORJSKE VAJE Vaja št.: 4.1 Določanj induktivnosti
Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM
Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s
SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK
SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi
matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):
4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n
VSŠ Velenje Elektromehanski elementi in sistemi
VSŠ Velenje Elektromehanski elementi in sistemi FET tranzistorji 1.5.4 UNIPOLARNI TRANZISTORJI FET (Field Effect Tranzistor) Splošno Za FET tranzistorje je značilno, da so za razliko od bipolarnih krmiljeni
Booleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
Vaje: Električni tokovi
Barbara Rovšek, Bojan Golli, Ana Gostinčar Blagotinšek Vaje: Električni tokovi 1 Merjenje toka in napetosti Naloga: Izmerite tok, ki teče skozi žarnico, ter napetost na žarnici Za izvedbo vaje potrebujete
V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant.
Poglavje IV Determinanta matrike V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant 1 Definicija Preden definiramo determinanto,
Državni izpitni center *M * SPOMLADANSKI IZPITNI ROK ELEKTROTEHNIKA NAVODILA ZA OCENJEVANJE. Četrtek, 29. maj 2008 SPLOŠNA MATURA
Š i f r a k a n d i d a t a : Državni izpitni center *M877* SPOMLADANSK ZPTN ROK ELEKTROTEHNKA NAVODLA ZA OCENJEVANJE Četrtek, 9 maj 8 SPLOŠNA MATRA RC 8 M8-77-- A zračunajte gostoto toka v vodniku s presekom
Državni izpitni center *M * JESENSKI IZPITNI ROK ELEKTROTEHNIKA NAVODILA ZA OCENJEVANJE. Četrtek, 27. avgust 2009 SPLOŠNA MATURA
Š i f r a k a n d i d a t a : Državni izpitni center *M097711* ELEKTROTEHNIKA JESENSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Četrtek, 7. avgust 009 SPLOŠNA MATURA RIC 009 M09-771-1- A01 Z galvanizacijskim
USMERNIKI POLVALNI USMERNIK:
USMERNIKI POLVALNI USMERNIK: polvalni usmernik prevaja samo v pozitivni polperiodi enosmerni tok iz usmernika ni enakomeren, temveč močno utripa, zato tak način usmerjanja ni posebno uporaben V pozitivni
Statistika 2, predavanja,
Statstka, predavana, 70 Jaka Smrekar februar 0 Dskretna porazdeltev na končno mnogo točkah Matematčno ozade Dskretna slučana spremenlvka X: Na bo m X = {ξ 0, ξ,, ξ m } n p = P (X = ξ Parametrčn prostor:
Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12
Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola
Osnove matematične analize 2016/17
Osnove matematične analize 216/17 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Kaj je funkcija? Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja
Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)
Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2
NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU
NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU Equatio n Section 6Vsebina poglavja: Navor kot vektorski produkt ročice in sile, magnetni moment, navor na magnetni moment, d'arsonvalov ampermeter/galvanometer.
Osnovni pojmi pri obravnavi periodičnih signalov
Periodični signali, osnovni poji 7. Osnovni poji pri obravnavi periodičnih signalov Vsebina: Opis periodičnih signalov z periodo, frekvenco, krožno frekvenco. Razlaga pojov aplituda, faza, haronični signal.
PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET
TEORJA ETONSKH KONSTRUKCJA 1 PRESEC SA PRSLNO - VELK EKSCENTRCTET ČSTO SAVJANJE - SLOODNO DENZONSANJE Poznato: Nepoznato: - statčk tcaj za pojedna opterećenja ( ) - sračnato - kvaltet materjala (, σ v
Metering is our Business
Metering is our Business REŠTVE ZA PRHODNOST UČNKOVTO UPRAVLJANJE ENERGJE STROKOVNE STORTVE POTROŠNKOM PRJAZNE REŠTVE Metering is our Business 1 Načrtovanje zapornega pretvornika Od tehničnih zahtev Do
p 1 ENTROPIJSKI ZAKON
ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:
PROCESIRANJE SIGNALOV
Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:
Električno polje. Na principu električnega polja deluje npr. LCD zaslon, fotokopirni stroj, digitalna vezja, osciloskop, TV,...
1 Električno polje Vemo že, da: med elektrinami delujejo električne sile prevodniki vsebujejo gibljive nosilce elektrine navzven so snovi praviloma nevtralne če ima telo presežek ene vrste elektrine, je
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,
POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL
POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL Izdba aje: Ljubjana, 11. 1. 007, 10.00 Jan OMAHNE, 1.M Namen: 1.Preeri paraeogramsko praio za doočanje rezutante nezporedni si s skupnim prijemaiščem (grafično)..dooči
POSTROJI ZA PRENOS IN TRANSFORMACIJO ELEKTRIČNE ENERGIJE
Univera v Ljubljani Fakulteta a elektrotehniko POTROJ ZA PRENO N TRANFORMACJO ELEKTRČNE ENERGJE MULACJKA VAJA Avtorja: doc. dr. Boštjan Blažič, Blaž Uljanić Ljubljana, 2012 1 hema omrežja Na sliki 1 je
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )
ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ
GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE
Gradniki elektronskih sistemov laboratorijske vaje. Vaja 1 Lastnosti diode. Ime in priimek: Smer:.. Datum:... Pregledal:...
Gradniki elektronskih sistemov laboratorijske vaje Vaja 1 Lastnosti diode Ime in priimek:. Smer:.. Datum:... Pregledal:... Naloga: Izmerite karakteristiko silicijeve diode v prevodni smeri in jo vrišite
+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70
KAIFLEX ST Tehnični podatki Material Izjemno fleksibilna zaprtocelična izolacija, fleksibilna elastomerna pena (FEF) Opis Uporaba Temperaturno območje Toplotna prevodnost W/(m K ) pri različnih srednjih
Izmenični signali metode reševanja vezij (21)
Izmenični sinali_metode_resevanja (21b).doc 1/8 03/06/2006 Izmenični sinali metode reševanja vezij (21) Načine reševanja enosmernih vezij smo že spoznali. Pri vezjih z izmeničnimi sinali lahko uotovimo,
F g = 1 2 F v2, 3 2 F v2 = 17,3 N. F v1 = 2. naloga. Graf prikazuje harmonično nihanje nitnega nihala.
Vaje - Gimnazija, 1. etnik, razična snov 1. naoga Kroga z maso 1 kg je pritrjena na dve vrvici, kakor kaže sika. Poševna vrvica okepa z vodoravnico kot 30. Izračunaj s koikšnima siama sta napeti vrvici!
CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25
1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή
Ponovitev predavanja 12
Ponovtv prdavanja Msto lnarnh transformacj v ksprmntalnm stavku: X( H Y( Fzkaln procs/ pojav nzor/ stm X( X(t Procs/ Vzorčnj gnal X(t Krak. / Analza Y( H[X(] X(. naključn procs, (vhodn sgnal, vhodna sprmnljvka,
!"!# ""$ %%"" %$" &" %" "!'! " #$!
" "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(
Fazni diagram binarne tekočine
Fazni diagram binarne tekočine Žiga Kos 5. junij 203 Binarno tekočino predstavljajo delci A in B. Ti se med seboj lahko mešajo v različnih razmerjih. V nalogi želimo izračunati fazni diagram take tekočine,
3. Dimenzioniranje in kontrola zaščitnih naprav
3. Dimenzioniranje in kontrola zaščitnih naprav V skladu z zahtevami elektrotehniškh standardov za el. Instalacije NN (do 1kV) morajo biti vsi el. stroji in naprave zaščiteni pred el. udarom. Poznamo dve
TŠC Kranj _ Višja strokovna šola za mehatroniko
KRMILNI POLPREVODNIŠKI ELEMENTI Krmilni polprevodniški elementi niso namenjeni ojačanju, anju, temveč krmiljenju tokov v vezju. Narejeni so tako, da imajo dve stanji: vključeno in izključeno. Enospojni
A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N
I N F O T E K N I K V o l u m e 1 5 N o. 1 J u l i 2 0 1 4 ( 61-70) A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N N o v i
Polnilnik Ni-MH/Ni-Cd baterij
Univerza v Ljubljani Fakulteta za elektrotehniko Matej Antonijevič Polnilnik Ni-MH/Ni-Cd baterij Seminarska naloga pri predmetu Elektronska vezja Ljubljana, julij 2011 Matej Antonijevič Polnilnik Ni-MH/Ni-Cd
Elektrotehnika. Študijsko gradivo za študente Pedagoške fakultete UL. Študijsko leto 2009/2010. Slavko Kocijančič
Elektrotehnika Študijsko gradivo za študente Pedagoške fakultete UL Slavko Kocijančič Študijsko leto 2009/2010 Ljubljana, marec 2010 Vsebina 1. OSNOVE ELEKTROTEHNIKE...1 OHMOV ZAKON...1 PRVI KIRCHHOFFOV
OM3 (Obvezni modul 3) ELN, test2 Električne naprave
Ime in PRIIMEK: Letnik: Datum: OM3 (Obvezni modul 3) ELN, test2 Električne naprave Število točk/ocena: Teme preverjanja 1 test ELN, Osnovna temeljna znanja, el. veličine, delilniki, osnovni zakoni, kondenzator,
Osnove sklepne statistike
Univerza v Ljubljani Fakulteta za farmacijo Osnove sklepne statistike doc. dr. Mitja Kos, mag. farm. Katedra za socialno farmacijo e-pošta: mitja.kos@ffa.uni-lj.si Intervalna ocena oz. interval zaupanja
transformacija j y i x x promatramo dva koordinatna sustava S i S sa zajedničkim ishodištem z z Homogene funkcije Ortogonalne transformacije
promatramo dva oordnatna sustava S S sa zaednčm shodštem z z y y x x blo o vetor možemo raspsat u baz, A = A x + Ay + Az = ( A ) + ( A ) + ( A ) (1) sto vred za ednčne vetore sustava S = ( ) + ( ) + (
Meritve. Vprašanja in odgovori za 1. kolokvij Gregor Nikolić
2011 Meritve Vprašanja in odgovori za 1. kolokvij 02.10.2011 31.10.2011 Kazalo vsebine 1 Katere skupine enot SI poznate in kakšna je zveza med skupinami?... 2 2 Katere enote so enote SI, katere niso: A,
Stikalni pretvorniki. Seminar: Načrtovanje elektronike za EMC Boštjan Glažar
Stikalni pretvorniki Seminar: Načrtovanje elektronike za EMC 29. 3. 2017 Boštjan Glažar niverza v Ljubljani Fakulteta za elektrotehniko Tržaška cesta 25, SI-1000 Ljubljana Vsebina Prednosti stikalnih pretvornikov
LASTNOSTI FERITNEGA LONČKA. 330 kω. 3400pF
Ime in priimek: Šolsko leto: Datum: ASTNOSTI FEITNEGA ONČKA Za tuljavo s feritnim lončkom določite: a) faktor induktivnosti A in kvaliteto izdelane tuljave z meritvijo resonance nihajnega kroga. b) vrednosti
Univerza v Ljubljani Pedagoška fakulteta. Indukcijska plošča. Špela Jelinčič. Seminarska naloga pri predmetu Didaktika tehnike III
Univerza v Ljubljani Pedagoška fakulteta Indukcijska plošča Špela Jelinčič Seminarska naloga pri predmetu Didaktika tehnike III Mentor: doc. dr. Janez Jamšek Ljubljana, 2013 Povzetek Seminarska naloga
Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1
Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni
ELEKTRIČNI STROJI 1. UVOD. 1.1 Transformator DELOVNJE TRANSFORMATORJA
ELEKTRIČNI STROJI. VOD Električni stroji spreminjajo mehansko energijo v električno ali obratno, lahko pa tudi transformirajo električno energijo v električno s spremembo določenih parametrov. Električni
Bipolarni tranzistor je trielektrodni polprevodniški elektronski sestavni del, ki je namenjen za ojačevanje
TRANZISTOR Bipolarni tranzistor je trielektrodni polprevodniški elektronski sestavni del, ki je namenjen za ojačevanje električnih signalov. Zgrajen je iz treh plasti polprevodnika (silicija z različnimi
Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci
3 H 12.35 Y β Low 80 1 - - Betas: 19 (100%) 11 C 20.38 M β+, EC Low 400 1 5.97 13.7 13 N 9.97 M β+ Low 1 5.97 13.7 Positrons: 960 (99.7%) Gaas: 511 (199.5%) Positrons: 1,199 (99.8%) Gaas: 511 (199.6%)
vezani ekstremi funkcij
11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad
1 Fibonaccijeva stevila
1 Fibonaccijeva stevila Fibonaccijevo število F n, kjer je n N, lahko definiramo kot število načinov zapisa števila n kot vsoto sumandov, enakih 1 ali Na primer, število 4 lahko zapišemo v obliki naslednjih
1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja
ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost
INDUCIRANA NAPETOST (11)
INDUCIRANA NAPETOST_1(11d).doc 1/17 29.3.2007 INDUCIRANA NAPETOST (11) V tem poglavju bomo nadgradili spoznanja o magnetnih pojavih v stacionarnih razmerah (pri konstantnem toku) z analizo razmer pri časovno
1. Merjenje toka in napetosti z AVO metrom
1. Merjenje toka in napetosti z AVO metrom Cilj: Nariši karakteristiko Zenerjeve diode in določi njene parametre, pri delu uporabi AVO metre za merjenje napetosti in toka ter vir spremenljive napetosti
Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013
WP 14 R T d 9 10 11 53 d 2015 811/2013 WP 14 R T 2015 811/2013 WP 14 R T Naslednji podatki o izdelku izpolnjujejo zahteve uredb U 811/2013, 812/2013, 813/2013 in 814/2013 o dopolnitvi smernice 2010/30/U.
Električni naboj, ki mu pravimo tudi elektrina, označimo s črko Q, enota zanj pa je C (Coulomb-izgovorimo "kulon") ali As (1 C = 1 As).
1 UI.DOC Elektrina - električni naboj (Q) Elementarni delci snovi imajo lastnost, da so nabiti - nosijo električni naboj-elektrino. Protoni imajo pozitiven naboj, zato je jedro pozitivno nabito, elektroni
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
Elektrotehnika in elektronika
Elektrotehnika in elektronika 1. Zapišite pogoj zaporedne resonance, ter pogoj vzporedne resonance. a) Katera ima minimalno impedanco, katera ima minimalno admitanco? b) Pri kateri je pri napetostnem vzbujanju
Stabilizirani usmernik 0-30 V, A
Univerza v Ljubljani Fakulteta za elektrotehniko Igor Knapič Stabilizirani usmernik 0-30 V, 0.02-4 A Seminarska naloga pri predmetu Elektronska vezja Vrhnika 2006 1. Uvod Pri delu v domači delavnici se
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Priloga V: Baza tehničnih podatkov
Priloga V: Baza tehničnih podatkov Tabela 1: Daljnovod 1. ime DV 2. leto izgradnje in posameznih rekonstrukcij 3. lastništvo DV in mesto lo itve lastništva ter meje vzdrževanja Konstrukcijske lastnosti